1
|
Chouhan S, Kumar A, Muhammad N, Usmani D, Khan TH. Sirtuins as Key Regulators in Pancreatic Cancer: Insights into Signaling Mechanisms and Therapeutic Implications. Cancers (Basel) 2024; 16:4095. [PMID: 39682281 DOI: 10.3390/cancers16234095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal cancers, marked by rapid progression, pronounced chemoresistance, and a complex network of genetic and epigenetic dysregulation. Within this challenging context, sirtuins, NAD+-dependent deacetylases, have emerged as pivotal modulators of key cellular processes that drive pancreatic cancer progression. Each sirtuin contributes uniquely to PDAC pathogenesis. SIRT1 influences apoptosis and chemoresistance through hypoxia, enhancing glycolytic metabolism and HIF-1α signaling, which sustain tumor survival against drugs like gemcitabine. SIRT2, conversely, disrupts cancer cell proliferation by inhibiting eIF5A, while SIRT3 exerts tumor-suppressive effects by regulating mitochondrial ROS and glycolysis. SIRT4 inhibits aerobic glycolysis, and its therapeutic upregulation has shown promise in curbing PDAC progression. Furthermore, SIRT5 modulates glutamine and glutathione metabolism, offering an avenue to disrupt PDAC's metabolic dependencies. SIRT6 and SIRT7, through their roles in angiogenesis, EMT, and metastasis, represent additional targets, with modulators of SIRT6, such as JYQ-42, showing potential to reduce tumor invasiveness. This review aims to provide a comprehensive exploration of the emerging roles of sirtuins, a family of NAD+-dependent enzymes, as critical regulators within the oncogenic landscape of pancreatic cancer. This review meticulously explores the nuanced involvement of sirtuins in pancreatic cancer, elucidating their contributions to tumorigenesis and suppression through mechanisms such as metabolic reprogramming, the maintenance of genomic integrity and epigenetic modulation. Furthermore, it emphasizes the urgent need for the development of targeted therapeutic interventions aimed at precisely modulating sirtuin activity, thereby enhancing therapeutic efficacy and optimizing patient outcomes in the context of pancreatic malignancies.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| |
Collapse
|
2
|
Vahabi M, Dehni B, Antomás I, Giovannetti E, Peters GJ. Targeting miRNA and using miRNA as potential therapeutic options to bypass resistance in pancreatic ductal adenocarcinoma. Cancer Metastasis Rev 2023; 42:725-740. [PMID: 37490255 PMCID: PMC10584721 DOI: 10.1007/s10555-023-10127-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with poor prognosis due to early metastasis, low diagnostic rates at early stages, and resistance to current therapeutic regimens. Despite numerous studies and clinical trials, the mortality rate for PDAC has shown limited improvement. Therefore, there is a pressing need to attain. a more comprehensive molecular characterization to identify biomarkers enabling early detection and evaluation of treatment response. MicroRNA (miRNAs) are critical regulators of gene expression on the post-transcriptional level, and seem particularly interesting as biomarkers due to their relative stability, and the ability to detect them in fixed tissue specimens and biofluids. Deregulation of miRNAs is common and affects several hallmarks of cancer and contribute to the oncogenesis and metastasis of PDAC. Unique combinations of upregulated oncogenic miRNAs (oncomiRs) and downregulated tumor suppressor miRNAs (TsmiRs), promote metastasis, characterize the tumor and interfere with chemosensitivity of PDAC cells. Here, we review several oncomiRs and TsmiRs involved in chemoresistance to gemcitabine and FOLFIRINOX in PDAC and highlighted successful/effective miRNA-based therapy approaches in vivo. Integrating miRNAs in PDAC treatment represents a promising therapeutic avenue that can be used as guidance for personalized medicine for PDAC patients.
Collapse
Affiliation(s)
- Mahrou Vahabi
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bilal Dehni
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Inés Antomás
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam UMC, location VUMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands.
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
3
|
Hakobyan S, Stepanyan A, Nersisyan L, Binder H, Arakelyan A. PSF toolkit: an R package for pathway curation and topology-aware analysis. Front Genet 2023; 14:1264656. [PMID: 37680201 PMCID: PMC10482229 DOI: 10.3389/fgene.2023.1264656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Most high throughput genomic data analysis pipelines currently rely on over-representation or gene set enrichment analysis (ORA/GSEA) approaches for functional analysis. In contrast, topology-based pathway analysis methods, which offer a more biologically informed perspective by incorporating interaction and topology information, have remained underutilized and inaccessible due to various limiting factors. These methods heavily rely on the quality of pathway topologies and often utilize predefined topologies from databases without assessing their correctness. To address these issues and make topology-aware pathway analysis more accessible and flexible, we introduce the PSF (Pathway Signal Flow) toolkit R package. Our toolkit integrates pathway curation and topology-based analysis, providing interactive and command-line tools that facilitate pathway importation, correction, and modification from diverse sources. This enables users to perform topology-based pathway signal flow analysis in both interactive and command-line modes. To showcase the toolkit's usability, we curated 36 KEGG signaling pathways and conducted several use-case studies, comparing our method with ORA and the topology-based signaling pathway impact analysis (SPIA) method. The results demonstrate that the algorithm can effectively identify ORA enriched pathways while providing more detailed branch-level information. Moreover, in contrast to the SPIA method, it offers the advantage of being cut-off free and less susceptible to the variability caused by selection thresholds. By combining pathway curation and topology-based analysis, the PSF toolkit enhances the quality, flexibility, and accessibility of topology-aware pathway analysis. Researchers can now easily import pathways from various sources, correct and modify them as needed, and perform detailed topology-based pathway signal flow analysis. In summary, our PSF toolkit offers an integrated solution that addresses the limitations of current topology-based pathway analysis methods. By providing interactive and command-line tools for pathway curation and topology-based analysis, we empower researchers to conduct comprehensive pathway analyses across a wide range of applications.
Collapse
Affiliation(s)
- Siras Hakobyan
- Bioinformatics Group, Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
| | | | | | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia
- Russian-Armenian University, Yerevan, Armenia
| |
Collapse
|
4
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
5
|
Bhardwaj A, Josse C, Van Daele D, Poulet C, Chavez M, Struman I, Van Steen K. Deeper insights into long-term survival heterogeneity of pancreatic ductal adenocarcinoma (PDAC) patients using integrative individual- and group-level transcriptome network analyses. Sci Rep 2022; 12:11027. [PMID: 35773268 PMCID: PMC9247075 DOI: 10.1038/s41598-022-14592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is categorized as the leading cause of cancer mortality worldwide. However, its predictive markers for long-term survival are not well known. It is interesting to delineate individual-specific perturbed genes when comparing long-term (LT) and short-term (ST) PDAC survivors and integrate individual- and group-based transcriptome profiling. Using a discovery cohort of 19 PDAC patients from CHU-Liège (Belgium), we first performed differential gene expression analysis comparing LT to ST survivor. Second, we adopted systems biology approaches to obtain clinically relevant gene modules. Third, we created individual-specific perturbation profiles. Furthermore, we used Degree-Aware disease gene prioritizing (DADA) method to develop PDAC disease modules; Network-based Integration of Multi-omics Data (NetICS) to integrate group-based and individual-specific perturbed genes in relation to PDAC LT survival. We identified 173 differentially expressed genes (DEGs) in ST and LT survivors and five modules (including 38 DEGs) showing associations to clinical traits. Validation of DEGs in the molecular lab suggested a role of REG4 and TSPAN8 in PDAC survival. Via NetICS and DADA, we identified various known oncogenes such as CUL1 and TGFB1. Our proposed analytic workflow shows the advantages of combining clinical and omics data as well as individual- and group-level transcriptome profiling.
