1
|
Qiu R, Sun W, Su Y, Sun Z, Fan K, Liang Y, Lin X, Zhang Y. Irisin's emerging role in Parkinson's disease research: A review from molecular mechanisms to therapeutic prospects. Life Sci 2024; 357:123088. [PMID: 39357796 DOI: 10.1016/j.lfs.2024.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by impaired motor function, is typically treated with medications and surgery. However, recent studies have validated physical exercise as an effective adjunct therapy, significantly improving both motor and non-motor symptoms in PD patients. Irisin, a myokine, has garnered increasing attention for its beneficial effects on the nervous system. Research has shown that irisin plays a crucial role in regulating metabolic balance, optimizing autophagy, maintaining mitochondrial quality, alleviating oxidative stress and neuroinflammation, and regulating cell death-all processes intricately linked to the pathogenesis of PD. This review examines the mechanisms through which irisin may counteract PD, provides insights into its biological effects, and considers its potential as a target for therapeutic strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Weilu Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Liang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyue Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Chen C, Wang T, Gao TY, Chen YL, Lu YB, Zhang WP. Ablation of NAMPT in dopaminergic neurons leads to neurodegeneration and induces Parkinson's disease in mouse. Brain Res Bull 2024; 218:111114. [PMID: 39489186 DOI: 10.1016/j.brainresbull.2024.111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in the salvaging synthesize pathway of nicotinamide adenine dinucleotide (NAD). The neuroprotective roles of NAMPT on neurodegeneration have been explored in aging brain and Alzheimer's Disease. However, its roles in Parkinson's Disease (PD) remain to be elucidated. We found that the dopaminergic neurons in substantia nigra expressed higher levels of NAMPT than the other types of neurons. Using conditional knockout of the Nampt gene in dopaminergic neurons and utilizing a NAMPT inhibitor in the substantia nigra of mice, we found that the NAMPT deficiency triggered the time-dependent loss of dopaminergic neurons, the impairment of the dopamine nigrostriatal pathway, and the development of PD-like motor dysfunction. In the rotenone-induced PD mouse model, nicotinamide ribose (NR), a precursor of NAD, rescued the loss of dopaminergic neurons, the impairment of dopamine nigrostriatal pathway, and mitigated PD-like motor dysfunction. In SH-SY5Y cells, NAD suppression induced the accumulation of reactive oxygen species (ROS), mitochondrial impairment, and cell death, which was reversed by N-acetyl cysteine, an antioxidant and ROS scavenger. Rotenone decreased NAD level, induced the accumulation of ROS and the impairment of mitochondria, which was reversed by NR. In summary, our findings show that the ablation of NAMPT in dopaminergic neurons leads to neurodegeneration and contributes to the development of PD. The NAD precursors have the potential to protect the degeneration of dopaminergic neurons, and offering a therapeutic approach for the treatment of PD.
Collapse
Affiliation(s)
- Cong Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tong Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tong-Yao Gao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ya-Ling Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yun-Bi Lu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Wei-Ping Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine, Zhejiang 310058, Hangzhou, China.
| |
Collapse
|
3
|
Pradeloux S, Coulombe K, Ouamba AJK, Isenbrandt A, Calon F, Roy D, Soulet D. Oral Trehalose Intake Modulates the Microbiota-Gut-Brain Axis and Is Neuroprotective in a Synucleinopathy Mouse Model. Nutrients 2024; 16:3309. [PMID: 39408276 PMCID: PMC11478413 DOI: 10.3390/nu16193309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting dopaminergic neurons in the nigrostriatal and gastrointestinal tracts, causing both motor and non-motor symptoms. This study examined the neuroprotective effects of trehalose. This sugar is confined in the gut due to the absence of transporters, so we hypothesized that trehalose might exert neuroprotective effects on PD through its action on the gut microbiota. We used a transgenic mouse model of PD (PrP-A53T G2-3) overexpressing human α-synuclein and developing GI dysfunctions. Mice were given water with trehalose, maltose, or sucrose (2% w/v) for 6.5 m. Trehalose administration prevented a reduction in tyrosine hydroxylase immunoreactivity in the substantia nigra (-25%), striatum (-38%), and gut (-18%) in PrP-A53T mice. It also modulated the gut microbiota, reducing the loss of diversity seen in PrP-A53T mice and promoting bacteria negatively correlated with PD in patients. Additionally, trehalose treatment increased the intestinal secretion of glucagon-like peptide 1 (GLP-1) by 29%. Maltose and sucrose, which break down into glucose, did not show neuroprotective effects, suggesting glucose is not involved in trehalose-mediated neuroprotection. Since trehalose is unlikely to cross the intestinal barrier at the given dose, the results suggest its effects are mediated indirectly through the gut microbiota and GLP-1.
Collapse
Affiliation(s)
- Solène Pradeloux
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Jules Kennang Ouamba
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Amandine Isenbrandt
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Roy
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Yao H, Tong W, Song Y, Li R, Xiang X, Cheng W, Zhou Y, He Y, Yang Y, Liu Y, Li S, Jin L. Exercise training upregulates CD55 to suppress complement-mediated synaptic phagocytosis in Parkinson's disease. J Neuroinflammation 2024; 21:246. [PMID: 39342308 PMCID: PMC11439226 DOI: 10.1186/s12974-024-03234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
The primary pathological change in Parkinson's disease (PD) is the progressive degeneration of dopaminergic neurons in the substantia nigra. Additionally, excessive microglial activation and synaptic loss are also typical features observed in PD samples. Exercise trainings have been proven to improve PD symptoms, delay the disease progression as well as affect excessive microglial synaptic phagocytosis. In this study, we established a mouse model of PD by injecting mouse-derived α-synuclein preformed fibrils (M-α-syn PFFs) into the substantia nigra, and demonstrated that treadmill exercise inhibits microglial activation and synaptic phagocytosis in striatum. Using RNA-Seq and proteomics, we also found that PD involves excessive activation of the complement pathway which is closely related to over-activation of microglia and abnormal synaptic function. More importantly, exercise training can inhibit complement levels and complement-mediated microglial phagocytosis of synapses. It is probably triggered by CD55, as we observed that CD55 in the striatum significantly increased after exercise training and up-regulation of that molecule rescued motor deficits of PD mice, accompanied with reduced microglial synaptic phagocytosis in the striatum. This research elucidated the interplay among microglia, complement, and synapses, and analyzed the effects of exercise training on these factors. Our work also suggested CD55 as a complement-relevant candidate molecule for developing therapeutic strategies of PD.
Collapse
Affiliation(s)
- Hongkai Yao
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weifang Tong
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ruoyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xuerui Xiang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Wen Cheng
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunjiao Zhou
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yijing He
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yunxi Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Narasimhan K, Hakami A, Comini G, Patton T, Newland B, Dowd E. Cryogel microcarriers loaded with glial cell line-derived neurotrophic factor enhance the engraftment of primary dopaminergic neurons in a rat model of Parkinson's disease. J Neural Eng 2024; 21:056011. [PMID: 39231475 DOI: 10.1088/1741-2552/ad7761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Objective.Cryogel microcarriers made of poly(ethylene glycol) diacrylate and 3-sulfopropyl acrylate have the potential to act as delivery vehicles for long-term retention of neurotrophic factors (NTFs) in the brain. In addition, they can potentially enhance stem cell-derived dopaminergic (DAergic) cell replacement strategies for Parkinson's disease (PD), by addressing the limitations of variable survival and poor differentiation of the transplanted precursors due to neurotrophic deprivation post-transplantation in the brain. In this context, to develop a proof-of-concept, the aim of this study was to determine the efficacy of glial cell line-derived NTF (GDNF)-loaded cryogel microcarriers by assessing their impact on the survival of, and reinnervation by, primary DAergic grafts after intra-striatal delivery in Parkinsonian rat brains.Approach.Rat embryonic day 14 ventral midbrain cells were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, or with GDNF, or with unloaded cryogel microcarriers, or with GDNF-loaded cryogel microcarriers.Post-mortem, GDNF and tyrosine hydroxylase immunostaining were used to identify retention of the delivered GDNF within the implanted cryogel microcarriers, and to identify the transplanted DAergic neuronal cell bodies and fibres in the brains, respectively.Main results.We found an intact presence of GDNF-stained cryogel microcarriers in graft sites, indicating their ability for long-term retention of the delivered GDNF up to 4 weeks in the brain. This resulted in an enhanced survival (1.9-fold) of, and striatal reinnervation (density & volume) by, the grafted DAergic neurons, in addition to an enhanced sprouting of fibres within graft sites.Significance.This data provides an important proof-of-principle for the beneficial effects of neurotrophin-loaded cryogel microcarriers on engraftment of cells in the context of cell replacement therapy in PD. For clinical translation, further studies will be needed to assess the impact of cryogel microcarriers on the survival and differentiation of stem cell-derived DAergic precursors in Parkinsonian rat brains.
Collapse
Affiliation(s)
- Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Tommy Patton
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Chemistry Roorkee, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
7
|
Singh A, Sinha S, Singh NK. Dietary Natural Flavonoids: Intervention for MAO-B Against Parkinson's Disease. Chem Biol Drug Des 2024; 104:e14619. [PMID: 39223743 DOI: 10.1111/cbdd.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) stands as the second most common neurological disorder after Alzheimer's disease, primarily affecting the elderly population and significantly compromising their quality of life. The precise etiology of PD remains elusive, but recent research has shed light on potential factors, including the formation of α-synuclein aggregates, oxidative stress, neurotransmitter imbalances, and dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc) region of the brain, culminating in motor symptoms such as bradykinesia, akinesia, tremors, and rigidity. Monoamine oxidase (MAO) is an essential enzyme, comprising two isoforms, MAO-A and MAO-B, responsible for the oxidation of monoamines such as dopamine. Increased MAO-B activity is responsible for decreased dopamine levels in the SNpc region of mid brain which is remarkably associated with the pathogenesis of PD-like manifestations. Inhibitors of MAO-B enhance striatal neuronal responses to dopamine, making them valuable in treating PD, which involves dopamine deficiency. Clinically approved MAO-B inhibitors such as selegiline, L-deprenyl, pargyline, and rasagiline are employed in the management of neurodegenerative conditions associated with PD. Current therapeutic interventions including MAO-B inhibitors for PD predominantly aim to alleviate these motor symptoms but often come with a host of side effects that can be particularly challenging for the patients. While effective, they have limitations, prompting a search for alternative treatments, there is a growing interest in exploring natural products notably flavonoids as potential sources of novel MAO-B inhibitors. In line with that, the present review focuses on natural flavonoids of plant origin that hold promise as potential candidates for the development of novel MAO-B inhibitors. The discussion encompasses both in vitro and in vivo studies, shedding light on their potential therapeutic applications. Furthermore, this review underscores the significance of exploring natural products as valuable reservoirs of MAO-B inhibitors, offering new avenues for drug development and addressing the pressing need for improved treatments in PD-like pathological conditions. The authors of this review majorly explore the neuroprotective potential of natural flavonoids exhibiting notable MAO-B inhibitory activity and additionally multi-targeted approaches in the treatment of PD with clinical evidence and challenges faced in current therapeutic approaches.
