1
|
Li Y, Lau JKC, van Wieringen T, Martens J, Berden G, Oomens J, Hopkinson AC, Siu KWM, Chu IK. Structure and fragmentation chemistry of the peptide radical cations of glycylphenylalanylglycine (GFG). PLoS One 2024; 19:e0308164. [PMID: 39137228 PMCID: PMC11321575 DOI: 10.1371/journal.pone.0308164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Herein, we explore the generation and characterization of the radical cations of glycylphenylalanylglycine, or [GFG]•+, formed via dissociative electron-transfer reaction from the tripeptide to copper(II) within a ternary complex. A comprehensive investigation employing isotopic labeling, infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations elucidated the details and energetics in formation of the peptide radical cations as well as their dissociation products. Unlike conventional aromatic-containing peptide radical cations that primarily form canonical π-radicals, our findings reveal that 75% of the population of the experimentally produced [GFG]•+ precursors are [GFα•G]+, where the radical resides on the middle α-carbon of the phenylalanyl residue. This unexpected isomeric ion has an enthalpy of 6.8 kcal/mol above the global minimum, which has an N-terminal captodative structure, [Gα•FG]+, comprising 25% of the population. The [b₂-H]•+ product ions are also present in a ratio of 75/25 from [GFα•G]+/ [Gα•FG]+, the results of which are obtained from matches between the IRMPD action spectrum and predicted IR absorption spectra of the [b₂-H]•+ candidate structures, as well as from IRMPD isomer population analyses.
Collapse
Affiliation(s)
- Yinan Li
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Justin Kai-Chi Lau
- Department of Chemistry, York University, Toronto, ON, Canada
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Teun van Wieringen
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | | - K. W. Michael Siu
- Department of Chemistry, York University, Toronto, ON, Canada
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
- Center for Mass Spectrometry Research and Clinical Application, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, Shandong, China
| | - Ivan K. Chu
- Department of Chemistry, University of Hong Kong, Hong Kong, China
- Center for Mass Spectrometry Research and Clinical Application, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Moppel I, Elliott B, Chen S. Intermolecular hydrogen bonding behavior of amino acid radical cations. Org Biomol Chem 2024; 22:3966-3978. [PMID: 38690804 DOI: 10.1039/d4ob00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.
Collapse
Affiliation(s)
- Isabella Moppel
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| | - BarbaraAnn Elliott
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA.
| |
Collapse
|
3
|
Chevalier F, Schlathölter T, Poully JC. Radiation-Induced Transfer of Charge, Atoms, and Energy within Isolated Biomolecular Systems. Chembiochem 2023; 24:e202300543. [PMID: 37712497 DOI: 10.1002/cbic.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
In biological tissues, ionizing radiation interacts with a variety of molecules and the consequences include cell killing and the modification of mechanical properties. Applications of biological radiation action are for instance radiotherapy, sterilization, or the tailoring of biomaterial properties. During the first femtoseconds to milliseconds after the initial radiation action, biomolecular systems typically respond by transfer of charge, atoms, or energy. In the condensed phase, it is usually very difficult to distinguish direct effects from indirect effects. A straightforward solution for this problem is the use of gas-phase techniques, for instance from the field of mass spectrometry. In this review, we survey mainly experimental but also theoretical work, focusing on radiation-induced intra- and inter-molecular transfer of charge, atoms, and energy within biomolecular systems in the gas phase. Building blocks of DNA, proteins, and saccharides, but also antibiotics are considered. The emergence of general processes as well as their timescales and mechanisms are highlighted.
Collapse
Affiliation(s)
- François Chevalier
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Groningen (The, Netherlands
- University College Groningen, University of Groningen, Groningen (The, Netherlands
| | - Jean-Christophe Poully
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, Bd Becquerel, 14070, Caen, France
| |
Collapse
|
4
|
Ng CCA, Zhou Y, Yao ZP. Algorithms for de-novo sequencing of peptides by tandem mass spectrometry: A review. Anal Chim Acta 2023; 1268:341330. [PMID: 37268337 DOI: 10.1016/j.aca.2023.341330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 06/04/2023]
Abstract
Peptide sequencing is of great significance to fundamental and applied research in the fields such as chemical, biological, medicinal and pharmaceutical sciences. With the rapid development of mass spectrometry and sequencing algorithms, de-novo peptide sequencing using tandem mass spectrometry (MS/MS) has become the main method for determining amino acid sequences of novel and unknown peptides. Advanced algorithms allow the amino acid sequence information to be accurately obtained from MS/MS spectra in short time. In this review, algorithms from exhaustive search to the state-of-art machine learning and neural network for high-throughput and automated de-novo sequencing are introduced and compared. Impacts of datasets on algorithm performance are highlighted. The current limitations and promising direction of de-novo peptide sequencing are also discussed in this review.
Collapse
Affiliation(s)
- Cheuk Chi A Ng
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yin Zhou
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Lau JKC, Esuon F, Berden G, Oomens J, Hopkinson AC, Ryzhov V, Siu KWM. Generation, Characterization, and Dissociation of Radical Cations Derived from Prolyl-glycyl-glycine. J Phys Chem B 2021; 125:6121-6129. [PMID: 34097420 DOI: 10.1021/acs.jpcb.1c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Radical cations of an aliphatic tripeptide prolyl-glycyl-glycine (PGG•+) and its sequence ions [a3 + H]•+ and [b2 - H]•+ have been generated by collision-induced dissociation of the [Cu(Phen)(PGG)]•2+ complex, where Phen = 1,10-phenanthroline. Infrared multiple photon dissociation spectroscopy, ion-molecule reaction experiments, and theoretical calculations have been used to investigate the structures of these ions. The unpaired electron in these three radical cations is located at different α-carbons. The PGG•+ radical cation has a captodative structure with the radical at the α-carbon of the proline residue and the proton on the oxygen of the first amide group. This structure is at the global minimum on the potential energy surface (PES). By contrast, the [a3 + H]•+ and [b2 - H]•+ ions are not the lowest-energy structures on their respective PESs, and their radicals are formally located at the C-terminal and second α-carbons, respectively. Density functional theory calculations on the structures of the ternary copper(II) complex ion suggest that the charge-solvated isomer of the metal complex is the precursor ion that dissociates to give the PGG•+ radical cation. The isomer of the complex in which PGG is bound as a zwitterion dissociates to give the [a3 + H]•+ and [b2 - H]•+ ions.
Collapse
Affiliation(s)
- Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Francis Esuon
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, the Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, the Netherlands
| | - Alan C Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
6
|
Tang WK, Mu X, Li M, Martens J, Berden G, Oomens J, Chu IK, Siu CK. Formation of n → π + interaction facilitating dissociative electron transfer in isolated tyrosine-containing molecular peptide radical cations. Phys Chem Chem Phys 2021; 22:21393-21402. [PMID: 32940309 DOI: 10.1039/d0cp00533a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-range electron transfer in proteins can be rationalized as a sequential short-distance electron-hopping processes via amino acid residues having low ionization energy as relay stations. Tyrosine residues can serve as such redox-active intermediates through one-electron oxidation to form a π-radical cation at its phenol side chain. An electron transfer from a vicinal functional group to this π-electron hole completes an elementary step of charge migration. However, transient oxidized/reduced intermediates formed at those relay stations during electron transfer processes have not been observed. In this study, formation of analog reactive intermediates via electron donor-acceptor coupling is observed by using IRMPD action spectroscopy. An elementary charge migration at the molecular level in model tyrosine-containing peptide radical cations [M]˙+ in the gas phase is revealed with its unusual Cα-Cβ bond cleavage at the side chain of the N-terminal residue. This reaction is induced by the radical character of the N-terminal amino group (-NH2˙+) resulting from an n → π+ interaction between the nonbonding electron pair of NH2 (n) and the π-electron hole at the Tyr side chain (π+). The formation of -NH2˙+ is supported by the IRMPD spectrum showing a characteristic NH2 scissor vibration coupled with Tyr side-chain stretches at 1577 cm-1. This n → π+ interaction facilitates a dissociative electron transfer with NH2 as the relay station. The occurrence of this side-chain cleavage may be an indicator of the formation of reactive conformers featuring the n → π+ interaction.