Collapse
Affiliation(s)
- Archana Bhardwaj
- GIGA-R Centre, BIO3 - Medical Genomics, University of Liège, Avenue de L'Hôpital, 11, 4000, Liège, Belgium.
| | - Claire Josse
- Laboratory of Human Genetics, GIGA Research, University Hospital (CHU), Liège, Belgium
- Medical Oncology Department, CHU Liège, Liège, Belgium
| | - Daniel Van Daele
- Department of Gastro-Enterology, University Hospital (CHU), Liège, Belgium
| | - Christophe Poulet
- Laboratory of Human Genetics, GIGA Research, University Hospital (CHU), Liège, Belgium
- Laboratory of Rheumatology, GIGA-R, University Hospital (CHULiege), Liège, Belgium
| | - Marcela Chavez
- Department of Medicine, Division of Hematology, University Hospital (CHU), Liège, Belgium
| | - Ingrid Struman
- GIGA-R Centre, Laboratory of Molecular Angiogenesis, University of Liège, Liège, Belgium
| | - Kristel Van Steen
- GIGA-R Centre, BIO3 - Medical Genomics, University of Liège, Avenue de L'Hôpital, 11, 4000, Liège, Belgium
| |
Collapse
|
6
|
Kafita D, Nkhoma P, Zulu M, Sinkala M. Proteogenomic analysis of pancreatic cancer subtypes. PLoS One 2021; 16:e0257084. [PMID: 34506537 PMCID: PMC8432812 DOI: 10.1371/journal.pone.0257084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer remains a significant public health problem with an ever-rising incidence of disease. Cancers of the pancreas are characterised by various molecular aberrations, including changes in the proteomics and genomics landscape of the tumour cells. Therefore, there is a need to identify the proteomic landscape of pancreatic cancer and the specific genomic and molecular alterations associated with disease subtypes. Here, we carry out an integrative bioinformatics analysis of The Cancer Genome Atlas dataset, including proteomics and whole-exome sequencing data collected from pancreatic cancer patients. We apply unsupervised clustering on the proteomics dataset to reveal the two distinct subtypes of pancreatic cancer. Using functional and pathway analysis based on the proteomics data, we demonstrate the different molecular processes and signalling aberrations of the pancreatic cancer subtypes. In addition, we explore the clinical characteristics of these subtypes to show differences in disease outcome. Using datasets of mutations and copy number alterations, we show that various signalling pathways previously associated with pancreatic cancer are altered among both subtypes of pancreatic tumours, including the Wnt pathway, Notch pathway and PI3K-mTOR pathways. Altogether, we reveal the proteogenomic landscape of pancreatic cancer subtypes and the altered molecular processes that can be leveraged to devise more effective treatments.
Collapse
Affiliation(s)
- Doris Kafita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Mildred Zulu
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Musalula Sinkala
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- * E-mail:
| |
Collapse
|
7
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
8
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|
9
|
López de Maturana E, Rodríguez JA, Alonso L, Lao O, Molina-Montes E, Martín-Antoniano IA, Gómez-Rubio P, Lawlor R, Carrato A, Hidalgo M, Iglesias M, Molero X, Löhr M, Michalski C, Perea J, O'Rorke M, Barberà VM, Tardón A, Farré A, Muñoz-Bellvís L, Crnogorac-Jurcevic T, Domínguez-Muñoz E, Gress T, Greenhalf W, Sharp L, Arnes L, Cecchini L, Balsells J, Costello E, Ilzarbe L, Kleeff J, Kong B, Márquez M, Mora J, O'Driscoll D, Scarpa A, Ye W, Yu J, García-Closas M, Kogevinas M, Rothman N, Silverman DT, Albanes D, Arslan AA, Beane-Freeman L, Bracci PM, Brennan P, Bueno-de-Mesquita B, Buring J, Canzian F, Du M, Gallinger S, Gaziano JM, Goodman PJ, Gunter M, LeMarchand L, Li D, Neale RE, Peters U, Petersen GM, Risch HA, Sánchez MJ, Shu XO, Thornquist MD, Visvanathan K, Zheng W, Chanock SJ, Easton D, Wolpin BM, Stolzenberg-Solomon RZ, Klein AP, Amundadottir LT, Marti-Renom MA, Real FX, Malats N. A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Med 2021; 13:15. [PMID: 33517887 PMCID: PMC7849104 DOI: 10.1186/s13073-020-00816-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance. METHODS We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D) permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map (3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public genomic information allowed prioritization of potentially relevant candidate variants. RESULTS We identified several new variants located in genes for which there is experimental evidence of their implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in NR5A2 (rs3790840) with a meta-analysis p value = 5.91E-06 in 1D approach and a Local Moran's Index (LMI) = 7.76 in 2D approach. We also identified a multi-hit region in CASC8-a lncRNA associated with pancreatic carcinogenesis-with a lowest p value = 6.91E-05. Importantly, two new PC loci were identified both by 2D and 3D approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1-a major regulator of the ER stress and unfolded protein responses in acinar cells-identified by 3D; all of them with a strong in silico functional support. CONCLUSIONS This multi-step strategy, combined with an in-depth in silico functional analysis, offers a comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases.