Collapse
Affiliation(s)
- Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suman Sinha
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
8
|
Amprimo G, Masi G, Olmo G, Ferraris C. Deep Learning for hand tracking in Parkinson's Disease video-based assessment: Current and future perspectives. Artif Intell Med 2024; 154:102914. [PMID: 38909431 DOI: 10.1016/j.artmed.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Parkinson's Disease (PD) demands early diagnosis and frequent assessment of symptoms. In particular, analysing hand movements is pivotal to understand disease progression. Advancements in hand tracking using Deep Learning (DL) allow for the automatic and objective disease evaluation from video recordings of standardised motor tasks, which are the foundation of neurological examinations. In view of this scenario, this narrative review aims to describe the state of the art and the future perspective of DL frameworks for hand tracking in video-based PD assessment. METHODS A rigorous search of PubMed, Web of Science, IEEE Explorer, and Scopus until October 2023 using primary keywords such as parkinson, hand tracking, and deep learning was performed to select eligible by focusing on video-based PD assessment through DL-driven hand tracking frameworks RESULTS:: After accurate screening, 23 publications met the selection criteria. These studies used various solutions, from well-established pose estimation frameworks, like OpenPose and MediaPipe, to custom deep architectures designed to accurately track hand and finger movements and extract relevant disease features. Estimated hand tracking data were then used to differentiate PD patients from healthy individuals, characterise symptoms such as tremors and bradykinesia, or regress the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) by automatically assessing clinical tasks such as finger tapping, hand movements, and pronation-supination. CONCLUSIONS DL-driven hand tracking holds promise for PD assessment, offering precise, objective measurements for early diagnosis and monitoring, especially in a telemedicine scenario. However, to ensure clinical acceptance, standardisation and validation are crucial. Future research should prioritise large open datasets, rigorous validation on patients, and the investigation of new frontiers such as tracking hand-hand and hand-object interactions for daily-life tasks assessment.
Collapse
Affiliation(s)
- Gianluca Amprimo
- Politecnico di Torino - Control and Computer Engineering Department, Corso Duca degli Abruzzi, 24, Turin, 10129, Italy; National Research Council - Institute of Electronics, Information Engineering and Telecommunications, Corso Duca degli Abruzzi, 24, Turin, 10029, Italy.
| | - Giulia Masi
- Politecnico di Torino - Control and Computer Engineering Department, Corso Duca degli Abruzzi, 24, Turin, 10129, Italy. https://www.researchgate.net/profile/Giulia-Masi-2
| | - Gabriella Olmo
- Politecnico di Torino - Control and Computer Engineering Department, Corso Duca degli Abruzzi, 24, Turin, 10129, Italy. https://www.sysbio.polito.it/analytics-technologies-health/
| | - Claudia Ferraris
- National Research Council - Institute of Electronics, Information Engineering and Telecommunications, Corso Duca degli Abruzzi, 24, Turin, 10029, Italy. https://www.ieiit.cnr.it/people/Ferraris-Claudia
| |
Collapse
|
9
|
Wardhan Y, Vishwas S, Porselvi A, Singh SK, Kakoty V. Exploring the complex interplay between Parkinson's disease and BAG proteins. Behav Brain Res 2024; 469:115054. [PMID: 38768687 DOI: 10.1016/j.bbr.2024.115054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Parkinsons disease (PD) is a chronic fast growing neurodegenerative disorder of Central Nervous System (CNS) characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and formation of Lewy bodies (LBs) which causes dopamine deficiency within basal ganglia leading to motor and non-motor manifestation. According to reports, many factors are responsible for pathogenesis of PD which includes environmental factors, genetic factors, and aging factors. Whereas death of dopaminergic neurons is also caused by oxidative stress, neuroinflammation, and autophagy disorder. Molecular chaperones/co-chaperones are proteins that binds to an unstable conformer of another protein and stabilizes it. Chaperones prevent incorrect interaction between non-native polypeptides which increases the yield but not the rate of reaction. The Bcl-2-associated athanogene (BAG) is a multifunctional group of proteins belonging to BAG family of co-chaperones. Recent studies demonstrates that chaperones interact with PD-related proteins. Co-chaperones like BAG family proteins regulate the function of chaperones. Molecular chaperones regulate the mitochondrial functions by interacting with the PD-related proteins associated with it. This review studies the contribution of chaperones and PD-related proteins in pathogenesis of PD aiming to provide an alternate molecular target for preventing the disease progression.
Collapse
Affiliation(s)
- Yash Wardhan
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Arumugam Porselvi
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| |
Collapse
|
10
|
Jiang T, Ruan N, Luo P, Wang Q, Wei X, Li Y, Dai Y, Lin L, Lv J, Liu Y, Zhang C. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: Novel therapeutic targets for aging-associated diseases. Ageing Res Rev 2024; 98:102320. [PMID: 38719161 DOI: 10.1016/j.arr.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiagao Lv
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Cardiology, Department of Internal Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
12
|
Cheng WH, Quan Y, Thompson WF. The effect of dance on mental health and quality of life of people with Parkinson's disease: A systematic review and three-level meta-analysis. Arch Gerontol Geriatr 2024; 120:105326. [PMID: 38237379 DOI: 10.1016/j.archger.2024.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVES Parkinson's disease (PD) is a neurodegenerative disease that affects millions of individuals worldwide. Dance has emerged as a comprehensive intervention for enhancing well-being in this population. This meta-analysis aimed to assess the effectiveness of dance on mental health and quality of life among individuals with PD. METHODS Three databases were searched in December 2022. Research papers comparing the effects of dance with a non-dance control on the quality of life or mental health of individuals with PD were included. Two authors independently screened the studies, extracted data, and assessed methodological quality of eligible studies. To address the interdependence of effect sizes within studies, the three-level meta-analysis approach was employed to analyze the data. RESULTS Thirteen trials involving a total of 496 participants were included, with 11 being subjected to statistical analysis. The results indicated that dance had a positive impact on mental health (g = 0.43, 95 % CI = [0.11, 0.75]) and quality of life (g = 0.46, 95 % CI = [-0.04, 0.95]) when compared to passive control groups. Moderator analyses revealed that non-partnered dance and dance interventions with lower total dosages were particularly beneficial for mental health. CONCLUSION Dance interventions are an effective lifestyle activity for enhancing mental health and quality of life in individuals with PD. A theoretical framework is proposed to explain the impact of dance on well-being from neurological, social, physical, and psychological perspectives.
Collapse
Affiliation(s)
- Wei-Hsin Cheng
- Faculty of Society and Design, Bond University, Queensland 4229, Australia
| | - Yixue Quan
- School of Psychological Sciences, Macquarie University, Sydney 2109, Australia
| | - William Forde Thompson
- Faculty of Society and Design, Bond University, Queensland 4229, Australia; School of Psychological Sciences, Macquarie University, Sydney 2109, Australia.
| |
Collapse
|
13
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
15
|
Liang H, Ma Z, Zhong W, Liu J, Sugimoto K, Chen H. Regulation of mitophagy and mitochondrial function: Natural compounds as potential therapeutic strategies for Parkinson's disease. Phytother Res 2024; 38:1838-1862. [PMID: 38356178 DOI: 10.1002/ptr.8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Mitochondrial damage is associated with the development of Parkinson's disease (PD), indicating that mitochondrial-targeted treatments could hold promise as disease-modifying approaches for PD. Notably, natural compounds have demonstrated the ability to modulate mitochondrial-related processes. In this review article, we discussed the possible neuroprotective mechanisms of natural compounds against PD in modulating mitophagy and mitochondrial function. A comprehensive literature search on natural compounds related to the treatment of PD by regulating mitophagy and mitochondrial function was conducted from PubMed, Web of Science and Chinese National Knowledge Infrastructure databases from their inception until April 2023. We summarize recent advancements in mitophagy's molecular mechanisms, including upstream and downstream processes, and its relationship with PD-related genes or proteins. Importantly, we highlight how natural compounds can therapeutically regulate various mitochondrial processes through multiple targets and pathways to alleviate oxidative stress, neuroinflammation, Lewy's body aggregation and apoptosis, which are key contributors to PD pathogenesis. Unlike the single-target strategy of modern medicine, natural compounds provide neuroprotection against PD by modulating various mitochondrial-related processes, including ameliorating mitophagy by targeting the PINK1/parkin pathway, the NIX/BNIP3 pathway, and autophagosome formation (i.e., LC3 and p62). Given the prevalence of mitochondrial damage in various neurodegenerative diseases, exploring the exact mechanism of natural compounds on mitophagy and mitochondrial dysfunction could shed light on the development of highly effective disease-modifying or adjuvant therapies targeting PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hao Liang
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhenwang Ma
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wei Zhong
- Department of Rheumatology and Immunology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Chen
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of TCM Geriatric, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Shan C, Zhang C, Zhang C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem Res 2024; 49:834-846. [PMID: 38227113 DOI: 10.1007/s11064-023-04085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
"Neurodegenerative disorder" is an umbrella term for a group of fatal progressive neurological illnesses characterized by neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in association with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical application.
