1
|
Moreno-Valencia FD, Plascencia-Espinosa MÁ, Morales-García YE, Muñoz-Rojas J. Selection and Effect of Plant Growth-Promoting Bacteria on Pine Seedlings ( Pinus montezumae and Pinus patula). Life (Basel) 2024; 14:1320. [PMID: 39459620 PMCID: PMC11509945 DOI: 10.3390/life14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Forest cover is deteriorating rapidly due to anthropogenic causes, making its restoration urgent. Plant growth-promoting bacteria (PGPB) could offer a viable solution to ensure successful reforestation efforts. This study aimed to select bacterial strains with mechanisms that promote plant growth and enhance seedling development. The bacterial strains used in this study were isolated from the rhizosphere and endophyte regions of Pinus montezumae Lamb. and Pinus patula Schl. et Cham., two Mexican conifer species commonly used for reforestation purposes. Sixteen bacterial strains were selected for their ability to produce auxins, chitinase, and siderophores, perform nitrogen fixation, and solubilize inorganic phosphates; they also harbored genes encoding antimicrobial production and ACC deaminase. The adhesion to seeds, germination rate, and seedling response of P. montezumae and P. patula were performed following inoculation with 10 bacterial strains exhibiting high plant growth-promoting potential. Some strains demonstrated the capacity to enhance seedling growth. The selected strains were taxonomically characterized and belonged to the genus Serratia, Buttiauxella, and Bacillus. These strains exhibited at least two mechanisms of action, including the production of indole-3-acetic acid, biological nitrogen fixation, and phosphate solubilization, and could serve as potential alternatives for the reforestation of affected areas.
Collapse
Affiliation(s)
- Francisco David Moreno-Valencia
- Consejo Nacional de Ciencias, Humanidades y Tecnología (CONAHCYT)—Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico;
| | - Miguel Ángel Plascencia-Espinosa
- Centro de Investigación en Biotecnología Aplicada (CIBA), Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino, Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, Mexico
| | - Yolanda Elizabeth Morales-García
- Grupo Inoculantes Microbianos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico;
- Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| | - Jesús Muñoz-Rojas
- Group “Ecology and Survival of Microorganisms”, Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla C.P. 72570, Mexico
| |
Collapse
|
2
|
Zhang B, Ma Y, Duan W, Fan Q, Sun J. Pinewood nematode induced changes in the assembly process of gallery microbiomes benefit its vector beetle's development. Microbiol Spectr 2024; 12:e0141224. [PMID: 39258937 PMCID: PMC11448173 DOI: 10.1128/spectrum.01412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/03/2024] [Indexed: 09/12/2024] Open
Abstract
Microbiomes play crucial roles in insect adaptation, especially under stress such as pathogen invasion. Yet, how beneficial microbiomes assemble remains unclear. The wood-boring beetle Monochamus alternatus, a major pest and vector of the pine wilt disease (PWD) nematode, offers a unique model. We conducted controlled experiments using amplicon sequencing (16S rRNA and ITS) within galleries where beetles and microbes interact. PWD significantly altered bacterial and fungal communities, suggesting distinct assembly processes. Deterministic factors like priority effects, host selection, and microbial interactions shaped microbiome composition, distinguishing healthy from PWN-infected galleries. Actinobacteria, Firmicutes, and Ophiostomataceae emerged as potentially beneficial, aiding beetle's development and pathogen resistance. This study unveils how nematode-induced changes in gallery microbiomes influence beetle's development, shedding light on microbiome assembly amid insect-pathogen interactions. Insights gleaned enhance understanding of PWD spread and suggest novel management strategies via microbiome manipulation.IMPORTANCEThis study explores the assembly process of gallery microbiomes associated with a wood-boring beetles, Monochamus alternatus, a vector of the pine wilt disease (PWD). By conducting controlled comparison experiments and employing amplicon approaches, the study reveals significant changes in taxonomic composition and functional adaptation of bacterial and fungal communities induced by PWD. It identifies deterministic processes, including priority effects, host selection, and microbial interactions, as major drivers in microbiome assembly. Additionally, the study highlights the presence of potentially beneficial microbes such as Actinobacteria, Firmicutes, and Ophiostomataceae, which could enhance beetle development and resistance to pathogens. These findings shed light on the intricate interplay among insects, microbiomes, and pathogens, contributing to a deeper understanding of PWD prevalence and suggesting innovative management strategies through microbiome manipulation.
Collapse
Affiliation(s)
- Bin Zhang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yafei Ma
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenzhao Duan
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Qi Fan
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cao Y, Yang N, Gu J, Zhang X, Ye J, Chen J, Li H. Distinct biogeographic patterns for bacteria and fungi in association with Bursaphelenchus xylophilus nematodes and infested pinewood. Microbiol Spectr 2024; 12:e0077824. [PMID: 39162557 PMCID: PMC11448397 DOI: 10.1128/spectrum.00778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Pinewood nematodes (PWN, Bursaphelenchus xylophilus) are destructive plant parasitic nematodes that cause pine wilt disease (PWD) by attacking the vascular systems of pine trees, resulting in widespread tree mortality. Research has shown that there are connections between nematode-associated microbes and PWD. Yet the variations in microbial communities across different geographic regions are not well-understood. In this study, we examined the bacterial and fungal communities associated with nematodes and infested wood collected from 34 sites across three vegetation zones in China, as well as samples from the United States, using 16S rRNA and internal transcribed spacer (ITS) gene amplicon sequencing. The predominant genera Pseudomonas and Rhodococcus were found in nematodes, and Acinetobacter was present in the wood of PWD-infected pine trees across China. Network analysis revealed that core bacterial taxa belonged to the Pseudomonadota and Actinomycetota phyla for the nematodes, whereas the Pseudomonadota and Bacteroidota phyla were dominant in the infested wood. Identification of enriched key microbial taxa in nematodes and infested wood across vegetation zones indicates distinct biogeographic microbial community structures and key bacterial species. Although the nematode-associated bacterial community showed consistency across geographic distances, the similarity of the PWD pine trees' bacterial community decreased with distance, suggesting a spatial correlation with environmental variables. Our findings enhance our understanding of the microbiota associated with pinewood nematode (PWN) and offer valuable insights into PWD management. IMPORTANCE Our research uncovered specific bacteria and fungi linked to pinewood nematode (PWN) and infested wood in three different vegetation zones in China, as well as samples from the United States. This sheds light on the critical roles of certain microbial groups, such as Pseudomonas, Acinetobacter, and Stenotrophomonas, in influencing PWN fitness. Understanding these patterns provides valuable insights into the dynamics of PWN-associated microbiomes, offering potential strategies for managing pine wilt disease (PWD). We found significant correlations between geographic distance and similarity in bacterial communities in the infested wood, indicating a spatial influence on wood-associated microbial communities due to limited dispersal and localized environmental conditions. Further investigations of these spatial patterns and driving forces are crucial for understanding the ecological processes that shape microbial communities in complex ecosystems and, ultimately, for mitigating the transmission of PWN in forests.
Collapse
Affiliation(s)
- Yuyu Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Nan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianfeng Gu
- Ningbo Key Laboratory of Port Biological and Food Safety Testing (Technical Centre of Ningbo Customs/Ningbo Inspection and Quarantine Science Technology Academy), No. 8, Huikang Road, Ningbo, Zhejiang 315100, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianren Ye
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Cardoso JMS, Manadas B, Abrantes I, Robertson L, Arcos SC, Troya MT, Navas A, Fonseca L. Pine wilt disease: what do we know from proteomics? BMC PLANT BIOLOGY 2024; 24:98. [PMID: 38331735 PMCID: PMC10854151 DOI: 10.1186/s12870-024-04771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Pine wilt disease (PWD) is a devastating forest disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus, a migratory endoparasite that infects several coniferous species. During the last 20 years, advances have been made for understanding the molecular bases of PWN-host trees interactions. Major advances emerged from transcriptomic and genomic studies, which revealed some unique features related to PWN pathogenicity and constituted fundamental data that allowed the development of postgenomic studies. Here we review the proteomic approaches that were applied to study PWD and integrated the current knowledge on the molecular basis of the PWN pathogenicity. Proteomics has been useful for understanding cellular activities and protein functions involved in PWN-host trees interactions, shedding light into the mechanisms associated with PWN pathogenicity and being promising tools to better clarify host trees PWN resistance/susceptibility.
Collapse
Affiliation(s)
- Joana M S Cardoso
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, Coimbra, 3004-504, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga - Faculdade de Medicina, 1ºandar - POLO I, Coimbra, 3004-504, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| | - Lee Robertson
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Susana C Arcos
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Maria Teresa Troya
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC. Instituto de Ciencias Forestales (ICIFOR), Ctra. de La Coruña Km 7.5, Madrid, 28040, Spain
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, CSIC. Dpto Biodiversidad y Biología Evolutiva, C/ José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Luís Fonseca
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, Coimbra, 3000-456, Portugal
| |
Collapse
|
5
|
Mannaa M, Seo YS. Improved and simplified method for aseptic isolation of nematodes and nematode-endosymbiotic bacteria from pine seedlings. MethodsX 2023; 11:102421. [PMID: 37860043 PMCID: PMC10582474 DOI: 10.1016/j.mex.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Pine wilt disease (PWD), caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus, significantly impacts pine species and poses a broader ecological concern. An understanding of these nematode-associated microbes is essential for formulating sustainable PWD management strategies. We introduce a streamlined method for the aseptic extraction of B. xylophilus from pine seedlings, evolving beyond traditional Baermann funnel approaches. The method ensures optimal nematode extraction under sterile parameters, with seedling cutting discs processed using a unique sterile syringe assembly setup. The efficiency and simplicity of this method promise to significantly reduce the time and resources required. It also incorporates endosymbiotic bacterial isolation from isolated nematodes. The robustness of this method is affirmed by the successful isolation and identification of nematodes and bacterial strains as endosymbionts. Collectively, this protocol paves the way for more effective studies of nematodes and associated microbes, promoting the understanding of PWD and offering practical implications for better PWD management.•A simplified, aseptic method for extracting B. xylophilus from pine seedlings, offering a modern alternative to traditional Baermann funnel method.•Utilization of a specialized sterile syringe assembly setup, ensuring controlled and optimal nematode isolation.•Method validation achieved through the successful isolation and identification of bacterial strains as nematode endosymbionts.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Plant Pathology, Cairo University, Faculty of Agriculture, Giza 12613, Egypt
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Jia J, Chen L, Yu W, Cai S, Su S, Xiao X, Tang X, Jiang X, Chen D, Fang Y, Wang J, Luo X, Li J, Huang Y, Su J. The novel nematicide chiricanine A suppresses Bursaphelenchus xylophilus pathogenicity in Pinus massoniana by inhibiting Aspergillus and its secondary metabolite, sterigmatocystin. FRONTIERS IN PLANT SCIENCE 2023; 14:1257744. [PMID: 38023855 PMCID: PMC10663349 DOI: 10.3389/fpls.2023.1257744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Introduction Pine wilt disease (PWD) is responsible for extensive economic and ecological damage to Pinus spp. forests and plantations worldwide. PWD is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted into pine trees by a vector insect, the Japanese pine sawyer (JPS, Monochamus alternatus). Host infection by PWN will attract JPS to spawn, which leads to the co-existence of PWN and JPS within the host tree, an essential precondition for PWD outbreaks. Through the action of their metabolites, microbes can manipulate the co-existence of PWN and JPS, but our understanding on how key microorganisms engage in this process remains limited, which severely hinders the exploration and utilization of promising microbial resources in the prevention and control of PWD. Methods In this study we investigated how the PWN-associated fungus Aspergillus promotes the co-existence of PWN and JPS in the host trees (Pinus massoniana) via its secondary metabolite, sterigmatocystin (ST), by taking a multi-omics approach (phenomics, transcriptomics, microbiome, and metabolomics). Results We found that Aspergillus was able to promote PWN invasion and pathogenicity by increasing ST biosynthesis in the host plant, mainly by suppressing the accumulation of ROS (reactive oxygen species) in plant tissues that could counter PWN. Further, ST accumulation triggered the biosynthesis of VOC (volatile organic compounds) that attracts JPS and drives the coexistence of PWN and JPS in the host plant, thereby encouraging the local transmission of PWD. Meanwhile, we show that application of an Aspergillus inhibitor (chiricanine A treatment) results in the absence of Aspergillus and decreases the in vivo ST amount, thereby sharply restricting the PWN development in host. This further proved that Aspergillus is vital and sufficient for promoting PWD transmission. Discussion Altogether, these results document, for the first time, how the function of Aspergillus and its metabolite ST is involved in the entire PWD transmission chain, in addition to providing a novel and long-term effective nematicide for better PWD control in the field.
