1
|
Zhang W, Cui L, Jiao J, Zhang Y, Ma C, Peng D, Jin M. Decreased NETosis-related regulators in neuromyelitis optica spectrum disorders after plasma exchange. Int Immunopharmacol 2024; 142:113234. [PMID: 39321705 DOI: 10.1016/j.intimp.2024.113234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES To investigate the impact of plasma exchange (PLEX) on NETosis-related regulators and their correlation with neurological improvement in NMOSD patients. METHODS Twelve aquaporin-4 antibodies seropositive NMOSD patients were enrolled. NETosis-related regulators (myeloperoxidase [MPO], citrullinated histone H3 [CIT-H3], peptidyl arginine deiminase 4 [PAD4], neutrophil elastase [NE], CD64), pro-inflammatory cytokines (IL-1, IL-6, IL-12, TNF-α) and anti-inflammatory cytokines (IL-10, TGF-β1) were quantitatively assessed before and after PLEX treatment. Clinical assessments included expanded disability status scale (EDSS) and visual outcome scale (VOS) scores. RESULTS Following PLEX, all patients showed symptom improvement, with 66.7 % achieving marked-to-moderate improvement (MMI) at 3 months. Key regulators, such as MPO, CIT-H3, PAD4, NE, and pro-inflammatory cytokines such as IL-1, IL-6, IL-12, and TNF-α, exhibited a statistically significant decrease immediately after the initial PLEX session (P < 0.05). Furthermore, CD64 levels demonstrated a substantial decline after the second PLEX session (P < 0.05). Conversely, the levels of anti-inflammatory cytokines, including IL-10 and TGF-β1, displayed an ascending trend post-PLEX. In clinical relevance analysis, among patients who reached MMI, the reductions in MPO, IL-1, and IL-6 exhibited statistically significant differences when compared to patients in the mild-to-no improvement group (P < 0.05). Pearson correlation analysis revealed that the percentage reduction in IL-6 levels after PLEX was positively correlated with the percentage reduction in patient EDSS/VOS scores (r = 0.638, P < 0.05). CONCLUSIONS This study highlights that reduced levels of NETosis-related regulators after PLEX contribute to clinical improvement, suggesting the potential involvement of NETosis in the acute neurological impairment observed in NMOSD.
Collapse
Affiliation(s)
- Weihe Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Lei Cui
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jinsong Jiao
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yeqiong Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chuanzheng Ma
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ming Jin
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
2
|
Peng C, Wang Y, Guo Y, Li J, Liu F, Fu Y, Yu Y, Zhang C, Fu J, Han F. A literature review on signaling pathways of cervical cancer cell death-apoptosis induced by Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118491. [PMID: 38936644 DOI: 10.1016/j.jep.2024.118491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cervical cancer (CC) is a potentially lethal disorder that can have serious consequences for a woman's health. Because early symptoms are typically only present in the middle to late stages of the disease, clinical diagnosis and treatment can be challenging. Traditional Chinese medicine (TCM) has been shown to have unique benefits in terms of alleviating cancer clinical symptoms, lowering the risk of recurrence after surgery, and reducing toxic side effects and medication resistance after radiation therapy. It has also been shown to improve the quality of life for patients. Because of its improved anti-tumor effectiveness and biosafety, it could be considered an alternative therapy option. This study examines how TCM causes apoptosis in CC cells via signal transduction, including the active components and medicinal tonics. It also intends to provide a reliable clinical basis and protocol selection for the TCM therapy of CC. METHODS The following search terms were employed in PubMed, Web of Science, Embase, CNKI, Wanfang, VIP, SinoMed, and other scientific databases to retrieve pertinent literature on "cervical cancer," "apoptosis," "signaling pathway," "traditional Chinese medicine," "herbal monomers," "herbal components," "herbal extracts," and "herbal formulas." RESULTS It has been demonstrated that herbal medicines can induce apoptosis in cells of the cervix, a type of cancer, by influencing the signaling pathways involved. CONCLUSION A comprehensive literature search was conducted, and 148 papers from the period between January 2017 and December 2023 were identified as eligible for inclusion. After a meticulous process of screening, elimination and summary, generalization, and analysis, it was found that TCM can regulate multiple intracellular signaling pathways and related molecular targets, such as STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, p53, HIF-1α, Fas/FasL and so forth. This regulatory capacity was observed to induce apoptosis in cervical cancer cells. The study of the mechanism of TCM against cervical cancer and the screening of new drug targets is of great significance for future research in this field. The results of this study will provide ideas and references for the future development of Chinese medicine in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chengxin Zhang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiangmei Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
3
|
Zhu Z, Zhou S, Li S, Gong S, Zhang Q. Neutrophil extracellular traps in wound healing. Trends Pharmacol Sci 2024:S0165-6147(24)00205-0. [PMID: 39419742 DOI: 10.1016/j.tips.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Wound healing is a complex and orchestrated process that involves hemostasis, inflammation, proliferation, and tissue remodeling. Neutrophil extracellular traps (NETs) are intricate web-like structures released by neutrophils, comprising decondensed chromatin, myeloperoxidase (MPO), and neutrophil elastase (NE), which play vital roles in regulating neutrophil-mediated immune regulation. While NETs contribute to wound healing, excessive activation induced by dysregulated inflammation can hinder the healing process. Understanding the pivotal role of NETs in wound healing and tissue remodeling, as well as their intricate interactions within the wound microenvironment, presents opportunities for innovative wound healing strategies. In this review we discuss the process of NET formation, explore the interactions between NETs and skin cells, and examine therapeutic strategies targeting NETs and drug delivery platforms to accelerate wound healing. Additionally, we discuss current clinical investigations and research challenges towards advancing wound care practices.
Collapse
Affiliation(s)
- Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
4
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Gunasekara S, Tamil Selvan M, Murphy CL, Shatnawi S, Cowan S, More S, Ritchey J, Miller CA, Rudd JM. Characterization of Neutrophil Functional Responses to SARS-CoV-2 Infection in a Translational Feline Model for COVID-19. Int J Mol Sci 2024; 25:10054. [PMID: 39337543 PMCID: PMC11432149 DOI: 10.3390/ijms251810054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
There is a complex interplay between viral infection and host innate immune response regarding disease severity and outcomes. Neutrophil hyperactivation, including excessive release of neutrophil extracellular traps (NETs), is linked to exacerbated disease in acute COVID-19, notably in hospitalized patients. Delineating protective versus detrimental neutrophil responses is essential to developing targeted COVID-19 therapies and relies on high-quality translational animal models. In this study, we utilize a previously established feline model for COVID-19 to investigate neutrophil dysfunction in which experimentally infected cats develop clinical disease that mimics acute COVID-19. Specific pathogen-free cats were inoculated with SARS-CoV-2 (B.1.617.2; Delta variant) (n = 24) or vehicle (n = 6). Plasma, bronchoalveolar lavage fluid, and lung tissues were collected at various time points over 12 days post-inoculation. Systematic and temporal evaluation of the kinetics of neutrophil activation was conducted by measuring markers of activation including myeloperoxidase (MPO), neutrophil elastase (NE), and citrullinated histone H3 (citH3) in SARS-CoV-2-infected cats at 4 and 12 days post-inoculation (dpi) and compared to vehicle-inoculated controls. Cytokine profiling supported elevated innate inflammatory responses with specific upregulation of neutrophil activation and NET formation-related markers, namely IL-8, IL-18, CXCL1, and SDF-1, in infected cats. An increase in MPO-DNA complexes and cell-free dsDNA in infected cats compared to vehicle-inoculated was noted and supported by histopathologic severity in respiratory tissues. Immunofluorescence analyses further supported correlation of NET markers with tissue damage, especially 4 dpi. Differential gene expression analyses indicated an upregulation of genes associated with innate immune and neutrophil activation pathways. Transcripts involved in activation and NETosis pathways were upregulated by 4 dpi and downregulated by 12 dpi, suggesting peak activation of neutrophils and NET-associated markers in the early acute stages of infection. Correlation analyses conducted between NET-specific markers and clinical scores as well as histopathologic scores support association between neutrophil activation and disease severity during SARS-CoV-2 infection in this model. Overall, this study emphasizes the effect of neutrophil activation and NET release in SARS-CoV-2 infection in a feline model, prompting further investigation into therapeutic strategies aimed at mitigating excessive innate inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chelsea L Murphy
- Department of Mathematical Sciences, College of Arts and Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jerry Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer M Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
7
|
Yasuda T, Deans K, Shankar A, Chilton R. The web of intrigue: unraveling the role of NETosis within the gut-microbiome-immune-heart axis in acute myocardial infarction and heart failure. Cardiovasc Endocrinol Metab 2024; 13:e0309. [PMID: 39130369 PMCID: PMC11315478 DOI: 10.1097/xce.0000000000000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024]
Abstract
This review summarizes the role of NETosis, or the release of neutrophil extracellular traps (NETs), and its interplay with the gut microbiome in acute myocardial infarction (AMI) and heart failure. NETosis contributes to inflammation, thrombosis, and atherothrombosis, all central to the pathophysiology of AMI and heart failure. NETosis can be activated by inflammation and dietary factors, indicating association with metabolic conditions. In cases of heart failure, NETosis is regulated by inflammatory molecules such as C-reactive protein (CRP), and Krüppel-like factor 2 (KLF2) - a protein that plays a role in controlling inflammation, and angiotensin II. Changes in the gut microbiome are linked to the severity and recovery of cardiac injury post-AMI and heart failure progression. The microbiome's influence extends to immune modulation and inflammatory responses, potentially affecting NETosis.