Collapse
Affiliation(s)
- Chen Shan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Ahmad F, Sachdeva P, Sachdeva B, Singh G, Soni H, Tandon S, Rafeeq MM, Alam MZ, Baeissa HM, Khalid M. Dioxinodehydroeckol: A Potential Neuroprotective Marine Compound Identified by In Silico Screening for the Treatment and Management of Multiple Brain Disorders. Mol Biotechnol 2024; 66:663-686. [PMID: 36513873 DOI: 10.1007/s12033-022-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Glioblastoma multiforme (GBM), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) are some of the most prevalent neurodegenerative disorders in humans. Even after a variety of advanced therapies, prognosis of all these disorders is not favorable, with survival rates of 14-20 months only. To further improve the prognosis of these disorders, it is imperative to discover new compounds which will target effector proteins involved in these disorders. In this study, we have focused on in silico screening of marine compounds against multiple target proteins involved in AD, GBM, ALS, and PD. Fifty marine-origin compounds were selected from literature, out of which, thirty compounds passed ADMET parameters. Ligand docking was performed after ADMET analysis for AD, GBM, ALS, and PD-associated proteins in which four protein targets Keap1, Ephrin A2, JAK3 Kinase domain, and METTL3-METTL14 N6-methyladenosine methyltransferase (MTA70) were found to be binding strongly with the screened compound Dioxinodehydroeckol (DHE). Molecular dynamics simulations were performed at 100 ns with triplicate runs to validate the docking score and assess the dynamics of DHE interactions with each target protein. The results indicated Dioxinodehydroeckol, a novel marine compound, to be a putative inhibitor among all the screened molecules, which might be effective against multiple target proteins involved in neurological disorders, requiring further in vitro and in vivo validations.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India.
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India
| | - Bhuvi Sachdeva
- Department of Physics and Astrophysics, University of Delhi, Delhi, India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
- Kusuma School of Biological Sciences, India Institute of Technology, Delhi, India
| | - Hemant Soni
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
| | - Smriti Tandon
- Section of Microbiology, Central Ayurveda Research Institute, CCRAS, Ministry of AYUSH, Jhansi, India
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanadi M Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
18
|
Puigròs M, Calderon A, Martín-Ruiz D, Serradell M, Fernández M, Muñoz-Lopetegi A, Mayà G, Santamaria J, Gaig C, Colell A, Tolosa E, Iranzo A, Trullas R. Mitochondrial DNA deletions in the cerebrospinal fluid of patients with idiopathic REM sleep behaviour disorder. EBioMedicine 2024; 102:105065. [PMID: 38502973 PMCID: PMC10963194 DOI: 10.1016/j.ebiom.2024.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) represents the prodromal stage of Lewy body disorders (Parkinson's disease (PD) and dementia with Lewy bodies (DLB)) which are linked to variations in circulating cell-free mitochondrial DNA (cf-mtDNA). Here, we assessed whether altered cf-mtDNA release and integrity are already present in IRBD. METHODS We used multiplex digital PCR (dPCR) to quantify cf-mtDNA copies and deletion ratio in cerebrospinal fluid (CSF) and serum in a cohort of 71 participants, including 1) 17 patients with IRBD who remained disease-free (non-converters), 2) 34 patients initially diagnosed with IRBD who later developed either PD or DLB (converters), and 3) 20 age-matched controls without IRBD or Parkinsonism. In addition, we investigated whether CD9-positive extracellular vesicles (CD9-EVs) from CSF and serum samples contained cf-mtDNA. FINDINGS Patients with IRBD, both converters and non-converters, exhibited more cf-mtDNA with deletions in the CSF than controls. This finding was confirmed in CD9-EVs. The high levels of deleted cf-mtDNA in CSF corresponded to a significant decrease in cf-mtDNA copies in CD9-EVs in both IRBD non-converters and converters. Conversely, a significant increase in cf-mtDNA copies was found in serum and CD9-EVs from the serum of patients with IRBD who later converted to a Lewy body disorder. INTERPRETATION Alterations in cf-mtDNA copy number and deletion ratio known to occur in Lewy body disorders are already present in IRBD and are not a consequence of Lewy body disease conversion. This suggests that mtDNA dysfunction is a primary molecular mechanism of the pathophysiological cascade that precedes the full clinical motor and cognitive manifestation of Lewy body disorders. FUNDING Funded by Michael J. Fox Foundation research grant MJFF-001111. Funded by MICIU/AEI/10.13039/501100011033 "ERDF A way of making Europe", grants PID2020-115091RB-I00 (RT) and PID2022-143279OB-I00 (ACo). Funded by Instituto de Salud Carlos III and European Union NextGenerationEU/PRTR, grant PMP22/00100 (RT and ACo). Funded by AGAUR/Generalitat de Catalunya, grant SGR00490 (RT and ACo). MP has an FPI fellowship, PRE2018-083297, funded by MICIU/AEI/10.13039/501100011033 "ESF Investing in your future".
Collapse
Affiliation(s)
- Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; Neurophysiology Laboratory, School of Medicine, Institute of Neurosciences, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anna Calderon
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniel Martín-Ruiz
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mònica Serradell
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Manel Fernández
- Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Amaia Muñoz-Lopetegi
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gerard Mayà
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Joan Santamaria
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carles Gaig
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Anna Colell
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eduard Tolosa
- Parkinson's disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
19
|
Saadullah M, Tariq H, Chauhdary Z, Saleem U, Anwer Bukhari S, Sehar A, Asif M, Sethi A. Biochemical properties and biological potential of Syzygium heyneanum with antiparkinson's activity in paraquat induced rodent model. PLoS One 2024; 19:e0298986. [PMID: 38551975 PMCID: PMC10980224 DOI: 10.1371/journal.pone.0298986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1β. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1β, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.
Collapse
Affiliation(s)
- Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafsa Tariq
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amna Sehar
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asif
- Department of Pharmacology, Islamia University Bahawalpur, Bahawalpur, Pakistan
| | - Aisha Sethi
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
20
|
Szatmári S, Szász JA, Orbán-Kis K, Baróti B, Bataga S, Ciorba M, Nagy EE, Neagoe RM, Mihály I, Szász PZ, Kelemen K, Frigy A, Szilveszter M, Constantin VA. Levodopa-Entacapone-Carbidopa Intestinal Gel in the Treatment of Advanced Parkinson's Disease: A Single Center Real-World Experience. Pharmaceutics 2024; 16:453. [PMID: 38675114 PMCID: PMC11053778 DOI: 10.3390/pharmaceutics16040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Levodopa-entacapone-carbidopa intestinal gel infusion is a relatively new treatment option for advanced Parkinson's disease. We aimed to describe and analyze the characteristics of de novo levodopa-entacapone-carbidopa intestinal gel therapy in 20 consecutive patients with advanced Parkinson's disease. We assessed the profile of motor complications by evaluating the following: motor fluctuations, dyskinesias, and the freezing phenomenon at baseline (before the testing period) and before discharge. The treatment significantly reduced the duration of daily hours spent in off time compared with baseline pre-treatment values from a mean of 4.8 ± 0.9 h/day to a mean of 1.4 ± 0.5 h per day (p < 0.001). The duration and severity of peak-dose dyskinesia were also significantly reduced compared with baseline values. Out of the 10 patients who reported freezing, 8 did not present this complication at the pre-discharge assessment. Significant improvements were observed in Hoehn and Yahr scale scores in both the on and off states. The levodopa-entacapone-carbidopa intestinal gel therapy was well tolerated during the follow-up period immediately after initiation. Despite a relatively severe stage of the disease, all patients experienced a significant improvement in motor fluctuations, dyskinesias, and the freezing phenomenon.
Collapse
Affiliation(s)
- Szabolcs Szatmári
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (S.S.); (V.A.C.)
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
| | - József Attila Szász
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (S.S.); (V.A.C.)
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
| | - Károly Orbán-Kis
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (S.S.); (V.A.C.)
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
| | - Beáta Baróti
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
- Clinic of Radiology, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania
| | - Simona Bataga
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
- Department of Gastroenterology, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania
| | - Marius Ciorba
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
- Department of Gastroenterology, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania
| | - Előd Ernő Nagy
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540072 Târgu Mureș, Romania
| | - Radu Mircea Neagoe
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
- 2nd Clinic of Surgery, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania
| | - István Mihály
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
- Department of Neurology, Emergency County Hospital, 530173 Miercurea-Ciuc, Romania
| | - Péter Zsombor Szász
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
| | - Krisztina Kelemen
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (S.S.); (V.A.C.)
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
| | - Attila Frigy
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
- Department of Internal Medicine IV, Clinical County Hospital Mures, 540072 Târgu Mureș, Romania
| | - Mónika Szilveszter
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mureș, Romania; (B.B.); (S.B.); (I.M.); (P.Z.S.); (A.F.)
| | - Viorelia Adelina Constantin
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, 540136 Târgu Mureș, Romania; (S.S.); (V.A.C.)
| |
Collapse
|
21
|
Gregorio I, Russo L, Torretta E, Barbacini P, Contarini G, Pacinelli G, Bizzotto D, Moriggi M, Braghetta P, Papaleo F, Gelfi C, Moro E, Cescon M. GBA1 inactivation in oligodendrocytes affects myelination and induces neurodegenerative hallmarks and lipid dyshomeostasis in mice. Mol Neurodegener 2024; 19:22. [PMID: 38454456 PMCID: PMC10921719 DOI: 10.1186/s13024-024-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Mutations in the β-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of β-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a β-glucocerebrosidase irreversible inhibitor was used to dissect the impact of β-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of β-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which β-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for β-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of β-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS Here we show that β-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific β-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Loris Russo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Gabriella Contarini
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Department of Biomedical and Technological Sciences, University of Catania, 95125, Catania, Italy
| | - Giada Pacinelli
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padua, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano Di Tecnologia, 16163, Genova, Italy
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133, Milan, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
22
|
Wal P, Wal A, Vig H, Mahmood D, Khan MMU. Potential Applications of Mitochondrial Therapy with a Focus on Parkinson's Disease and Mitochondrial Transplantation. Adv Pharm Bull 2024; 14:147-160. [PMID: 38585467 PMCID: PMC10997929 DOI: 10.34172/apb.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/28/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Both aging and neurodegenerative illnesses are thought to be influenced by mitochondrial malfunction and free radical formation. Deformities of the energy metabolism, mitochondrial genome polymorphisms, nuclear DNA genetic abnormalities associated with mitochondria, modifications of mitochondrial fusion or fission, variations in shape and size, variations in transit, modified mobility of mitochondria, transcription defects, and the emergence of misfolded proteins associated with mitochondria are all linked to Parkinson's disease. Methods This review is a condensed compilation of data from research that has been published between the years of 2014 and 2022, using search engines like Google Scholar, PubMed, and Scopus. Results Mitochondrial transplantation is a one-of-a-kind treatment for mitochondrial diseases and deficits in mitochondrial biogenesis. The replacement of malfunctioning mitochondria with transplanted viable mitochondria using innovative methodologies has shown promising outcomes as a cure for Parkinson's, involving tissue sparing coupled with enhanced energy generation and lower oxidative damage. Numerous mitochondria-targeted therapies, including mitochondrial gene therapy, redox therapy, and others, have been investigated for their effectiveness and potency. Conclusion The development of innovative therapeutics for mitochondria-directed treatments in Parkinson's disease may be aided by optimizing mitochondrial dynamics. Many neurological diseases have been studied in animal and cellular models, and it has been found that mitochondrial maintenance can slow the death of neuronal cells. It has been hypothesized that drug therapies for neurodegenerative diseases that focus on mitochondrial dysfunction will help to delay the onset of neuronal dysfunction.