Collapse
Affiliation(s)
- Jiayu Jia
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Long Chen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Yu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Shunde Su
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xiangxi Xiao
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xinghao Tang
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Xiangqing Jiang
- Silviculture Department, Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Daoshun Chen
- Silviculture Department, Shaxian Guanzhuang State-Owned Forest Farm, Sanming, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jinjin Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohua Luo
- Forest Fire Prevention Office, Forestry Bureau of Yuoxi County, Sanming, China
| | - Jian Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunpeng Huang
- Fujian Academy of Forestry, Key Laboratory of National Forestry and Grassland Administration on Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fuzhou, China
| | - Jun Su
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Zhang Y, Gu X, Huang C, Zhou J, Shi J, Zhao L. Temperature-regulated metabolites of Serratiamarcescens inhibited reproduction of pinewood nematode Bursaphelenchus xylophilus. iScience 2023; 26:107082. [PMID: 37416473 PMCID: PMC10320214 DOI: 10.1016/j.isci.2023.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
The pinewood nematode Bursaphelenchus xylophilus is an invasive and destructive pathogen in forestry. Serratia marcescens AHPC29 was previously found to have nematicidal activity on B. xylophilus. The effect of AHPC29 growth temperature on B. xylophilus inhibition is unknown. Here we show that AHPC29 cultured at 15°C or 25°C, but not 37°C, inhibited B. xylophilus reproduction. Metabolomic analysis found 31 up-regulated metabolites as potential effective substances in this temperature-related difference, with five of them were tested to be effective in inhibiting B. xylophilus reproduction. Among the five metabolites, salsolinol was further verified in bacterial cultures with effective inhibition concentrations. This study found the inhibition of S. marcescens AHPC29 on B. xylophilus reproduction was temperature regulated and the differently expressed metabolites salsolinol played roles in this temperature-regulated effect, which implies the capability of S. marcescens and its metabolites as promising new agents for the management of B. xylophilus.
Collapse
Affiliation(s)
- Yanfen Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoting Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenying Huang
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Shi
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhang L, Meng F, Ge W, Ren Y, Bao H, Tian C. Effects of Colletotrichum gloeosporioides and Poplar Secondary Metabolites on the Composition of Poplar Phyllosphere Microbial Communities. Microbiol Spectr 2023; 11:e0460322. [PMID: 37219434 PMCID: PMC10269685 DOI: 10.1128/spectrum.04603-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Poplar anthracnose caused by Colletotrichum gloeosporioides is a common disease affecting poplars globally that causes the destruction and alteration of poplar phyllosphere microbial communities; however, few studies have investigated these communities. Therefore, in this study, three species of poplar with different resistances were investigated to explore the effects of Colletotrichum gloeosporioides and poplar secondary metabolites on the composition of poplar phyllosphere microbial communities. Evaluation of the phyllosphere microbial communities before and after inoculation of the poplars with C. gloeosporioides revealed that both bacterial and fungal OTUs decreased after inoculation. Among bacteria, the most abundant genera were Bacillus, Plesiomonas, Pseudomonas, Rhizobium, Cetobacterium, Streptococcus, Massilia, and Shigella for all poplar species. Among fungi, the most abundant genera before inoculation were Cladosporium, Aspergillus, Fusarium, Mortierella, and Colletotrichum, while Colletotrichum was the main genus after inoculation. The inoculation of pathogens may regulate the phyllosphere microorganisms by affecting the secondary metabolites of plants. We investigated metabolite contents in the phyllosphere before and after the inoculation of the three poplar species, as well as the effects of flavonoids, organic acids, coumarins, and indoles on poplar phyllosphere microbial communities. We speculated that coumarin had the greatest recruitment effect on phyllosphere microorganisms, followed by organic acids through regression analysis. Overall, our results provide a foundation for subsequent screening of antagonistic bacteria and fungi against poplar anthracnose and investigations of the mechanism by which poplar phyllosphere microorganisms are recruited. IMPORTANCE Our findings revealed that the inoculation of Colletotrichum gloeosporioides has a greater effect on the fungal community than the bacterial community. In addition, coumarins, organic acids, and flavonoids may have recruitment effects on phyllosphere microorganisms, while indoles may have inhibitory effects on these organisms. These findings may provide the theoretical basis for the prevention and control of poplar anthracnose.
Collapse
Affiliation(s)
- Linxuan Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Fanli Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Wei Ge
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yue Ren
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Hangbin Bao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
López-Villamor A, Nunes da Silva M, Vasconcelos MW. Evaluation of plant elicitation with methyl-jasmonate, salicylic acid and benzo (1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester for the sustainable management of the pine wilt disease. TREE PHYSIOLOGY 2022; 42:2596-2613. [PMID: 35867422 DOI: 10.1093/treephys/tpac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Treatment with plant elicitors can be a promising method to induce Pinus pinaster tolerance against the pinewood nematode (PWN), Bursaphelenchus xylophilus, by promoting plant antioxidant system, micronutrient accumulation and by modulating plant-associated bacterial populations. To test this hypothesis, plants were sprayed with methyl jasmonate (MeJA), salicylic acid (SA) or benzo (1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester (BTH), and evaluated until 35 days after-inoculation (dai) for: i) extent of foliar symptoms; ii) nematode density inside stem tissues; iii) proxies for oxidative damage and antioxidant activity, iv) micronutrient concentration and v) bacterial diversity. Compared with non-elicited plants, plant elicitation, particularly with BTH, significantly decreased nematodes density inside stem tissues (by 0.63-fold). Concordantly, without elicitation plant mortality reached 12.5% while no mortality was observed in elicited plants. BTH-elicited plants had significantly higher concentrations of anthocyanins and carotenoids at the end of the assay than SA-elicited and MeJA-elicited plants, which possibly contributed to the lower PWN colonization and degree of foliar symptoms observed. Accordingly, MeJA and SA led to increased lipid peroxidation at 28 dai (by 2.64- and 2.52-fold, respectively) in comparison with BTH (by 1.10-fold), corroborating its higher potential in increasing plant antioxidative response during infection. Moreover, carotenoids showed a negative correlation with nematode migration, whereas polyphenols showed a positive correlation. Elicitors also induced changes in the bacterial community of infected P. pinaster plants, increasing the diversity of specific populations. Finally, elicitors induced significant changes in micronutrients accumulation in plant tissues, namely a decrease in the concentration of B, Mn and Ni in plants treated with BTH compared to those treated with the other elicitors. Altogether, results suggest that elicitation with MeJA, SA and, particularly, BTH, increases tolerance against B. xylophilus by promoting plant antioxidant system, changing the accumulation of essential micronutrients and modulating plant-associated bacterial diversity.
Collapse
Affiliation(s)
- Adrián López-Villamor
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
- Misión Biológica de Galicia (CSIC), Grupo de Genética y Ecología Forestal, Apdo. 28, 36080 Pontevedra, Spain
| | - Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
10
|
Proença DN, Whitman WB, Shapiro N, Woyke T, Kyrpides NC, Morais PV. Faunimonas pinastri gen. nov., sp. nov., an endophyte from a pine tree of the family Pleomorphomonadaceae, class Alphaproteobacteria. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748409 DOI: 10.1099/ijsem.0.005623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacterial strain A52C2T was isolated from the endophytic microbial community of a Pinus pinaster tree trunk and characterized. Strain A52C2T stained Gram-negative and formed rod-shaped cells that grew optimally at 30 °C and at pH 6.0-7.0. The G+C content of the DNA was 65.1 mol %. The respiratory quinone was ubiquinone 10, and the major fatty acids were cyclo-C19:0 ω8c and C18:0, representing 70.1 % of the total fatty acids. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain A52C2T in a distinct lineage within the order Hyphomicrobiales, family Pleomorphomonadaceae. The 16S rRNA gene sequence similarities of A52C2T to that of Mongoliimonas terrestris and Oharaeibacter diazotrophicus were 93.15 and 93.2 %, respectively. The draft genome sequence of strain A52C2T comprises 4 196 045 bases with a 195-fold mapped coverage of the genome. The assembled genome consists of 43 contigs of more than 1 000 bp (N50 contig size was 209 720 bp). The genome encodes 4033 putative coding sequences. The phylogenetic, phenotypic and chemotaxonomic data showed that strain A52C2T (=UCCCB 130T=CECT 8949T=LMG 29042T) represents the type of a novel species and genus, for which we propose the name Faunimonas pinastri gen. nov., sp. nov.
Collapse
Affiliation(s)
- Diogo N Proença
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - William B Whitman
- Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Athens, GA 30602-2605, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Paula V Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
11
|
Montecillo JAV, Bae H. In silico analysis of koranimine, a cyclic imine compound from Peribacillus frigoritolerans reveals potential nematicidal activity. Sci Rep 2022; 12:18883. [PMID: 36344604 PMCID: PMC9640594 DOI: 10.1038/s41598-022-20461-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Pine wilt disease (PWD) is a destructive vector-borne forest disease caused by the nematode Bursaphelenchus xylophilus. To date, several options are available for the management of pine wilt disease; however constant development and search for natural products with potential nematicidal activity are imperative to diversify management options and to cope with the possible future emergence of resistance in parasitic nematodes. Here, a combined metabolomics and genomics approach was employed to investigate the chemical repertoire and biosynthetic potential of the bacterial endophyte Peribacillus frigoritolerans BE93, previously characterized to exhibit nematicidal activity against B. xylophilus. Feature-based molecular networking revealed the presence of diverse secondary metabolites. A cyclic imine heptapeptide, koranimine, was found to be among the most abundant secondary metabolites produced. Genome mining displayed the presence of several putative biosynthetic gene clusters (BGCs), including a dedicated non-ribosomal peptide synthase (NRPS) BGC for koranimine. Given the non-ribosomal peptide nature of koranimine, in silico molecular docking analysis was conducted to investigate its potential nematicidal activity against the target receptor ivermectin-sensitive invertebrate α glutamate-gated chloride channel (GluCl). Results revealed the binding of koranimine at the allosteric site of the channel-the ivermectin binding site. Moreover, the ligand-receptor interactions observed were mostly shared between koranimine and ivermectin when bound to the α GluCl receptor thus, suggesting a possibly shared mechanism of potential nematicidal activity. This study highlights the efficiency of combined metabolomics and genomics approach in the identification of candidate compounds.