Collapse
Affiliation(s)
- Wai Kit Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hassan MM, Olaoye OO. Recent Advances in Chemical Biology Using Benzophenones and Diazirines as Radical Precursors. Molecules 2020; 25:E2285. [PMID: 32414020 PMCID: PMC7288102 DOI: 10.3390/molecules25102285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
The use of light-activated chemical probes to study biological interactions was first discovered in the 1960s, and has since found many applications in studying diseases and gaining deeper insight into various cellular mechanisms involving protein-protein, protein-nucleic acid, protein-ligand (drug, probe), and protein-co-factor interactions, among others. This technique, often referred to as photoaffinity labelling, uses radical precursors that react almost instantaneously to yield spatial and temporal information about the nature of the interaction and the interacting partner(s). This review focuses on the recent advances in chemical biology in the use of benzophenones and diazirines, two of the most commonly known light-activatable radical precursors, with a focus on the last three years, and is intended to provide a solid understanding of their chemical and biological principles and their applications.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
8
|
Miyazawa K, Takayama M. Multiple Hydrogen Loss from [M + H] + and [a] + ions of Peptides in MALDI In-Source Decay Using a Dinitro-Substituted Matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:547-552. [PMID: 32126775 DOI: 10.1021/jasms.9b00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The formation and radical-directed dissociation of multiple hydrogen-abstracted peptide cations [M + H - mH]·+ has been reported using MALDI-ISD with dinitro-substituted matrices. The MALDI-ISD of synthetic peptides using 3,5-dinitrosalicylic acid (3,5-DNSA) and 3,4-dinitrobenzoic acid (3,4-DNBA) as matrices resulted in multiple hydrogen abstraction from the analyte [M + H]+ and fragment [a]+ ions, i.e., [M + H - mH]+ and [a - mH]+ (m = 1-8). All of the ISD spectra showed unusually intense [a]+ ions originating from cleavage at the Cα-C bond of the Leu-Xxx residues when peptides without Phe/Tyr/His/Cys residues were used. The intensity of the [an]+ series ions generated using 3,5-DNSA and 3,4-DNBA rapidly decreased with increasing residue number n, suggesting cleavage at multiradical sites of [M + H - mH]•+. It was suggested that multiple hydrogen abstraction from protonated peptides [M + H]+ mainly takes place from the backbone amide nitrogen.
Collapse
Affiliation(s)
- Kei Miyazawa
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Mitsuo Takayama
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
9
|
Lee JU, Kim Y, Kim WY, Oh HB. Graph theory-based reaction pathway searches and DFT calculations for the mechanism studies of free radical-initiated peptide sequencing mass spectrometry (FRIPS MS): a model gas-phase reaction of GGR tri-peptide. Phys Chem Chem Phys 2020; 22:5057-5069. [PMID: 32073000 DOI: 10.1039/c9cp05433b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graph theory-based reaction pathway searches (ACE-Reaction program) and density functional theory calculations were performed to shed light on the mechanisms for the production of [an + H]+, xn+, yn+, zn+, and [yn + 2H]+ fragments formed in free radical-initiated peptide sequencing (FRIPS) mass spectrometry measurements of a small model system of glycine-glycine-arginine (GGR). In particular, the graph theory-based searches, which are rarely applied to gas-phase reaction studies, allowed us to investigate reaction mechanisms in an exhaustive manner without resorting to chemical intuition. As expected, radical-driven reaction pathways were favorable over charge-driven reaction pathways in terms of kinetics and thermodynamics. Charge- and radical-driven pathways for the formation of [yn + 2H]+ fragments were carefully compared, and it was revealed that the [yn + 2H]+ fragments observed in our FRIPS MS spectra originated from the radical-driven pathway, which is in contrast to the general expectation. The acquired understanding of the FRIPS fragmentation mechanism is expected to aid in the interpretation of FRIPS MS spectra. It should be emphasized that graph theory-based searches are powerful and effective methods for studying reaction mechanisms, including gas-phase reactions in mass spectrometry.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | | | | | | |
Collapse
|
10
|
Lai CK, Tang WK, Siu CK, Chu IK. Evidence for the Prerequisite Formation of Phenoxyl Radicals in Radical-Mediated Peptide Tyrosine Nitration In Vacuo. Chemistry 2020; 26:331-335. [PMID: 31657861 DOI: 10.1002/chem.201904484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/30/2022]
Abstract
The elementary mechanism of radical-mediated peptide tyrosine nitration, which is a hallmark of post-translational modification of proteins under nitrative stress in vivo, has been elucidated in detail by using an integrated approach that combines the gas-phase synthesis of prototypical molecular tyrosine-containing peptide radical cations, ion-molecule reactions, and isotopic labeling experiments with DFT calculations. This reaction first involves the radical recombination of . NO2 towards the prerequisite phenoxyl radical tautomer of a tyrosine residue, followed by proton rearrangements, finally yielding the stable and regioselective 3-nitrotyrosyl residue product. In contrast, nitration with the π-phenolic radical cation tautomer is inefficient. This first direct experimental evidence for the elementary steps of the radical-mediated tyrosine nitration mechanism in the gas phase provides a fundamental insight into the regioselectivity of biological tyrosine ortho-nitration.
Collapse
Affiliation(s)
- Cheuk Kuen Lai
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, S.A.R. China
| | - Wai Kit Tang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, S.A.R. China
| | - Chi-Kit Siu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, S.A.R. China
| | - Ivan K Chu
- Department of Chemistry, University of Hong Kong, Pokfulam, Hong Kong, S.A.R. China
| |
Collapse
|
11
|
Gaspar K, Fabijanczuk K, Otegui T, Acosta J, Gao J. Development of Novel Free Radical Initiated Peptide Sequencing Reagent: Application to Identification and Characterization of Peptides by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:548-556. [PMID: 30547308 PMCID: PMC6417990 DOI: 10.1007/s13361-018-2114-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 05/19/2023]
Abstract
By incorporating a high proton affinity moiety to the charge localized free radical-initiated peptide sequencing (CL-FRIPS) reagent, FRIPS-MS technique has extended the applicability to hydrophobic peptides and peptides without basic amino acid residues (lysine, arginine, and histidine). Herein, the CL-FRIPS reagent has three moieties: (1) pyridine acting as the basic site to locate the proton, (2) 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, a stable free radical) acting as the free radical precursor to generate the nascent free radical in the gas phase, and (3) N-hydroxysuccinimide (NHS) activated carboxylic acid acting as the coupling site to derivatize the N-terminus of peptides. The CL-FRIPS reagent allows for the characterization of peptides by generating sequencing ions, enzymatic cleavage-like radical-induced side chain losses, and the loss of TEMPO simultaneously via one-step collisional activation. Further collisional activation of enzymatic cleavage-like radical-induced side chain loss ions provides more information for the structure determination of peptides. The application of CL-FRIPS reagent to characterize peptides is proved by employing bovine insulin as the model peptide. Both scaffold structure of bovine insulin and sequencing information of each chain are achieved. Graphical Abstract.