Collapse
Affiliation(s)
- Pranay Wal
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Ankita Wal
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Himangi Vig
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Unaizah 51911, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Unaizah 51911, Saudi Arabia
| |
Collapse
|
23
|
Ay M, Charli A, Langley M, Jang A, Padhi P, Jin H, Anantharam V, Kalyanaraman B, Kanthasamy A, Kanthasamy AG. Mito-metformin protects against mitochondrial dysfunction and dopaminergic neuronal degeneration by activating upstream PKD1 signaling in cell culture and MitoPark animal models of Parkinson's disease. Front Neurosci 2024; 18:1356703. [PMID: 38449738 PMCID: PMC10915001 DOI: 10.3389/fnins.2024.1356703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Impaired mitochondrial function and biogenesis have strongly been implicated in the pathogenesis of Parkinson's disease (PD). Thus, identifying the key signaling mechanisms regulating mitochondrial biogenesis is crucial to developing new treatment strategies for PD. We previously reported that protein kinase D1 (PKD1) activation protects against neuronal cell death in PD models by regulating mitochondrial biogenesis. To further harness the translational drug discovery potential of targeting PKD1-mediated neuroprotective signaling, we synthesized mito-metformin (Mito-Met), a mitochondria-targeted analog derived from conjugating the anti-diabetic drug metformin with a triphenylphosphonium functional group, and then evaluated the preclinical efficacy of Mito-Met in cell culture and MitoPark animal models of PD. Mito-Met (100-300 nM) significantly activated PKD1 phosphorylation, as well as downstream Akt and AMPKα phosphorylation, more potently than metformin, in N27 dopaminergic neuronal cells. Furthermore, treatment with Mito-Met upregulated the mRNA and protein expression of mitochondrial transcription factor A (TFAM) implying that Mito-Met can promote mitochondrial biogenesis. Interestingly, Mito-Met significantly increased mitochondrial bioenergetics capacity in N27 dopaminergic cells. Mito-Met also reduced mitochondrial fragmentation induced by the Parkinsonian neurotoxicant MPP+ in N27 cells and protected against MPP+-induced TH-positive neurite loss in primary neurons. More importantly, Mito-Met treatment (10 mg/kg, oral gavage for 8 week) significantly improved motor deficits and reduced striatal dopamine depletion in MitoPark mice. Taken together, our results demonstrate that Mito-Met possesses profound neuroprotective effects in both in vitro and in vivo models of PD, suggesting that pharmacological activation of PKD1 signaling could be a novel neuroprotective translational strategy in PD and other related neurocognitive diseases.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Adhithiya Charli
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Monica Langley
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
| | - Ahyoung Jang
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Piyush Padhi
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Huajun Jin
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Vellareddy Anantharam
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | | | - Arthi Kanthasamy
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, United States
- Department of Physiology and Pharmacology, Isakson Center for Neurological Disease Research, University of Georgia, Athens, GA, United States
| |
Collapse
|
24
|
Alizadehmoghaddam S, Pourabdolhossein F, Najafzadehvarzi H, Sarbishegi M, Saleki K, Nouri HR. Crocin attenuates the lipopolysaccharide-induced neuroinflammation via expression of AIM2 and NLRP1 inflammasome in an experimental model of Parkinson's disease. Heliyon 2024; 10:e25523. [PMID: 38356604 PMCID: PMC10864986 DOI: 10.1016/j.heliyon.2024.e25523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The underlying mechanisms of inflammasome activation and the following dopaminergic neuron loss caused by chronic neuroinflammation remain entirely unclear. Therefore, this study aimed to investigate the impact of crocin on the inflammasome complex within an experimental model of Parkinson's disease (PD) using male Wistar rats. PD was induced by the stereotaxic injection of lipopolysaccharide (LPS), and crocin was intraperitoneally administrated one week before the lesion, and then treatment continued for 21 days. Open field (OF) and elevated plus maze tests were applied for behavioral assays. Furthermore, hematoxylin and eosin (H&E) and immunostaining were performed on whole brain tissue, while dissected substantia nigra (SN) was used for immunoblotting and real-time PCR to evaluate compartments involved in PD. The time spent in the center of test was diminished in the LPS group, while treatment with 30 mg/kg of crocin significantly increased it. H&E staining showed a significant increase in cell infiltration at the site of LPS injection, which was ameliorated upon crocin treatment. Notably, crocin-treated animals showed a reduced number of caspase-1 and IL-1β positive cells, whereas the number of positive cells was increased in the LPS group (P < 0.05). A significant decrease in tyrosine hydroxylase (TH) expression was also found in the LPS group, while crocin treatment significantly elevated its expression. IL-1β, IL-18, NLRP1, and AIM2 genes expression significantly increased in the LPS group. On the other hand, treatment with 30 mg/kg of crocin significantly downregulated the expression levels of these genes along with NLRP1 (P < 0.05). In summary, our findings suggest that crocin reduces neuroinflammation in PD by diminishing IL-1β and caspase-1 levels, potentially by inhibiting the expression of AIM2 and NLRP1 genes.
Collapse
Affiliation(s)
- Solmaz Alizadehmoghaddam
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Sarbishegi
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
25
|
Szatmári S, Szász JA, Orbán-Kis K, Bataga S, Ciorba M, Nagy E, Neagoe R, Mihály I, Szász PZ, Kelemen K, Frigy A, Csipor-Fodor A, Constantin VA. Starting with 24-h levodopa carbidopa intestinal gel at initiation in a large cohort of advanced Parkinson's disease patients. Sci Rep 2024; 14:3676. [PMID: 38355970 PMCID: PMC10867013 DOI: 10.1038/s41598-024-54299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Continuous intra-jejunal infusion of levodopa-carbidopa intestinal gel (LCIG) is a long-term proven and effective treatment in advanced Parkinson's Disease (APD). Efficacy and safety of 16-h administration of LCIG has already been established. Additional benefits of 24-h LCIG administration have been reported in several case series and small clinical studies. The aim of this retrospective study was to compare the characteristics of patients who needed 24-h LCIG from the beginning of the DAT (device-aided treatment) with those who remained with the standard 16-h LCIG treatment and to identify particular motives if any. We initiated LCIG in 150 patients out of which in case of 62 patients (41,3%) due to unsatisfactory initial clinical benefits continuous 24-h LCIG was deemed necessary. Despite the subjective complaints and more severe clinical condition, at baseline evaluation we found statistically significant differences between 16-h LCIG cohort and 24-h LCIG cohort only in case of incidence of freezing (47% vs 65%, p = 0.03) and sudden off (32% vs 48%, p = 0.04). Wake hours/daytime LCIG does not always sufficiently improve the patient's quality of life in some patients due to persistent nighttime troublesome symptoms. Instead of labeling the patient as a non-responder, it is worth trying the 24-h LCIG dosage in a carefully selected group of patients, as there is currently no consensus on reliable criteria that serve the decision in these patients.
Collapse
Affiliation(s)
- Szabolcs Szatmári
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, Târgu Mureș, Romania
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
| | - József Attila Szász
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, Târgu Mureș, Romania
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
| | - Károly Orbán-Kis
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, Târgu Mureș, Romania.
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania.
| | - Simona Bataga
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
- Department of Gastroenterology, Târgu Mures County Emergency Clinical Hospital, Târgu Mures, Romania
| | - Marius Ciorba
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
- Department of Gastroenterology, Târgu Mures County Emergency Clinical Hospital, Târgu Mures, Romania
| | - Előd Nagy
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
- Laboratory of Medical Analysis, Clinical County Hospital Mures, Târgu Mures, Romania
| | - Radu Neagoe
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
- 2nd Clinic of Surgery, Târgu Mures County Emergency Clinical Hospital, Târgu Mures, Romania
| | - István Mihály
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
- Department of Neurology, Emergency County Hospital, Miercurea-Ciuc, Romania
| | - Péter Zsombor Szász
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
| | - Krisztina Kelemen
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, Târgu Mureș, Romania
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
| | - Attila Frigy
- University of Medicine, Pharmacy, Science and Technology of Târgu Mures, George Emil Palade, Gh. Marinescu Street No 38, 540142, Târgu Mures, Romania
- Department of Internal Medicine IV, Clinical County Hospital Mures, Târgu Mures, Romania
| | - Andrea Csipor-Fodor
- 2nd Clinic of Neurology, Târgu Mures County Emergency Clinical Hospital, Târgu Mureș, Romania
| | | |
Collapse
|
26
|
Salin P, Melon C, Chassain C, Gubellini P, Pages G, Pereira B, Le Fur Y, Durif F, Kerkerian-Le Goff L. Interhemispheric reactivity of the subthalamic nucleus sustains progressive dopamine neuron loss in asymmetrical parkinsonism. Neurobiol Dis 2024; 191:106398. [PMID: 38182075 DOI: 10.1016/j.nbd.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive and asymmetrical degeneration of the nigrostriatal dopamine neurons and the unilateral presentation of the motor symptoms at onset, contralateral to the most impaired hemisphere. We previously developed a rat PD model that mimics these typical features, based on unilateral injection of a substrate inhibitor of excitatory amino acid transporters, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), in the substantia nigra (SN). Here, we used this progressive model in a multilevel study (behavioral testing, in vivo 1H-magnetic resonance spectroscopy, slice electrophysiology, immunocytochemistry and in situ hybridization) to characterize the functional changes occurring in the cortico-basal ganglia-cortical network in an evolving asymmetrical neurodegeneration context and their possible contribution to the cell death progression. We focused on the corticostriatal input and the subthalamic nucleus (STN), two glutamate components with major implications in PD pathophysiology. In the striatum, glutamate and glutamine levels increased from presymptomatic stages in the PDC-injected hemisphere only, which also showed enhanced glutamatergic transmission and loss of plasticity at corticostriatal synapses assessed at symptomatic stage. Surprisingly, the contralateral STN showed earlier and stronger reactivity than the ipsilateral side (increased intraneuronal cytochrome oxidase subunit I mRNA levels; enhanced glutamate and glutamine concentrations). Moreover, its lesion at early presymptomatic stage halted the ongoing neurodegeneration in the PDC-injected SN and prevented the expression of motor asymmetry. These findings reveal the existence of endogenous interhemispheric processes linking the primary injured SN and the contralateral STN that could sustain progressive dopamine neuron loss, opening new perspectives for disease-modifying treatment of PD.