Collapse
Affiliation(s)
- Jake Adolf V Montecillo
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
12
|
Zhang W, Wang X, Li Y, Wei P, Sun N, Wen X, Liu Z, Li D, Feng Y, Zhang X. Differences Between Microbial Communities of Pinus Species Having Differing Level of Resistance to the Pine Wood Nematode. MICROBIAL ECOLOGY 2022; 84:1245-1255. [PMID: 34757460 DOI: 10.1007/s00248-021-01907-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a destructive invasive species that exerts devastating effects on most native pines in invaded regions, while many of the non-native pines have resistance to PWN. Recently, increasingly more research is focused on how microbial communities can improve host resistance against pathogens. However, the relationship between the microbial community structures and varying levels of pathogen resistance observed in different pine tree species remains unclear. Here, the bacterial and fungal communities of introduced resistant pines Pinus elliottii, P. caribaea, and P. taeda and native susceptible pines healthy and wilted P. massoniana infected by PWN were analyzed. The results showed that 6057 bacterial and 3931 fungal OTUs were annotated. The pine samples shared 944 bacterial OTUs primarily in the phyla Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Chloroflexi and 111 fungal OTUs primarily in phyla Ascomycota and Basidiomycota, though different pines had unique OTUs. There were significant differences in microbial community diversity between different pines, especially between the bacterial communities of resistant and susceptible pines, and fungal communities between healthy pines (resistant pines included) and the wilted P. massoniana. Resistant pines had a greater abundance of bacteria in the genera Acidothermus (class unidentified_Actinobacteria) and Prevotellaceae (class Alphaproteobacteria), but a lower abundance of Erwinia (class Gammaproteobacteria). Healthy pines had a higher fungal abundance of Cladosporium (class Dothideomycetes) and class Eurotiomycetes, but a lower abundance of Graphilbum, Sporothrix, Geosmithia (class Sordariomycetes), and Cryptoporus (classes Agaricomycetes and Saccharomycetes). These differences in microbial abundance between resistant and healthy pines might be associated with pathogen resistance of the pines, and the results of this study contribute to the studies exploring microbial-based control of PWN.
Collapse
Affiliation(s)
- Wei Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongxia Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Pengfei Wei
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ningning Sun
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaojian Wen
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenkai Liu
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongzhen Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuqian Feng
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingyao Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
13
|
Two Nematicidal Compounds from Lysinimonas M4 against the Pine Wood Nematode, Bursaphelenchus xylophilus. FORESTS 2022. [DOI: 10.3390/f13081191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A rich source of bioactive secondary metabolites from microorgannisms are widely used to control plant diseases in an eco-friendly way. To explore ideal candidates for prevention of pine wilt disease (PWD), a bacterial strain from rhizosphere of Pinus thunbergii, Lysinimonas M4, with nematicidal activity against pine wood nematode (PWN), Bursaphelenchus xylophilus, was isolated. Two nematicidal compounds were obtained from the culture of Lysinimonas M4 by silica gel chromatography based on bioactivity-guided fractionation and were subsequently identified as 2-coumaranone and cyclo-(Phe-Pro) by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The 2-coumaranone and cyclo-(Phe-Pro) showed significant nematicidal activity against PWN, with LC50 values at 24 h of 0.196 mM and 0.425 mM, respectively. Both compounds had significant inhibitory effects on egg hatching, feeding, and reproduction. The study on nematicidal mechanisms revealed that 2-coumaranone and cyclo-(Phe-Pro) caused the accumulation of reactive oxygen species (ROS) in nematodes, along with a notable decrease in CAT and POS activity and an increase in SOD activity in nematodes, which might contribute to the death of pine wood nematodes. Bioassay tests demonstrated that the two compounds could reduce the incidence of wilting in Japanese black pine seedlings. This research offers a new bacterial strain and two metabolites for biocontrol against PWN.
Collapse
|
14
|
Deng J, Yu D, Zhou W, Zhou L, Zhu W. Variations of Phyllosphere and Rhizosphere Microbial Communities of Pinus koraiensis Infected by Bursaphelenchus xylophilus. MICROBIAL ECOLOGY 2022; 84:285-301. [PMID: 34487211 DOI: 10.1007/s00248-021-01850-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, as one of the greatest threats to pine trees, is spreading all over the world. Plant microorganisms play an important role in the pathogenesis of nematodes. The phyllosphere and rhizosphere bacterial and fungal communities associated with healthy Pinus koraiensis (PKa) and P. koraiensis infected by B. xylophilus at the early (PKb) and last (PKc) stages were analyzed. Our results demonstrated that pine wood nematode (PWD) could increase the phyllosphere bacterial Pielou_e, Shannon, and Simpson index; phyllosphere fungal Chao 1 index, as well as rhizosphere bacterial Pielou_e, Shannon, and Simpson index; and rhizosphere fungal Pielou_e, Shannon, and Simpson index. What's more, slight shifts of the microbial diversity were observed at the early stage of infection, and the microbial diversity increased significantly as the symptoms of infection worsened. With the infection of B. xylophilus in P. koraiensis, Bradyrhizobium (rhizosphere bacteria), Massilia (phyllosphere bacteria), and Phaeosphaeriaceae (phyllosphere fungi) were the major contributors to the differences in community compositions among different treatments. With the infection of PWD, most of the bacterial groups tended to be co-excluding rather than co-occurring. These changes would correlate with microbial ability to suppress plant pathogen, enhancing the understanding of disease development and providing guidelines to pave the way for its possible management.
Collapse
Affiliation(s)
- Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wangming Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Li Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
15
|
Microhabitat Governs the Microbiota of the Pinewood Nematode and Its Vector Beetle: Implication for the Prevalence of Pine Wilt Disease. Microbiol Spectr 2022; 10:e0078322. [PMID: 35758726 PMCID: PMC9430308 DOI: 10.1128/spectrum.00783-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Our understanding of environmental acquisition of microbes and migration-related alteration of microbiota across habitats has rapidly increased. However, in complex life cycles, such as for many parasites, exactly how these microbes are transmitted across multiple environments, such as hosts and habitats, is unknown. Pinewood nematode, the causal agent of the globally devastating pine wilt disease, provides an ideal model to study the role of microbiota in multispecies interactions because its successful host invasion depends on the interactions among its vector insects, pine hosts, and associated microbes. Here, we studied the role of bacterial and fungal communities involved in the nematode’s life cycle across different micro- (pupal chamber, vector beetle, and dispersal nematodes) and macrohabitats (geographical locations). We identified the potential sources, selection processes, and keystone taxa involved in the host pine-nematode-vector beetle microbiota interactions. Nearly 50% of the microbiota in vector beetle tracheae and ~60% that of third-stage dispersal juveniles were derived from the host pine (pupal chambers), whereas 90% of bacteria of fourth-stage dispersal juveniles originated from vector beetle tracheae. Our results also suggest that vector beetles’ tracheae selectively acquire some key taxa from the microbial community of the pupal chambers. These taxa will be then enriched in the dispersal nematodes traveling in the tracheae and hence likely transported to new host trees. Taken together, our findings contribute to the critical information toward a better understanding of the role of microbiota in pine wilt disease, therefore aiding the knowledge for the development of future biological control agents. IMPORTANCE Our understanding of animal microbiota acquisition and dispersal-mediated variation has rapidly increased. In this study, using the model of host pine-pinewood nematode-vector beetle (Monochamus sp.) complex, we disentangled the routes of microbial community assembly and transmission mechanisms among these different participants responsible for highly destructive pine wilt disease. We provide evidence that the microhabitat is the driving force shaping the microbial community of these participants. The microbiota of third-stage dispersal juveniles (LIII) of the nematodes collected around pupal chambers and of vector beetles were mainly derived from the host pine (pupal chambers), whereas the vector-entering fourth-stage dispersal juveniles (LIV) of the nematodes had the simplest microbiota community, not influencing vector’s microbiota. These findings enhanced our understanding of the variation in the microbiota of plants and animals and shed light on microbiota acquisition in complex life cycles.
Collapse
|
16
|
Detection of Standing Dead Trees after Pine Wilt Disease Outbreak with Airborne Remote Sensing Imagery by Multi-Scale Spatial Attention Deep Learning and Gaussian Kernel Approach. REMOTE SENSING 2022. [DOI: 10.3390/rs14133075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The continuous and extensive pinewood nematode disease has seriously threatened the sustainable development of forestry in China. At present, many studies have used high-resolution remote sensing images combined with a deep semantic segmentation algorithm to identify standing dead trees in the red attack period. However, due to the complex background, closely distributed detection scenes, and unbalanced training samples, it is difficult to detect standing dead trees (SDTs) in a variety of complex scenes by using conventional segmentation models. In order to further solve the above problems and improve the recognition accuracy, we proposed a new detection method called multi-scale spatial supervision convolutional network (MSSCN) to identify SDTs in a wide range of complex scenes based on airborne remote sensing imagery. In the method, a Gaussian kernel approach was used to generate a confidence map from SDTs marked as points for training samples, and a multi-scale spatial attention block was added into fully convolutional neural networks to reduce the loss of spatial information. Further, an augmentation strategy called copy–pasting was used to overcome the lack of efficient samples in this research area. Validation at four different forest areas belonging to two forest types and two diseased outbreak intensities showed that (1) the copy–pasting method helps to augment training samples and can improve the detecting accuracy with a suitable oversampling rate, and the best oversampling rate should be carefully determined by the input training samples and image data. (2) Based on the two-dimensional spatial Gaussian kernel distribution function and the multi-scale spatial attention structure, the MSSCN model can effectively find the dead tree extent in a confidence map, and by following this with maximum location searching we can easily locate the individual dead trees. The averaged precision, recall, and F1-score across different forest types and disease-outbreak-intensity areas can achieve 0.94, 0.84, and 0.89, respectively, which is the best performance among FCN8s and U-Net. (3) In terms of forest type and outbreak intensity, the MSSCN performs best in pure pine forest type and low-outbreak-intensity areas. Compared with FCN8s and U-Net, the MSSCN can achieve the best recall accuracy in all forest types and outbreak-intensity areas. Meanwhile, the precision metric is also maintained at a high level, which means that the proposed method provides a trade-off between the precision and recall in detection accuracy.