Collapse
Affiliation(s)
- Evangelina López de Maturana
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Juan Antonio Rodríguez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Esther Molina-Montes
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Isabel Adoración Martín-Antoniano
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Paulina Gómez-Rubio
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Rita Lawlor
- ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Alfredo Carrato
- CIBERONC, Madrid, Spain
- Department of Oncology, Ramón y Cajal University Hospital, IRYCIS, Alcala University, Madrid, Spain
| | - Manuel Hidalgo
- Madrid-Norte-Sanchinarro Hospital, Madrid, Spain
- Weill Cornell Medicine, New York, USA
| | - Mar Iglesias
- CIBERONC, Madrid, Spain
- Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | - Xavier Molero
- Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona and CIBEREHD, Barcelona, Spain
| | - Matthias Löhr
- Gastrocentrum, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Christopher Michalski
- Department of Surgery, Technical University of Munich, Munich, Germany
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-WittenberHalle (Saale), Halle, Germany
| | - José Perea
- Department of Surgery, Hospital 12 de Octubre, and Department of Surgery and Health Research Institute, Fundación Jiménez Díaz, Madrid, Spain
| | - Michael O'Rorke
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- College of Public Health, The University of Iowa, Iowa City, IA, USA
| | | | - Adonina Tardón
- Department of Medicine, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- CIBERESP, Madrid, Spain
| | - Antoni Farré
- Department of Gastroenterology and Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Luís Muñoz-Bellvís
- CIBERONC, Madrid, Spain
- Department of Surgery, Hospital Universitario de Salamanca - IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Tanja Crnogorac-Jurcevic
- Barts Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, London, UK
| | - Enrique Domínguez-Muñoz
- Department of Gastroenterology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Thomas Gress
- Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Linda Sharp
- National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Newcastle University, Institute of Health & Society, Newcastle, UK
| | - Luís Arnes
- Centre for Stem Cell Research and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Lluís Cecchini
- CIBERONC, Madrid, Spain
- Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | - Joaquim Balsells
- Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona and CIBEREHD, Barcelona, Spain
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Lucas Ilzarbe
- CIBERONC, Madrid, Spain
- Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | - Jörg Kleeff
- Department of Surgery, Technical University of Munich, Munich, Germany
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-WittenberHalle (Saale), Halle, Germany
| | - Bo Kong
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Mirari Márquez
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Josefina Mora
- Department of Gastroenterology and Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Damian O'Driscoll
- National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stokholm, Sweden
| | - Jingru Yu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stokholm, Sweden
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manolis Kogevinas
- CIBERESP, Madrid, Spain
- Institut Municipal d'Investigació Mèdica - Hospital del Mar, Centre de Recerca en Epidemiologia Ambiental (CREAL), Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Bas Bueno-de-Mesquita
- Deparment for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ, Heidelberg, Germany
| | - Margaret Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steve Gallinger
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - J Michael Gaziano
- Departments of Medicine, Brigham and Women's Hospital, VA Boston and Harvard Medical School, Boston, MA, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marc Gunter
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Donghui Li
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rachael E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ulrika Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Maria José Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Universidad de Granada, Granada, Spain
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kala Visvanathan
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Brian M Wolpin
- Department Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc A Marti-Renom
- National Centre for Genomic Analysis (CNAG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), ICREA, Baldiri Reixac 4, 08028, Barcelona, Spain.
| | - Francisco X Real
- CIBERONC, Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
- CIBERONC, Madrid, Spain.
| |
Collapse
|
10
|
Nandi T, Pradyuth S, Singh AK, Chitkara D, Mittal A. Therapeutic agents for targeting desmoplasia: current status and emerging trends. Drug Discov Today 2020; 25:S1359-6446(20)30365-2. [PMID: 32947044 DOI: 10.1016/j.drudis.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Desmoplasia is a major barrier to chemotherapy in several cancers, particularly pancreatic ductal adenocarcinoma and breast cancer. Tumors comprise of cellular and noncellular components and chemoresistant cancer stem cells (CSCs) with established signaling pathways. In this review, we discuss drugs, such as pentoxifylline, aspirin, and metformin, that have been repurposed and investigated for their antidesmoplastic activity in combination with antitumor drugs. We also highlight less explored new small-molecule drugs, and gene and peptide-based therapeutics for the treatment of desmoplasia and to target CSCs. Promising results from preclinical studies have encouraged several clinical trials to evaluate these antidesmoplastic agents as adjunct to chemotherapy.
Collapse
Affiliation(s)
- Tania Nandi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India
| | - Sai Pradyuth
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India
| | - Arihant Kumar Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India.
| |
Collapse
|
11
|
Mechanisms of cancer stem cell therapy. Clin Chim Acta 2020; 510:581-592. [PMID: 32791136 DOI: 10.1016/j.cca.2020.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are responsible for carcinogenesis and tumorigenesis and are involved in drug and radiation resistance, metastasis, tumor relapse and initiation. Remarkably, they have other abilities such as inheritance of self-renewal and de-differentiation. Hence, targeting CSCs is considered a potential anti-cancer therapeutic strategy. Recent advances in the identification of biomarkers to recognize CSCs and the development of new techniques to evaluate tumorigenic and carcinogenic roles of CSCs are instrumental to this approach. Elucidation of signaling pathways that regulate CSCs colony progression and drug resistance are critical in establishing effective targeted therapies. CSCs play a central key role in immunomodulation, immune evasion and effector immunity, which alters immune system balancing. These include mTOR, SHH, NOTCH and Wnt/β-catering in cancer progression. In this review article, we discuss the importance of these CSCs pathways in cancer therapy.
Collapse
|
12
|
Nweke E, Ntwasa M, Brand M, Devar J, Smith M, Candy G. Increased expression of plakoglobin is associated with upregulated MAPK and PI3K/AKT signalling pathways in early resectable pancreatic ductal adenocarcinoma. Oncol Lett 2020; 19:4133-4141. [PMID: 32382352 DOI: 10.3892/ol.2020.11473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, and it is associated with a 5-year survival rate of <10% due to limited early detection methods and ineffective therapeutic options. Thus, an improved understanding of the mechanisms involved in the early stages of PDAC tumorigenesis is crucial in order to identify potential novel diagnostic and therapeutic targets. The most common signalling aberrations in PDAC occur in the Wnt/Notch signalling pathway, as well as within the epidermal growth factor receptor (EGFR) pathway and its associated ligands, EGF and transforming growth factor-β. In addition, the RAS family of oncogenes, which act downstream of EGFR, are found mutated in most pancreatic cancer samples. Plakoglobin, a component of the EGFR signalling pathway, serves an important role in normal cell adhesion; however, its role in PDAC is largely unknown. The present study used transcriptome sequencing and focussed proteome microarrays to identify dysregulated genes and proteins in PDAC. The presence of upregulated plakoglobin expression levels was identified as a distinguishing feature between the PDAC microenvironment and normal pancreatic tissue. Furthermore, plakoglobin was demonstrated to be associated with the differential upregulation of the PI3K/AKT and MAPK signalling pathways in the tumour microenvironment, which suggested that it may serve an important role in PDAC tumourigenesis.