Collapse
Affiliation(s)
- Tai Yasuda
- Department of Anesthesiology, University Hospital, UTHSC San Antonio
| | - Kate Deans
- Department of Cardiology, South Texas Department of Veteran Affairs
| | - Aditi Shankar
- Department of Cardiology, University Hospital, UTHSC San Antonio, San Antonio, Texas, USA
| | - Robert Chilton
- Department of Cardiology, South Texas Department of Veteran Affairs
- Department of Cardiology, University Hospital, UTHSC San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Gao S, Zheng K, Lou J, Wu Y, Yu F, Weng Q, Wu Y, Li M, Zhu C, Qin Z, Jia R, Ying S, Shen H, Chen Z, Li W. Macrophage Extracellular Traps Suppress Particulate Matter-Induced Airway Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1622-1635. [PMID: 38897538 DOI: 10.1016/j.ajpath.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Accumulating evidence has substantiated the potential of ambient particulate matter (PM) to elicit detrimental health consequences in the respiratory system, notably airway inflammation. Macrophages, a pivotal component of the innate immune system, assume a crucial function in responding to exogenous agents. However, the roles and detailed mechanisms in regulating PM-induced airway inflammation remain unclear. The current study revealed that PM had the ability to stimulate the formation of macrophage extracellular traps (METs) both in vitro and in vivo. This effect was dependent on peptidylarginine deiminase type 4 (PAD4)-mediated histone citrullination. Additionally, reactive oxygen species were involved in the formation of PM-induced METs, in parallel with PAD4. Genetic deletion of PAD4 in macrophages resulted in an up-regulation of inflammatory cytokine expression. Moreover, mice with PAD4-specific knockout in myeloid cells exhibited exacerbated PM-induced airway inflammation. Mechanistically, inhibition of METs suppressed the phagocytic ability in macrophages, leading to airway epithelial injuries and an aggravated PM-induced airway inflammation. The present study demonstrates that METs play a crucial role in promoting the phagocytosis and clearance of PM by macrophages, thereby suppressing airway inflammation. Furthermore, it suggests that activation of METs may represent a novel therapeutic strategy for PM-related airway disorders.
Collapse
Affiliation(s)
- Shenwei Gao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kua Zheng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafei Lou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongnan Qin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruixin Jia
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Ma X, Li J, Li M, Qi G, Wei L, Zhang D. Nets in fibrosis: Bridging innate immunity and tissue remodeling. Int Immunopharmacol 2024; 137:112516. [PMID: 38906006 DOI: 10.1016/j.intimp.2024.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Fibrosis, a complex pathological process characterized by excessive deposition of extracellular matrix components, leads to tissue scarring and dysfunction. Emerging evidence suggests that neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, significantly contribute to fibrotic diseases pathogenesis. This review summarizes the process of NETs production, molecular mechanisms, and related diseases, and outlines the cellular and molecular mechanisms associated with fibrosis. Subsequently, this review comprehensively summarizes the current understanding of the intricate interplay between NETs and fibrosis across various organs, including the lung, liver, kidney, skin, and heart. The mechanisms by which NETs contribute to fibrogenesis, including their ability to promote inflammation, induce epithelial-mesenchymal transition (EMT), activate fibroblasts, deposit extracellular matrix (ECM) components, and trigger TLR4 signaling were explored. This review aimed to provide insights into the complex relationship between NETs and fibrosis via a comprehensive analysis of existing reports, offering novel perspectives for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jipin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
10
|
Zhang J, Huang FY, Dai SZ, Wang L, Zhou X, Zheng ZY, Li Q, Tan GH, Wang CC. Toxicarioside H-mediated modulation of the immune microenvironment attenuates ovalbumin-induced allergic airway inflammation by inhibiting NETosis. Int Immunopharmacol 2024; 136:112329. [PMID: 38815351 DOI: 10.1016/j.intimp.2024.112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Our team identified a new cardiac glycoside, Toxicarioside H (ToxH), in a tropical plant. Previous research has indicated the potential of cardenolides in mitigating inflammation, particularly in the context of NETosis. Therefore, this study sought to examine the potential of ToxH in attenuating allergic airway inflammation by influencing the immune microenvironment. METHODS An OVA-induced airway inflammation model was established in BALB/c mice. After the experiment was completed, serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected and further examined using H&E and PAS staining, flow cytometry, immunofluorescence observation, and Western blot analysis. RESULTS Treatment with ToxH was found to be effective in reducing airway inflammation and mucus production. This was accompanied by an increase in Th1 cytokines (IFN-γ, IL-2, and TNF-β), and the Th17 cytokine IL-17, while levels of Th2 cytokines (IL-4, IL-5, and IL-13) and Treg cytokines (IL-10 and TGF-β1) were decreased in both the bronchoalveolar lavage fluid (BALF) and the CD45+ immune cells in the lungs. Additionally, ToxH inhibited the infiltration of inflammatory cells and decreased the number of pulmonary CD44+ memory T cells, while augmenting the numbers of Th17 and Treg cells. Furthermore, the neutrophil elastase inhibitor GW311616A was observed to suppress airway inflammation and mucus production, as well as alter the secretion of immune Th1, Th2, Th17, and Treg cytokines in the lung CD45+ immune cells. Moreover, our study also demonstrated that treatment with ToxH efficiently inhibited ROS generation, thereby rectifying the dysregulation of immune cells in the immune microenvironment in OVA-induced allergic asthma. CONCLUSIONS Our findings indicate that ToxH could serve as a promising therapeutic intervention for allergic airway inflammation and various other inflammatory disorders. Modulating the balance of Th1/Th2 and Treg/Th17 cells within the pulmonary immune microenvironment may offer an effective strategy for controlling allergic airway inflammation.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Feng-Ying Huang
- Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| | - Shu-Zhen Dai
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Lin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China; Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Zhen-You Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China.
| | - Guang-Hong Tan
- Key Laborato1y of Tropical Translational Medicine of Ministry of Education & School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.
| | - Cai-Chun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China.