Collapse
|
17
|
Hao X, Liu X, Chen J, Wang B, Li Y, Ye Y, Ma W, Ma L. Effects on community composition and function Pinus massoniana infected by Bursaphelenchus xylophilus. BMC Microbiol 2022; 22:157. [PMID: 35690728 PMCID: PMC9188149 DOI: 10.1186/s12866-022-02569-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Pine wilt disease (PWD) is a worldwide forest disease caused by pine wood nematode (PWN). In this article, we investigated the composition, organization, correlation, and function of the endophytic microbial community in Pinus massoniana field with and without PWN. Samples were taken from branches, upper, middle, and lower trunks, as well as soil, from both healthy and infected trees. The results showed that the fungal diversity of healthy pines is around 1.1 times that of infected pines, while the bacterial diversity is about 0.75 times that of infected pines at the OTUs level. An increase of the abundance of pathogenic fungus such as Saitozyma, Graphilbum, Diplodia, Candida, Pseudoxanthomonas, Dyella and Pantoea was witnessed in infected pines according to the result of LEfSe. Furthermore, Ophiostoma and saprophytic fungus such as Entomocorticium, ganoderma, tomentella, entomocorticium were exclusively prominent in infected pines, which were substantially and highly connected with other species (p < 0.05), indicating the trees' vulnerability and making the wood blue. In healthy pines, the top three functional guilds are parasites, plant pathogens, and saprotrophs. Parasites (36.52%) are primarily found in the branches, plant pathogens (29.12%) are primarily found in the lower trunk, and saprotrophs (67.88%) are primarily found in the upper trunk of disease trees. Pines' immunity is being eroded due to an increase in the quantity and types of diseases. PICRUSt2 research revealed that NADH or NADPH, as well as carbon-nitrogen bonds, were more abundant in healthy pines, but acid anhydrides and transferring phosphorus-containing groups were more abundant in infected pines. The shift in resin secretion lowers the tree's potential and encourages pine wilt and mortality. In total, PWN may have disrupted the microbiological ecology and worked with the community to hasten the demise of pines.
Collapse
Affiliation(s)
- Xin Hao
- Northeast Forestry University, Harbin, China
| | - Xuefeng Liu
- Northeast Forestry University, Harbin, China
| | - Jie Chen
- Northeast Forestry University, Harbin, China.,Wageningen University & Research, Wageningen, Netherlands
| | | | - Yang Li
- Northeast Forestry University, Harbin, China
| | - Yi Ye
- Northeast Forestry University, Harbin, China
| | - Wei Ma
- Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Ling Ma
- Northeast Forestry University, Harbin, China.
| |
Collapse
|
18
|
Numerical Modeling and Symmetry Analysis of a Pine Wilt Disease Model Using the Mittag–Leffler Kernel. Symmetry (Basel) 2022. [DOI: 10.3390/sym14051067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The existence of man is dependent on nature, and this existence can be disturbed by either man-made devastations or by natural disasters. As a universal phenomenon in nature, symmetry has attracted the attention of scholars. The study of symmetry provides insights into physics, chemistry, biology, and mathematics. One of the most important characteristics in the expressive assessment and development of computational design techniques is symmetry. Yet, mathematical models are an important method of studying real-world systems. The symmetry reflected by such a mathematical model reveals the inherent symmetry of real-world systems. This study focuses on the contagious model of pine wilt disease and symmetry, employing the q-HATM (q-Homotopy Analysis Transform Method) to the leading fractional operator Atangana–Baleanu (AB) to arrive at better understanding. The outgrowths are exhibited in the forms of figures and tables. Finally, the paper helps to analyze the practical theory, assisting the prediction of its manner that corresponds to the guidelines when contemplating the replica.
Collapse
|
19
|
Tian H, Koski TM, Zhao L, Liu Z, Sun J. Invasion History of the Pinewood Nematode Bursaphelenchus xylophilus Influences the Abundance of Serratia sp. in Pupal Chambers and Tracheae of Insect-Vector Monochamus alternatus. FRONTIERS IN PLANT SCIENCE 2022; 13:856841. [PMID: 35668811 PMCID: PMC9164154 DOI: 10.3389/fpls.2022.856841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 06/01/2023]
Abstract
Pine wilt disease (PWD) has caused extensive mortality in pine forests worldwide. This disease is a result of a multi-species interaction among an invasive pinewood nematode (PWN) Bursaphelenchus xylophilus, its vector Monochamus sp. beetle, and the host pine tree (Pinus sp.). In other systems, microbes have been shown to attenuate negative impacts on invasive species after the invasion has reached a certain time point. Despite that the role of PWD associated microbes involved in the PWD system has been widely studied, it is not known whether similar antagonistic "hidden microbial players" exist in this system due to the lack of knowledge about the potential temporal changes in the composition of associated microbiota. In this study, we investigated the bacteria-to-fungi ratio and isolated culturable bacterial isolates from pupal chambers and vector beetle tracheae across five sampling sites in China differing in the duration of PWN invasion. We also tested the pathogenicity of two candidate bacteria strains against the PWN-vector beetle complex. A total of 118 bacterial species belonging to 4 phyla, 30 families, and 54 genera were classified based on 16S sequencing. The relative abundance of the genus Serratia was lower in pupal chambers and tracheae in newly PWN invaded sites (<10 years) compared to the sites that had been invaded for more than 20 years. Serratia marcescens strain AHPC29 was widely distributed across all sites and showed nematicidal activity against PWN. The insecticidal activity of this strain was dependent on the life stage of the vector beetle Monochamus alternatus: no insecticidal activity was observed against final-instar larvae, whereas S. marcescens was highly virulent against pupae. Our findings improved the understanding of the temporal variation in the microbial community associated with the PWN-vector beetle complex and the progress of PWD and can therefore facilitate the development of biological control agents against PWN and its vector beetle.
Collapse
Affiliation(s)
- Haokai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
20
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
21
|
The Role of Serratomolide-like Amino Lipids Produced by Bacteria of Genus Serratia in Nematicidal Activity. Pathogens 2022; 11:pathogens11020198. [PMID: 35215141 PMCID: PMC8880026 DOI: 10.3390/pathogens11020198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bursaphelenchus xylophilus, also known as pinewood nematode (PWN), is the pathogenic agent of pine wilt disease (PWD), which affects pine trees around the world. Infection spread globally through international wood commerce and locally by vector beetles, threatening the wood world economy. As climate changes, more countries are becoming susceptible to PWD and, to prevent disease spread and limit economic and ecological losses, better knowledge about this pathogenic agent is needed. Serratia strains, present in the endophytic community of pine trees and carried by PWN, may play an important role in PWD. This work aimed to better understand the interaction between Serratia strains and B. xylophilus and to assess the nematicidal potential of serratomolide-like molecules produced by Serratia strains. Serrawettin gene presence was evaluated in selected Serratia strains. Mortality tests were performed with bacteria supernatants, and extracted amino lipids, against Caenorhabditis elegans (model organism) and B. xylophilus to determine their nematicidal potential. Attraction tests were performed with C. elegans. Concentrated supernatants of Serratia strains with serratamolide-like lipopeptides were able to kill more than 77% of B. xylophilus after 72 h. Eight specific amino lipids showed a high nematicidal activity against B. xylophilus. We conclude that, for some Serratia strains, their supernatants and specific amino lipids showed nematicidal activity against B. xylophilus.
Collapse
|
22
|
Jeong SG, Kim HM, Kim J, Kim JS, Park HW. Effect of storage conditions on the shelf-life extension of fungus-colonized substrates based on Metarhizium anisopliae using modified atmosphere packaging. Sci Rep 2022; 12:423. [PMID: 35013435 PMCID: PMC8748656 DOI: 10.1038/s41598-021-04232-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Metarhizium anisopliae is a promising alternative to chemical pesticides against pine wilt disease caused by Bursaphelenchus xylophilus. Herein, we investigated the efficacy of modified atmosphere packaging (MAP) to prolong the shelf-life of the M. anisopliae conidia. The effects of various conditions on its stability were also examined. M. anisopliae-inoculated millet grains were treated in a MAP system with different packaging materials (polypropylene, PP; polyethylene terephthalate, PET; ethylene vinyl alcohol, EVOH), gas compositions (high CO2 atmosphere, ≈ 90%; high O2 atmosphere, > 95%; high N2 atmosphere, > 95%; 30% CO2 + 70% N2; 50% CO2 + 50% N2; 70% CO2 + 30% N2), and storage temperatures (4 and 25 °C). Results revealed EVOH film as the best for the preservation of gases at all concentrations for 28 days. MAP treatment in the high-barrier EVOH film under an atmosphere of 30% CO2 + 70% N2 achieved 80.5% viability of dried conidia (7.4% moisture content), with 44.2–64.9% viability recorded with the other treatments. Cold storage for technical concentrates formulation promoted extension of shelf-life of MAP-treated conidia. These results imply that MAP under optimized conditions could enhance the shelf-life of fungus-based biopesticides in fungus-colonized substrates formulations.
Collapse
Affiliation(s)
- Seul-Gi Jeong
- Eco-Friendly Process Technology Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Ho Myeong Kim
- Eco-Friendly Process Technology Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Junheon Kim
- National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54596, Republic of Korea
| | - Hae Woong Park
- Eco-Friendly Process Technology Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| |
Collapse
|
23
|
Niu Q, Liu S, Yin M, Lei S, Rezzonico F, Zhang L. Phytobacter diazotrophicus from Intestine of Caenorhabditis elegans Confers Colonization-Resistance against Bacillus nematocida Using Flagellin (FliC) as an Inhibition Factor. Pathogens 2022; 11:pathogens11010082. [PMID: 35056030 PMCID: PMC8778419 DOI: 10.3390/pathogens11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
Symbiotic microorganisms in the intestinal tract can influence the general fitness of their hosts and contribute to protecting them against invading pathogens. In this study, we obtained isolate Phytobacter diazotrophicus SCO41 from the gut of free-living nematode Caenorhabditis elegans that displayed strong colonization-resistance against invading biocontrol bacterium Bacillus nematocida B16. The colonization-resistance phenotype was found to be mediated by a 37-kDa extracellular protein that was identified as flagellin (FliC). With the help of genome information, the fliC gene was cloned and heterologously expressed in E. coli. It could be shown that the B. nematocida B16 grows in chains rather than in planktonic form in the presence of FliC. Scanning Electronic Microscopy results showed that protein FliC-treated B16 bacterial cells are thinner and longer than normal cells. Localization experiments confirmed that the protein FliC is localized in both the cytoplasm and the cell membrane of B16 strain, in the latter especially at the position of cell division. ZDOCK analysis showed that FliC could bind with serine/threonine protein kinase, membrane protein insertase YidC and redox membrane protein CydB. It was inferred that FliC interferes with cell division of B. nematocidal B16, therefore inhibiting its colonization of C. elegans intestines in vivo. The isolation of P. diazotrophicus as part of the gut microbiome of C. elegans not only provides interesting insights about the lifestyle of this nitrogen-fixing bacterium, but also reveals how the composition of the natural gut microbiota of nematodes can affect biological control efforts by protecting the host from its natural enemies.