Collapse
Affiliation(s)
- Ekene Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa
| | - Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Johannesburg, Gauteng 1710, Republic of South Africa
| | - Martin Brand
- School of Physiology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa.,Department of Surgery, Steve Biko Academic Hospital and The University of Pretoria, Pretoria, Gauteng 0002, Republic of South Africa
| | - John Devar
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa.,Department of Surgery, Chris Hani Baragwanath Hospital, Soweto, Johannesburg, Gauteng 1864, Republic of South Africa
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa.,Department of Surgery, Chris Hani Baragwanath Hospital, Soweto, Johannesburg, Gauteng 1864, Republic of South Africa
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, Gauteng 2193, Republic of South Africa
| |
Collapse
|
13
|
De Jesus-Acosta A, Narang A, Mauro L, Herman J, Jaffee EM, Laheru DA. Carcinoma of the Pancreas. ABELOFF'S CLINICAL ONCOLOGY 2020:1342-1360.e7. [DOI: 10.1016/b978-0-323-47674-4.00078-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Dalin S, Sullivan MR, Lau AN, Grauman-Boss B, Mueller HS, Kreidl E, Fenoglio S, Luengo A, Lees JA, Vander Heiden MG, Lauffenburger DA, Hemann MT. Deoxycytidine Release from Pancreatic Stellate Cells Promotes Gemcitabine Resistance. Cancer Res 2019; 79:5723-5733. [PMID: 31484670 PMCID: PMC7357734 DOI: 10.1158/0008-5472.can-19-0960] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer deaths in the United States. The deoxynucleoside analogue gemcitabine is among the most effective therapies to treat PDAC, however, nearly all patients treated with gemcitabine either fail to respond or rapidly develop resistance. One hallmark of PDAC is a striking accumulation of stromal tissue surrounding the tumor, and this accumulation of stroma can contribute to therapy resistance. To better understand how stroma limits response to therapy, we investigated cell-extrinsic mechanisms of resistance to gemcitabine. Conditioned media from pancreatic stellate cells (PSC), as well as from other fibroblasts, protected PDAC cells from gemcitabine toxicity. The protective effect of PSC-conditioned media was mediated by secretion of deoxycytidine, but not other deoxynucleosides, through equilibrative nucleoside transporters. Deoxycytidine inhibited the processing of gemcitabine in PDAC cells, thus reducing the effect of gemcitabine and other nucleoside analogues on cancer cells. These results suggest that reducing deoxycytidine production in PSCs may increase the efficacy of nucleoside analog therapies. SIGNIFICANCE: This study provides important new insight into mechanisms that contribute to gemcitabine resistance in PDAC and suggests new avenues for improving gemcitabine efficacy.
Collapse
Affiliation(s)
- Simona Dalin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mark R Sullivan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Allison N Lau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Beatrice Grauman-Boss
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Helen S Mueller
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Emanuel Kreidl
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Fenoglio
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alba Luengo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jacqueline A Lees
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew G Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael T Hemann
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
15
|
Tu Q, Yang D, Zhang X, Jia X, An S, Yan L, Dai H, Ma Y, Tang C, Tong W, Hou Z, Lv L, Tan J, Zhao X. A novel pancreatic cancer model originated from transformation of acinar cells in adult tree shrew, a primate-like animal. Dis Model Mech 2019; 12:dmm.038703. [PMID: 30910991 PMCID: PMC6505477 DOI: 10.1242/dmm.038703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/20/2019] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is one of the most lethal common cancers. The cell of origin of pancreatic ductal adenocarcinoma (PDAC) has been controversial, and recent evidence suggested acinar cells as the most probable candidate. However, the genetic alterations driving the transformation of pancreatic acinar cells in fully mature animals remain to be deciphered. In this study, lentivirus was used as a tool to introduce genetic engineering in tree shrew pancreatic acinar cells to explore the driver mutation essential for malignant transformation, establishing a novel tree shrew PDAC model, because we found that lentivirus could selectively infect acinar cells in tree shrew pancreas. Combination of oncogenic KRASG12D expression and inactivation of tumor suppressor genes Tp53, Cdkn2a and Cdkn2b could induce pancreatic cancer with full penetrance. Silencing of Cdkn2b is indispensable for Rb1 phosphorylation and tumor induction. Tree shrew PDAC possesses the main histological and molecular features of human PDAC. The gene expression profile of tree shrew PDAC was more similar to human disease than a mouse model. In conclusion, we established a novel pancreatic cancer model in tree shrew and identified driver mutations indispensable for PDAC induction from acinar cells in mature adults, demonstrating the essential roles of Cdkn2b in the induction of PDAC originating from adult acinar cells. Tree shrew could thus provide a better choice than mouse for a PDAC model derived from acinar cells in fully mature animals. Summary: Our work identified the driver mutations indispensable for PDAC induction from acinar cells in mature adults and established a novel PDAC animal model with increased similarity to human disease.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central Laboratory of Yan'an Hospital, Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Dong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Xianning Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Xintong Jia
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sanqi An
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Lanzhen Yan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.,Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hongjuan Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yuhua Ma
- Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chengwei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Tong
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central Laboratory of Yan'an Hospital, Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China
| | - Longbao Lv
- Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jing Tan
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central Laboratory of Yan'an Hospital, Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China
| | - Xudong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China .,Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
16
|
Cornelissen B, Knight JC, Mukherjee S, Evangelista L, Xavier C, Caobelli F, Del Vecchio S, Rbah-Vidal L, Barbet J, de Jong M, van Leeuwen FWB. Translational molecular imaging in exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 2018; 45:2442-2455. [PMID: 30225616 PMCID: PMC6208802 DOI: 10.1007/s00259-018-4146-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Effective treatment for pancreatic cancer remains challenging, particularly the treatment of pancreatic ductal adenocarcinoma (PDAC), which makes up more than 95% of all pancreatic cancers. Late diagnosis and failure of chemotherapy and radiotherapy are all too common, and many patients die soon after diagnosis. Here, we make the case for the increased use of molecular imaging in PDAC preclinical research and in patient management.
Collapse
Affiliation(s)
- Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK.
| | - James C Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK
| | - Somnath Mukherjee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK
| | | | | | - Federico Caobelli
- Department of Radiology, Universitätsspital Basel, Basel, Switzerland
| | | | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Jacques Barbet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Forouzesh F, Agharezaee N. Review on the molecular signaling pathways involved in controlling cancer stem cells and treatment. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
18
|
Abstract
Purpose of review This article provides a brief overview of cancer-preventive phytochemicals specifically targeting pancreatic cancer (PC) stem cells for prevention and treatment. Recent findings Cancer stem cells (CSCs) represent a small proportion of the total cells of a given tumor, and contribute to tumor growth, recurrence, metastasis, and treatment resistance. Many intertwined pathways, including hedgehog, Wnt Signaling, and NOTCH, have been shown to play a role in the formation of CSCs. Recently, numerous chemopreventive agents, such as genistein, (-)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, resveratrol, and quercetin, have been shown to target CSCs mediated through the inhibition of multiple signalling pathways, to avoid toxicity and the side effects of chemical compounds. Summary A growing body of research suggests that CSCs are the drivers in treatment resistance, cancer recurrence, and metastasis, in addition to tumor initiation and heterogeneity. Patient survival depends on these CSCs, which are one cause of tumor recurrence after surgery and chemotherapy. Therefore, target selection; an improved understanding of CSC biology, the genetic and molecular profiles of CSCs, and their key signaling pathways, and; appropriate clinical trials endpoints that are designed to target CSCs will help in the development of drugs that will specifically target this small population of stem cells.