Collapse
Affiliation(s)
- Kaylee Gaspar
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Tara Otegui
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Jose Acosta
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Center for Quantitative Obesity Research, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA.
| |
Collapse
|
12
|
Jang I, Jeon A, Lim SG, Hong DK, Kim MS, Jo JH, Lee ST, Moon B, Oh HB. Free Radical-Initiated Peptide Sequencing Mass Spectrometry for Phosphopeptide Post-translational Modification Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:538-547. [PMID: 30414067 DOI: 10.1007/s13361-018-2100-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Free radical-initiated peptide sequencing mass spectrometry (FRIPS MS) was employed to analyze a number of representative singly or doubly protonated phosphopeptides (phosphoserine and phosphotyrosine peptides) in positive ion mode. In contrast to collision-activated dissociation (CAD) results, a loss of a phosphate group occurred to a limited degree for both phosphoserine and phosphotyrosine peptides, and thus, localization of a phosphorylated site was readily achieved. Considering that FRIPS MS supplies a substantial amount of collisional energy to peptides, this result was quite unexpected because a labile phosphate group was conserved. Analysis of the resulting peptide fragments revealed the extensive production of a-, c-, x-, and z-type fragments (with some minor b- and y-type fragments), suggesting that radical-driven peptide fragmentation was the primary mechanism involved in the FRIPS MS of phosphopeptides. Results of this study clearly indicate that FRIPS MS is a promising tool for the characterization of post-translational modifications such as phosphorylation. Graphical Abstract.
Collapse
Affiliation(s)
- Inae Jang
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Aeran Jeon
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Suk Gyu Lim
- Seoul Science High School, Seoul, 03066, Republic of Korea
- Seoul National University, Seoul, 08826, Republic of Korea
| | - Duk Ki Hong
- Seoul Science High School, Seoul, 03066, Republic of Korea
- Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Soo Kim
- Seoul Science High School, Seoul, 03066, Republic of Korea
- Korea University, Seoul, 02841, Republic of Korea
| | - Jae Hyeong Jo
- Seoul Science High School, Seoul, 03066, Republic of Korea
- Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sang Tak Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
13
|
Iacobucci C, Schäfer M, Sinz A. Free radical-initiated peptide sequencing (FRIPS)-based cross-linkers for improved peptide and protein structure analysis. MASS SPECTROMETRY REVIEWS 2019; 38:187-201. [PMID: 29660147 DOI: 10.1002/mas.21568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Free radical-initiated peptide sequencing (FRIPS) has recently been introduced as an analytical strategy to create peptide radical ions in a predictable and effective way by collisional activation of specifically modified peptides ions. FRIPS is based on the unimolecular dissociation of open-shell ions and yields fragments that resemble those obtained by electron capture dissociation (ECD) or electron transfer dissociation (ETD). In this review article, we describe the fundamentals of FRIPS and highlight its fruitful combination with chemical cross-linking/mass spectrometry (MS) as a highly promising option to derive complementary structural information of peptides and proteins. FRIPS does not only yield exhaustive sequence information of cross-linked peptides, but also defines the exact cross-linking sites of the connected peptides. The development of more advanced FRIPS cross-linkers that extend the FRIPS-based cross-linking/MS approach to the study of large protein assemblies and protein interaction networks can be eagerly anticipated.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Cologne, D-50939, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), D-06120, Germany
| |
Collapse
|
14
|
Noble JA, Aranguren-Abate JP, Dedonder C, Jouvet C, Pino GA. Photodetachment of deprotonated aromatic amino acids: stability of the dehydrogenated radical depends on the deprotonation site. Phys Chem Chem Phys 2019; 21:23346-23354. [DOI: 10.1039/c9cp04302k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
When aromatic amino acids are deprotonated on the carbonyl, the radicals produced upon photodetachment dissociate without barrier, forming CO2 and a radical amine. When the functional group on the chromophore is deprotonated, the radicals are stable.
Collapse
Affiliation(s)
- Jennifer Anna Noble
- PIIM
- UMR-CNRS 7345
- Aix-Marseille Univ. Avenue
- Escadrille Normandie-Niémen
- 13397 Marseille Cedex 20
| | - Juan P. Aranguren-Abate
- INFIQC
- Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET – UNC)
- Haya de la Torre y Medina Allende
- Ciudad Universitaria
- X5000HUA Córdoba
| | - Claude Dedonder
- PIIM
- UMR-CNRS 7345
- Aix-Marseille Univ. Avenue
- Escadrille Normandie-Niémen
- 13397 Marseille Cedex 20
| | - Christophe Jouvet
- PIIM
- UMR-CNRS 7345
- Aix-Marseille Univ. Avenue
- Escadrille Normandie-Niémen
- 13397 Marseille Cedex 20
| | - Gustavo A. Pino
- Departamento de Fisicoquímica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Haya de la Torre y Medina Allende
- Ciudad Universitaria
| |
Collapse
|
15
|
Asakawa D, Takahashi H, Iwamoto S, Tanaka K. Hydrogen atom attachment to histidine and tryptophan containing peptides in the gas phase. Phys Chem Chem Phys 2019; 21:11633-11641. [DOI: 10.1039/c9cp00083f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we focus on the gas-phase fragmentation induced by the attachment of hydrogen atoms to the histidine and tryptophan residue side-chains in the peptide that provides the fragment ions due to Cα–Cβ bond cleavage.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST)
- National Metrology Institute of Japan (NMIJ)
- Tsukuba
- Japan
| | - Hidenori Takahashi
- Koichi Tanaka Mass Spectrometry Research Laboratory
- Shimadzu Corporation
- Kyoto 604-8511
- Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory
- Shimadzu Corporation
- Kyoto 604-8511
- Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory
- Shimadzu Corporation
- Kyoto 604-8511
- Japan
| |
Collapse
|
16
|
Nagoshi K, Yamakoshi M, Sakamoto K, Takayama M. Specific Cα-C Bond Cleavage of β-Carbon-Centered Radical Peptides Produced by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1473-1483. [PMID: 29675742 DOI: 10.1007/s13361-018-1958-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M - H + H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a] + ions and C-terminal [x]+, [y + 2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M - Hβ + H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M - Hβ + H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M - Hβ + H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M - Hβ + H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M - Hα + H]·+ and the amide nitrogen-centered radical ions [M - HN + H]·+, while ab initio calculations indicate that the formation of [M - Hα + H]·+ is energetically most favorable. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Keishiro Nagoshi
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Mariko Yamakoshi
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Kenya Sakamoto
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Mitsuo Takayama
- Mass Spectrometry Laboratory, Graduate School in Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| |
Collapse
|
17
|
Wong YLE, Chen X, Wu R, Hung YLW, Yeung HS, Chan TWD. Generation and Characterization of Gas-Phase Doubly Charged Biradical Peptide Ions (M2+••). Anal Chem 2017; 89:7773-7780. [DOI: 10.1021/acs.analchem.7b01808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Y. L. Elaine Wong
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiangfeng Chen
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Key
Laboratory for Applied Technology of Sophisticated Analytical Instruments,
Shandong Analysis and Test Centre, Shandong Academy of Sciences, Jinan, Shandong, People’s Republic of China
| | - Ri Wu
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Y. L. Winnie Hung
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hoi Sze Yeung
- Bruker Scientific
Instruments Hong Kong Co. Limited, Kowloon Bay, Hong Kong SAR
| | - T.-W. Dominic Chan
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
18
|
Mu X, Lau JKC, Lai CK, Siu KWM, Hopkinson AC, Chu IK. Isomerization versus dissociation of phenylalanylglycyltryptophan radical cations. Phys Chem Chem Phys 2017. [PMID: 28631796 DOI: 10.1039/c7cp02355c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four isomers of the radical cation of tripeptide phenylalanylglycyltryptophan, in which the initial location of the radical center is well defined, have been isolated and their collision-induced dissociation (CID) spectra examined. These ions, the π-centered [FGWπ˙]+, α-carbon- [FGα˙W]+, N-centered [FGWN˙]+ and ζ-carbon- [Fζ˙GW]+ radical cations, were generated via collision-induced dissociation (CID) of transition metal-ligand-peptide complexes, side chain fragmentation of a π-centered radical cation, homolytic cleavage of a labile nitrogen-nitrogen single bond, and laser induced dissociation of an iodinated peptide, respectively. The π-centered and tryptophan N-centered peptide radical cations produced almost identical CID spectra, despite the different locations of their initial radical sites, which indicated that interconversion between the π-centered and tryptophan N-centered radical cations is facile. By contrast, the α-carbon-glycyl radical [FGα˙W]+, and ζ-phenyl radical [Fζ˙GW]+, featured different dissociation product ions, suggesting that the interconversions among α-carbon, π-centered (or tryptophan N-centered) and ζ-carbon-radical cations have higher barriers than those to dissociation. Density functional theory calculations have been used to perform systematic mechanistic investigations on the interconversions between these isomers and to study selected fragmentation pathways for these isomeric peptide radical cations. The results showed that the energy barrier for interconversion between [FGWπ˙]+ and [FGWN˙]+ is only 31.1 kcal mol-1, much lower than the barriers to their dissociation (40.3 kcal mol-1). For the [FGWπ˙]+, [FGα˙W]+, and [Fζ˙GW]+, the barriers to interconversion are higher than those to dissociation, suggesting that interconversions among these isomers are not competitive with dissociations. The [z3 - H]˙+ ions isolated from [FGα˙W]+ and [Fζ˙GW]+ show distinctly different fragmentation patterns, indicating that the structures of these ions are different and this result is supported by the DFT calculations.