Collapse
Affiliation(s)
- Pascal Salin
- Aix-Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Carine Chassain
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France
| | | | - Guilhem Pages
- INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France; INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Bruno Pereira
- University Hospital Clermont-Ferrand, Biostatisticis Unit (DRCI), Clermont-Ferrand, France
| | - Yann Le Fur
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Franck Durif
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | | |
Collapse
|
27
|
Sharma P, Mittal P. Paraquat (herbicide) as a cause of Parkinson's Disease. Parkinsonism Relat Disord 2024; 119:105932. [PMID: 38008593 DOI: 10.1016/j.parkreldis.2023.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
The four features of Parkinson's disease (PD), which also manifests other non-motor symptoms, are bradykinesia, tremor, postural instability, and stiffness. The pathogenic causes of Parkinsonism include Lewy bodies, intracellular protein clumps of αsynuclein, and the degeneration of dopaminergic neurons in the substantia nigra's pars compacta region. The pathophysiology of PD is still poorly understood due to the complexity of the illness. The apoptotic cell death of neurons in PD, however, has been linked to a variety of intracellular mechanisms, according to a wide spectrum of study. The endoplasmic reticulum's stress, decreased levels of neurotrophic factors, oxidative stress, mitochondrial dysfunction, catabolic alterations in dopamine, and decreased activity of tyrosine hydroxylase are some of these causes. The herbicide paraquat has been used in laboratory studies to create a variety of PD pathological features in numerous in-vitro and in-vivo animals. Due to the unique neurotoxicity that paraquat causes, understanding of the pathophysiology of PD has changed. Parkinson's disease (PD) is more likely to develop among people exposed to paraquat over an extended period of time, according to epidemiological studies. Thanks to this paradigm, the hunt for new therapy targets for PD has expanded. In both in-vitro and in-vivo models, the purpose of this study is to summarise the relationship between paraquat exposure and the onset of Parkinson's disease (PD).
Collapse
Affiliation(s)
| | - Payal Mittal
- University Institute of Pharma Sciences, Mohali, Punjab, India.
| |
Collapse
|
28
|
de Bem Alves AC, Aguiar AS. Caffeine plus haloperidol reduces fatigue in an experimental model of Parkinson's disease - a prospective to A 2AR-D 2R heterodimer antagonism. Purinergic Signal 2024; 20:29-34. [PMID: 36918462 PMCID: PMC10828253 DOI: 10.1007/s11302-023-09933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Fatigue is a non-motor symptom of Parkinson's disease (PD). Adenosine 2A receptor (A2AR) and compromised dopamine neurotransmission are linked to fatigue. Studies demonstrate that A2AR antagonism potentiates dopamine transmission via dopamine receptor D2 (D2R). However, the heterodimer form of A2AR-D2R in the striatum prompted questions about the therapeutic targets for PD patients. This study investigates the effects of caffeine (A2AR non-selective antagonist) plus haloperidol (D2R selective antagonist) treatment in the fatigue induced by the reserpine model of PD. Reserpinized mice showed impaired motor control in the open field test (p < 0.05) and fatigue in the grip strength meter test (p < 0.05). L-DOPA and caffeine plus haloperidol similarly increased motor control (p < 0.05) and mitigated fatigue (p < 0.05). Our results support the A2AR-D2R heterodimer participation in the central fatigue of PD, and highlight the potential of A2AR-D2R antagonism in the management of PD.
Collapse
Affiliation(s)
- Ana Cristina de Bem Alves
- Laboratory of Exercise Biology (LaBioEx), Department of Health Sciences, Federal University of Santa Catarina (UFSC), Ararangua, SC, 88905-120, Brazil.
| | - Aderbal Silva Aguiar
- Laboratory of Exercise Biology (LaBioEx), Department of Health Sciences, Federal University of Santa Catarina (UFSC), Ararangua, SC, 88905-120, Brazil
| |
Collapse
|
29
|
Wang J, Liu QT, Shen DY, Bai JP, Hu Y, Huang Q, Yu HJ, He NN, Qin XY, Lan R. Network pharmacology analysis of the active ingredients of Corydalis hendersonii Hemsl. and their effects on eliminating neuroinflammation and improving motor functions in MPTP-intoxicated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117009. [PMID: 37557936 DOI: 10.1016/j.jep.2023.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis hendersonii Hemsl. (CH), is a traditional Tibetan medicine used in highland areas for the treatment of alpine polycythemia, ulcers and various inflammatory diseases. Its antioxidant and anti-inflammatory effects have been demonstrated in experimental mice. Loss of dopaminergic neurons due to oxidative damage is thought to be an important factor in the development of PD, the potential antioxidant, anti-inflammatory effects of CH could potentially be used for PD treatment. AIM OF THE STUDY To identify potential targets of CH using network pharmacology and to investigate the neuroprotective effects in cultured cell models and in MPTP-intoxicated mice. MATERIALS AND METHODS The main chemical components of CH were analyzed by UPLC-MS/MS and their potential targets of action or signaling pathways were analyzed using network pharmacology. MPP + or LPS was added to SH-SY5Y or BV2 cells, respectively, to establish cellular models. MPTP was administered to C57BL/6J mice to induce inflammation and dopaminergic neuron loss as well as dyskinesia, followed by behavioral analysis to determine the role of CH in eliminating inflammation, avoiding neuron loss, and improving dyskinesia. RESULTS CH contains 241 alkaloids, 213 flavonoids, 177 terpenoids and 114 phenolic compounds. The targets crossover between CH and PD yielded 210 potential therapeutic targets, especially growth factors and inflammatory pathway-related genes, such as BDNF, NF-κB, as potential key targets. In cultured cells, CHE eliminated MPP + -induced impairment of cell viability as well as LPS-induced inflammation, respectively. In mice, CHE ameliorated MPTP-induced dyskinesia and rescued the loss of dopaminergic neurons in the substantia nigra and striatum. Mechanistically, CHE effectively maintained the activity of the BDNF-TrkB/Akt signaling pathway, accordingly, inhibited inflammatory signaling pathways such as HIF-1α/PKM2 and Notch/NF-kB. CONCLUSIONS CH performed well in eliminating inflammation and improving locomotor deficits in mice, and its potent active ingredients are worthy of subsequent research and development.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qiu-Tong Liu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Dan-Yang Shen
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jin-Peng Bai
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yang Hu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qin Huang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Hui-Jing Yu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Ning-Ning He
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Rongfeng Lan
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
30
|
Chauhan P, Pandey P, Khan F, Maqsood R. Insights on the Correlation between Mitochondrial Dysfunction and the Progression of Parkinson's Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:1007-1014. [PMID: 37867265 DOI: 10.2174/0118715303249690231006114308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023]
Abstract
The aetiology of a progressive neuronal Parkinson's disease has been discussed in several studies. However, due to the multiple risk factors involved in its development, such as environmental toxicity, parental inheritance, misfolding of protein, ageing, generation of reactive oxygen species, degradation of dopaminergic neurons, formation of neurotoxins, mitochondria dysfunction, and genetic mutations, its mechanism of involvement is still discernible. Therefore, this study aimed to review the processes or systems that are crucially implicated in the conversion of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) into its lethal form, which directly blockades the performance of mitochondria, leading to the formation of oxidative stress in the dopaminergic neurons of substantia nigra pars compacta (SNpc) and resulting in the progression of an incurable Parkinson's disease. This review also comprises an overview of the mutated genes that are frequently associated with mitochondrial dysfunction and the progression of Parkinson's disease. Altogether, this review would help future researchers to develop an efficient therapeutic approach for the management of Parkinson's disease via identifying potent prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Prashant Chauhan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| | - Ramish Maqsood
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, India
| |
Collapse
|
31
|
Carroll C, Clarke CE, Grosset D, Rather A, Mohamed B, Parry M, Reddy P, Fackrell R, Chaudhuri KR. Addressing Comorbidities in People with Parkinson's Disease: Considerations From An Expert Panel. JOURNAL OF PARKINSON'S DISEASE 2024; 14:53-63. [PMID: 38217610 PMCID: PMC10836549 DOI: 10.3233/jpd-230168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 01/15/2024]
Abstract
In the UK, guidance exists to aid clinicians and patients deciding when treatment for Parkinson's disease (PD) should be initiated and which therapies to consider. National Institute for Health and Care Excellence (NICE) guidance recommends that before starting PD treatment clinicians should discuss the following: the patient's individual clinical circumstances; lifestyle; preferences; needs and goals; as well as the potential benefits and harms of the different drug classes. Individualization of medicines and management in PD significantly improves patients' outcomes and quality of life. This article aims to provide simple and practical guidance to help clinicians address common, but often overlooked, co-morbidities. A multi-disciplinary group of PD experts discussed areas where clinical care can be improved by addressing commonly found co-morbidities in people with Parkinson's (PwP) based on clinical experience and existing literature, in a roundtable meeting organized and funded by Bial Pharma UK Ltd. The experts identified four core areas (bone health, cardiovascular risk, anticholinergic burden, and sleep quality) that, if further standardized may improve treatment outcomes for PwP patients. Focusing on anticholinergic burden, cardiac risk, sleep, and bone health could offer a significant contribution to personalizing regimes for PwP and improving overall patient outcomes. Within this opinion-based paper, the experts offer a list of guiding factors to help practitioners in the management of PwP.