Collapse
|
19
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
20
|
Azad AKM, Lawen A, Keith JM. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer. PLoS One 2017; 12:e0173331. [PMID: 28288164 PMCID: PMC5348014 DOI: 10.1371/journal.pone.0173331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/20/2017] [Indexed: 11/24/2022] Open
Abstract
Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links. Our results suggest many signaling pathway structures are compromised in acquired resistance, and V-structures of aberrant signaling within/among those pathways may provide further insights into the bypass mechanism of targeted inhibition.
Collapse
Affiliation(s)
- A. K. M. Azad
- School of Mathematical Sciences, Monash University, Clayton, VIC, Australia
- * E-mail:
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Jonathan M. Keith
- School of Mathematical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
21
|
Pierce KJ, de Abreu FB, Peterson JD, Suriawinata AA, Tsongalis GJ, Liu X. The genomic profile of pancreatic adenocarcinoma and its relationship to metastatic disease. Exp Mol Pathol 2016; 101:172-175. [PMID: 27498048 DOI: 10.1016/j.yexmp.2016.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/05/2023]
Affiliation(s)
- K J Pierce
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States; Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, United States; The Theodore and Audrey Geisel School of Medicine at Dartmouth, Hanover, NH, United States.
| | - F B de Abreu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States; Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, United States; The Theodore and Audrey Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - J D Peterson
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States; Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, United States; The Theodore and Audrey Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - A A Suriawinata
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States; Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, United States; The Theodore and Audrey Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - G J Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States; Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, United States; The Theodore and Audrey Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - X Liu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States; Norris Cotton Cancer Center, One Medical Center Drive, Lebanon, NH, United States; The Theodore and Audrey Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
22
|
Murphy SJ, Hart SN, Halling GC, Johnson SH, Smadbeck JB, Drucker T, Lima JF, Rohakhtar FR, Harris FR, Kosari F, Subramanian S, Petersen GM, Wiltshire TD, Kipp BR, Truty MJ, McWilliams RR, Couch FJ, Vasmatzis G. Integrated Genomic Analysis of Pancreatic Ductal Adenocarcinomas Reveals Genomic Rearrangement Events as Significant Drivers of Disease. Cancer Res 2015; 76:749-61. [PMID: 26676757 DOI: 10.1158/0008-5472.can-15-2198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
Abstract
Many somatic mutations have been detected in pancreatic ductal adenocarcinoma (PDAC), leading to the identification of some key drivers of disease progression, but the involvement of large genomic rearrangements has often been overlooked. In this study, we performed mate pair sequencing (MPseq) on genomic DNA from 24 PDAC tumors, including 15 laser-captured microdissected PDAC and 9 patient-derived xenografts, to identify genome-wide rearrangements. Large genomic rearrangements with intragenic breakpoints altering key regulatory genes involved in PDAC progression were detected in all tumors. SMAD4, ZNF521, and FHIT were among the most frequently hit genes. Conversely, commonly reported genes with copy number gains, including MYC and GATA6, were frequently observed in the absence of direct intragenic breakpoints, suggesting a requirement for sustaining oncogenic function during PDAC progression. Integration of data from MPseq, exome sequencing, and transcriptome analysis of primary PDAC cases identified limited overlap in genes affected by both rearrangements and point mutations. However, significant overlap was observed in major PDAC-associated signaling pathways, with all PDAC exhibiting reduced SMAD4 expression, reduced SMAD-dependent TGFβ signaling, and increased WNT and Hedgehog signaling. The frequent loss of SMAD4 and FHIT due to genomic rearrangements strongly implicates these genes as key drivers of PDAC, thus highlighting the strengths of an integrated genomic and transcriptomic approach for identifying mechanisms underlying disease initiation and progression.
Collapse
Affiliation(s)
- Stephen J Murphy
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Steven N Hart
- Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Geoffrey C Halling
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah H Johnson
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - James B Smadbeck
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Travis Drucker
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota
| | - Joema Felipe Lima
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota
| | | | - Faye R Harris
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Farhad Kosari
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Timothy D Wiltshire
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Fergus J Couch
- Health Sciences Research, Mayo Clinic, Rochester, Minnesota. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - George Vasmatzis
- Department of Biomarker Discovery, Center for Individualized Medicine, Rochester, Minnesota. Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
23
|
Palam LR, Gore J, Craven KE, Wilson JL, Korc M. Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis 2015; 6:e1913. [PMID: 26469962 PMCID: PMC4632294 DOI: 10.1038/cddis.2015.264] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with marked chemoresistance and a 5-year survival rate of 7%. The integrated stress response (ISR) is a cytoprotective pathway initiated in response to exposure to various environmental stimuli. We used pancreatic cancer cells (PCCs) that are highly resistant to gemcitabine (Gem) and an orthotopic mouse model to investigate the role of the ISR in Gem chemoresistance. Gem induced eIF2 phosphorylation and downstream transcription factors ATF4 and CHOP in PCCs, and these effects occurred in an eIF2α-S51 phosphorylation-dependent manner as determined using PANC-1 cells, and wild type and S51 mutant mouse embryo fibroblasts. Blocking the ISR pathway in PCCs with the ISR inhibitor ISRIB or siRNA-mediated depletion of ATF4 resulted in enhanced Gem-mediated apoptosis. Polyribosomal profiling revealed that Gem caused repression of global translation and this effect was reversed by ISRIB or by expressing GADD34 to facilitate eIF2 dephosphorylation. Moreover, Gem promoted preferential mRNA translation as determined in a TK-ATF4 5'UTR-Luciferase reporter assay, and this effect was also reversed by ISRIB. RNA-seq analysis revealed that Gem upregulated eIF2 and Nrf2 pathways, and that ISRIB significantly inhibited these pathways. Gem also induced the expression of the antiapoptotic factors Nupr1, BEX2, and Bcl2a1, whereas ISRIB reduced their expression. In an orthotopic tumor model using PANC-1 cells, ISRIB facilitated Gem-mediated increases in PARP cleavage, which occurred in conjunction with decreased tumor size. These findings indicate that Gem chemoresistance is enhanced by activating multiple ISR-dependent pathways, including eIF2, Nrf2, Nupr1, BEX2, and Bcl2A1. It is suggested that targeting the ISR pathway may be an efficient mechanism for enhancing therapeutic responsiveness to Gem in PDAC.
Collapse
Affiliation(s)
- L R Palam
- Departments of Medicine, Biochemistry and Molecular Biology, Indiana University School of Medicine, The Melvin and Bren Simon Cancer Center and The Center for Pancreatic Cancer Research, Indianapolis, IN, USA
| | - J Gore
- Departments of Medicine, Biochemistry and Molecular Biology, Indiana University School of Medicine, The Melvin and Bren Simon Cancer Center and The Center for Pancreatic Cancer Research, Indianapolis, IN, USA
| | - K E Craven
- Departments of Medicine, Biochemistry and Molecular Biology, Indiana University School of Medicine, The Melvin and Bren Simon Cancer Center and The Center for Pancreatic Cancer Research, Indianapolis, IN, USA
| | - J L Wilson
- Departments of Medicine, Biochemistry and Molecular Biology, Indiana University School of Medicine, The Melvin and Bren Simon Cancer Center and The Center for Pancreatic Cancer Research, Indianapolis, IN, USA
| | - M Korc
- Departments of Medicine, Biochemistry and Molecular Biology, Indiana University School of Medicine, The Melvin and Bren Simon Cancer Center and The Center for Pancreatic Cancer Research, Indianapolis, IN, USA
| |
Collapse
|
24
|
Abstract
Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis.