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
19
|
Mu X, Song T, Siu CK, Chu IK. Tautomerization and Dissociation of Molecular Peptide Radical Cations. CHEM REC 2017. [DOI: 10.1002/tcr.201700013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Tao Song
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Kowloon Tong, Hong Kong SAR P. R. China
| | - Ivan K. Chu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| |
Collapse
|
20
|
Chan B, Moran D, Easton CJ, Radom L. Impact of Hydrogen Bonding on the Susceptibility of Peptides to Oxidation. Chem Asian J 2017; 12:1485-1489. [PMID: 28544486 DOI: 10.1002/asia.201700492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 01/12/2023]
Abstract
The tendency of peptides to be oxidized is intimately connected with their function and even their ability to exist in an oxidative environment. Here we report high-level theoretical studies that show that hydrogen bonding can alter the susceptibility of peptides to oxidation, with complexation to a hydrogen-bond acceptor facilitating oxidation, and vice versa, impacting the feasibility of a diverse range of biological processes. It can even provide an energetically viable mechanistic alternative to direct hydrogen-atom abstraction. We find that hydrogen bonding to representative reactive groups leads to a broad (≈400 kJ mol-1 ) spectrum of ionization energies in the case of model amide, thiol and phenol systems. While some of the oxidative processes at the extreme ends of the spectrum are energetically prohibitive, subtle environmental and solvent effects could potentially mitigate the situation, leading to a balance between hydrogen bonding and oxidative susceptibility.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Damian Moran
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Leo Radom
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
21
|
Jang I, Lee SY, Hwangbo S, Kang D, Lee H, Kim HI, Moon B, Oh HB. TEMPO-Assisted Free Radical-Initiated Peptide Sequencing Mass Spectrometry (FRIPS MS) in Q-TOF and Orbitrap Mass Spectrometers: Single-Step Peptide Backbone Dissociations in Positive Ion Mode. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:154-163. [PMID: 27686973 DOI: 10.1007/s13361-016-1508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/15/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
The present study demonstrates that one-step peptide backbone fragmentations can be achieved using the TEMPO [2-(2,2,6,6-tetramethyl piperidine-1-oxyl)]-assisted free radical-initiated peptide sequencing (FRIPS) mass spectrometry in a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer and a Q-Exactive Orbitrap instrument in positive ion mode, in contrast to two-step peptide fragmentation in an ion-trap mass spectrometer (reference Anal. Chem. 85, 7044-7051 (30)). In the hybrid Q-TOF and Q-Exactive instruments, higher collisional energies can be applied to the target peptides, compared with the low collisional energies applied by the ion-trap instrument. The higher energy deposition and the additional multiple collisions in the collision cell in both instruments appear to result in one-step peptide backbone dissociations in positive ion mode. This new finding clearly demonstrates that the TEMPO-assisted FRIPS approach is a very useful tool in peptide mass spectrometry research. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Inae Jang
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Sun Young Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Song Hwangbo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
22
|
Wang B, Liu J, Cao J, Wang H, Guan X, Wei Z, Guo X. Investigation of c ions formed by N-terminally charged peptides upon collision-induced dissociation. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:989-997. [PMID: 27537939 DOI: 10.1002/jms.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Peptide fragments such as b and y sequence ions generated upon low-energy collision-induced dissociation have been routinely used for tandem mass spectrometry (MS/MS)-based peptide/protein identification. The underlying formation mechanisms have been studied extensively and described within the literature. As a result, the 'mobile proton model' and 'pathways in competition model' have been built to interpret a majority of peptide fragmentation behavior. However, unusual peptide fragments which involve unfamiliar fragmentation pathways or various rearrangement reactions occasionally appear in MS/MS spectra, resulting in confused MS/MS interpretations. In this work, a series of unfamiliar c ions are detected in MS/MS spectra of the model peptides having an N-terminal Arg or deuterohemin group upon low-energy collision-induced dissociation process. Both the protonated Arg and deuterohemin group play an important role in retention of a positive charge at the N-terminus that is remote from the cleavage sites. According to previous reports and our studies involving amino acid substitutions and hydrogen-deuterium exchange, we propose a McLafferty-type rearrangement via charge-remote fragmentation as the potential mechanism to explain the formation of c ions from precursor peptide ions or unconventional b ions. Density functional theory calculations are also employed in order to elucidate the proposed fragmentation mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jinrong Liu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jungang Cao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Huixin Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xinshu Guan
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zhonglin Wei
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xinhua Guo
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
23
|
Osburn S, Chan B, Ryzhov V, Radom L, O'Hair RAJ. Role of Hydrogen Bonding on the Reactivity of Thiyl Radicals: A Mass Spectrometric and Computational Study Using the Distonic Radical Ion Approach. J Phys Chem A 2016; 120:8184-8189. [PMID: 27726360 DOI: 10.1021/acs.jpca.6b08544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental and computational quantum chemistry investigations of the gas-phase ion-molecule reactions between the distonic ions +H3N(CH2)nS• (n = 2-4) and the reagents dimethyl disulfide, allyl bromide, and allyl iodide demonstrate that intramolecular hydrogen bonding can modulate the reactivity of thiyl radicals. Thus, the 3-ammonium-1-propanethiyl radical (n = 3) exhibits the lowest reactivity of these distonic ions toward all substrates. Theoretical calculations on this distonic ion highlight that its most stable conformation involves a six-membered ring configuration, and that it has the strongest intramolecular hydrogen bond. In addition, the calculations indicate that the barrier heights for radical abstraction by this hydrogen-bond-stabilized 3-ammonium-1-propanethiyl radical are the highest among the systems examined, consistent with the experimental observations.