Collapse
Affiliation(s)
- Qiuhong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Suyao Liu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Mingshen Yin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Shengwei Lei
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Fabio Rezzonico
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | - Lin Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| |
Collapse
|
24
|
Cai S, Jia J, He C, Zeng L, Fang Y, Qiu G, Lan X, Su J, He X. Multi-Omics of Pine Wood Nematode Pathogenicity Associated With Culturable Associated Microbiota Through an Artificial Assembly Approach. FRONTIERS IN PLANT SCIENCE 2022; 12:798539. [PMID: 35046983 PMCID: PMC8762061 DOI: 10.3389/fpls.2021.798539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Pinewood nematode (PWN), the causal agent of pine wilt disease (PWD), causes massive global losses of Pinus species each year. Bacteria and fungi existing in symbiosis with PWN are closely linked with the pathogenesis of PWD, but the relationship between PWN pathogenicity and the associated microbiota is still ambiguous. This study explored the relationship between microbes and the pathogenicity of PWN by establishing a PWN-associated microbe library, and used this library to generate five artificial PWN-microbe symbiont (APMS) assemblies with gnotobiotic PWNs. The fungal and bacterial communities of different APMSs (the microbiome) were explored by next-generation sequencing. Furthermore, different APMSs were used to inoculate the same Masson pine (Pinus massoniana) cultivar, and multi-omics (metabolome, phenomics, and transcriptome) data were obtained to represent the pathogenicity of different APMSs at 14 days post-inoculation (dpi). Significant positive correlations were observed between microbiome and transcriptome or metabolome data, but microbiome data were negatively correlated with the reactive oxygen species (ROS) level in the host. Five response genes, four fungal genera, four bacterial genera, and nineteen induced metabolites were positively correlated with the ROS level, while seven induced metabolites were negatively correlated. To further explore the function of PWN-associated microbes, single genera of functional microbes (Mb1-Mb8) were reloaded onto gnotobiotic PWNs and used to inoculate pine tree seedlings. Three of the genera (Cladophialophora, Ochroconis, and Flavobacterium) decreased the ROS level of the host pine trees, while only one genus (Penicillium) significantly increased the ROS level of the host pine tree seedlings. These results demonstrate a clear relationship between associated microbes and the pathogenicity of PWN, and expand the knowledge on the interaction between PWD-induced forest decline and the PWN-associated microbiome.
Collapse
Affiliation(s)
- Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Jiayu Jia
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liqiong Zeng
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guowen Qiu
- Natural Resources Bureau of Shanghang County, Longyan, China
| | - Xiang Lan
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyou He
- Fujian Academy of Forestry Sciences, Fuzhou, China
| |
Collapse
|
25
|
Vicente CSL, Soares M, Faria JMS, Ramos AP, Inácio ML. Insights into the Role of Fungi in Pine Wilt Disease. J Fungi (Basel) 2021; 7:jof7090780. [PMID: 34575818 PMCID: PMC8469835 DOI: 10.3390/jof7090780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD) is a complex disease that severely affects the biodiversity and economy of Eurasian coniferous forests. Three factors are described as the main elements of the disease: the pinewood nematode (PWN) Bursaphelenchus xylophilus, the insect-vector Monochamus spp., and the host tree, mainly Pinus spp. Nonetheless, other microbial interactors have also been considered. The study of mycoflora in PWD dates back the late seventies. Culturomic studies have revealed diverse fungal communities associated with all PWD key players, composed frequently of saprophytic fungi (i.e., Aspergillus, Fusarium, Trichoderma) but also of necrotrophic pathogens associated with bark beetles, such as ophiostomatoid or blue-stain fungi. In particular, the ophiostomatoid fungi often recovered from wilted pine trees or insect pupal chambers/tunnels, are considered crucial for nematode multiplication and distribution in the host tree. Naturally occurring mycoflora, reported as possible biocontrol agents of the nematode, are also discussed in this review. This review discloses the contrasting effects of fungal communities in PWD and highlights promising fungal species as sources of PWD biocontrol in the framework of sustainable pest management actions.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| | - Miguel Soares
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
| | - Jorge M. S. Faria
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
| | - Ana P. Ramos
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
- Linking Environment Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| |
Collapse
|
26
|
Pan T, Chen XL, Hao YP, Jiang CW, Wang S, Wang JS, Wei Q, Chen SJ, Yu XS, Cheng F, Xu LY. Optimization of factors affecting the rooting of pine wilt disease resistant Masson pine (Pinus massoniana) stem cuttings. PLoS One 2021; 16:e0251937. [PMID: 34506505 PMCID: PMC8432847 DOI: 10.1371/journal.pone.0251937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/05/2021] [Indexed: 12/04/2022] Open
Abstract
Pine wilt disease (PWD) is a devastating disease affecting trees belonging to the genus Pinus. To control the spread of PWD in the Masson pine forest in China, PWD resistant Masson pine clones have been selected by the Anhui Academy of Forestry. However, because Masson pine is a difficult-to-root species, producing seedlings is challenging, especially from trees older than 5 years of age, which impedes the application of PWD resistant clones. In this study, we investigated the factors affecting rooting of PWD resistant clones and established a cheap, reliable, and simple method that promotes rooting. We tested the effects of three management methods, four substrates, two cutting materials, two cutting treatments, and three collection times on the rooting of cuttings obtained from 9-year-old PWD resistant clones. Rooting was observed only in stem cuttings treated with the full-light automatic spray management method. Additionally, stem cuttings showed a significantly higher rooting rate and root quality than needles cuttings. Compared with other substrates, stem cuttings planted in perlite produced the longest adventitious root and the highest total root length and lateral root number. Moreover, stem cuttings of PWD resistant clones collected in May showed a significantly higher rooting rate and root quality than those collected in June and July. Moreover, stem cuttings prepared with a horizontal cut while retaining the needles showed significantly higher rooting rate and root quality than those prepared with a diagonal cut while partly removing the needles. This study promotes the reproduction of seedlings of PWD-resistant Masson pine clones which helps control the spread of PWD, meanwhile, provides a technical reference for the propagation of mature pine trees via cuttings.
Collapse
Affiliation(s)
- Ting Pan
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
- Key Laboratory of State Forestry Administration on Prevention and Control of Pine Wood Nematode Disease, Hefei, Anhui, China
| | - Xue-lian Chen
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
- Key Laboratory of State Forestry Administration on Prevention and Control of Pine Wood Nematode Disease, Hefei, Anhui, China
| | - Yan-ping Hao
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
- Key Laboratory of State Forestry Administration on Prevention and Control of Pine Wood Nematode Disease, Hefei, Anhui, China
| | - Chun-wu Jiang
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
- Key Laboratory of State Forestry Administration on Prevention and Control of Pine Wood Nematode Disease, Hefei, Anhui, China
| | - Song Wang
- Washan State-own Forest Farm in Quanjiao, Chuzhou, Anhui, China
| | - Jin-shan Wang
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
| | - Qiang Wei
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
- Key Laboratory of State Forestry Administration on Prevention and Control of Pine Wood Nematode Disease, Hefei, Anhui, China
| | - Shi-juan Chen
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
| | - Xiao-song Yu
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
| | - Feng Cheng
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
| | - Liu-yi Xu
- Department of Forest Tree Genetic Breeding, Anhui Forestry Academy, Anhui, China
- Key Laboratory of State Forestry Administration on Prevention and Control of Pine Wood Nematode Disease, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
27
|
Evaluation of Deep Learning Segmentation Models for Detection of Pine Wilt Disease in Unmanned Aerial Vehicle Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13183594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pine wilt disease (PWD) is a serious threat to pine forests. Combining unmanned aerial vehicle (UAV) images and deep learning (DL) techniques to identify infected pines is the most efficient method to determine the potential spread of PWD over a large area. In particular, image segmentation using DL obtains the detailed shape and size of infected pines to assess the disease’s degree of damage. However, the performance of such segmentation models has not been thoroughly studied. We used a fixed-wing UAV to collect images from a pine forest in Laoshan, Qingdao, China, and conducted a ground survey to collect samples of infected pines and construct prior knowledge to interpret the images. Then, training and test sets were annotated on selected images, and we obtained 2352 samples of infected pines annotated over different backgrounds. Finally, high-performance DL models (e.g., fully convolutional networks for semantic segmentation, DeepLabv3+, and PSPNet) were trained and evaluated. The results demonstrated that focal loss provided a higher accuracy and a finer boundary than Dice loss, with the average intersection over union (IoU) for all models increasing from 0.656 to 0.701. From the evaluated models, DeepLLabv3+ achieved the highest IoU and an F1 score of 0.720 and 0.832, respectively. Also, an atrous spatial pyramid pooling module encoded multiscale context information, and the encoder–decoder architecture recovered location/spatial information, being the best architecture for segmenting trees infected by the PWD. Furthermore, segmentation accuracy did not improve as the depth of the backbone network increased, and neither ResNet34 nor ResNet50 was the appropriate backbone for most segmentation models.
Collapse
|
28
|
Zhang C, Wickham JD, Zhao L, Sun J. A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle. INSECT SCIENCE 2021; 28:1087-1102. [PMID: 32443173 DOI: 10.1111/1744-7917.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/17/2023]
Abstract
Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Zhang W, Wang X, Li Y, Liu Z, Li D, Wen X, Feng Y, Zhang X. Pinewood Nematode Alters the Endophytic and Rhizospheric Microbial Communities of Pinus massoniana. MICROBIAL ECOLOGY 2021; 81:807-817. [PMID: 33051738 DOI: 10.1007/s00248-020-01619-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 05/17/2023]
Abstract
Pinewood nematode, Bursaphelenchus xylophilus, is one of the greatest threats to pine trees and is spreading all over the world. During the nematode's pathogenesis, plant microorganisms play important roles. However, many microbial communities, such as that in Pinus massoniana, a major host of B. xylophilus that is widely distributed in China, are not well studied, especially the fungal communities. Here, the endophytic and rhizospheric bacterial and fungal communities associated with healthy and B. xylophilus-infected P. massoniana were analyzed. The results showed that 7639 bacterial and 3108 fungal OTUs were annotated from samples of P. massoniana, the rhizosphere, and B. xylophilus. There were significant diversity differences of endophytic microbes between healthy and infected P. massoniana. The abundances of endophytic bacteria Paenibacillus, unidentified_Burkholderiaceae, Serratia, Erwinia, and Pseudoxanthomonas and fungi Penicillifer, Zygoascus, Kirschsteiniothelia, Cyberlindnera, and Sporothrix in infected pines were greater than those in healthy pines, suggesting an association of particular microbial abundances with the pathogenesis of B. xylophilus in pines. Meanwhile, the abundances of microbes of unidentified_Burkholderiaceae, Saitozyma, and Pestalotiopsis were greater and Acidothermus and Trichoderma were lower in the rhizosphere under infected pines than those under healthy pines and the differences might be caused by B. xylophilus-induced weakening of the health of pines. Our study explored the endophytic and rhizospheric microbial community changes potentially caused by B. xylophilus infection of pines.
Collapse
Affiliation(s)
- Wei Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongxia Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhenkai Liu
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongzhen Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaojian Wen
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuqian Feng
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingyao Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
30
|
Plants under the Attack of Allies: Moving towards the Plant Pathobiome Paradigm. PLANTS 2021; 10:plants10010125. [PMID: 33435275 PMCID: PMC7827841 DOI: 10.3390/plants10010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
Plants are functional macrobes living in a close association with diverse communities of microbes and viruses as complex systems that continuously interact with the surrounding environment. The microbiota within the plant holobiont serves various essential and beneficial roles, such as in plant growth at different stages, starting from seed germination. Meanwhile, pathogenic microbes—differentiated from the rest of the plant microbiome based on their ability to damage the plant tissues through transient blooming under specific conditions—are also a part of the plant microbiome. Recent advances in multi-omics have furthered our understanding of the structure and functions of plant-associated microbes, and a pathobiome paradigm has emerged as a set of organisms (i.e., complex eukaryotic, microbial, and viral communities) within the plant’s biotic environment which interact with the host to deteriorate its health status. Recent studies have demonstrated that the one pathogen–one disease hypothesis is insufficient to describe the disease process in many cases, particularly when complex organismic communities are involved. The present review discusses the plant holobiont and covers the steady transition of plant pathology from the one pathogen–one disease hypothesis to the pathobiome paradigm. Moreover, previous reports on model plant diseases, in which more than one pathogen or co-operative interaction amongst pathogenic microbes is implicated, are reviewed and discussed.