| |
Collapse
|
11
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024:10.1007/s10495-024-02002-y. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
12
|
Wang L, Huang FY, Dai SZ, Fu Y, Zhou X, Wang CC, Tan GH, Li Q. Progesterone modulates the immune microenvironment to suppress ovalbumin-induced airway inflammation by inhibiting NETosis. Sci Rep 2024; 14:17241. [PMID: 39060348 PMCID: PMC11282239 DOI: 10.1038/s41598-024-66439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Studies have demonstrated that prior to puberty, girls have a lower incidence and severity of asthma symptoms compared to boys. This study aimed to explore the role of progesterone (P4), a sex hormone, in reducing inflammation and altering the immune microenvironment in a mouse model of allergic asthma induced by OVA. Female BALB/c mice with or without ovariectomy to remove the influence of sex hormones were used for the investigations. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected for analysis. The results indicated that P4 treatment was effective in decreasing inflammation and mucus secretion in the lungs of OVA-induced allergic asthma mice. P4 treatment also reduced the influx of inflammatory cells into the BALF and increased the levels of Th1 and Th17 cytokines while decreasing the levels of Th2 and Treg cytokines in both BALF and lung microenvironment CD45+ T cells. Furthermore, P4 inhibited the infiltration of inflammatory cells into the lungs, suppressed NETosis, and reduced the number of pulmonary CD4+ T cells while increasing the number of regulatory T cells. The neutrophil elastase inhibitor GW311616A also suppressed airway inflammation and mucus production and modified the secretion of immune Th1, Th2, Th17, and Treg cytokines in lung CD45+ immune cells. These changes led to an alteration of the immunological milieu with increased Th1 and Th17 cells, accompanied by decreased Th2, Treg, and CD44+ T cells, similar to the effects of P4 treatment. Treatment with P4 inhibited NETosis by suppressing the p38 pathway activation, leading to reduced reactive oxygen species production. Moreover, P4 treatment hindered the release of double-stranded DNA during NETosis, thereby influencing the immune microenvironment in the lungs. These findings suggest that P4 treatment may be beneficial in reducing inflammation associated with allergic asthma by modulating the immune microenvironment. In conclusion, this research indicates the potential of P4 as a therapeutic agent for ameliorating inflammation in OVA-induced allergic asthma mice.
Collapse
Affiliation(s)
- Lin Wang
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Yongshu Fu
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Cai-Chun Wang
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Qi Li
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| |
Collapse
|
13
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
14
|
He J, Duan P, Liu Y, Feng T, Wang S, Lin X, Xie J, Liu X. Unveiling the Impact of Hemodynamics on Endothelial Inflammation-Mediated Hepatocellular Carcinoma Metastasis Using a Biomimetic Vascular Flow Model. Adv Healthc Mater 2024; 13:e2304439. [PMID: 38486060 DOI: 10.1002/adhm.202304439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC) hematogenous dissemination is a leading cause of HCC-related deaths. The inflammatory facilitates this process by promoting the adhesion and invasion of tumor cells in the circulatory system. But the contribution of hemodynamics to this process remains poorly understood due to the lack of a suitable vascular flow model for investigation. This study develops a vascular flow model to examine the impact of hemodynamics on endothelial inflammation-mediated HCC metastasis. This work finds the increasing shear stress will reduce the recruitment of HCC cells by disturbing adhesion forces between endothelium and HCC cells. However, this reduction will be restored by the inflammation. When applying high FSS (4-6 dyn cm-2) to the inflammatory endothelium, there will be a 4.8-fold increase in HCC cell adhesions compared to normal condition. Nevertheless, the increase fold of cell adhesions is inapparent, around 1.5-fold, with low and medium FSS. This effect can be attributed to the FSS-induced upregulation of ICAM-1 and VCAM-1 of the inflammatory endothelium, which serve to strengthen cell binding forces. These findings indicate that hemodynamics plays a key role in HCC metastasis during endothelial inflammation by regulating the expression of adhesion-related factors.
Collapse
Affiliation(s)
- Jia He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Peiyan Duan
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tang Feng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuo Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xinyi Lin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
El Hadiyen F, Tsang-A-Sjoe MWP, Lissenberg-Witte BI, Voskuyl AE, Bultink IEM. Intercurrent infection as a risk factor for disease flares in patients with systemic lupus erythematosus. Lupus Sci Med 2024; 11:e001131. [PMID: 38955402 PMCID: PMC11217993 DOI: 10.1136/lupus-2023-001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE To determine whether intercurrent infections are a risk factor for subsequent disease flares in systemic lupus erythematosus (SLE). METHODS Demographic and clinical characteristics of 203 patients with SLE participating in the Amsterdam SLE cohort were collected at baseline and during follow-up. Collection of data on infections and SLE flares was registry-based and infections and flares were categorised as minor or major, based on predefined criteria. Proportional hazard models with recurrent events and time-varying covariates were used to estimate the HR of SLE flares. RESULTS The incidence rates of major and minor infections were 5.3 per 100 patient years and 63.9 per 100 patient years, respectively. The incidence rates of flares were 3.6 and 15.1 per 100 patient years for major flares and minor flares, respectively.In the proportional hazard model, intercurrent infections (major and minor combined) were associated with the occurrence of SLE flares (major and minor combined; HR 1.9, 95% CI: 1.3 to 2.9). The hazard ratio for a major SLE flare following a major infection was 7.4 (95% CI: 2.2 to 24.6). Major infections were not associated with the occurrence of minor flares. CONCLUSIONS The results of the present study show that intercurrent infections are associated with subsequent SLE flares, which supports the hypothesis that infections may trigger SLE flares.
Collapse
Affiliation(s)
- Fatma El Hadiyen
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, Amsterdam UMC, Amsterdam, Noord-Holland, the Netherlands
| | - Michel W P Tsang-A-Sjoe
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, Amsterdam UMC, Amsterdam, Noord-Holland, the Netherlands
| | | | - Alexandre E Voskuyl
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, Amsterdam UMC, Amsterdam, Noord-Holland, the Netherlands
| | - Irene E M Bultink
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, Amsterdam UMC, Amsterdam, Noord-Holland, the Netherlands
| |
Collapse
|
16
|
Asiri A, Hazeldine J, Moiemen N, Harrison P. IL-8 Induces Neutrophil Extracellular Trap Formation in Severe Thermal Injury. Int J Mol Sci 2024; 25:7216. [PMID: 39000323 PMCID: PMC11241001 DOI: 10.3390/ijms25137216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have a dual role in the innate immune response to thermal injuries. NETs provide an early line of defence against infection. However, excessive NETosis can mediate the pathogenesis of immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure (MOF) in sepsis. Recent studies suggest that high interleukin-8 (IL-8) levels in intensive care unit (ICU) patients significantly contribute to excessive NET generation. This study aimed to determine whether IL-8 also mediates NET generation in patients with severe thermal injuries. IL-8 levels were measured in serum samples from thermally injured patients with ≥15% of the total body surface area (TBSA) and healthy controls (HC). Ex vivo NET generation was also investigated by treating isolated neutrophils with serum from thermal injured patients or normal serum with and without IL-8 and anti-IL-8 antibodies. IL-8 levels were significantly increased compared to HC on days 3 and 5 (p < 0.05) following thermal injury. IL-8 levels were also significantly increased at day 5 in septic versus non-septic patients (p < 0.001). IL-8 levels were also increased in patients who developed sepsis compared to HC at days 3, 5 and 7 (p < 0.001), day 10 (p < 0.05) and days 12 and 14 (p < 0.01). Serum containing either low, medium or high levels of IL-8 was shown to induce ex vivo NETosis in an IL-8-dependent manner. Furthermore, the inhibition of DNase activity in serum increased the NET-inducing activity of IL-8 in vitro by preventing NET degradation. IL-8 is a major contributor to NET formation in severe thermal injury and is increased in patients who develop sepsis. We confirmed that DNase is an important regulator of NET degradation but also a potential confounder within assays that measure serum-induced ex vivo NETosis.
Collapse
Affiliation(s)
- Ali Asiri
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (J.H.); (N.M.)
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (J.H.); (N.M.)
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Naiem Moiemen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (J.H.); (N.M.)
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (A.A.); (J.H.); (N.M.)