Collapse
Affiliation(s)
- Sandra Osburn
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University , Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry and Center for Biochemical and Biophysical studies, Northern Illinois University , Dekalb, Illinois 60115, United States
| | - Leo Radom
- School of Chemistry, University of Sydney , Sydney, NSW 2006, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , 30 Flemington Rd, Parkville, Victoria 3010, Australia
| |
Collapse
|
24
|
Lau JKC, Zhao J, Williams D, Wu BHB, Wang Y, Mädler S, Saminathan IS, Siu KWM, Hopkinson AC. Radical-induced dissociation leading to the loss of CO2 from the oxazolone ring of [b5- H]˙(+) ions. Phys Chem Chem Phys 2016; 18:18119-27. [PMID: 27327880 DOI: 10.1039/c6cp01974a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macrocyclization is commonly observed in large bn(+) (n≥ 4) ions and as a consequence can lead to incorrect protein identification due to sequence scrambling. In this work, the analogous [b5- H]˙(+) radical cations derived from aliphatic hexapeptides (GA5˙(+)) also showed evidence of macrocyclization under CID conditions. However, the major fragmentation for [b5- H]˙(+) ions is the loss of CO2 and not CO loss, which is commonly observed in closed-shell bn(+) ions. Isotopic labeling using CD3 and (18)O revealed that more than one common structure underwent dissociations. Theoretical studies found that the loss of CO2 is radical-driven and is facilitated by the radical being located at the Cα atom immediately adjacent to the oxazolone ring. Comparable energy barriers against macrocyclization, hydrogen-atom transfer, and fragmentations are found by DFT calculations and the results are consistent with the experimental observations that a variety of dissociation products are observed in the CID spectra.
Collapse
Affiliation(s)
- Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Asakawa D. Principles of hydrogen radical mediated peptide/protein fragmentation during matrix-assisted laser desorption/ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:535-556. [PMID: 25286767 DOI: 10.1002/mas.21444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) is a very easy way to obtain large sequence tags and, thereby, reliable identification of peptides and proteins. Recently discovered new matrices have enhanced the MALDI-ISD yield and opened new research avenues. The use of reducing and oxidizing matrices for MALDI-ISD of peptides and proteins favors the production of fragmentation pathways involving "hydrogen-abundant" and "hydrogen-deficient" radical precursors, respectively. Since an oxidizing matrix provides information on peptide/protein sequences complementary to that obtained with a reducing matrix, MALDI-ISD employing both reducing and oxidizing matrices is a potentially useful strategy for de novo peptide sequencing. Moreover, a pseudo-MS(3) method provides sequence information about N- and C-terminus extremities in proteins and allows N- and C-terminal side fragments to be discriminated within the complex MALDI-ISD mass spectrum. The combination of high mass resolution of a Fourier transform-ion cyclotron resonance (FTICR) analyzer and the software suitable for MALDI-ISD facilitates the interpretation of MALDI-ISD mass spectra. A deeper understanding of the MALDI-ISD process is necessary to fully exploit this method. Thus, this review focuses first on the mechanisms underlying MALDI-ISD processes, followed by a discussion of MALDI-ISD applications in the field of proteomics. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:535-556, 2016.
Collapse
Affiliation(s)
- Daiki Asakawa
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| |
Collapse
|
26
|
Viglino E, Shaffer CJ, Tureček F. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase. Angew Chem Int Ed Engl 2016; 55:7469-73. [DOI: 10.1002/anie.201602604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Emilie Viglino
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | | | - František Tureček
- Department of Chemistry University of Washington Seattle WA 98195 USA
| |
Collapse
|
27
|
Viglino E, Shaffer CJ, Tureček F. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emilie Viglino
- Department of Chemistry University of Washington Seattle WA 98195 USA
| | | | - František Tureček
- Department of Chemistry University of Washington Seattle WA 98195 USA
| |
Collapse
|
28
|
Mu X, Lau JKC, Lai CK, Siu KWM, Hopkinson AC, Chu IK. Nucleophilic substitution by amide nitrogen in the aromatic rings of [zn - H]˙⁺ ions; the structures of the [b₂ - H - 17]˙⁺ and [c1 - 17]⁺ ions. Phys Chem Chem Phys 2016; 18:11168-75. [PMID: 27048940 DOI: 10.1039/c6cp00405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptide radical cations that contain an aromatic amino acid residue cleave to give [zn - H]˙⁺ ions with [b2 - H - 17]˙⁺ and [c1 - 17](+) ions, the dominant products in the dissociation of [zn - H]˙⁺, also present in lower abundance in the CID spectra. Isotopic labeling in the aromatic ring of [Yπ˙GG](+) establishes that in the formation of [b2 - H - 17]˙⁺ ions a hydrogen from the δ-position of the Y residue is lost, indicating that nucleophilic substitution on the aromatic ring has occurred. A preliminary DFT investigation of nine plausible structures for the [c1 - 17](+) ion derived from [Y(π)˙GG](+) shows that two structures resulting from attack on the aromatic ring by oxygen and nitrogen atoms from the peptide backbone have significantly better energies than other isomers. A detailed study of [Y(π)˙GG](+) using two density functionals, B3LYP and M06-2X, with a 6-31++G(d,p) basis set gives a higher barrier for attack on the aromatic ring of the [zn - H]˙⁺ ion by nitrogen than by the carbonyl oxygen. However, subsequent rearrangements involving proton transfers are much higher in energy for the oxygen-substituted isomer leading to the conclusion that the [c1 - 17](+) ions are the products of nucleophilic attack by nitrogen, protonated 2,7-dihydroxyquinoline ions. The [b2 - H - 17]˙⁺ ions are formed by loss of glycine from the same intermediates involved in the formation of the [c1 - 17](+) ions.
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada. and Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Cheuk-Kuen Lai
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada. and Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Alan C Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada.