Collapse
Affiliation(s)
- Dacheng Xie
- Department of Medical Oncology and Tumor Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keping Xie
- Department of Medical Oncology and Tumor Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Kaleağasıoğlu F, Berger MR. SIBLINGs and SPARC families: Their emerging roles in pancreatic cancer. World J Gastroenterol 2014; 20:14747-14759. [PMID: 25356037 PMCID: PMC4209540 DOI: 10.3748/wjg.v20.i40.14747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has a considerably poor prognosis with a 5-year survival probability of less than 5% when all stages are combined. Pancreatic cancer is characterized by its dense stroma, which is involved in the critical interplay with the tumor cells throughout tumor progression and furthermore, creates a barrier restricting efficient penetration of therapeutics. Alterations in a large number of genes are reflected by a limited number of signaling pathways, which are potential targets. Understanding more about the molecular basis of this devastating cancer type regarding tumor microenvironment, distinct subpopulations of cells, epithelial-to-mesenchymal transition and inflammation will lead to the development of various targeted therapies for controlling tumor growth and metastasis. In this complex scenario of pancreatic cancer, especially members of the “small integrin binding ligand N-linked glycoproteins” (SIBLINGs) and “secreted protein acidic and rich in cysteine” (SPARC) families have emerged due to their prominent roles in properties including proliferation, differentiation, apoptosis, adhesion, migration, angiogenesis, wound repair and regulation of extracellular matrix remodeling. SIBLINGs consist of five members, which include osteopontin (OPN), bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein. The SPARC family of modular extracellular proteins is comprised of SPARC/osteonectin (ON) and SPARC-like 1 (hevin); secreted modular calcium binding proteins; testicans and follistatin-like protein. In this review, we especially focus on OPN and ON, elaborating on their special and growing importance in pancreatic cancer diagnosis and prognosis.
Collapse
|
26
|
Güngör C, Hofmann BT, Wolters-Eisfeld G, Bockhorn M. Pancreatic cancer. Br J Pharmacol 2014; 171:849-58. [PMID: 24024905 DOI: 10.1111/bph.12401] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/16/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED In recent years, it has become clear that the current standard therapeutic options for pancreatic cancer are not adequate and still do not meet the criteria to cure patients suffering from this lethal disease. Although research over the past decade has shown very interesting and promising new therapeutic options for these patients, only minor clinical success was achieved. Therefore, there is still an urgent need for new approaches that deal with early detection and new therapeutic options in pancreatic cancer. To provide optimal care for patients with pancreatic cancer, we need to understand better its complex molecular biology and thus to identify new target molecules that promote the proliferation and resistance to chemotherapy of pancreatic cancer cells. In spite of significant progress in curing cancers with chemotherapy, pancreatic cancer remains one of the most resistant solid tumour cancers and many studies suggest that drug-resistant cancer cells are the most aggressive with the highest relapse and metastatic rates. In this context, activated Notch signalling is strongly linked with chemoresistance and therefore reflects a rational new target to circumvent resistance to chemotherapy in pancreatic cancer. Here, we have focused our discussion on the latest research, current therapy options and recently identified target molecules such as Notch-2 and the heparin-binding growth factor midkine, which exhibit a wide range of cancer-relevant functions and therefore provide attractive new therapeutic target molecules, in terms of pancreatic cancer and other cancers also. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- C Güngör
- Department of General, Visceral and Thoracic Surgery, Experimental Oncology, Campus Research, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
27
|
Schiavone M, Rampazzo E, Casari A, Battilana G, Persano L, Moro E, Liu S, Leach SD, Tiso N, Argenton F. Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. Dis Model Mech 2014; 7:883-94. [PMID: 24878567 PMCID: PMC4073277 DOI: 10.1242/dmm.014969] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinoma, one of the worst malignancies of the exocrine pancreas, is a solid tumor with increasing incidence and mortality in industrialized countries. This condition is usually driven by oncogenic KRAS point mutations and evolves into a highly aggressive metastatic carcinoma due to secondary gene mutations and unbalanced expression of genes involved in the specific signaling pathways. To examine in vivo the effects of KRASG12D during pancreatic cancer progression and time correlation with cancer signaling pathway activities, we have generated a zebrafish model of pancreatic adenocarcinoma in which eGFP-KRASG12D expression was specifically driven to the pancreatic tissue by using the GAL4/UAS conditional expression system. Outcrossing the inducible oncogenic KRASG12D line with transgenic zebrafish reporters, harboring specific signaling responsive elements of transcriptional effectors, we were able to follow TGFβ, Notch, Bmp and Shh activities during tumor development. Zebrafish transgenic lines expressing eGFP-KRASG12D showed normal exocrine pancreas development until 3 weeks post fertilization (wpf). From 4 to 24 wpf we observed several degrees of acinar lesions, characterized by an increase in mesenchymal cells and mixed acinar/ductal features, followed by progressive bowel and liver infiltrations and, finally, highly aggressive carcinoma. Moreover, live imaging analysis of the exocrine pancreatic tissue revealed an increasing number of KRAS-positive cells and progressive activation of TGFβ and Notch pathways. Increase in TGFβ, following KRASG12D activation, was confirmed in a concomitant model of medulloblastoma (MDB). Notch and Shh signaling activities during tumor onset were different between MDB and pancreatic adenocarcinoma, indicating a tissue-specific regulation of cell signaling pathways. Moreover, our results show that a living model of pancreatic adenocarcinoma joined with cell signaling reporters is a suitable tool for describing in vivo the signaling cascades and molecular mechanisms involved in tumor development and a potential platform to screen for novel oncostatic drugs.