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham Foundation Trust, Mindelsohn Way, Birmingham B15 2WB, UK
| |
Collapse
|
17
|
Lu Y, Elrod J, Herrmann M, Knopf J, Boettcher M. Neutrophil Extracellular Traps: A Crucial Factor in Post-Surgical Abdominal Adhesion Formation. Cells 2024; 13:991. [PMID: 38891123 PMCID: PMC11171752 DOI: 10.3390/cells13110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Post-surgical abdominal adhesions, although poorly understood, are highly prevalent. The molecular processes underlying their formation remain elusive. This review aims to assess the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword or medical subject heading (MeSH) search for all original articles and reviews was performed in PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP) checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions. Current interventional strategies are examined, including the use of mechanical barriers, advances in regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion development. Evidence suggests that in addition to their role in innate defense against infections and autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations for researchers. Continued research is vital to fully elucidate the relationship between NETs and post-surgical adhesion formation to develop effective treatments.
Collapse
Affiliation(s)
- Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
18
|
Fu Y, Huang FY, Dai SZ, Wang L, Zhou X, Zheng ZY, Wang CC, Tan GH, Li Q. Penicilazaphilone C alleviates allergic airway inflammation and improves the immune microenvironment by hindering the NLRP3 inflammasome. Biomed Pharmacother 2024; 175:116788. [PMID: 38772153 DOI: 10.1016/j.biopha.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
AIMS Penicilazaphilone C (PAC) is hypothesized to potentially serve as a therapeutic treatment for allergic airway inflammation by inhibiting the NLRP3 inflammasome and reducing oxidative stress. METHODS An allergic asthma model was induced in female BALB/c mice of the OVA, OVA+PAC, OVA+PAC+LPS, and OVA+Dex groups by sensitizing and subsequently challenging them with OVA. The OVA+PAC and Normal+PAC groups were treated with PAC, while the OVA+PAC+LPS group also received LPS. The OVA+Dex group was given dexamethasone (Dex). Samples of serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for histological and cytological analysis. RESULTS Allergic mice treated with PAC or Dex showed inhibited inflammation and mucus production in the lungs. There was a decrease in the number of inflammatory cells in the BALF, lower levels of inflammatory cytokines in the serum and BALF, and a reduction in the protein expression of NLRP3, ASC, cleaved caspase-1, IL-1β, activated gasdermin D, MPO, Ly6G, and ICAM-1. Additionally, oxidative stress was reduced, as shown by a decrease in MDA and DCF, but an increase in SOD and GSH. Treatment with PAC also resulted in a decrease in pulmonary memory CD4+ T cells and an increase in regulatory T cells. However, the positive effects seen in the PAC-treated mice were reversed when the NLRP3 inflammasome was activated by LPS, almost returning to the levels of the Sham-treated mice. SIGNIFICANCE PAC acts in a similar way to anti-allergic inflammation as Dex, suggesting it may be a viable therapeutic option for managing allergic asthma inflammation.
Collapse
Affiliation(s)
- Yongshu Fu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Lin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Zhen-You Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Cai-Chun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou 570102, China.
| |
Collapse
|
19
|
Sun C, Wang S, Ma Z, Zhou J, Ding Z, Yuan G, Pan Y. Neutrophils in glioma microenvironment: from immune function to immunotherapy. Front Immunol 2024; 15:1393173. [PMID: 38779679 PMCID: PMC11109384 DOI: 10.3389/fimmu.2024.1393173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Glioma is a malignant tumor of the central nervous system (CNS). Currently, effective treatment options for gliomas are still lacking. Neutrophils, as an important member of the tumor microenvironment (TME), are widely distributed in circulation. Recently, the discovery of cranial-meningeal channels and intracranial lymphatic vessels has provided new insights into the origins of neutrophils in the CNS. Neutrophils in the brain may originate more from the skull and adjacent vertebral bone marrow. They cross the blood-brain barrier (BBB) under the action of chemokines and enter the brain parenchyma, subsequently migrating to the glioma TME and undergoing phenotypic changes upon contact with tumor cells. Under glycolytic metabolism model, neutrophils show complex and dual functions in different stages of cancer progression, including participation in the malignant progression, immune suppression, and anti-tumor effects of gliomas. Additionally, neutrophils in the TME interact with other immune cells, playing a crucial role in cancer immunotherapy. Targeting neutrophils may be a novel generation of immunotherapy and improve the efficacy of cancer treatments. This article reviews the molecular mechanisms of neutrophils infiltrating the central nervous system from the external environment, detailing the origin, functions, classifications, and targeted therapies of neutrophils in the context of glioma.
Collapse
Affiliation(s)
- Chao Sun
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Siwen Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhen Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jinghuan Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zilin Ding
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Guoqiang Yuan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yawen Pan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
20
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2024. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Ji Z, Zhang C, Yuan J, He Q, Zhang X, Yang D, Xu N, Chu J. Predicting the immunity landscape and prognosis with an NCLs signature in liver hepatocellular carcinoma. PLoS One 2024; 19:e0298775. [PMID: 38662757 PMCID: PMC11045082 DOI: 10.1371/journal.pone.0298775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/30/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Activated neutrophils release depolymerized chromatin and protein particles into the extracellular space, forming reticular Neutrophil Extracellular Traps (NETs). This process is accompanied by programmed inflammatory cell death of neutrophils, known as NETosis. Previous reports have demonstrated that NETosis plays a significant role in immune resistance and microenvironmental regulation in cancer. This study sought to characterize the function and molecular mechanism of NETosis-correlated long non-coding RNAs (NCLs) in the prognostic treatment of liver hepatocellular carcinoma (LIHC). METHODS We obtained the transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and evaluated the expression of NCLs in LIHC. A prognostic signature of NCLs was constructed using Cox and Last Absolute Shrinkage and Selection Operator (Lasso) regression, while the accuracy of model was validated by the ROC curves and nomogram, etc. In addition, we analyzed the associations between NCLs and oncogenic mutation, immune infiltration and evasion. Finally, LIHC patients were classified into four subgroups based on consensus cluster analysis, and drug sensitivity was predicted. RESULTS After screening, we established a risk model combining 5 hub-NCLs and demonstrated its reliability. Independence checks suggest that the model may serve as an independent predictor of LIHC prognosis. Enrichment analysis revealed a concentration of immune-related pathways in the high-risk group. Immune infiltration indicates that immunotherapy could be more effective in the low-risk group. Upon consistent cluster analysis, cluster subgroup 4 presented a better prognosis. Sensitivity tests showed the distinctions in therapeutic effectiveness among various drugs in different subgroups. CONCLUSION Overall, we have developed a prognostic signature that can discriminate different LIHC subgroups through the 5 selected NCLs, with the objective of providing LIHC patients a more precise, personalized treatment regimen.