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
29
|
Lesslie M, Lau JKC, Lawler JT, Siu KWM, Steinmetz V, Maître P, Hopkinson AC, Ryzhov V. Cysteine Radical/Metal Ion Adducts: A Gas-Phase Structural Elucidation and Reactivity Study. Chempluschem 2016; 81:444-452. [DOI: 10.1002/cplu.201500558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| | - Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto ON M3J 1P3 Canada
- Department of Chemistry and Biochemistry; University of Windsor; Windsor ON N9B 3P4 Canada
| | - John T. Lawler
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| | - K. W. Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto ON M3J 1P3 Canada
- Department of Chemistry and Biochemistry; University of Windsor; Windsor ON N9B 3P4 Canada
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique; Université Paris-Sud; UMR8000 CNRS; 91405 Orsay France
| | - Philippe Maître
- Laboratoire de Chimie Physique; Université Paris-Sud; UMR8000 CNRS; 91405 Orsay France
| | - Alan C. Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto ON M3J 1P3 Canada
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| |
Collapse
|
30
|
Lesslie M, Lau JKC, Lawler JT, Siu KWM, Oomens J, Berden G, Hopkinson AC, Ryzhov V. Alkali-Metal-Ion-Assisted Hydrogen Atom Transfer in the Homocysteine Radical. Chemistry 2016; 22:2243-6. [DOI: 10.1002/chem.201504631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| | - Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto Ontario M3J 1P3 Canada
- Department of Chemistry and Biochemistry; University of Windsor; Windsor Ontario N9B 3P4 Canada
| | - John T. Lawler
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| | - K. W. Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto Ontario M3J 1P3 Canada
- Department of Chemistry and Biochemistry; University of Windsor; Windsor Ontario N9B 3P4 Canada
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory; Radboud University; Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory; Radboud University; Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Alan C. Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry; York University; Toronto Ontario M3J 1P3 Canada
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry; Northern Illinois University; DeKalb IL 60115 USA
| |
Collapse
|
31
|
Tang WK, Leong CP, Hao Q, Siu CK. Theoretical examination of competitive β-radical-induced cleavages of N–Cα and Cα–C bonds of peptides. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective cleavages of N–Cα and Cα–C bonds of β-radical tautomers of amino acid residues in radical peptides have been examined theoretically by means of the density functional theory at the M06-2X/6-311++G(d,p) level. The majority of the bond cleavages are homolytic via β-scission. Their energy barriers depend largely on the ability of the radical being stabilized in the transition structures and the availability of a mobile proton in the vicinity of the β-radical center. The N–Cα bond is less favorably cleaved than the Cα–C bond (except Ser and Thr) for systems without a mobile proton. It is because, firstly, the homolytic cleavage is less favorable for the more polar N–Cα bond than for the less polar Cα–C bond. Secondly, a less stable σ-radical localized on the amide nitrogen atom of the incipient N-terminal fragment is formed for the former, while a more stable radical delocalized in a π*(CO)-like orbital of the incipient C-terminal fragment is formed for the latter. In the presence of a mobile proton N-terminal to the β-radical center, some degrees of heterolytic cleavage character, as preferred by the polar N–Cα bond, are observed. Consequently, its barrier is reduced. If the mobile proton is located at the C-terminal amide oxygen of the β-radical center, the Cα–C bond cleavage will be significantly suppressed. It is because the radical in the incipient C-terminal fragment becomes more localized as a σ-radical on the carbon atom of its protonated amide group. With basic amino acid residues, the Cα–C bond cleavage can be reactivated. Heterolytic cleavage of the polar N–Cα bond can be largely facilitated if a mobile proton N-terminal to the β-radical center is available and the radical in the incipient C-terminal fragment is sufficiently stabilized, for instance, by the aromatic side chain of Trp and Tyr. Therefore, cleavages of the N–Cα bond induced by the β-radical tautomer of Trp and Tyr are often preferred as compared with cleavages of the Cα–C bond in peptide radical cations containing mobile protons.
Collapse
Affiliation(s)
- Wai-Kit Tang
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Chun-Ping Leong
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Qiang Hao
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P.R. China
| |
Collapse
|
32
|
Tureček F. Benchmarking Electronic Excitation Energies and Transitions in Peptide Radicals. J Phys Chem A 2015; 119:10101-11. [DOI: 10.1021/acs.jpca.5b06235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- František Tureček
- Department of Chemistry, University of Washington, Bagley Hall,
Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
33
|
Piatkivskyi A, Happ M, Lau JKC, Siu KWM, Hopkinson AC, Ryzhov V. Investigation of Fragmentation of Tryptophan Nitrogen Radical Cation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1388-1393. [PMID: 25962366 DOI: 10.1007/s13361-015-1134-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
This work describes investigation of the fragmentation mechanism of tryptophan N-indolyl radical cation, H3N(+)-TrpN(•) (m/z 204) studied via DFT calculations and several gas-phase experimental techniques. The main fragment ion at m/z 131, shown to be a mixture of up to four isomers including 3-methylindole (3MI) π-radical cation, was found to undergo further loss of an H atom to yield one of the two isomeric m/z 130 ions. 3-Methylindole radical cation generated independently (via CID of [Cu(II)(terpy)3MI](•2+)) displayed gas-phase reactivity partially similar to that of the m/z 131 fragment, further confirming our proposed mechanism. CID of deuterated tryptophan N-indolyl radical cation (m/z 208) suggested that up to six H atoms are involved in the pathway to formation of the m/z 131 ion, consistent with hydrogen atom scrambling during CID of protonated Trp.
Collapse
Affiliation(s)
- Andrii Piatkivskyi
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Studies, Northern Illinois University, DeKalb, IL, 60115, USA
| | | | | | | | | | | |
Collapse
|
34
|
Iftikhar I, Brajter-Toth A. Solution or Gas Phase? Oxidation and Radical Formation in Electrospray Ionization Mass Spectrometry (ESI MS). ELECTROANAL 2015. [DOI: 10.1002/elan.201500297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Pilo AL, Bu J, McLuckey SA. Transformation of [M + 2H](2+) Peptide Cations to [M - H](+), [M + H + O](+), and M(+•) Cations via Ion/Ion Reactions: Reagent Anions Derived from Persulfate. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1103-14. [PMID: 25944366 PMCID: PMC4475491 DOI: 10.1007/s13361-015-1125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 05/25/2023]
Abstract
The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.
Collapse
Affiliation(s)
- Alice L. Pilo
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084
| | - Jiexun Bu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084
| |
Collapse
|
36
|
Poully JC, Vizcaino V, Schwob L, Delaunay R, Kocisek J, Eden S, Chesnel JY, Méry A, Rangama J, Adoui L, Huber B. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase. Chemphyschem 2015; 16:2389-96. [DOI: 10.1002/cphc.201500275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/11/2022]
|
37
|
Williams D, Lau JKC, Zhao J, Mädler S, Wang Y, Saminathan IS, Hopkinson AC, Siu KWM. Radical-induced, proton-transfer-driven fragmentations in [b(5)-H]˙(+) ions derived from pentaalanyl tryptophan. Phys Chem Chem Phys 2015; 17:10699-707. [PMID: 25811808 DOI: 10.1039/c5cp00178a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The collision-induced dissociation (CID) of [b5 - H]˙(+) ions containing four alanine residues and one tryptophan give identical spectra regardless of the initial location of the tryptophan indicating that, as proposed for b5(+) ions, sequence scrambling occurs prior to dissociation. Cleavage occurs predominantly at the peptide bonds and at the N-Cα bond of the alanine residue that is attached to the N-terminus of the tryptophan residue. The product of the latter pathway, an ion at m/z 240, is the base peak in all the mass spectra. With the exception of one minor channel giving a b3(+) ion, the product ions retain both the tryptophan residue and the radical. Experiments with one trideuterated alanine established the sequences of loss of alanine residues. Formation of identical products implies a common intermediate, a [b5 - H]˙(+) ion that has a 'linear' structure in which the tryptophan residue is present as an α-radical located in the oxazolone ring, structure Ie. Density functional theory calculations show this structure to be at the global minimum, 14.6 kcal mol(-1) below the macrocyclic structure, ion II. Loss of CO from the [b5 - H]˙(+) ions is inhibited by the presence of the radical centre in the oxazolone ring and migration of the proton from the oxazolone ring onto the peptide backbone induces cleavage of an N-Cα or peptide bond. Three calculated structures for the ion at m/z 240 all have an oxazolone ring. Two of these structures may be formed from Ie, depending upon which proton migrates onto the peptide chain prior to the dissociation. The barrier to interconversion between these two structures requires a 1,3-hydrogen atom shift and is high (51.0 kcal mol(-1)), but both can convert into a third isomer that readily loses CO2 (barrier 38.7 kcal mol(-1)). The lowest barrier to the loss of CO, the usual fragmentation path observed for protonated oxazolones, is 47.0 kcal mol(-1).