Collapse
|
31
|
Guo X, Sun L, Li C, Fu Y, Song B, Li Y. The yield and quality of Pleurotus abieticola grown on nematode-infected Pinus massoniana chips. RSC Adv 2020; 11:883-890. [PMID: 35423707 PMCID: PMC8693279 DOI: 10.1039/d0ra07991j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the use of nematode-infected Pinus massoniana chips (NPC) as the main ingredient in Pleurotus abieticola substrate. The effects of different substrate formulas on nutritional parameters, including total sugars, polysaccharides, proteins, lipids, amino acids, and fatty acids were assessed. The results indicated that NPC was suitable for P. abieticola cultivation. However, the addition of certain amounts of corncobs (CC) and cottonseed hulks (CH) improved the yield. Substrate T5 (45% NPC, 6% CC, and 27% CH) had the greatest yield (121.38 g per bag), 34.56% greater than the yield of the control (78% poplar chips), which was 79.43 g per bag. Across the 11 substrate formulas tested, the total sugar, polysaccharide, crude protein, and crude lipid contents were 16.60-28.90%, 2.71-3.73%, 36.49-45.42%, and 1.03-4.34%, respectively. On all substrates, the fruiting bodies contained 17 amino acids, primarily glutamine (2.42-4.11%), followed by proline (2.56-3.73%), leucine (2.09-3.19%), phenylalanine (1.56-2.61%), and glycine (1.76-2.55%). The fruiting bodies contained 12 fatty acids, of which linoleic acid was the most abundant (82.36%-84.03%), followed by palmitic acid (6.42%-6.89%) and oleic acid (5.50%-7.34%). The fatty acid content was closely associated with the NPC content, which might indicate that NPC promoted fatty acid accumulation. Thus, NPC represents a new substrate suitable for P. abieticola cultivation.
Collapse
Affiliation(s)
- Xia Guo
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun 130118 P. R. China +8613604366406
- Chongqing Normal University Chongqing 401331 P. R. China
| | - Lei Sun
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun 130118 P. R. China +8613604366406
| | - Changtian Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun 130118 P. R. China +8613604366406
| | - Yongping Fu
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun 130118 P. R. China +8613604366406
| | - Bing Song
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun 130118 P. R. China +8613604366406
| | - Yu Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun 130118 P. R. China +8613604366406
| |
Collapse
|
32
|
|
33
|
Kim HM, Jeong SG, Choi IS, Yang JE, Lee KH, Kim J, Kim JC, Kim JS, Park HW. Mechanisms of Insecticidal Action of Metarhizium anisopliae on Adult Japanese Pine Sawyer Beetles ( Monochamus alternatus). ACS OMEGA 2020; 5:25312-25318. [PMID: 33043210 PMCID: PMC7542838 DOI: 10.1021/acsomega.0c03585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 05/31/2023]
Abstract
Pine wilt disease, caused by Bursaphelenchus xylophilus (pine wood nematode), leads to severe environmental and economic damage. Here, we report the results of experiments on the biological control of pine wilt disease through termination of the insect vector of the nematode and the mechanism of the insecticidal action of Metarhizium anisopliae JEF-279 against Monochamus alternatus (Japanese pine sawyer). A combined treatment with a fungal conidia suspension and a fungal protease-containing culture filtrate caused 75.8% mortality of the insect vector. Additionally, the presence of destruxins was confirmed in the dead Japanese pine sawyer adults, and half of the 10 protein spots in proteomic analysis were identified as an actin related to muscle contraction. Based on proteomic and microscopic analyses, the infection cycle of the Japanese pine sawyer by M. anisopliae JEF-279 was inferred to proceed in the following sequence: (1) host adhesion and germination, (2) epicuticle degradation, (3) growth as blastospore, (4) killing by various fungal toxins (insecticidal metabolites), (5) immune response as defense mechanism, and (6) hyphal extrusion and conidiation. Consequently, the combined fungal conidia suspension and protease-containing culture filtrate treatment may be applied as an insecticidal agent, and flaccid paralysis is likely a major mechanism underlying the insecticidal action of M. anisopliae JEF-279 on host insects.
Collapse
Affiliation(s)
- Ho Myeong Kim
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Seul-Gi Jeong
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - In Seong Choi
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Jung Eun Yang
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Kwang Ho Lee
- Center
for Research Facilities, Chonnam National
University, Gwangju 61186, Republic of Korea
| | - Junheon Kim
- National
Institute of Forest Science, Seoul 02455, Republic
of Korea
| | - Jong Cheol Kim
- Department
of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Su Kim
- Department
of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Hae Woong Park
- R&D
Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| |
Collapse
|
34
|
Wu W, Zhang Z, Zheng L, Han C, Wang X, Xu J, Wang X. Research Progress on the Early Monitoring of Pine Wilt Disease Using Hyperspectral Techniques. SENSORS 2020; 20:s20133729. [PMID: 32635285 PMCID: PMC7374340 DOI: 10.3390/s20133729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 11/30/2022]
Abstract
Pine wilt disease (PWD) caused by pine wood nematode (PWN, Bursaphelenchus xylophilus) originated in North America and has since spread to Asia and Europe. PWN is currently a quarantine object in 52 countries. In recent years, pine wilt disease has caused considerable economic losses to the pine forest production industry in China, as it is difficult to control. Thus, one of the key strategies for controlling pine wilt disease is to identify epidemic points as early as possible. The use of hyperspectral cameras mounted on drones is expected to enable PWD monitoring over large areas of forest, and hyperspectral images can reflect different stages of PWD. The trend of applying hyperspectral techniques to the monitoring of pine wilt disease is analyzed, and the corresponding strategies to address the existing technical problems are proposed, such as data collection of early warning stages, needs of using unmanned aerial vehicles (UAVs), and establishment of models after preprocessing.
Collapse
Affiliation(s)
- Weibin Wu
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Zhenbang Zhang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Lijun Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Chongyang Han
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Xiaoming Wang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Jian Xu
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Xinrong Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence:
| |
Collapse
|
35
|
Mannaa M, Han G, Jeon HW, Kim J, Kim N, Park AR, Kim JC, Seo YS. Influence of Resistance-Inducing Chemical Elicitors against Pine Wilt Disease on the Rhizosphere Microbiome. Microorganisms 2020; 8:microorganisms8060884. [PMID: 32545246 PMCID: PMC7356868 DOI: 10.3390/microorganisms8060884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is a major threat to pine forests worldwide. Induction of resistance is a promising and safe management option that should be investigated in relation to its possible influence on the pine tree ecosystem, including the surrounding microbial communities. In this study, two main resistance-inducing chemical elicitors, methyl salicylic acid (MeSA) and acibenzolar-s-methyl (ASM), were tested for their control efficiency against PWD and their influence on the rhizosphere microbial composition. Foliar treatment of pine seedlings with the chemical elicitors resulted in a reduction in PWD severity, with ASM showing better control efficacy, reaching up to 73% compared to the untreated control. Moreover, bacterial community analysis of the rhizosphere revealed significant changes in several microbial taxa that were present at low relative abundance. In particular, ASM treatment resulted in a significant increase in specific microbial taxa, including members of the Rhodanobacter, Devosia, Bradyrhizobium, Acidibacter, Mesorhizobium, and Hyphomicrobium genera, which are known to play ecological and plant growth-promoting roles. Furthermore, chitinolytic bacteria were shown to be reduced in response to treatment with both MeSA and ASM. Altogether, the present findings demonstrate the occurrence of significant alterations in several ecologically important microbial taxa after treatment with resistance-inducing chemicals. As compared to MeSA treatment, ASM treatment was more effective at suppressing PWD and resulted in more beneficial changes in rhizosphere microbial composition.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.); (N.K.)
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.); (N.K.)
| | - Hee Won Jeon
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Junheon Kim
- Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul 02455, Korea;
| | - Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.); (N.K.)
| | - Ae Ran Park
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.); (N.K.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| |
Collapse
|
36
|
Song Z, Lu Y, Liu X, Wei C, Oladipo A, Fan B. Evaluation of Pantoea eucalypti FBS135 for pine (Pinus massoniana) growth promotion and its genome analysis. J Appl Microbiol 2020; 129:958-970. [PMID: 32329126 DOI: 10.1111/jam.14673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
Abstract
AIMS Pinus massoniana is one of the most widely distributed forest plants in China. In this study, we isolated a bacterial endophyte (designated FBS135) from apical buds and needles of P. massoniana. Investigations were performed to understand the effects of the strain on pine growth, its genomic features and the functions of the plasmids it carries. METHODS AND RESULTS Based on its morphological features and 16S rRNA sequence, strain FBS135 was primarily identified as Pantoea eucalypti. We found that FBS135 not only promoted the growth of P. massoniana seedlings, but also significantly increased the survival rate of pine seedlings. The whole genome of FBS135 was sequenced, which revealed that the bacterium carries one chromosome and four plasmids. Its chromosome is 4 023 751 bp in size and contains dozens of genes involved in plant symbiosis. Curing one of the four plasmids, pPant1, resulted in a decrease in the size of the FBS135 colonies and the loss of the ability to synthesize yellow pigment, indicating that this plasmid may be very important for FBS135. CONCLUSIONS Pantoea eucalypti FBS135 has a genomic basis to be implicated in plant-associated lifestyle and was established to have the capability to promote pine growth. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report that such a bacterial species, P. eucalypti, was isolated from pine trees and evidenced to have pine beneficial activities. Our results elucidate the ecological effects of endophytes on forest plants as well as endophyte-plant interaction mechanisms.
Collapse
Affiliation(s)
- Z Song
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Y Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - X Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - C Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - A Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - B Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
37
|
Guo Y, Lin Q, Chen L, Carballar-Lejarazú R, Zhang A, Shao E, Liang G, Hu X, Wang R, Xu L, Zhang F, Wu S. Characterization of bacterial communities associated with the pinewood nematode insect vector Monochamus alternatus Hope and the host tree Pinus massoniana. BMC Genomics 2020; 21:337. [PMID: 32357836 PMCID: PMC7195709 DOI: 10.1186/s12864-020-6718-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/05/2020] [Indexed: 01/24/2023] Open
Abstract
Background Monochamus alternatus Hope is one of the insect vectors of pinewood nematode (Bursaphelenchus xylophilus), which causes the destructive pine wilt disease. The microorganisms within the ecosystem, comprising plants, their environment, and insect vectors, form complex networks. This study presents a systematic analysis of the bacterial microbiota in the M. alternatus midgut and its habitat niche. Methods Total DNA was extracted from 20 types of samples (with three replicates each) from M. alternatus and various tissues of healthy and infected P. massoniana (pines). 16S rDNA amplicon sequencing was conducted to determine the composition and diversity of the bacterial microbiota in each sample. Moreover, the relative abundances of bacteria in the midgut of M. alternatus larvae were verified by counting the colony-forming units. Results Pinewood nematode infection increased the microbial diversity in pines. Bradyrhizobium, Burkholderia, Dyella, Mycobacterium, and Mucilaginibacter were the dominant bacterial genera in the soil and infected pines. These results indicate that the bacterial community in infected pines may be associated with the soil microbiota. Interestingly, the abundance of the genus Gryllotalpicola was highest in the bark of infected pines. The genus Cellulomonas was not found in the midgut of M. alternatus, but it peaked in the phloem of infected pines, followed by the phloem of heathy pines. Moreover, the genus Serratia was not only present in the habitat niche, but it was also enriched in the M. alternatus midgut. The colony-forming unit assays showed that the relative abundance of Serratia sp. peaked in the midgut of instar II larvae (81%). Conclusions Overall, the results indicate that the bacterial microbiota in the soil and in infected pines are correlated. The Gryllotalpicola sp. and Cellulomonas sp. are potential microbial markers of pine wilt disease. Additionally, Serratia sp. could be an ideal agent for expressing insecticidal protein in the insect midgut by genetic engineering, which represents a new use of microbes to control M. alternatus.