Collapse
Affiliation(s)
- Zhangxin Ji
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Chenxu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jingjing Yuan
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Qing He
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Xinyu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Dongmei Yang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Jun Chu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
- Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| |
Collapse
|
22
|
Xu X, Wang X, Zheng Z, Guo Y, He G, Wang Y, Fu S, Zheng C, Deng X. Neutrophil Extracellular Traps in Breast Cancer: Roles in Metastasis and Beyond. J Cancer 2024; 15:3272-3283. [PMID: 38817858 PMCID: PMC11134451 DOI: 10.7150/jca.94669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024] Open
Abstract
Despite advances in the treatment of breast cancer, the disease continues to exhibit high global morbidity and mortality. The importance of neutrophils in cancer development has been increasingly recognized. Neutrophil extracellular traps (NETs) are web-like structures released into the extracellular space by activated neutrophils, serving as a potential antimicrobial mechanism for capturing and eliminating microorganisms. The roles played by NETs in cancer development have been a subject of intense research in the last decade. In breast cancer, current evidence suggests that NETs are involved in various stages of cancer development, particularly during metastasis. In this review, we try to provide an updated overview of the roles played by NETs in breast cancer metastasis. These include: 1) facilitating systemic dissemination of cancer cells; 2) promoting cancer-associated inflammation; 3) facilitating cancer-associated thrombosis; 4) facilitating pre-metastatic niche formation; and 5) awakening dormant cancer cells. The translational implications of NETs in breast cancer treatment are also discussed. Understanding the relationship between NETs and breast cancer metastasis is expected to provide important insights for developing new therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
24
|
Zaiema SEGE, Elwafa MAZMAA, Hassan SGA, El Adwey RHAEF, Ghorab RMM, Galal RESAM. Insight into antiphospholipid syndrome: the role and clinical utility of neutrophils extracellular traps formation. Thromb J 2024; 22:32. [PMID: 38549083 PMCID: PMC10979549 DOI: 10.1186/s12959-024-00598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Antiphospholipid syndrome (APLS) is a systemic immune dysregulation distinguished by repetitive complications and pregnancy loss in the absence of definite etiology. Most research focuses on the laboratory detection and clinical features of APLS, but its precise etiology remains to be deeply explored. NETosis is a newly developed theory in the pathophysiology of APLS which may serve as the missing bridge between coagulation and inflammation reaching the disease progression and severity. We aimed in this study to navigate the prognostic role of NETosis in thrombotic APLS. Our study included 49 newly diagnosed APLS patients (both 1ry and 2ry) who met clinical and laboratory criteria as per the international consensus statement on the update of the classification criteria for definite APLS and were sub-classified according to the occurrence of thrombotic events in thrombotic and non-thrombotic types. In addition, 20 sex and age-matched reactive subjects and 20 sex and age-matched healthy volunteer controls were enrolled. NETosis formation was assessed by measuring serum Myeloperoxidase (MPO) and Histones level using the enzyme-linked immunosorbent assay (ELISA) technique. Both MPO and Histones levels were able to discriminate among APLS cases from normal controls, showing significant cutoffs of > 2.09 ng/ml for MPO and > 1.45 ng/ml for Histones (AUC values were 0.987and 1.000, respectively). These values can be used as predictors for NETosis pathophysiology in APLS patients. Additionally, these markers demonstrated a significant association with several prognostic indicators, including thrombosis, higher PT and INR, and lower hemoglobin (Hb) levels which are supposed to be ameliorated by using NETs inhibitors. In conclusion, we suggest that measuring NETosis markers, MPO, and Histones, in the early course of APLS using proposed cutoff values will facilitate the timely initiation of anti-NETosis therapy and improve the overall prognosis, particularly for patients with thrombotic APLS.
Collapse
|
25
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
26
|
Wang W, Zhang ZQ, Zhang YC, Wu YQ, Yang Z, Zheng YZ, Lu JH, Tu PF, Zeng KW. Cayratia albifolia C.L.Li exerts anti-rheumatoid arthritis effect by inhibiting macrophage activation and neutrophil extracellular traps (NETs). Chin Med 2024; 19:42. [PMID: 38444022 PMCID: PMC10913656 DOI: 10.1186/s13020-024-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Cayratia albifolia C.L.Li (CAC), commonly known as "Jiao-Mei-Gu" in China, has been extensively utilized by the Dong minority for several millennia to effectively alleviate symptoms associated with autoimmune diseases. CAC extract is believed to possess significant anti-inflammatory properties within the context of Dong medicine. However, an in-depth understanding of the specific pharmaceutical effects and underlying mechanisms through which CAC extract acts against rheumatoid arthritis (RA) has yet to be established. METHODS Twenty-four Sprague-Dawley rats were divided into four groups, with six rats in each group. To induce the collagen-induced arthritis (CIA) model, the rats underwent a process of double immunization with collagen and adjuvant. CAC extract (100 mg/kg) was orally administered to rats. The anti-RA effects were evaluated in CIA rats by arthritis score, hind paw volume and histopathology analysis. Pull-down assay was conducted to identify the potential targets of CAC extract from RAW264.7 macrophage lysates. Moreover, mechanism studies of CAC extract were performed by immunofluorescence assays, real-time PCR and Western blot. RESULTS CAC extract was found to obviously down-regulate hind paw volume of CIA rats, with diminished inflammation response and damage. 177 targets were identified from CAC extract by MS-based pull-down assay. Bioinformatics analysis found that these targets were mainly enriched in macrophage activation and neutrophils extracellular traps (NETs). Additionally, we reported that CAC extract owned significant anti-inflammatory activity by regulating PI3K-Akt-mTOR signal pathway, and inhibited NETosis in response to PMA. CONCLUSIONS We clarified that CAC extract significantly attenuated RA by inactivating macrophage and reducing NETosis via a multi-targets regulation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zai-Qi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 41800, China.
| | - Yi-Chi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi-Qiang Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, SAR, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
27
|
Trotta MC, Gesualdo C, Russo M, Lepre CC, Petrillo F, Vastarella MG, Nicoletti M, Simonelli F, Hermenean A, D’Amico M, Rossi S. Changes in Circulating Acylated Ghrelin and Neutrophil Elastase in Diabetic Retinopathy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:118. [PMID: 38256379 PMCID: PMC10820226 DOI: 10.3390/medicina60010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: The role and the levels of ghrelin in diabetes-induced retinal damage have not yet been explored. The present study aimed to measure the serum levels of total ghrelin (TG), and its acylated (AG) and des-acylated (DAG) forms in patients with the two stages of diabetic retinopathy (DR), non-proliferative (NPDR) and proliferative (PDR). Moreover, the correlation between serum ghrelin and neutrophil elastase (NE) levels was investigated. Materials and Methods: The serum markers were determined via enzyme-linked immunosorbent assays in 12 non-diabetic subjects (CTRL), 15 diabetic patients without DR (Diabetic), 15 patients with NPDR, and 15 patients with PDR. Results: TG and AG serum levels were significantly decreased in Diabetic (respectively, p < 0.05 and p < 0.01 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and in PDR patients (p < 0.01 vs. NPDR). AG serum levels were inversely associated with DR abnormalities (microhemorrhages, microaneurysms, and exudates) progression (r = -0.83, p < 0.01), serum neutrophil percentage (r = -0.74, p < 0.01), and serum NE levels (r = -0.73, p < 0.01). The latter were significantly increased in the Diabetic (p < 0.05 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and PDR (p < 0.01 vs. PDR) groups. Conclusions: The two DR stages were characterized by decreased AG and increased NE levels. In particular, serum AG levels were lower in PDR compared to NPDR patients, and serum NE levels were higher in the PDR vs. the NPDR group. Together with the greater presence of retinal abnormalities, this could underline a distinctive role of AG in PDR compared to NPDR.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Giovanna Vastarella
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maddalena Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| |
Collapse
|
28
|
Wang Y, Shi C, Guo J, Zhang D, Zhang Y, Zhang L, Gong Z. IDH1/MDH1 deacetylation promotes acute liver failure by regulating NETosis. Cell Mol Biol Lett 2024; 29:8. [PMID: 38172700 PMCID: PMC10765752 DOI: 10.1186/s11658-023-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a life-threatening disease, but its pathogenesis is not fully understood. NETosis is a novel mode of cell death. Although the formation of neutrophil extracellular traps (NETs) has been found in various liver diseases, the specific mechanism by which NETosis regulates the development of ALF is unclear. In this article, we explore the role and mechanism of NETosis in the pathogenesis of ALF. METHODS Clinically, we evaluated NETs-related markers in the liver and peripheral neutrophils of patients with ALF. In in vitro experiments, HL-60 cells were first induced to differentiate into neutrophil-like cells (dHL-60 cells) with dimethyl sulfoxide (DMSO). NETs were formed by inducing dHL-60 cells with PMA. In in vivo experiments, the ALF model in mice was established with LPS/D-gal, and the release of NETs was detected by immunofluorescence staining and western blotting. Finally, the acetylation levels of IDH1 and MDH1 were detected in dHL-60 cells and liver samples by immunoprecipitation. RESULTS Clinically, increased release of NETs in liver tissue was observed in patients with ALF, and NETs formation was detected in neutrophils from patients with liver failure. In dHL-60 cells, mutations at IDH1-K93 and MDH1-K118 deacetylate IDH1 and MDH1, which promotes the formation of NETs. In a mouse model of ALF, deacetylation of IDH1 and MDH1 resulted in NETosis and promoted the progression of acute liver failure. CONCLUSIONS Deacetylation of IDH1 and MDH1 reduces their activity and promotes the formation of NETs. This change aggravates the progression of acute liver failure.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Long Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