Collapse
Affiliation(s)
- Declan Williams
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oh HB, Moon B. Radical-driven peptide backbone dissociation tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:116-132. [PMID: 24863492 DOI: 10.1002/mas.21426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 05/06/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
In recent years, a number of novel tandem mass spectrometry approaches utilizing radical-driven peptide gas-phase fragmentation chemistry have been developed. These approaches show a peptide fragmentation pattern quite different from that of collision-induced dissociation (CID). The peptide fragmentation features of these approaches share some in common with electron capture dissociation (ECD) or electron transfer dissociation (ETD) without the use of sophisticated equipment such as a Fourier-transform mass spectrometer. For example, Siu and coworkers showed that CID of transition metal (ligand)-peptide ternary complexes led to the formation of peptide radical ions through dissociative electron transfer (Chu et al., 2000. J Phys Chem B 104:3393-3397). The subsequent collisional activation of the generated radical ions resulted in a number of characteristic product ions, including a, c, x, z-type fragments and notable side-chain losses. Another example is the free radical initiated peptide sequencing (FRIPS) approach, in which Porter et al. and Beauchamp et al. independently introduced a free radical initiator to the primary amine group of the lysine side chain or N-terminus of peptides (Masterson et al., 2004. J Am Chem Soc 126:720-721; Hodyss et al., 2005 J Am Chem Soc 127: 12436-12437). Photodetachment of gaseous multiply charged peptide anions (Joly et al., 2008. J Am Chem Soc 130:13832-13833) and UV photodissociation of photolabile radical precursors including a C-I bond (Ly & Julian, 2008. J Am Chem Soc 130:351-358; Ly & Julian, 2009. J Am Soc Mass Spectrom 20:1148-1158) also provide another route to generate radical ions. In this review, we provide a brief summary of recent results obtained through the radical-driven peptide backbone dissociation tandem mass spectrometry approach.
Collapse
Affiliation(s)
- Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 121-742, Republic of Korea
| | | |
Collapse
|
39
|
Ihling C, Falvo F, Kratochvil I, Sinz A, Schäfer M. Dissociation behavior of a bifunctional tempo-active ester reagent for peptide structure analysis by free radical initiated peptide sequencing (FRIPS) mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:396-406. [PMID: 25800022 DOI: 10.1002/jms.3543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/28/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
We have synthesized a homobifunctional active ester cross-linking reagent containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) moiety connected to a benzyl group (Bz), termed TEMPO-Bz-linker. The aim for designing this novel cross-linker was to facilitate MS analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). The TEMPO-Bz-linker was reacted with all 20 proteinogenic amino acids as well as with model peptides to gain detailed insights into its fragmentation mechanism upon collision activation. The final goal of this proof-of-principle study was to evaluate the potential of the TEMPO-Bz-linker for chemical cross-linking studies to derive 3D-structure information of proteins. Our studies were motivated by the well documented instability of the central NO-C bond of TEMPO-Bz reagents upon collision activation. The fragmentation of this specific bond was investigated in respect to charge states and amino acid composition of a large set of precursor ions resulting in the identification of two distinct fragmentation pathways. Molecular ions with highly basic residues are able to keep the charge carriers located, i.e. protons or sodium cations, and consequently decompose via a homolytic cleavage of the NO-C bond of the TEMPO-Bz-linker. This leads to the formation of complementary open-shell peptide radical cations, while precursor ions that are protonated at the TEMPO-Bz-linker itself exhibit a charge-driven formation of even-electron product ions upon collision activation. MS(3) product ion experiments provided amino acid sequence information and allowed determining the cross-linking site. Our study fully characterizes the CID behavior of the TEMPO-Bz-linker and demonstrates its potential, but also its limitations for chemical cross-linking applications utilizing the special features of open-shell peptide ions on the basis of selective tandem MS analysis.
Collapse
Affiliation(s)
- Christian Ihling
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
40
|
Gilbert JD, Fisher CM, Bu J, Prentice BM, Redwine JG, McLuckey SA. Strategies for generating peptide radical cations via ion/ion reactions. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:418-26. [PMID: 25800024 PMCID: PMC4372815 DOI: 10.1002/jms.3548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 05/25/2023]
Abstract
Several approaches for the generation of peptide radical cations using ion/ion reactions coupled with either collision induced dissociation (CID) or ultraviolet photo dissociation (UVPD) are described here. Ion/ion reactions are used to generate electrostatic or covalent complexes comprised of a peptide and a radical reagent. The radical site of the reagent can be generated multiple ways. Reagents containing a carbon-iodine (C-I) bond are subjected to UVPD with 266-nm photons, which selectively cleaves the C-I bond homolytically. Alternatively, reagents containing azo functionalities are collisionally activated to yield radical sites on either side of the azo group. Both of these methods generate an initial radical site on the reagent, which then abstracts a hydrogen from the peptide while the peptide and reagent are held together by either electrostatic interactions or a covalent linkage. These methods are demonstrated via ion/ion reactions between the model peptide RARARAA (doubly protonated) and various distonic anionic radical reagents. The radical site abstracts a hydrogen atom from the peptide, while the charge site abstracts a proton. The net result is the conversion of a doubly protonated peptide to a peptide radical cation. The peptide radical cations have been fragmented via CID and the resulting product ion mass spectra are compared to the control CID spectrum of the singly protonated, even-electron species. This work is then extended to bradykinin, a more broadly studied peptide, for comparison with other radical peptide generation methods. The work presented here provides novel methods for generating peptide radical cations in the gas phase through ion/ion reaction complexes that do not require modification of the peptide in solution or generation of non-covalent complexes in the electrospray process.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott A. McLuckey
- Address reprint requests to: Dr. S. A. McLuckey 560 Oval Drive Department of Chemistry Purdue University West Lafayette, IN 47907-2084, USA Phone: (765) 494-5270 Fax: (765) 494-0239
| |
Collapse
|
41
|
Nam J, Kwon H, Jang I, Jeon A, Moon J, Lee SY, Kang D, Han SY, Moon B, Oh HB. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:378-387. [PMID: 25800020 DOI: 10.1002/jms.3539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/04/2014] [Accepted: 11/02/2014] [Indexed: 06/04/2023]
Abstract
We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing.
Collapse
Affiliation(s)
- Jungjoo Nam
- Department of Chemistry, Sogang University, Seoul, 121-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lesslie M, Osburn S, van Stipdonk MJ, Ryzhov V. Gas-phase tyrosine-to-cysteine radical migration in model systems. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:589-597. [PMID: 26307738 DOI: 10.1255/ejms.1341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Radical migration, both intramolecular and intermolecular, from the tyrosine phenoxyl radical Tyr(O(∙)) to the cysteine radical Cys(S(∙)) in model peptide systems was observed in the gas phase. Ion-molecule reactions (IMRs) between the radical cation of homotyrosine and propyl thiol resulted in a fast hydrogen atom transfer. In addition, radical cations of the peptide LysTyrCys were formed via two different methods, affording regiospecific production of Tyr(O(∙)) or Cys(S(∙)) radicals. Collision-induced dissociation of these isomeric species displayed evidence of radical migration from the oxygen to sulfur, but not for the reverse process. This was supported by theoretical calculations, which showed the Cys(S(∙)) radical slightly lower in energy than the Tyr(O(∙)) isomer. IMRs of the LysTyrCys radical cation with allyl iodide further confirmed these findings. A mechanism for radical migration involving a proton shuttle by the C-terminal carboxylic group is proposed.