Collapse
Affiliation(s)
- Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Qiannan Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Lyuyi Chen
- Universityof California, Irvine, CA, 92697-4025, USA
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Aishan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Ensi Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Lei Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
| |
Collapse
|
38
|
Diversity and Function of Endo-Bacteria in Bursaphelenchus xylophilus from Pinus massoniana Lamb. in Different Regions. FORESTS 2020. [DOI: 10.3390/f11050487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus is the pathogen that causes pine wilt disease (PWD), a devastating forest disease. PWN-associated bacteria may play a role in PWD. However, little is known about the endo-bacteria in PWN. We analyzed the diversity of endo-bacteria in nine isolates of PWNs from Pinus massoniana Lamb. in nine epidemic areas from three Chinese provinces by high-throughput sequencing of 16S rDNA and isolated and identified culturable endo-bacteria through construction of a 16S rDNA phylogenetic tree and Biolog microbial identification. We also examined the effects of endo-bacteria on PWN fecundity, antioxidant capacity, and virulence using sterile nematodes as a control. While the dominant endo-bacteria in PWNs from different regions exhibited no significant difference in the classification levels of class and genus, their proportions differed. Pseudomonas and Stenotrophomonas were highly abundant in all PWN isolates. A total of 15 endo-bacterial strains were successfully isolated and identified as six species: Stenotrophomonas maltophilia, Pseudomonas fluorescens, Kocuria palustris, Microbacterium testaceum, Rhizobium radiobacter, and Leifsonia aquatica. We also found that P. fluorescens significantly increased the egg production of PWN, and that both P. fluorescens and S. maltophilia enhanced the mobility of PWN under oxidative stress and reduced the content of reactive oxygen species by increasing antioxidant enzyme activity in PWN. These strains also accelerated the development of PWD, and P. fluorescens had a more beneficial effect on PWN than S. maltophilia. Diversity exists among the endo-bacteria in PWNs from different regions, and some endo-bacteria can promote PWN infestation by enhancing the fecundity and antioxidant capacity of the nematode. Our study contributes to clarifying the interaction between endo-bacteria and PWN.
Collapse
|
39
|
Bletz MC, Bunk B, Spröer C, Biwer P, Reiter S, Rabemananjara FCE, Schulz S, Overmann J, Vences M. Amphibian skin-associated Pigmentiphaga: Genome sequence and occurrence across geography and hosts. PLoS One 2019; 14:e0223747. [PMID: 31603945 PMCID: PMC6788695 DOI: 10.1371/journal.pone.0223747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022] Open
Abstract
The bacterial communities colonizing amphibian skin have been intensively studied due to their interactions with pathogenic chytrid fungi that are causing drastic amphibian population declines. Bacteria of the family Alcaligenaceae, and more specifically of the genus Pigmentiphaga, have been found to be associated specifically to arboreal frogs. Here we analyze their occurrence in a previously assembled global skin microbiome dataset from 205 amphibian species. Pigmentiphaga made up about 5% of the total number of reads in this global dataset. They were mostly found in unrelated arboreal frogs from Madagascar (Mantellidae and Hyperoliidae), but also occurred at low abundances on Neotropical frogs. Based on their 16S sequences, most of the sequences belong to a clade within Pigmentiphaga not assignable to any type strains of the five described species of the genus. One isolate from Madagascar clustered with Pigmentiphaga aceris (>99% sequence similarity on 16S rRNA gene level). Here, we report the full genome sequence of this bacterium which, based on 16S sequences of >97% similarity, has previously been found on human skin, floral nectar, tree sap, stream sediment and soil. Its genome consists of a single circular chromosome with 6,165,255 bp, 5,300 predicted coding sequences, 57 tRNA genes, and three rRNA operons. In comparison with other known Pigmentiphaga genomes it encodes a higher number of genes associated with environmental information processing and cellular processes. Furthermore, it has a biosynthetic gene cluster for a nonribosomal peptide syntethase, and bacteriocin biosynthetic genes can be found, but clusters for β-lactones present in other comparative Pigmentiphaga genomes are lacking.
Collapse
Affiliation(s)
- Molly C. Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA, United States of America
- Zoological Institute, Technische Universitt Braunschweig, Braunschweig, Germany
- * E-mail:
| | - Boyke Bunk
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Peter Biwer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Silke Reiter
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Microbiology Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Miguel Vences
- Zoological Institute, Technische Universitt Braunschweig, Braunschweig, Germany
| |
Collapse
|
40
|
Proença DN, Heine T, Senges CHR, Bandow JE, Morais PV, Tischler D. Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Front Microbiol 2019; 10:2166. [PMID: 31608025 PMCID: PMC6761702 DOI: 10.3389/fmicb.2019.02166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
Pine Wilt Disease (PWD) is caused by Bursaphelenchus xylophilus, the pinewood nematode, and affects several species of pine trees worldwide. The ecosystem of the Pinus pinaster trees was investigated as a source of bacteria producing metabolites affecting this ecosystem: P. pinaster trees as target-plant, nematode as disease effector and its insect-vector as shuttle. For example, metals and metal-carrying compounds contribute to the complex tree-ecosystems. This work aimed to detect novel secondary metabolites like metallophores and related molecules produced under iron limitation by PWD-associated bacteria and to test their activity on nematodes. After screening 357 bacterial strains from Portugal and United States, two promising metallophore-producing strains Erwinia sp. A41C3 and Rouxiella sp. Arv20#4.1 were chosen and investigated in more detail. The genomes of these strains were sequenced, analyzed, and used to detect genetic potential for secondary metabolite production. A combinatorial approach of liquid chromatography-coupled tandem mass spectrometry (LC-MS) linked to molecular networking was used to describe these compounds. Two major metabolites were detected by HPLC analyses and described. One HPLC fraction of strain Arv20#4.1 showed to be a hydroxamate-type siderophore with higher affinity for chelation of Cu. The HPLC fraction of strain A41C3 with highest metal affinity showed to be a catecholate-type siderophore with higher affinity for chelation of Fe. LC-MS allowed the identification of several desferrioxamines from strain Arv20#4.1, in special desferrioxamine E, but no hit was obtained in case of strain A41C3 which might indicate that it is something new. Bacteria and their culture supernatants showed ability to attract C. elegans. HPLC fractions of those supernatant-extracts of Erwinia strain A41C3, enriched with secondary metabolites such as siderophores, were able to kill pinewood nematode. These results suggest that metabolites secreted under iron limitation have potential to biocontrol B. xylophilus and for management of Pine Wilt Disease.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paula V. Morais
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Dirk Tischler
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
41
|
Liu Y, Ponpandian LN, Kim H, Jeon J, Hwang BS, Lee SK, Park SC, Bae H. Distribution and diversity of bacterial endophytes from four Pinus species and their efficacy as biocontrol agents for devastating pine wood nematodes. Sci Rep 2019; 9:12461. [PMID: 31462658 PMCID: PMC6713764 DOI: 10.1038/s41598-019-48739-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 07/19/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, we isolated a total of 238 culturable putative bacterial endophytes from four Pinus species (Pinus densiflora, P. koraiensis, P. rigida, and P. thunbergii) across 18 sampling sites in Korea. The samples were cultured in de Man Rogosa Sharpe and humic acid-vitamin agar media. These selective media were used to isolate lactic acid bacteria and Actinobacteria, respectively. Analysis using 16S ribosomal DNA sequencing grouped the isolated putative bacterial endophytes into 107 operational taxonomic units (OTUs) belonging to 48 genera. Gamma-proteobacteria were the most abundant bacteria in each sampling site and three tissues (needle, stem and root). The highest OTU richness and diversity indices were observed in the roots, followed by stem and needle tissues. Total metabolites extracted from three isolates (two isolates of Escherichia coli and Serratia marcescens) showed significant nematicidal activity against the pine wood nematode (Bursaphelenchus xylophilus). Our findings demonstrated the potential use of bacterial endophytes from pine trees as alternative biocontrol agents against pine wood nematodes.
Collapse
Affiliation(s)
- Yunran Liu
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Hoki Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, Republic of Korea
| | - Sun Keun Lee
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Soo-Chul Park
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Pyeongchang, Kangwon, 25354, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
42
|
Kim HM, Choi IS, Lee S, Hwang IM, Chun HH, Wi SG, Kim JC, Shin TY, Kim JC, Kim JS, Kim J, Park HW. Advanced strategy to produce insecticidal destruxins from lignocellulosic biomass Miscanthus. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:188. [PMID: 31367233 PMCID: PMC6657178 DOI: 10.1186/s13068-019-1530-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Biorefineries are widely recognized as the most feasible solution to the problem of achieving environmental sustainability along with economic growth. Furthermore, pine wilt disease has caused severe environmental and economic damage worldwide to date. Herein, a highly efficient, advanced process for producing destruxins (DTXs) from Miscanthus (MCT) is reported, along with an application strategy. RESULTS The acetic acid-sodium chlorite pretreatment of MCT (AASC-MCT) is found to improve the monosaccharide production. Through biocatalytic conversion processes (simultaneous saccharification and cultivation), Metarhizium anisopliae JEF-279 can efficiently produce DTXs from 1% (w/v) AASC-MCT, i.e., DTX E (334.8 mg/L), A (288.8 mg/L), and B (48.6 mg/L). Monochamus alternatus (MA, Japanese pine sawyer) is known to act as a mediator transferring Bursaphelenchus xylophilus to pinewood. As B. xylophilus is associated with the occurrence of pine wilt disease, biological control of MA is a major strategy or controlling this disease. In this study, upon the application of a mixture of DTXs and protease-containing culture filtrate (PCF), complete mortality of MA is observed after a 5-day incubation. The MA immune system response is believed to cause an overexpression of actin and tropomyosin as a defense mechanism against the flaccid paralysis induced by the DTXs and PCF treatment. CONCLUSIONS These results suggest that MCT can be used as a major feedstock in the biorefinery industry and that DTXs can be applied as an insecticide for biological control of pine wilt disease via MA termination.