Collapse
Affiliation(s)
- Marco Schiavone
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Elena Rampazzo
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | | | - Giusy Battilana
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Luca Persano
- Department of Woman and Child Health, University of Padua, 35131 Padua, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Shu Liu
- Department of Surgery and The McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steve D Leach
- Department of Surgery and The McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | |
Collapse
|
28
|
Farrell AS, Allen-Petersen B, Daniel CJ, Wang X, Wang Z, Rodriguez S, Impey S, Oddo J, Vitek MP, Lopez C, Christensen DJ, Sheppard B, Sears RC. Targeting inhibitors of the tumor suppressor PP2A for the treatment of pancreatic cancer. Mol Cancer Res 2014; 12:924-39. [PMID: 24667985 DOI: 10.1158/1541-7786.mcr-13-0542] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED Pancreatic cancer is a deadly disease that is usually diagnosed in the advanced stages when few effective therapies are available. Given the aggressive clinical course of this disease and lack of good treatment options, the development of new therapeutic agents for the treatment of pancreatic cancer is of the upmost importance. Several pathways that have shown to contribute to pancreatic cancer progression are negatively regulated by the tumor suppressor protein phosphatase 2A (PP2A). Here, the endogenous inhibitors of PP2A, SET (also known as I2PP2A) and cancerous inhibitor of PP2A (CIP2A), were shown to be overexpressed in human pancreatic cancer, contributing to decreased PP2A activity and overexpression and stabilization of the oncoprotein c-Myc, a key PP2A target. Knockdown of SET or CIP2A increases PP2A activity, increases c-Myc degradation, and decreases the tumorigenic potential of pancreatic cancer cell lines both in vitro and in vivo. Moreover, treatment with a novel SET inhibitor, OP449, pharmacologically recapitulates the phenotypes and significantly reduces proliferation and tumorigenic potential of several pancreatic cancer cell lines, with an accompanying attenuation of cell growth and survival signaling. Furthermore, primary cells from patients with pancreatic cancer were sensitive to OP449 treatment, indicating that PP2A-regulated pathways are highly relevant to this deadly disease. IMPLICATIONS The PP2A inhibitors SET and CIP2A are overexpressed in human pancreatic cancer and are important for pancreatic cancer cell growth and transformation; thus, antagonizing SET and/or CIP2A may be an innovative approach for the treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Amy S Farrell
- Authors' Affiliations: Departments of Molecular and Medical Genetics
| | | | - Colin J Daniel
- Authors' Affiliations: Departments of Molecular and Medical Genetics
| | - Xiaoyan Wang
- Authors' Affiliations: Departments of Molecular and Medical Genetics
| | - Zhiping Wang
- Authors' Affiliations: Departments of Molecular and Medical Genetics
| | - Sarah Rodriguez
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon
| | - Jessica Oddo
- Oncotide Pharmaceuticals Inc., Research Triangle Park
| | - Michael P Vitek
- Oncotide Pharmaceuticals Inc., Research Triangle Park; Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | | | - Dale J Christensen
- Oncotide Pharmaceuticals Inc., Research Triangle Park; Division of Hematology, Department of Medicine, and
| | | | - Rosalie C Sears
- Authors' Affiliations: Departments of Molecular and Medical Genetics,
| |
Collapse
|
29
|
Gore AJ, Deitz SL, Palam LR, Craven KE, Korc M. Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-β to promote proliferation. J Clin Invest 2013; 124:338-52. [PMID: 24334458 DOI: 10.1172/jci71526] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often associated with overexpression of TGF-β. Given its tumor suppressor functions, it is unclear whether TGF-β is a valid therapeutic target for PDAC. Here, we found that proliferating pancreatic cancer cells (PCCs) from human PDAC patients and multiple murine models of PDAC (mPDAC) often exhibit abundant levels of phosphorylated retinoblastoma 1 (RB) and Smad2. TGF-β1 treatment enhanced proliferation of PCCs isolated from KrasG12D-driven mPDAC that lacked RB (KRC cells). This mitogenic effect was abrogated by pharmacological inhibition of type I TGF-β receptor kinase, combined inhibition of MEK/Src or MEK/PI3K, and restoration of RB expression. TGF-β1 promoted epithelial-to-mesenchymal transition (EMT), invasion, Smad2/3 phosphorylation, Src activation, Wnt reporter activity, and Smad-dependent upregulation of Wnt7b in KRC cells. Importantly, TGF-β1-induced mitogenesis was markedly attenuated by inhibition of Wnt secretion. In an in vivo syngeneic orthotopic model, inhibition of TGF-β signaling suppressed KRC cell proliferation, tumor growth, stroma formation, EMT, metastasis, ascites formation, and Wnt7b expression, and markedly prolonged survival. Together, these data indicate that RB dysfunction converts TGF-β to a mitogen that activates known oncogenic signaling pathways and upregulates Wnt7b, which synergize to promote PCC invasion, survival, and mitogenesis. Furthermore, this study suggests that concomitantly targeting TGF-β and Wnt7b signaling in PDAC may disrupt these aberrant pathways, which warrants further evaluation in preclinical models.
Collapse
|
30
|
Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1. PLoS One 2013; 8:e75737. [PMID: 24098720 PMCID: PMC3787053 DOI: 10.1371/journal.pone.0075737] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 12/28/2022] Open
Abstract
Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4(+) T cells and CD4(+) forkhead box P3 (FoxP3)(+) regulatory T cells (Treg) but reduced numbers of CD8(+) T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8(+) T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.
Collapse
|
31
|
Abstract
Pancreatic cancer continues to be a challenging disease to treat because of its aggressive nature, advanced stage at the time of diagnosis, and limited treatment options that are available. Traditional cytotoxic chemotherapy provides modest benefit to patients with pancreatic adenocarcinoma. Recently, a FOLFIRINOX regimen revealed improved response in overall and progression-free survival over single-agent gemcitabine in metastatic pancreatic cancer, but there is still much needed advancement in the systemic treatment of pancreatic cancer. There is a growing interest in the development of novel agents, while our understanding of molecular pathogenesis of pancreatic adenocarcinoma continues to expand. With identification of various molecular pathways in pancreatic cancer tumorigenesis, potential targets for drug development have been pursued with the use of monoclonal antibodies and small-molecule inhibitors. Although preclinical studies with multiple targeted therapies demonstrated encouraging results in pancreatic cancer, only erlotinib, an epidermal growth factor receptor inhibitor, showed a marginal survival benefit in a phase III clinical trial, when combined with gemcitabine. As further signaling pathways and their importance in pancreatic cancer tumorigenesis are better understood, further clinical trials will need to be designed to study these targeted agents as single agents, in combination with other novel agents or in combination with cytotoxic chemotherapy. In this review, we present the current knowledge on targeted therapy in pancreatic adenocarcinoma and its application in clinical practice.