Collapse
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA.
| | - Sandra Osburn
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania15282, USA.
| | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, and Center for Biochemical and Biophysical Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA.
| |
Collapse
|
43
|
Jobst KJ, Terlouw JK, Luider T, van Huizen NA, Burgers PC. Interaction of metal cations with alkylnitriles in the gas phase: solvation of metal ions by the hydrocarbon chain. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:579-587. [PMID: 26307737 DOI: 10.1255/ejms.1323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Relative affinity measurements of monovalent metal ions (M = Li(+), Na(+), Cu(+)and Ag(+)) toward aliphatic nitriles have been performed using the kinetic method by dissociation of metal bound dimer ions of the type R1C≡N-M(+)-N≡CR(2). It is found, particularly for Cu(+) and Ag(+), that the affinity towards nitriles having long chains (>C(6)) is markedly enhanced. This is attributed to a bidentate interaction of the metal ion with the nitrile moiety and the aliphatic chain. Theoretical calculations on the copper complexes show that these bidentate structures enjoy about 30% greater copper ion affinities compared to their linear counterparts. Such aliphatic interactions also play a major role in the dissociation chemistry of copper bound tetramers of the kind (RC≡N)(4)Cu(2+∙) where the long aliphatic chain R curls around the copper ion to facilitate electron transfer or a redox reaction to produce (RC≡N)(2)Cu(+) + RC≡N(+∙) + RC≡N.
Collapse
Affiliation(s)
- Karl J Jobst
- Ontar io Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, Ontario M9P 3V6, Canada. Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | - Johan K Terlouw
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | - Theo Luider
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, 3015 CN, The Netherlands.
| | - Nick A van Huizen
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, 3015 CN, The Netherlands. Department of Surgery, Erasmus Medical Center, 3015 CN, The Netherlands.
| | - Peter C Burgers
- D epartment of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, 3015 CN, The Netherlands.
| |
Collapse
|
44
|
Asakawa D, Wada Y. Electron transfer dissociation mass spectrometry of peptides containing free cysteine using group XII metals as a charge carrier. J Phys Chem B 2014; 118:12318-25. [PMID: 25271566 DOI: 10.1021/jp502818u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electron transfer dissociation (ETD) has been used for peptide sequencing. Since ETD preferentially produces the c'/z(•) fragment pair, peptide sequencing is generally performed by interpretation of mass differences between series of consecutive c' and z(•) ions. However, the presence of free cysteine residues in a precursor promotes peptide bond cleavage, hindering interpretation of the ETD spectrum. In the present study, the divalent group XII metals, such as Zn(2+), Cd(2+) and Hg(2+), were used as charge carriers to produce metal-peptide complexes. The thiol group is deprotonated by complexation with the group XII metal. The formation of b and y' ions was successfully suppressed by using the zinc-peptide complex as a precursor, indicating Zn(2+)-aided ETD to be a useful method for sequencing of cysteine-containing peptides. By contrast, ETD of Cd(2+)- and Hg(2+)-peptide complexes mainly led to SH2 loss and radical cation formation, respectively. These processes were mediated by recombination energy between the metal cation and an electron. The presence of monovalent cadmium and neutral mercury in ETD products was confirmed by MS(3) analysis with collision-induced dissociation.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health , 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | | |
Collapse
|
45
|
Mädler S, Kai-Chi Lau J, Williams D, Wang Y, Saminathan IS, Zhao J, Siu KWM, Hopkinson AC. Fragmentation of Peptide Radical Cations Containing a Tyrosine or Tryptophan Residue: Structural Features That Favor Formation of [x(n–1) + H]•+ and [z(n–1) + H]•+ Ions. J Phys Chem B 2014; 118:6123-33. [DOI: 10.1021/jp5030087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Stefanie Mädler
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - Justin Kai-Chi Lau
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
- Department
of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario Canada N9B 3P4
| | - Declan Williams
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - Yating Wang
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - Irine S. Saminathan
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - Junfang Zhao
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| | - K. W. Michael Siu
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
- Department
of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario Canada N9B 3P4
| | - Alan C. Hopkinson
- Department
of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario Canada M3J 1P3
| |
Collapse
|
46
|
Mu X, Song T, Xu M, Lai CK, Siu CK, Laskin J, Chu IK. Discovery and mechanistic studies of facile N-terminal Cα-C bond cleavages in the dissociation of tyrosine-containing peptide radical cations. J Phys Chem B 2014; 118:4273-81. [PMID: 24678922 DOI: 10.1021/jp410525f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fascinating N-terminal Cα-C bond cleavages in a series of nonbasic tyrosine-containing peptide radical cations have been observed under low-energy collision-induced dissociation (CID), leading to the generation of rarely observed x-type radical fragments, with significant abundances. CID experiments of the radical cations of the alanyltyrosylglycine tripeptide and its analogues suggested that the N-terminal Cα-C bond cleavage, yielding its [x2 + H](•+) radical cation, does not involve an N-terminal α-carbon-centered radical. Theoretical examination of a prototypical radical cation of the alanyltyrosine dipeptide, using density functional theory calculations, suggested that direct N-terminal Cα-C bond cleavage could produce an ion-molecule complex formed between the incipient a1(+) and x1(•) fragments. Subsequent proton transfer from the iminium nitrogen atom in a1(+) to the acyl carbon atom in x1(•) results in the observable [x1 + H](•+). The barriers against this novel Cα-C bond cleavage and the competitive N-Cα bond cleavage, forming the complementary [c1 + 2H](+)/[z1 - H](•+) ion pair, are similar (ca. 16 kcal mol(-1)). Rice-Ramsperger-Kassel-Marcus modeling revealed that [x1 + H](•+) and [c1 + 2H](+) species are formed with comparable rates, in agreement with energy-resolved CID experiments for [AY](•+).
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Thomas DA, Sohn CH, Gao J, Beauchamp JL. Hydrogen Bonding Constrains Free Radical Reaction Dynamics at Serine and Threonine Residues in Peptides. J Phys Chem A 2014; 118:8380-92. [DOI: 10.1021/jp501367w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel A. Thomas
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Chang Ho Sohn
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jinshan Gao
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - J. L. Beauchamp
- Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
48
|
Tan L, Hu H, Francisco JS, Xia Y. A mass spectrometric approach for probing the stability of bioorganic radicals. Angew Chem Int Ed Engl 2014; 53:1887-90. [PMID: 24446129 DOI: 10.1002/anie.201310480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Indexed: 11/10/2022]
Abstract
Glycyl radicals are important bioorganic radical species involved in enzymatic catalysis. Herein, we demonstrate that the stability of glycyl-type radicals (X-(.) CH-Y) can be tuned on a molecular level by varying the X and Y substituents and experimentally probed by mass spectrometry. This approach is based on the gas-phase dissociation of cysteine sulfinyl radical (X-Cys SO .-Y) ions through homolysis of a Cα Cβ bond. This fragmentation produces a glycyl-type radical upon losing CH2 SO, and the degree of this loss is closely tied to the stability of the as-formed radical. Theoretical calculations indicate that the energy of the Cα Cβ bond homolysis is predominantly affected by the stability of the glycyl radical product through the captodative effect, rather than that of the parent sulfinyl radical. This finding suggests a novel experimental method to probe the stability of bioorganic radicals, which can potentially broaden our understanding of these important reactive intermediates.
Collapse
Affiliation(s)
- Lei Tan
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | | | | | | |
Collapse
|
49
|
Tan L, Hu H, Francisco JS, Xia Y. A Mass Spectrometric Approach for Probing the Stability of Bioorganic Radicals. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Marshall DL, Hansen CS, Trevitt AJ, Oh HB, Blanksby SJ. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules. Phys Chem Chem Phys 2014; 16:4871-9. [DOI: 10.1039/c3cp54825b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|