29
|
Zafarani A, Razizadeh MH, Haghi A. Neutrophil extracellular traps in influenza infection. Heliyon 2023; 9:e23306. [PMID: 38144312 PMCID: PMC10746519 DOI: 10.1016/j.heliyon.2023.e23306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Despite recent progress in developing novel therapeutic approaches and vaccines, influenza is still considered a global health threat, with about half a million mortality worldwide. This disease is caused by Influenza viruses, which are known for their rapid evolution due to different genetical mechanisms that help them develop new strains with the ability to evade therapies and immunization. Neutrophils are one of the first immune effectors that act against pathogens. They use multiple mechanisms, including phagocytosis, releasing the reactive oxygen species, degranulation, and the production of neutrophil extracellular traps. Neutrophil extracellular traps are used to ensnare pathogens; however, their dysregulation is attributed to inflammatory and infectious diseases. Here, we discuss the effects of these extracellular traps in the clinical course of influenza infection and their ability to be a potential target in treating influenza infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Haghi
- Young Researchers & Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Haem Rahimi M, Bidar F, Lukaszewicz AC, Garnier L, Payen-Gay L, Venet F, Monneret G. Association of pronounced elevation of NET formation and nucleosome biomarkers with mortality in patients with septic shock. Ann Intensive Care 2023; 13:102. [PMID: 37847336 PMCID: PMC10581968 DOI: 10.1186/s13613-023-01204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Understanding the mechanisms underlying immune dysregulation in sepsis is a major challenge in developing more individualized therapy, as early and persistent inflammation, as well as immunosuppression, play a significant role in pathophysiology. As part of the antimicrobial response, neutrophils can release extracellular traps (NETs) which neutralize and kill microorganisms. However, excessive NETs formation may also contribute to pathogenesis, tissue damage and organ dysfunction. Recently, a novel automated assay has been proposed for the routine measurement of nucleosomes H3.1 (fundamental units of chromatin) that are released during NETs formation. The aim of the present study was to measure nucleosome levels in 151 septic shock patients (according to sepsis-3 definition) and to determine association with mortality. RESULTS The nucleosome H3.1 levels (as determined by a chemiluminescence immunoassay performed on an automated immunoanalyzer system) were markedly and significantly elevated at all-time points in septic shock patients compared to the control group. Immunological parameters indicated tremendous early inflammation (IL-6 = 1335 pg/mL at day 1-2) along with marked immunosuppression (e.g., mHLA-DR = 3853 AB/C and CD4 = 338 cell /µL at day 3-4). We found significantly positive correlation between nucleosome levels and organ failure and severity scores, IL-6 concentrations and neutrophil count. Significantly higher values (day 1-2 and 3-4) were measured in non-survivor patients (28-day mortality). This association was still significant after multivariate analysis and was more pronounced with highest concentration. Early (day 1-2) increased nucleosome levels were also independently associated with 5-day mortality. At day 6-8, persistent elevated nucleosome levels were negatively correlated to mHLA-DR values. CONCLUSIONS This study reports a significant elevation of nucleosome in patients during a one-week follow-up. The nucleosome levels showed correlation with neutrophil count, IL-6 and were found to be independently associated with mortality assessed at day 5 or 28. Therefore, nucleosome concentration seems to be a promising biomarker for detecting hyper-inflammatory phenotype upon a patient's admission. Additional investigations are required to evaluate the potential association between sustained elevation of nucleosome and sepsis-induced immunosuppression.
Collapse
Affiliation(s)
- Muzhda Haem Rahimi
- Hospices Civils de Lyon, Guillaume Monneret - Immunology Laboratory, Hôpital E. Herriot, Lyon, France
- Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France
| | - Frank Bidar
- Hospices Civils de Lyon, Anesthesiology and Critical Care Medicine Department, Hôpital E. Herriot, Lyon, France
| | - Anne-Claire Lukaszewicz
- Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France
- Hospices Civils de Lyon, Anesthesiology and Critical Care Medicine Department, Hôpital E. Herriot, Lyon, France
| | - Lorna Garnier
- Hospices Civils de Lyon, Immunology Laboratory, CH Lyon-Sud, Lyon, France
| | - Léa Payen-Gay
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, Claude Bernard University Lyon I, 69921, Oullins, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Guillaume Monneret - Immunology Laboratory, Hôpital E. Herriot, Lyon, France
- NLRP3 Inflammation and Immune Response to Sepsis Team, Centre International de Recherche in Infectiology (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Guillaume Monneret - Immunology Laboratory, Hôpital E. Herriot, Lyon, France.
- Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France.
| |
Collapse
|
31
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
32
|
Reshetnyak T, Nurbaeva K. The Role of Neutrophil Extracellular Traps (NETs) in the Pathogenesis of Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int J Mol Sci 2023; 24:13581. [PMID: 37686381 PMCID: PMC10487763 DOI: 10.3390/ijms241713581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease of unknown aetiology [...].
Collapse
Affiliation(s)
- Tatiana Reshetnyak
- Department of Thromboinflammation, V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
| | | |
Collapse
|
33
|
Yao M, Ma J, Wu D, Fang C, Wang Z, Guo T, Mo J. Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to therapy. Front Immunol 2023; 14:1198952. [PMID: 37680629 PMCID: PMC10482110 DOI: 10.3389/fimmu.2023.1198952] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Deep venous thrombosis (DVT) is a part of venous thromboembolism (VTE) that clinically manifests as swelling and pain in the lower limbs. The most serious clinical complication of DVT is pulmonary embolism (PE), which has a high mortality rate. To date, its underlying mechanisms are not fully understood, and patients usually present with clinical symptoms only after the formation of the thrombus. Thus, it is essential to understand the underlying mechanisms of deep vein thrombosis for an early diagnosis and treatment of DVT. In recent years, many studies have concluded that Neutrophil Extracellular Traps (NETs) are closely associated with DVT. These are released by neutrophils and, in addition to trapping pathogens, can mediate the formation of deep vein thrombi, thereby blocking blood vessels and leading to the development of disease. Therefore, this paper describes the occurrence and development of NETs and discusses the mechanism of action of NETs on deep vein thrombosis. It aims to provide a direction for improved diagnosis and treatment of deep vein thrombosis in the near future.
Collapse
Affiliation(s)
- Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiacheng Ma
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
34
|
Li J, Yin L, Chen S, Li Z, Ding J, Wu J, Yang K, Xu J. The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications. Front Cell Dev Biol 2023; 11:1221361. [PMID: 37649550 PMCID: PMC10465184 DOI: 10.3389/fcell.2023.1221361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijia Yin
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyi Chen
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Almási N, Török S, Al-awar A, Veszelka M, Király L, Börzsei D, Szabó R, Varga C. Voluntary Exercise-Mediated Protection in TNBS-Induced Rat Colitis: The Involvement of NETosis and Prdx Antioxidants. Antioxidants (Basel) 2023; 12:1531. [PMID: 37627526 PMCID: PMC10451893 DOI: 10.3390/antiox12081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are autoimmune disorders of the gut. It is increasingly clear that voluntary exercise (VE) may exert protection against IBDs, but the exact background mechanism needs to be elucidated. In the present study, we aimed to investigate the possible role of NETosis and the antioxidant peroxiredoxin (Prdx) enzyme family in VE-induced protection. Wistar Han rats were randomly divided into two groups: sedentary (SED) and VE. After the 6-week voluntary wheel running, animals were treated with 2,4,6-trinitrobenzene sulphonic acid (TNBS) as a model of colitis. Here, we found that VE significantly decreased inflammation and ulceration of the colon in the VE TNBS group compared with SED TNBS. We also found that VE significantly decreased the expression of protein arginine deiminase 4 (PAD4) and myeloperoxidase (MPO), and markedly reduced citrullinated histone H3 (citH3) compared with SED TNBS. Furthermore, VE caused a significant increase in the levels of Prdx6 in the control and TNBS groups. Taken together, we found that a prior 6-week VE effectively reduces inflammation in TNBS-induced colitis, and we suggest that the protective effect of VE may be mediated via the inhibition of NETosis and upregulation of Prdx6 antioxidant.