Collapse
Affiliation(s)
- Camille Carroll
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- University of Plymouth and University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Carl E. Clarke
- University of Birmingham and City Hospital, Birmingham, UK
| | | | | | - Biju Mohamed
- Cardiff and Vale University Health Board, Cardiff, UK
| | - Miriam Parry
- Parkinson Foundation Centre of Excellence, King’s College Hospital NHS Foundation Trust, London, UK
| | | | | | - Kallol Ray Chaudhuri
- Parkinson Foundation Centre of Excellence, King’s College Hospital NHS Foundation Trust, London, UK
- King’s College London, London, UK
| |
Collapse
|
32
|
Umukoro S, Ajayi AM, Ben-Azu B, Ademola AP, Areelu J, Orji C, Okubena O. Jobelyn® improves motor dysfunctions induced by haloperidol in mice via neuroprotective mechanisms relating to modulation of cAMP response-element binding protein and mitogen-activated protein kinase. Metab Brain Dis 2023; 38:2269-2280. [PMID: 37347426 DOI: 10.1007/s11011-023-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The clinical efficacy of haloperidol in the treatment of psychosis has been limited by its tendency to cause parkinsonian-like motor disturbances such as bradykinesia, muscle rigidity and postural instability. Oxidative stress-evoked neuroinflammation has been implicated as the key neuropathological mechanism by which haloperidol induces loss of dopaminergic neurons and motor dysfunctions. This study was therefore designed to evaluate the effect of Jobelyn® (JB), an antioxidant supplement, on haloperidol-induced motor dysfunctions and underlying molecular mechanisms in male Swiss mice. The animals were distributed into 5 groups (n = 8), and treated orally with distilled water (control), haloperidol (1 mg/kg) alone or in combination with each dose of JB (10, 20 and 40 mg/kg), daily for 14 days. Thereafter, changes in motor functions were evaluated on day 14. Brain biomarkers of oxidative stress, proinflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), cAMP response-element binding protein (CREB), mitogen-activated protein kinase (MAPK) and histomorphological changes were also investigated. Haloperidol induces postural instability, catalepsy and impaired locomotor activity, which were ameliorated by JB. Jobelyn® attenuated haloperidol-induced elevated brain levels of MDA, nitrite, proinflammatory cytokines and also boosted neuronal antioxidant profiles (GSH and catalase) of mice. It also restored the deregulated brain activities of CREB and MAPK, and reduced the histomorphological distortions as well as loss of viable neuronal cells in the striatum and prefrontal cortex of haloperidol-treated mice. These findings suggest possible benefits of JB as adjunctive remedy in mitigating parkinsonian-like adverse effects of haloperidol through modulation of CREB/MAPK activities and oxidative/inflammatory pathways.
Collapse
Affiliation(s)
- Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria.
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta University, Abraka, Nigeria
| | - Adeleke Pual Ademola
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Jacob Areelu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | - Chika Orji
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Sango-Ojo Road, Ibadan, Oyo State, Nigeria
| | | |
Collapse
|
33
|
Siddiqui T, Bhatt LK. Targeting Sigma-1 Receptor: A Promising Strategy in the Treatment of Parkinson's Disease. Neurochem Res 2023; 48:2925-2935. [PMID: 37259012 PMCID: PMC10231286 DOI: 10.1007/s11064-023-03960-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Parkinson's disease is a neurodegenerative disease affecting mainly the elderly population. It is characterized by the loss of dopaminergic neurons of the substantia nigra pars compacta region. Parkinson's disease patients exhibit motor symptoms like tremors, rigidity, bradykinesia/hypokinesia, and non-motor symptoms like depression, cognitive decline, delusion, and pain. Major pathophysiological factors which contribute to neuron loss include excess/misfolded alpha-synuclein aggregates, microglial cell-mediated neuroinflammation, excitotoxicity, oxidative stress, and defective mitochondrial function. Sigma-1 receptors are molecular chaperones located at mitochondria-associated ER membrane. Their activation (by endogenous ligands or agonists) has shown neuroprotective and neurorestorative effects in various diseases. This review discusses the roles of activated Sig-1 receptors in modulating various pathophysiological features of Parkinson's disease like alpha-synuclein aggregates, neuroinflammation, excitotoxicity, and oxidative stress.
Collapse
Affiliation(s)
- Talha Siddiqui
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
34
|
Bhusal CK, Uti DE, Mukherjee D, Alqahtani T, Alqahtani S, Bhattacharya A, Akash S. Unveiling Nature's potential: Promising natural compounds in Parkinson's disease management. Parkinsonism Relat Disord 2023; 115:105799. [PMID: 37633805 DOI: 10.1016/j.parkreldis.2023.105799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Although the exact etiology of PD remains elusive, growing evidence suggests a complex interplay of genetic, environmental, and lifestyle factors in its development. Despite advances in pharmacological interventions, current treatments primarily focus on managing symptoms rather than altering the disease's underlying course. In recent years, natural phytocompounds have emerged as a promising avenue for PD management. Phytochemicals derived from plants, such as phenolic acids, flavones, phenols, flavonoids, polyphenols, saponins, terpenes, alkaloids, and amino acids, have been extensively studied for their potential neuroprotective effects. These bioactive compounds possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anti-apoptotic, and anti-aggregation activities, which may counteract the neurodegenerative processes in PD. This comprehensive review delves into the pathophysiology of PD, with a specific focus on the roles of oxidative stress, mitochondrial dysfunction, and protein malfunction in disease pathogenesis. The review collates a wealth of evidence from preclinical studies and in vitro experiments, highlighting the potential of various phytochemicals in attenuating dopaminergic neuron degeneration, reducing α-synuclein aggregation, and modulating neuroinflammatory responses. Prominent among the natural compounds studied are curcumin, resveratrol, coenzyme Q10, and omega-3 fatty acids, which have demonstrated neuroprotective effects in experimental models of PD. Additionally, flavonoids like baicalein, luteolin, quercetin, and nobiletin, and alkaloids such as berberine and physostigmine, show promise in mitigating PD-associated pathologies. This review emphasizes the need for further research through controlled clinical trials to establish the safety and efficacy of these natural compounds in PD management. Although preclinical evidence is compelling, the translation of these findings into effective therapies for PD necessitates robust clinical investigation. Rigorous evaluation of pharmacokinetics, bioavailability, and potential drug interactions is imperative to pave the way for evidence-based treatment strategies. With the rising interest in natural alternatives and the potential for synergistic effects with conventional therapies, this review serves as a comprehensive resource for pharmaceutical industries, researchers, and clinicians seeking novel therapeutic approaches to combat PD. Harnessing the therapeutic potential of these natural phytocompounds may hold the key to improving the quality of life for PD patients and moving towards disease-modifying therapies in the future.
Collapse
Affiliation(s)
- Chandra Kanta Bhusal
- Post Graduate Institute of Medical and Research, Madhya Marg, Sector 12, Chandigarh, 160012, India.
| | - Daniel Ejim Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Uttar Dinajpur, West Bengal, India.
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Arghya Bhattacharya
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah, 711316, India.
| | - Shopnil Akash
- Faculty of Allied Health Science, Department of Pharmacy, Daffodil International University, Daffodil Smart City, Ashulia, Savar, Dhaka, 1207, Bangladesh.
| |
Collapse
|
35
|
Chen X, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen W, Chen Y, Qiao R, Xie P. Multi-Omics Analysis Reveals Age-Related Microbial and Metabolite Alterations in Non-Human Primates. Microorganisms 2023; 11:2406. [PMID: 37894064 PMCID: PMC10609416 DOI: 10.3390/microorganisms11102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a systemic physiological degenerative process, with alterations in gut microbiota and host metabolism. However, due to the interference of multiple confounding factors, aging-associated molecular characteristics have not been elucidated completely. Therefore, based on 16S ribosomal RNA (rRNA) gene sequencing and non-targeted metabolomic detection, our study systematically analyzed the composition and function of the gut microbiome, serum, and fecal metabolome of 36 male rhesus monkeys spanning from 3 to 26 years old, which completely covers juvenile, adult, and old stages. We observed significant correlations between 41 gut genera and age. Moreover, 86 fecal and 49 serum metabolites exhibited significant age-related correlations, primarily categorized into lipids and lipid-like molecules, organic oxygen compounds, organic acids and derivatives, and organoheterocyclic compounds. Further results suggested that aging is associated with significant downregulation of various amino acids constituting proteins, elevation of lipids, particularly saturated fatty acids, and steroids. Additionally, age-dependent changes were observed in multiple immune-regulatory molecules, antioxidant stress metabolites, and neurotransmitters. Notably, multiple age-dependent genera showed strong correlations in these changes. Together, our results provided new evidence for changing characteristics of gut microbes and host metabolism during aging. However, more research is needed in the future to verify our findings.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiyun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siwen Gui
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Weiyi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Renjie Qiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (X.C.)
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
36
|
Amina E. Essawy, Matta CA, Nabil B, Elkader HTAEA, Alhasani RH, Soffar AA. Neuroprotective Effect of Curcumin on the Rat Model of Parkinson’s Disease Induced by Rotenone via Modulating Tyrosine Hydroxylase and Dopa Decarboxylase Expression Levels. NEUROCHEM J+ 2023; 17:457-466. [DOI: 10.1134/s1819712423030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 09/01/2023]
|
37
|
Leshchinski T, Rozani V, Giladi N, Bitan M, Peretz C. Incidence of cardiovascular morbidity among Parkinson's disease patients; a large-scale cohort study in a 16-year time window around disease onset. Parkinsonism Relat Disord 2023; 114:105795. [PMID: 37597443 DOI: 10.1016/j.parkreldis.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVES To examine the risk of any or specific types of cardiovascular diseases (CVDs) in patients with Parkinson's disease (PD), in the 16 years around disease onset, and to compare it to that in the general population. METHODS This is a large-scale population-based retrospective cohort study of newly diagnosed PD patients, members of Maccabi Health Services (MHS), who started taking anti-parkinsonian drugs (APD) between 1/1/2000-31/12/2019 (study period). We collected information about CVD incidence (Congestive heart failure-CHF, Myocardial infarction-MI, Stroke) from MHS-CVD registry. We applied Cox regression to estimate adjusted-HR and 95%CI of CVD risks. We calculated Standardized-Incidence-Ratio (SIR) comparing CVD risks in the PD cohort to that of MHS population. RESULTS The PD cohort comprised 10,840 patients. During a mean follow up of 16.3 ± 4.3y around disease onset, 20.7% (n = 2241) were diagnosed with any CVD: 7.9% with CHF; 6.7% with MI, and 10.5% with stroke. Risks were higher for men: HR = 1.95 (95%CI 1.58-2.40), and for above age 75y at first APD treatment, HR = 2.00 (95% CI 1.65-2.43). Compared to the MHS population, the PD cohort exhibited a significantly lower risk for CVDs, especially for men: SIRmen = 0.21 (95%CI 0.20-0.22), SIRwomen = 0.29 (95% CI 0.27-0.31). These trends were similar for the specific CVDs. CONCLUSIONS The findings suggest that the risks that PD patients and particularly men, will develop any type of CVD are lower than those of the general population. Further studies are needed to confirm this finding and examine the underlying mechanisms.