Collapse
|
32
|
Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One 2013; 8:e62844. [PMID: 23646150 PMCID: PMC3639969 DOI: 10.1371/journal.pone.0062844] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/27/2013] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence indicates that human mesenchymal stem cells (hMSCs) can be recruited to tumor sites, and affect the growth of human malignancies. However, little is known about the underlying molecular mechanisms. Here, we observed the effects of hMSCs on the human cholangiocarcinoma cell line, HCCC-9810, using an animal transplantation model, and conditioned media from human umbilical cord-derived mesenchymal stem cells (hUC-MSCs). Animal studies showed that hUC-MSCs can inhibit the growth of cholangiocarcinoma xenograft tumors. In cell culture, conditioned media from hUC-MSCs inhibited proliferation and induced apoptosis of tumor cells in a dose- and time-dependent manner. The proliferation inhibition rate increased from 6.21% to 49.86%, whereas the apoptosis rate increased from 9.3% to 48.1% when HCCC-9810 cells were cultured with 50% hUC-MSC conditioned media for 24 h. Immunoblot analysis showed that the expression of phosphor-PDK1 (Ser241), phosphor-Akt (Ser 437 and Thr308), phosphorylated glycogen synthase kinase 3β (phospho-GSK-3β(Ser9)), β-catenin, cyclin-D1, and c-myc were down-regulated. We further demonstrated that CHIR99021, a GSK-3β inhibitor reversed the suppressive effects of hUC-MSCs on HCCC-9810 cells and increased the expression of β-catenin. The GSK-3β activator, sodium nitroprusside dehydrate (SNP), augmented the anti-tumor effects of hUC-MSCs and decreased the expression of β-catenin. IGF-1 acted as an Akt activator, and also reversed the suppressive effects of hUC-MSCs on HCCC-9810 cells. All these results suggest that hUC-MSCs could inhibit the malignant phenotype of HCCC-9810 human cholangiocarcinoma cell line. The cross-talk role of Wnt/β-catenin and PI3K/Akt signaling pathway, with GSK-3β as the key enzyme bridging these pathways, may contribute to the inhibition of cholangiocarcinoma cells by hUC-MSCs.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guoqing Han
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hui Liu
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengyong Qin
- Department of Gastroenterology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
33
|
SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/β-catenin signaling. Oncogene 2013; 33:279-88. [PMID: 23318427 DOI: 10.1038/onc.2012.595] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/23/2012] [Accepted: 11/02/2012] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is among the top five deadliest cancers in developed countries. Better knowledge of the molecular mechanisms contributing to its tumorigenesis is imperative to improve patient prognosis. Identification of novel tumor suppressor genes (TSGs) in pancreatic cancer will reveal new mechanisms of pathway deregulation and will ultimately help improve our understanding of this aggressive disease. According to Knudson's two-hit model, TSGs are classically disrupted by two concerted genetic events. In this study, we combined DNA methylation profiling with copy number and mRNA expression profiling to identify novel TSGs in a set of 20 pancreatic cancer cell lines. These data sets were integrated for each of ∼12 000 genes in each cell line enabling the elucidation of those genes that undergo DNA hypermethylation, copy-number loss and mRNA downregulation simultaneously in multiple cell lines. Using this integrative genomics strategy, we identified SOX15 (sex determining region Y-box 15) as a candidate TSG in pancreatic cancer. Expression of SOX15 in pancreatic cancer cell lines with undetectable expression resulted in reduced viability of cancer cells both in vitro and in vivo demonstrating its tumor suppressive capability. We also found reduced expression, homozygous deletion and aberrant DNA methylation of SOX15 in clinical pancreatic tumor data sets. Furthermore, we deduced a novel role for SOX15 in suppressing the Wnt/β-catenin signaling pathway, which we hypothesize is a pathway through which SOX15 may exert its tumor suppressive effects in pancreatic cancer.
Collapse
|
34
|
Karamitopoulou E. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer. Front Oncol 2013; 2:209. [PMID: 23316479 PMCID: PMC3539658 DOI: 10.3389/fonc.2012.00209] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/14/2012] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Clinical Pathology Division, Institute of Pathology, University of Bern Bern, Switzerland
| |
Collapse
|
35
|
The implications of cancer stem cells for cancer therapy. Int J Mol Sci 2012; 13:16636-57. [PMID: 23443123 PMCID: PMC3546712 DOI: 10.3390/ijms131216636] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022] Open
Abstract
Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs), a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.
Collapse
|
36
|
Kong X, Li L, Li Z, Xie K. Targeted destruction of the orchestration of the pancreatic stroma and tumor cells in pancreatic cancer cases: molecular basis for therapeutic implications. Cytokine Growth Factor Rev 2012; 23:343-56. [PMID: 22749856 PMCID: PMC3505269 DOI: 10.1016/j.cytogfr.2012.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction as its defining hallmark. The past several decades have seen dramatic progress in understanding of pancreatic cancer pathogenesis, including identification of precursor lesions, sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and corresponding signature genetic events, and the biological impact of these events on malignant behavior. However, the currently used therapeutic strategies for epithelial tumor cells, which have exhibited potent antitumor activity in cell culture and animal models, have failed to produce significant effects in the clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about 90% of a tumor's mass, clearly is not a passive scaffold for cancer cells but an active contributor to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and the stroma will be important to designing effective therapeutic strategies for pancreatic cancer. This review focuses on the origin of stromal molecular and cellular components in pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration of these two components.
Collapse
Affiliation(s)
- Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Lei Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Keping Xie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
37
|
Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 2012; 86:1649-65. [PMID: 22811024 DOI: 10.1007/s00204-012-0906-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
The oxygen paradox tells us that oxygen is both necessary for aerobic life and toxic to all life forms. Reactive oxygen species (ROS) touch every biological and medical discipline, especially those involving proliferative status, supporting the idea that active oxygen may be increased in tumor cells. In fact, metabolism of oxygen and the resulting toxic byproducts can cause cancer and death. Efforts to counteract the damage caused by ROS are gaining acceptance as a basis for novel therapeutic approaches, and the field of prevention of cancer is experiencing an upsurge of interest in medically useful antioxidants. Apoptosis is an important means of regulating cell numbers in the developing cell system, but it is so important that it must be controlled. Normal cell death in homeostasis of multicellular organisms is mediated through tightly regulated apoptotic pathways that involve oxidative stress regulation. Defective signaling through these pathways can contribute to both unbalance in apoptosis and development of cancer. Finally, in this review, we discuss new knowledge about recent tools that provide powerful antioxidant strategies, and designing methods to deliver to target cells, in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- José M Matés
- Department of Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
| | | | | | | |
Collapse
|
38
|
Xia J, Chen C, Chen Z, Miele L, Sarkar FH, Wang Z. Targeting pancreatic cancer stem cells for cancer therapy. Biochim Biophys Acta Rev Cancer 2012; 1826:385-99. [PMID: 22728049 DOI: 10.1016/j.bbcan.2012.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/14/2012] [Accepted: 06/13/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer (PC) is the fourth most frequent cause of cancer death in the United States. Emerging evidence suggests that pancreatic cancer stem cells (CSCs) play a crucial role in the development and progression of PC. Recently, there is increasing evidence showing that chemopreventive agents commonly known as nutraceuticals could target and eliminate CSCs that have been proposed as the root of the tumor progression, which could be partly due to attenuating cell signaling pathways involved in CSCs. Therefore, targeting pancreatic CSCs by nutraceuticals for the prevention of tumor progression and treatment of PC may lead to the development of novel strategy for achieving better treatment outcome of PC patients. In this review article, we will summarize the most recent advances in the pancreatic CSC field, with particular emphasis on nutraceuticals that target CSCs, for fighting this deadly disease.
Collapse
Affiliation(s)
- Jun Xia
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui, People's Republic of China
| | | | | | | | | | | |
Collapse
|