Collapse
Affiliation(s)
- Nikoletta Almási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - László Király
- Zala-Cereália Kft, H-8790 Zalaszentgrót-Tüskeszentpéter, Hungary;
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, H-6726 Szeged, Hungary; (S.T.); (A.A.-a.); (M.V.); (D.B.); (R.S.); (C.V.)
| |
Collapse
|
36
|
Bissenova S, Buitinga M, Boesch M, Korf H, Casteels K, Teunkens A, Mathieu C, Gysemans C. High-Throughput Analysis of Neutrophil Extracellular Trap Levels in Subtypes of People with Type 1 Diabetes. BIOLOGY 2023; 12:882. [PMID: 37372166 DOI: 10.3390/biology12060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Neutrophils might play an important role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D), by contributing to immune dysregulation via a highly inflammatory program called neutrophil extracellular trap (NET) formation or NETosis, involving the extrusion of chromatin entangled with anti-microbial proteins. However, numerous studies reported contradictory data on NET formation in T1D. This might in part be due to the inherent heterogeneity of the disease and the influence of the disease developmental stage on neutrophil behavior. Moreover, there is a lack of a standardized method to measure NETosis in an unbiased and robust manner. In this study, we employed the Incucyte® ZOOM live-cell imaging platform to study NETosis levels in various subtypes of adult and pediatric T1D donors compared to healthy controls (HC) at baseline and in response to phorbol-myristate acetate (PMA) and ionomycin. Firstly, we determined that the technique allows for an operator-independent and automated quantification of NET formation across multiple time points, which showed that PMA and ionomycin induced NETosis with distinct kinetic characteristics, confirmed by high-resolution microscopy. NETosis levels also showed a clear dose-response curve to increasing concentrations of both stimuli. Overall, using Incucyte® ZOOM, no aberrant NET formation was observed over time in the different subtypes of T1D populations, irrespective of age, compared to HC. These data were corroborated by the levels of peripheral NET markers in all study participants. The current study showed that live-cell imaging allows for a robust and unbiased analysis and quantification of NET formation in real-time. Peripheral neutrophil measures should be complemented with dynamic quantification of NETing neutrophils to make robust conclusions on NET formation in health and disease.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Mijke Buitinga
- Department of Nutrition and Movement Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6211 LK Maastricht, The Netherlands
| | - Markus Boesch
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Kristina Casteels
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - An Teunkens
- Anesthesiology and Algology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
37
|
Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer's disease and Parkinson's disease. Front Physiol 2023; 14:1207280. [PMID: 37405135 PMCID: PMC10315612 DOI: 10.3389/fphys.2023.1207280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent neurodegenerative disorders severely impacting life expectancy and quality of life of millions of people worldwide. AD and PD exhibit both a very distinct pathophysiological disease pattern. Intriguingly, recent researches, however, implicate that overlapping mechanisms may underlie AD and PD. In AD and PD, novel cell death mechanisms, encompassing parthanatos, netosis, lysosome-dependent cell death, senescence and ferroptosis, apparently rely on the production of reactive oxygen species, and seem to be modulated by the well-known, "old" second messenger cAMP. Signaling of cAMP via PKA and Epac promotes parthanatos and induces lysosomal cell death, while signaling of cAMP via PKA inhibits netosis and cellular senescence. Additionally, PKA protects against ferroptosis, whereas Epac1 promotes ferroptosis. Here we review the most recent insights into the overlapping mechanisms between AD and PD, with a special focus on cAMP signaling and the pharmacology of cAMP signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Minh D. A. Luu
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Li W, Wang Z, Su C, Liao Z, Pei Y, Wang J, Li Z, Fu S, Liu J. The effect of neutrophil extracellular traps in venous thrombosis. Thromb J 2023; 21:67. [PMID: 37328882 DOI: 10.1186/s12959-023-00512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023] Open
Abstract
Neutrophil extracellular traps (NETs) as special release products of neutrophils have received extensive attention. They are composed of decondensed chromatin and coated with nucleoproteins, including histones and some granulosa proteins. NETs can form a network structure to effectively capture and eliminate pathogens and prevent their spread. Not only that, recent studies have shown that NETs also play an important role in venous thrombosis. This review provides the most important updated evidence regarding the mechanism of NETs formation and the role of NETs in the process of venous thrombosis. The potential prophylactic and therapeutic value of NETs in venous thrombotic disease will also be discussed.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Zixiang Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Chen'guang Su
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Zheng Liao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Yinxuan Pei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Jianli Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Zixin Li
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Shijie Fu
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China
| | - Jinlong Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, 067000, China.
| |
Collapse
|
39
|
Liu W, Peng J, Wu Y, Ye Z, Zong Z, Wu R, Li H. Immune and inflammatory mechanisms and therapeutic targets of gout: An update. Int Immunopharmacol 2023; 121:110466. [PMID: 37311355 DOI: 10.1016/j.intimp.2023.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Gout is an autoimmune disease characterized by acute or chronic inflammation and damage to bone joints induced due to the precipitation of monosodium urate (MSU) crystals. In recent years, with the continuous development of animal models and ongoing clinical investigations, more immune cells and inflammatory factors have been found to play roles in gouty inflammation. The inflammatory network involved in gout has been discovered, providing a new perspective from which to develop targeted therapy for gouty inflammation. Studies have shown that neutrophil macrophages and T lymphocytes play important roles in the pathogenesis and resolution of gout, and some inflammatory cytokines, such as those in the interleukin-1 (IL-1) family, have been shown to play anti-inflammatory or proinflammatory roles in gouty inflammation, but the mechanisms underlying their roles are unclear. In this review, we explore the roles of inflammatory cytokines, inflammasomes and immune cells in the course of gout development and the research status of therapeutic drugs used for inflammation to provide insights into future targeted therapy for gouty inflammation and the direction of gout pathogenesis research.
Collapse
Affiliation(s)
- Wenji Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Jie Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Yixin Wu
- Queen Mary College of Nanchang University, 330006 Nanchang, China
| | - Zuxiang Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, 330006 Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| |
Collapse
|
40
|
Erdei E, Zhou X, Shuey C, Ass'ad N, Page K, Gore B, Zhu C, Kanda D, Luo L, Sood A, Zychowski KE. Serum autoantibodies and exploratory molecular pathways in rural miners: A pilot study. J Transl Autoimmun 2023; 6:100197. [PMID: 36942097 PMCID: PMC10023988 DOI: 10.1016/j.jtauto.2023.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction The Southwestern United States (SWUS) has an extensive history of coal and metal mining, including uranium (U) mining. Lung diseases, including but not limited to, lung cancer and pulmonary fibrosis, have been studied extensively in miners due to occupational, dust-related exposures. However, high-throughput autoimmune biomarkers are largely understudied in miners, despite the fact that ore miners, such as U-miners, are at an increased risk for the development of autoimmune diseases such as systemic sclerosis and systemic lupus erythematosus (SLE). Additionally, there are current gaps in knowledge regarding which signaling pathways may play a role in occupational exposure-associated autoimmunity. Methods Most current and former miners in the SWUS live close to their previous workplaces, in remote areas, with limited access to healthcare. In this pilot study, by leveraging a mobile clinical platform for patient care and clinical outreach, we recruited 44 miners who self-identified as either U (n = 10) or non-U miners (n = 34) and received health screenings. Serum IgG and IgM autoantibodies against 128 antigens were assessed using a high-throughput molecular technique, as a preliminary health screening opportunity. Results Even when adjusting for age as a covariate, there was a significant (p < 0.05) association between self-reported U-mining exposure and biomarkers including IgM alpha-actinin, histones H2B, and H4, myeloperoxidase (MPO) and myelin basic protein. However, adjusting for age did not result in significant associations for IgG autoantibody production in U-miners. Bioinformatic pathway analysis revealed several altered signaling pathways between IgM and IgG autoantibodies among both U and non-U miners. Conclusions Further research is warranted regarding the mechanistic connection between U-exposure and autoantibody development, especially regarding histone-related alterations and IgM autoantibody production.