Collapse
Affiliation(s)
- Timna Leshchinski
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Israel
| | - Violetta Rozani
- Department of Nursing, Faculty of Medicine, Tel-Aviv University, Israel
| | - Nir Giladi
- Department of Neurology, Tel Aviv Sourasky Medical Center, Israel; Department of Neurology, Faculty of Medicine, Tel Aviv University, Israel.
| | - Michal Bitan
- College of Management Academic Studies, Rishon Le'Zion, Israel
| | - Chava Peretz
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Israel; Department of Medical Technologies, HIT-Holon Institute for Technology, Israel
| |
Collapse
|
38
|
Li X, Han P, Liu M, Li X, Xue S. Effect of Ganglioside combined with pramexol in the treatment of Parkinson's disease and its effect on motor function. J Med Biochem 2023; 42:505-512. [PMID: 37790213 PMCID: PMC10543131 DOI: 10.5937/jomb0-42550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/11/2023] [Indexed: 10/05/2023] Open
Abstract
Background This study was aimed to evaluate the efficacy of pramipexole combined with ganglioside for PD treatment and pramipexole monotherapy, so as to provide reference for clinical practice. Methods 61 PD patients selected from June 2019 to December 2020 at our hospital were divided into two groups. The control group (n=31) was given dopasizide oral treatment, and the treatment group (n=30) was given ganglioside combined with pramipexole. The clinical efficacy, adverse reactions, motor function scores, UPDRS scores, PDQ-39 scale scores, TNF-a levels, and related serum factor levels were measured in this study.
Collapse
Affiliation(s)
- Xinna Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Department of Pathology, Yantai, China
| | - Peihai Han
- Traditional Chinese Medical Hospital of Huangdao District, Encephalopathy Department, Qingdao, China
| | - Mengjiao Liu
- Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Department of Rehabilitation Medicine, Qingdao, China
| | - Xiaowen Li
- Zhangqiu District People's Hospital, Department of Endoscopy Room, Jinan, China
| | - Shuai Xue
- Shandong University, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Health Care Department, Qingdao, Shandong, China
| |
Collapse
|
39
|
Akbulut AS, Akca Karpuzoglu AH. Evaluation of Temporomandibular Joint in Patients with Parkinson's Disease: A Comparative Study. Diagnostics (Basel) 2023; 13:2482. [PMID: 37568844 PMCID: PMC10416915 DOI: 10.3390/diagnostics13152482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
(1) The aim of this study was to perform an evaluation of the temporomandibular joint (TMJ) in patients with Parkinson's disease (PD) and present the morphological differences of the TMJ between healthy subjects and patients with PD. (2) A total of 102 Caucasian subjects were divided equally into two groups. The study group consisted of patients with PD, while the control group comprised healthy subjects. Ten parameters, including anterior joint space (AJS), superior joint space (SJS), posterior joint space (PJS), condyle head length (CHL), condylar neck width (CNW), minor axis of the condyle (MAC), long axis of the condyle (LAC), condylar axis inclination (CI), medial joint space (MJS), and lateral joint space (LJS), were measured using magnetic resonance images. The data were statistically analyzed using paired samples t-test and Student's t-test, with a significance level set at p < 0.05. (3) In the PD group, all TMJ parameters showed a statistically significant difference between both sides of the face (p < 0.05). However, in the control group, AJS, SJS, PJS, CHL, CNW, MAC, CI, MJS, and LJS did not show a statistically significant difference between both sides of the face (p > 0.05), except for LAC (p < 0.05). The asymmetry index values of AJS, SJS, PJS, CHL, CNW, MAC, CI, MJS, and LJS demonstrated a statistically significant difference between the study and control groups (p < 0.05), except for LAC (p > 0.05). (4) Within the limitations of this retrospective study, the findings suggest that TMJ morphology and asymmetry could be associated with PD.
Collapse
|
40
|
Qu J, Liu N, Gao L, Hu J, Sun M, Yu D. Development of CRISPR Cas9, spin-off technologies and their application in model construction and potential therapeutic methods of Parkinson's disease. Front Neurosci 2023; 17:1223747. [PMID: 37483347 PMCID: PMC10359996 DOI: 10.3389/fnins.2023.1223747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common degenerative diseases. It is most typically characterized by neuronal death following the accumulation of Lewis inclusions in dopaminergic neurons in the substantia nigra region, with clinical symptoms such as motor retardation, autonomic dysfunction, and dystonia spasms. The exact molecular mechanism of its pathogenesis has not been revealed up to now. And there is a lack of effective treatments for PD, which places a burden on patients, families, and society. CRISPR Cas9 is a powerful technology to modify target genomic sequence with rapid development. More and more scientists utilized this technique to perform research associated neurodegenerative disease including PD. However, the complexity involved makes it urgent to organize and summarize the existing findings to facilitate a clearer understanding. In this review, we described the development of CRISPR Cas9 technology and the latest spin-off gene editing systems. Then we focused on the application of CRISPR Cas9 technology in PD research, summarizing the construction of the novel PD-related medical models including cellular models, small animal models, large mammal models. We also discussed new directions and target molecules related to the use of CRISPR Cas9 for PD treatment from the above models. Finally, we proposed the view about the directions for the development and optimization of the CRISPR Cas9 technology system, and its application to PD and gene therapy in the future. All these results provided a valuable reference and enhanced in understanding for studying PD.
Collapse
Affiliation(s)
- Jiangbo Qu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Na Liu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Lu Gao
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Jia Hu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
41
|
Prasad Panda S, Kesharwani A, Prasanna Mallick S, Prasanth D, Kumar Pasala P, Bharadwaj Tatipamula V. Viral-induced neuronal necroptosis: Detrimental to brain function and regulation by necroptosis inhibitors. Biochem Pharmacol 2023; 213:115591. [PMID: 37196683 DOI: 10.1016/j.bcp.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Neuronal necroptosis (programmed necrosis) in the CNS naturally occurs through a caspase-independent way and, especially in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parknson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and viral infections. Understanding necroptosis pathways (death receptor-dependent and independent), and its connections with other cell death pathways could lead to new insights into treatment. Receptor-interacting protein kinase (RIPK) mediates necroptosis via mixed-lineage kinase-like (MLKL) proteins. RIPK/MLKL necrosome contains FADD, procaspase-8-cellular FLICE-inhibitory proteins (cFLIPs), RIPK1/RIPK3, and MLKL. The necrotic stimuli cause phosphorylation of MLKL and translocate to the plasma membrane, causing an influx of Ca2+ and Na+ ions and, the immediate opening of mitochondrial permeability transition pore (mPTP) with the release of inflammatory cell damage-associated molecular patterns (DAMPs) like mitochondrial DNA (mtDNA), high-mobility group box1 (HMGB1), and interleukin1 (IL-1). The MLKL translocates to the nucleus to induce transcription of the NLRP3 inflammasome complex elements. MLKL-induced NLRP3 activity causes caspase-1 cleavage and, IL-1 activation which promotes neuroinflammation. RIPK1-dependent transcription increases illness-associated microglial and lysosomal abnormalities to facilitate amyloid plaque (Aβ) aggregation in AD. Recent research has linked neuroinflammation and mitochondrial fission with necroptosis. MicroRNAs (miRs) such as miR512-3p, miR874, miR499, miR155, and miR128a regulate neuronal necroptosis by targeting key components of necroptotic pathways. Necroptosis inhibitors act by inhibiting the membrane translocation of MLKL and RIPK1 activity. This review insights into the RIPK/MLKL necrosome-NLRP3 inflammasome interactions during death receptor-dependent and independent neuronal necroptosis, and clinical intervention by miRs to protect the brain from NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | | | - Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| |
Collapse
|
42
|
Uppala SN, Tryphena KP, Naren P, Srivastava S, Singh SB, Khatri DK. Involvement of miRNA on Epigenetics landscape of Parkinson's disease: From pathogenesis to therapeutics. Mech Ageing Dev 2023:111826. [PMID: 37268278 DOI: 10.1016/j.mad.2023.111826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
The development of novel therapeutics for the effective management of Parkinson's disease (PD) is undertaken seriously by the scientific community as the burden of PD continues to increase. Several molecular pathways are being explored to identify novel therapeutic targets. Epigenetics is strongly implicated in several neurodegenerative diseases (NDDs) including PD. Several epigenetic mechanisms were found to dysregulated in various studies. These mechanisms are regulated by several miRNAs which are associated with a variety of pathogenic mechanisms in PD. This concept is extensively investigated in several cancers but not well documented in PD. Identifying the miRNAs with dual role i.e., regulation of epigenetic mechanisms as well as modulation of proteins implicated in the pathogenesis of PD could pave way for the development of novel therapeutics to target them. These miRNAs could also serve as potential biomarkers and can be useful in the early diagnosis or assessment of disease severity. In this article we would like to discuss about various epigenetic changes operating in PD and how miRNAs are involved in the regulation of these mechanisms and their potential to be novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Sai Nikhil Uppala
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Padmashri Naren
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| |
Collapse
|
43
|
Liu W, Zhang F, Liang W, Huang K, Jia C, Zhang J, Li X, Wei W, Gong R, Chen J. Integrated insight into the molecular mechanisms of selenium-modulated, MPP +-induced cytotoxicity in a Parkinson's disease model. J Trace Elem Med Biol 2023; 79:127208. [PMID: 37269647 DOI: 10.1016/j.jtemb.2023.127208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/13/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a neurodegenerative disease that is associated with oxidative stress. Due to the anti-inflammatory and antioxidant functions of Selenium (Se), this molecule may have neuroprotective functions in PD; however, the involvement of Se in such a protective function is unclear. METHODS 1-methyl-4-phenylpyridinium (MPP+), which inhibits mitochondrial respiration, is generally used to produce a reliable cellular model of PD. In this study, a MPP+-induced PD model was used to test if Se could modulate cytotoxicity, and we further capture gene expression profiles following PC12 cell treatment with MPP+ with or without Se by genome wide high-throughput sequencing. RESULTS We identified 351 differentially expressed genes (DEGs) and 14 differentially expressed long non-coding RNAs (DELs) in MPP+-treated cells when compared to controls. We further document 244 DEGs and 27 DELs in cells treated with MPP+ and Se vs. cells treated with MPP+ only. Functional annotation analysis of DEGs and DELs revealed that these groups were enriched in genes that respond to reactive oxygen species (ROS), metabolic processes, and mitochondrial control of apoptosis. Thioredoxin reductase 1 (Txnrd1) was also identified as a biomarker of Se treatment. CONCLUSIONS Our data suggests that the DEGs Txnrd1, Siglec1 and Klf2, and the DEL AABR07044454.1 which we hypothesize to function in cis on the target gene Cdkn1a, may modulate the underlying neurodegenerative process, and act a protective function in the PC12 cell PD model. This study further systematically demonstrated that mRNAs and lncRNAs induced by Se are involved in neuroprotection in PD, and provides novel insight into how Se modulates cytotoxicity in the MPP+-induced PD model.