Collapse
Affiliation(s)
- Ho Myeong Kim
- R&D Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755 Republic of Korea
| | - In Seong Choi
- R&D Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755 Republic of Korea
| | - Seoyoun Lee
- R&D Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755 Republic of Korea
| | - In Min Hwang
- R&D Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755 Republic of Korea
| | - Ho Hyun Chun
- R&D Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755 Republic of Korea
| | - Seung Gon Wi
- Asian Pear Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jin-Cheol Kim
- Division of Applied Bioscience & Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Tae Young Shin
- Department of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Jong Cheol Kim
- Department of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju, 54896 Republic of Korea
| | - Junheon Kim
- National Institute of Forest Science, Seoul, 02455 Republic of Korea
| | - Hae Woong Park
- R&D Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755 Republic of Korea
| |
Collapse
|
43
|
Xue Q, Xiang Y, Wu XQ, Li MJ. Bacterial Communities and Virulence Associated with Pine Wood Nematode Bursaphelenchus xylophilus from Different Pinus spp. Int J Mol Sci 2019; 20:ijms20133342. [PMID: 31284685 PMCID: PMC6650965 DOI: 10.3390/ijms20133342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Bursaphelenchus xylophilus, the causal agent of pine wilt disease, is a destructive threat to pine forests. The role of bacteria associated with B. xylophilus in pine wilt disease has attracted widespread attention. This study investigated variation in bacterial communities and the virulence of surface-sterilized B. xylophilus from different Pinus spp. The predominant culturable bacteria of nematodes from different pines were Stenotrophomonas and Pseudomonas. Biolog EcoPlate analysis showed that metabolic diversity of bacteria in B. xylophilus from P. massoniana was the highest, followed by P. thunbergii and P. densiflora. High-throughput sequencing analysis indicated that bacterial diversity and community structure in nematodes from the different pine species varied, and the dominant bacteria were Stenotrophomonas and Elizabethkingia. The virulence determination of B. xylophilus showed that the nematodes from P. massoniana had the greatest virulence, followed by the nematodes from P. thunbergii and P. densiflora. After the nematodes were inoculated onto P. thunbergii, the relative abundance of the predominant bacteria changed greatly, and some new bacterial species emerged. Meanwhile, the virulence of all the nematode isolates increased after passage through P. thunbergii. These inferred that some bacteria associated with B. xylophilus isolated from different pine species might be helpful to adjust the PWN’s parasitic adaptability.
Collapse
Affiliation(s)
- Qi Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yang Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Ming-Jie Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
44
|
The nematicide Serratia plymuthica M24T3 colonizes Arabidopsis thaliana, stimulates plant growth, and presents plant beneficial potential. Braz J Microbiol 2019; 50:777-789. [PMID: 31177380 DOI: 10.1007/s42770-019-00098-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/27/2019] [Indexed: 01/28/2023] Open
Abstract
Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth-promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with L-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate μg protein-1 μl-1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.
Collapse
|
45
|
Bacterial communities associated with anthracnose symptomatic and asymptomatic leaves of guarana, an endogenous tropical crop, and their pathogen antagonistic effects. Arch Microbiol 2019; 201:1061-1073. [PMID: 31123792 DOI: 10.1007/s00203-019-01677-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Plants are colonized by diverse microorganisms that can substantially impact their health and growth. Understanding bacterial diversity and the relationships between bacteria and phytopathogens may be key to finding effective biocontrol agents. We evaluated the bacterial community associated with anthracnose symptomatic and asymptomatic leaves of guarana, a typical tropical crop. Bacterial communities were assessed through culture-independent techniques based on extensive 16S rRNA sequencing, and cultured bacterial strains were evaluated for their ability to inhibit the growth of Colletotrichum sp. as well as for enzyme and siderophore production. The culture-independent method revealed that Proteobacteria was the most abundant phylum, but many sequences were unclassified. The emergence of anthracnose disease did not significantly affect the bacterial community, but the abundance of the genera Acinetobacter, Pseudomonas and Klebsiella were significantly higher in the symptomatic leaves. In vitro growth of Colletotrichum sp. was inhibited by 11.38% of the cultured bacterial strains, and bacteria with the highest inhibition rates were isolated from symptomatic leaves, while asymptomatic leaves hosted significantly more bacteria that produced amylase and polygalacturonase. The bacterial isolate Bacillus sp. EpD2-5 demonstrated the highest inhibition rate against Colletotrichum sp., whereas the isolates EpD2-12 and FD5-12 from the same genus also had high inhibition rates. These isolates were also able to produce several hydrolytic enzymes and siderophores, indicating that they may be good candidates for the biocontrol of anthracnose. Our work demonstrated the importance of using a polyphasic approach to study microbial communities from plant diseases, and future work should focus on elucidating the roles of culture-independent bacterial communities in guarana anthracnose disease.
Collapse
|
46
|
Tayyrov A, Stanley CE, Azevedo S, Künzler M. Combining microfluidics and RNA-sequencing to assess the inducible defensome of a mushroom against nematodes. BMC Genomics 2019; 20:243. [PMID: 30909884 PMCID: PMC6434838 DOI: 10.1186/s12864-019-5607-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fungi are an attractive source of nutrients for predators. As part of their defense, some fungi are able to induce the production of anti-predator protein toxins in response to predation. A previous study on the interaction of the model mushroom Coprinopsis cinerea by the fungivorous nematode Aphelenchus avenae on agar plates has shown that the this fungal defense response is most pronounced in the part of the mycelium that is in direct contact with the nematode. Hence, we hypothesized that, for a comprehensive characterization of this defense response, an experimental setup that maximizes the zone of direct interaction between the fungal mycelium and the nematode, was needed. RESULTS In this study, we conducted a transcriptome analysis of C. cinerea vegetative mycelium upon challenge with A. avenae using a tailor-made microfluidic device. The device was designed such that the interaction between the fungus and the nematode was confined to a specific area and that the mycelium could be retrieved from this area for analysis. We took samples from the confrontation area after different time periods and extracted and sequenced the poly(A)+ RNA thereof. The identification of 1229 differentially expressed genes (DEGs) shows that this setup profoundly improved sensitivity over co-cultivation on agar plates where only 37 DEGs had been identified. The product of one of the most highly upregulated genes shows structural homology to bacterial pore-forming toxins, and revealed strong toxicity to various bacterivorous nematodes. In addition, bacteria associated with the fungivorous nematode A. avenae were profiled with 16S rRNA deep sequencing. Similar to the bacterivorous and plant-feeding nematodes, Proteobacteria and Bacteroidetes were the most dominant phyla in A. avenae. CONCLUSIONS The use of a novel experimental setup for the investigation of the defense response of a fungal mycelium to predation by fungivorous nematodes resulted in the identification of a comprehensive set of DEGs and the discovery of a novel type of fungal defense protein against nematodes. The bacteria found to be associated with the fungivorous nematode are a possible explanation for the induction of some antibacterial defense proteins upon nematode challenge.
Collapse
Affiliation(s)
- Annageldi Tayyrov
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Claire E. Stanley
- Agroecology and Environment Research Division, Agroscope, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Sophie Azevedo
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| |
Collapse
|
47
|
Ikenaka Y, Miyabara Y, Ichise T, Nakayama S, Nimako C, Ishizuka M, Tohyama C. Exposures of children to neonicotinoids in pine wilt disease control areas. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:71-79. [PMID: 30478955 DOI: 10.1002/etc.4316] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/07/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Neonicotinoid insecticides that have been on the market since 1992 have been used globally including in Japan. Because they are sprayed over forests and agricultural areas, inadvertent toxicity in nontarget insects (especially honey bees) and humans is a matter of public concern. However, information on exposure levels and potential health impacts of neonicotinoids in children living around sprayed areas is scarce. Thus, we determined neonicotinoid exposure levels in children living in communities where thiacloprid was used to control pine wilt disease. A total of 46 children (23 males and 23 females) were recruited for the present study, and informed written consent was obtained from their guardians. Urine specimens were collected before, during, and after insecticide spraying events; and atmospheric particulate matter was also collected. Concentrations of thiacloprid and 6 other neonicotinoid compounds were determined in urine samples and in atmospheric particulate matter specimens using liquid chromatography-electrospray ionization-tandem mass spectrometry. In urine specimens, thiacloprid concentrations were <0.13 μg/L and were detectable in approximately 30% of all samples. Concentrations of the other neonicotinoids, N-dm-acetamiprid, thiamethoxam, dinotefuran, and clothianidin, were 18.7, 1.92, 72.3, and 6.02 µg/L, respectively. Estimated daily intakes of these neonicotinoids were then calculated from urinary levels; although the estimated daily intakes of the neonicotinoids were lower than current acceptable daily intake values, the children were found to be exposed to multiple neonicotinoids on a daily basis. Environ Toxicol Chem 2019;38:71-79. © 2018 SETAC.
Collapse
Affiliation(s)
- Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Yuichi Miyabara
- Institute of Mountain Science, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shouta Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chiharu Tohyama
- Health, Environment, Science, and Technology International Consulting, Nerima, Tokyo, Japan
- Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
48
|
The alcohol dehydrogenase with a broad range of substrate specificity regulates vitality and reproduction of the plant-parasitic nematode Bursaphelenchus xylophilus. Parasitology 2018; 146:497-505. [PMID: 30318023 DOI: 10.1017/s0031182018001695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pine wilt disease, which is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, has caused huge damage to pine forests around the world. In this study, we analysed the PWN transcriptome to investigate the expression of genes related to the associated bacterial species Pseudomonas fluorescens and found that the gene adh-1 encoding alcohol dehydrogenase (ADH) was upregulated. The open reading frame of adh-1, which encoded a protein of 352 amino acid residues, was cloned from B. xylophilus. Recombinant ADH with a relative molecular weight of 39 kDa, was present mainly in inclusion bodies and was overexpressed in Escherichia coli BL21 (DE3) and purified after refolding. The biochemical assay revealed that recombinant ADH could catalyse the dehydrogen reaction of eight tested alcohols including ethanol in the presence of NAD+. Quantitative real-time RT-PCR analysis indicated that ethanol upregulated adh-1 expression in PWN. Results of RNA interference and inhibition of ADH treatment indicated that downregulating expression of adh-1 or inhibition of ADH could reduce ethanol tolerance and the vitality and reproduction ability of B. xylophilus, suggesting that adh-1 is involved in pathogenicity of PWN.
Collapse
|
49
|
Mercado-Blanco J, Abrantes I, Barra Caracciolo A, Bevivino A, Ciancio A, Grenni P, Hrynkiewicz K, Kredics L, Proença DN. Belowground Microbiota and the Health of Tree Crops. Front Microbiol 2018; 9:1006. [PMID: 29922245 PMCID: PMC5996133 DOI: 10.3389/fmicb.2018.01006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.
Collapse
Affiliation(s)
- Jesús Mercado-Blanco
- Department of Crop Protection, Agencia Estatal Consejo Superior de Investigaciones Científicas, Institute for Sustainable Agriculture, Córdoba, Spain
| | - Isabel Abrantes
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
| | | | - Annamaria Bevivino
- Department for Sustainability of Production and Territorial Systems, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Aurelio Ciancio
- Institute for Sustainable Plant Protection, National Research Council, Bari, Italy
| | - Paola Grenni
- Water Research Institute (CNR-IRSA), National Research Council, Rome, Italy
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Diogo N. Proença
- Centre for Mechanical Engineering, Materials and Processes (CEMMPRE) and Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
50
|
Arboriscoccus pini gen. nov., sp. nov., an endophyte from a pine tree of the class Alphaproteobacteria, emended description of Geminicoccus roseus, and proposal of Geminicoccaceae fam. nov. Syst Appl Microbiol 2018; 41:94-100. [DOI: 10.1016/j.syapm.2017.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/13/2017] [Accepted: 11/22/2017] [Indexed: 11/22/2022]
|