Collapse
Affiliation(s)
- Esther Erdei
- College of Pharmacy, University of New Mexico- Health Sciences Center, 905 Vassar Drive NE, Albuquerque, NM, 87106, USA
| | - Xixi Zhou
- College of Pharmacy, University of New Mexico- Health Sciences Center, 905 Vassar Drive NE, Albuquerque, NM, 87106, USA
| | - Chris Shuey
- Southwest Research and Information Center, 105 Stanford Drive SE, Albuquerque, NM, 87106, USA
| | - Nour Ass'ad
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Kimberly Page
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Bobbi Gore
- Miners' Colfax Medical Center, 203 Hospital Drive, Raton, NM, 87740, USA
| | - Chengsong Zhu
- Department of Immunology and Microarray Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deborah Kanda
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Li Luo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Akshay Sood
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Miners' Colfax Medical Center, 203 Hospital Drive, Raton, NM, 87740, USA
| | - Katherine E. Zychowski
- College of Nursing, University of New Mexico- Health Sciences Center, 2502 Marble Ave NE, Albuquerque, NM, 87131, USA
| |
Collapse
|
41
|
Anti-inflammatory and antiviral activities of flavone C-glycosides of Lophatherum gracile for COVID-19. J Funct Foods 2023; 101:105407. [PMID: 36627926 PMCID: PMC9812844 DOI: 10.1016/j.jff.2023.105407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Lophatherum gracile (L. gracile) has long been used as a functional food and herbal medicine. Previous studies have demonstrated that extracts of L. gracile attenuate inflammatory response and inhibit SARS-CoV-2 replication; however, the underlying active constituents have yet to be identified. This study investigated the bioactive components of L. gracile. Flavone C-glycosides of L. gracile were found to dominate both anti-inflammatory and antiviral effects. A simple chromatography-based method was developed to obtain flavone C-glycoside-enriched extract (FlavoLG) from L. gracile. FlavoLG and its major flavone C-glycoside isoorientin were shown to restrict respiratory bursts and the formation of neutrophil extracellular traps in activated human neutrophils. FlavoLG and isoorientin were also shown to inhibit SARS-CoV-2 pseudovirus infection by interfering with the binding of the SARS-CoV-2 spike on ACE2. These results provide scientific evidence indicating the efficacy of L. gracile as a potential supplement for treating neutrophil-associated COVID-19.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- CB, cytochalasin B
- COVID-19
- COVID-19, coronavirus disease 2019
- DMSO, dimethyl sulfoxide
- Flavone C-glycosides
- HBSS, Hank’s balanced salt solution
- HPLC, high-performance liquid chromatography
- IC50, half-maximal inhibitory concentration
- LDH, lactate dehydrogenase
- LG, Lophatherum gracile
- Lophatherum gracile
- MRM, multiple reaction monitoring
- NETs, neutrophil extracellular traps
- Neutrophils
- O2•−, superoxide
- RBD, receptor-binding domain
- ROS, reactive oxygen species
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- UPLC, ultra-performance liquid chromatography
- fMLF, N-formyl-methionyl-leucyl-phenylalanine
Collapse
|
42
|
Tan H, Li Z, Zhang S, Zhang J, Jia E. Novel perception of neutrophil extracellular traps in gouty inflammation. Int Immunopharmacol 2023; 115:109642. [PMID: 36608445 DOI: 10.1016/j.intimp.2022.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
The self-limiting nature of the inflammatory flare is a feature of gout. The effects of neutrophil extracellular traps (NETs) on gout have remarkably attracted researchers' attention. Aggregated NETs promote the resolution of gouty inflammation by packing monosodium urate (MSU) crystals, degrading cytokines and chemokines, and blocking neutrophil recruitment and activation. Deficiency of NETs aggravates experimental gout. Thus, aggregated NETs are assumed to be a possible mechanism for the spontaneous resolution of gout. It is feasible to envisage therapeutic strategies for targeting NETosis (NET formation process) in gout. However, recent studies have demonstrated that levels of NETs are not associated with disease activity and inflammation in human gout. Moreover, the process of MSU crystal trapping is not affected in the absence of neutrophils. This review has concentrated on the mechanisms and associations between NETs and gout.
Collapse
Affiliation(s)
- Haibo Tan
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen 518033, Guangdong, PR China
| | - Zhiling Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, PR China
| | - Shan Zhang
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen 518033, Guangdong, PR China
| | - Jianyong Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, PR China; The Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, PR China.
| | - Ertao Jia
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong, PR China; The Department of Rheumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, PR China.
| |
Collapse
|
43
|
Wang W, Su J, Yan M, Pan J, Zhang X. Neutrophil extracellular traps in autoimmune diseases: Analysis of the knowledge map. Front Immunol 2023; 14:1095421. [PMID: 36776836 PMCID: PMC9911519 DOI: 10.3389/fimmu.2023.1095421] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Recent studies have shown much progress in the research of exosomes in AIDs. However, there is no bibliometric analysis in this research field. This study aimed to provide a bibliometrics review of the knowledge structure and research hotspots of neutrophil extracellular traps (NETs) in autoimmune diseases (AIDs). Methods Articles relevant to NETs in AIDs from 2010 to 2022 were retrieved through the Web of Science Core Collection (WoSCC) database. This bibliometric analysis was performed by VOSview, CiteSpace, and Scimago Graphica. Results A total of 289 papers analyzed in this research were from 493 organizations in 47 countries by 1537 authors. They were published in 133 journals and cited 20,180 citations from 2,465 journals. The number of annual publications in this field is growing steadily and rapidly, with the United States, China and Germany leading the research effort. Frontiers in Immunology and Journal of Immunology have significantly impacted research in this field. Kaplan, Mariana J, from the National Institutes of Health (The United States), has the most published articles, and Brinkmann, v, from Max Planck Institute for Infection Biology (Germany), is the most co-cited author. Systemic lupus erythematosus and rheumatoid arthritis are the leading topics in this field. The trend of clinical application in the future is the development of new therapies by controlling NETs in the progression of AIDs. Conclusions Our study summarized the research trends and developments of NETs in AIDs in recent years and would provide a reference for scholars in this field.
Collapse
Affiliation(s)
- Wei Wang
- Department of Laboratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jing Su
- Department of Internal Medicine, Shanxi Children's Hospital, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| | - Meiqin Yan
- Department of Internal Medicine, Shanxi Children's Hospital, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Xianhui Zhang
- Department of Internal Medicine, Shanxi Children's Hospital, Shanxi Maternal and Child Health Hospital, Taiyuan, China
| |
Collapse
|
44
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
45
|
Sabnis R. Novel Peptidylarginine Deiminase Type 4 (PAD4) Inhibitors. ACS Med Chem Lett 2022; 13:1537-1538. [PMID: 36267127 PMCID: PMC9578033 DOI: 10.1021/acsmedchemlett.2c00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 11/28/2022] Open
Abstract
Provided herein are novel compounds as peptidylarginine deiminase type 4 (PAD4) inhibitors, pharmaceutical compositions, use of such compounds in treating diseases, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram
W. Sabnis
- Smith, Gambrell & Russell LLP,
1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309,
United States
| |
Collapse
|