Collapse
Affiliation(s)
- Wen Liu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Feiyang Zhang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Wu Liang
- Department of Neurosurgery, Minda Hospital of Hubei Minzu University, Enshi 445000, China
| | - Kaixin Huang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Chenguang Jia
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Jie Zhang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China; Neuroepigenetic Research Lab, Medical Research Institute, Wuhan University, Donghu Road 115, Wuhan 430071, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China; Neuroepigenetic Research Lab, Medical Research Institute, Wuhan University, Donghu Road 115, Wuhan 430071, China.
| | - Rui Gong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China.
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan 430071, China.
| |
Collapse
|
44
|
Zou L, Che Z, Ding K, Zhang C, Liu X, Wang L, Li A, Zhou J. JAC4 Alleviates Rotenone-Induced Parkinson's Disease through the Inactivation of the NLRP3 Signal Pathway. Antioxidants (Basel) 2023; 12:antiox12051134. [PMID: 37238000 DOI: 10.3390/antiox12051134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegeneration disease, characterized typically by a progressive loss of dopaminergic neurons in the substantia nigra, and there are no effective therapeutic agents to cure PD. Rotenone (Rot) is a common and widely used pesticide which can directly inhibit mitochondrial complex I, leading to a loss of dopaminergic neurons. Our previous studies proved that the JWA gene (arl6ip5) may play a prominent role in resisting aging, oxidative stress and inflammation, and JWA knockout in astrocytes increases the susceptibility of mice to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. JWA-activating compound 4 (JAC4) is a small-molecule activator of the JWA gene, but its role in and mechanism against PD have not yet been clarified. In the present study, we showed that the JWA expression level is strongly related to tyrosine hydroxylase (TH) in different growth periods of mice. Additionally, we constructed models with Rot in vivo and in vitro to observe the neuroprotective effects of JAC4. Our results demonstrated that JAC4 prophylactic intervention improved motor dysfunction and dopaminergic neuron loss in mice. Mechanistically, JAC4 reduced oxidative stress damage by reversing mitochondrial complex I damage, reducing nuclear factor kappa-B (NF-κB) translocation and repressing nucleotide-binding domain, leucine-rich-containing family and pyrin domain-containing-3 (NLRP3) inflammasome activation. Overall, our results provide proof that JAC4 could serve as a novel effective agent for PD prevention.
Collapse
Affiliation(s)
- Lu Zou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhen Che
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chao Zhang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xia Liu
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Luman Wang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
45
|
Lind-Holm Mogensen F, Scafidi A, Poli A, Michelucci A. PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. J Neuroinflammation 2023; 20:95. [PMID: 37072827 PMCID: PMC10111685 DOI: 10.1186/s12974-023-02776-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023] Open
Abstract
Microglia are the immune effector cells of the brain playing critical roles in immune surveillance and neuroprotection in healthy conditions, while they can sustain neuroinflammatory and neurotoxic processes in neurodegenerative diseases, including Parkinson's disease (PD). Although the precise triggers of PD remain obscure, causative genetic mutations, which aid in the identification of molecular pathways underlying the pathogenesis of idiopathic forms, represent 10% of the patients. Among the inherited forms, loss of function of PARK7, which encodes the protein DJ-1, results in autosomal recessive early-onset PD. Yet, although protection against oxidative stress is the most prominent task ascribed to DJ-1, the underlying mechanisms linking DJ-1 deficiency to the onset of PD are a current matter of investigation. This review provides an overview of the role of DJ-1 in neuroinflammation, with a special focus on its functions in microglia genetic programs and immunological traits. Furthermore, it discusses the relevance of targeting dysregulated pathways in microglia under DJ-1 deficiency and their importance as therapeutic targets in PD. Lastly, it addresses the prospect to consider DJ-1, detected in its oxidized form in idiopathic PD, as a biomarker and to take into account DJ-1-enhancing compounds as therapeutics dampening oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, 7 Avenue Des Haut Forneuaux, L-4362, Esch-Sur-Alzette, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
46
|
Trempe JF, Gehring K. Structural mechanisms of mitochondrial quality control mediated by PINK1 and parkin. J Mol Biol 2023:168090. [PMID: 37054910 DOI: 10.1016/j.jmb.2023.168090] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and represents a looming public health crisis as the global population ages. While the etiology of the more common, idiopathic form of the disease remains unknown, the last ten years have seen a breakthrough in our understanding of the genetic forms related to two proteins that regulate a quality control system for the removal of damaged or non-functional mitochondria. Here, we review the structure of these proteins, PINK1, a protein kinase, and parkin, a ubiquitin ligase with an emphasis on the molecular mechanisms responsible for their recognition of dysfunctional mitochondria and control of the subsequent ubiquitination cascade. Recent atomic structures have revealed the basis of PINK1 substrate specificity and the conformational changes responsible for activation of PINK1 and parkin catalytic activity. Progress in understanding the molecular basis of mitochondrial quality control promises to open new avenues for therapeutic interventions in PD.
Collapse
Affiliation(s)
- Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| |
Collapse
|
47
|
Tryphena KP, Singh G, Jain N, Famta P, Srivastava S, Singh SB, Khatri DK. Integration of miRNA's Theranostic Potential with Nanotechnology: Promises and Challenges for Parkinson's Disease Therapeutics. Mech Ageing Dev 2023; 211:111800. [PMID: 36958539 DOI: 10.1016/j.mad.2023.111800] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Despite the wide research going on in Parkinson's disease (PD), the burden of PD still remains high and continues to increase. The current drugs available for the treatment of PD are only aimed at symptomatic control. Hence, research is mainly focused on identifying the novel therapeutic targets that can be effectively targeted in order to slow down or culminate the disease progression. Recently the role of microRNAs (miRNAs) in the regulation of various pathological mechanisms of PD has been thoroughly explored and many of them were found to be dysregulated in the biological samples of PD patients. These miRNAs can be used as diagnostic markers and novel therapeutic options to manage PD. The delivery of miRNAs to the target site in brain is a challenging job owing to their nature of degradability by endonucleases as well as poor blood brain barrier (BBB) permeability. Nanoparticles appear to be the best solution to effectively encase the miRNA in their core as well as cross the BBB to deliver them into brain. Functionalisation of these nanoparticles further enhances the site-specific delivery.
Collapse
Affiliation(s)
- Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Gurpreet Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Naitik Jain
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Paras Famta
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Saurabh Srivastava
- Department of pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad.
| |
Collapse
|
48
|
Pinna A, Parekh P, Morelli M. Serotonin 5-HT 1A receptors and their interactions with adenosine A 2A receptors in Parkinson's disease and dyskinesia. Neuropharmacology 2023; 226:109411. [PMID: 36608814 DOI: 10.1016/j.neuropharm.2023.109411] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The dopamine neuronal loss that characterizes Parkinson's Disease (PD) is associated to changes in neurotransmitters, such as serotonin and adenosine, which contribute to the symptomatology of PD and to the onset of dyskinetic movements associated to levodopa treatment. The present review describes the role played by serotonin 5-HT1A receptors and the adenosine A2A receptors on dyskinetic movements induced by chronic levodopa in PD. The focus is on preclinical and clinical results showing the interaction between serotonin 5-HT1A receptors and other receptors such as 5-HT1B receptors and adenosine A2A receptors. 5-HT1A/1B receptor agonists and A2A receptor antagonists, administered in combination, contrast dyskinetic movements induced by chronic levodopa without impairing motor behaviour, suggesting that this drug combination might be a useful therapeutic approach for counteracting the PD motor deficits and dyskinesia associated with chronic levodopa treatment. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| | - Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| |
Collapse
|
49
|
Neurotrophin mimetics and tropomyosin kinase receptors: a futuristic pharmacological tool for Parkinson's. Neurol Sci 2023:10.1007/s10072-023-06684-1. [PMID: 36870001 DOI: 10.1007/s10072-023-06684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
Parkinson's disease is a complex age-related progressive dopaminergic neurodegenerative disease consistently viewed as a disorder of movement and is characterized by its cardinal motor symptoms. While the motor symptoms and its clinical manifestations are attributed to the nigral dopaminergic neuronal death and basal ganglia dysfunction, studies have subsequently proven that the non-dopaminergic neurons in various brain regions are also additionally involved with the disease progression. Thus, it is now well accepted that the involvement of various neurotransmitters and other ligands accounts for the non-motor symptoms (NMS) associated with the Parkinson's disease. Consequently, this has demonstrated to possess remarkable clinical concerns to the patients in terms of various disability, such impaired to compromised quality of life and increased risk of morbidity and mortality. Currently, available pharmacological, non-pharmacological, and surgical therapeutic strategies neither prevent, arrest, nor reverse the nigral dopaminergic neurodegeneration. Thus, there is an imminent medical necessity to increase patient's quality of life and survival, which in turn decreases the incidence and prevalence of the NMS. The current research article reviews the potential direct involvement of neurotrophin and its mimetics to target and modulate neurotrophin-mediated signal transduction pathways to enlighten a new and novel therapeutic strategy along with the pre-existing treatments for Parkinson's disease and other neurological/neurodegenerative disorders which are associated with the downregulation of neurotrophins.
Collapse
|
50
|
Corral Nieto Y, Yakhine-Diop SMS, Moreno-Cruz P, Manrique García L, Gabrielly Pereira A, Morales-García JA, Niso-Santano M, González-Polo RA, Uribe-Carretero E, Durand S, Maiuri MC, Paredes-Barquero M, Alegre-Cortés E, Canales-Cortés S, López de Munain A, Pérez-Tur J, Pérez-Castillo A, Kroemer G, Fuentes JM, Bravo-San Pedro JM. Changes in Liver Lipidomic Profile in G2019S- LRRK2 Mouse Model of Parkinson's Disease. Cells 2023; 12:cells12050806. [PMID: 36899942 PMCID: PMC10000529 DOI: 10.3390/cells12050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The identification of Parkinson's disease (PD) biomarkers has become a main goal for the diagnosis of this neurodegenerative disorder. PD has not only been intrinsically related to neurological problems, but also to a series of alterations in peripheral metabolism. The purpose of this study was to identify metabolic changes in the liver in mouse models of PD with the scope of finding new peripheral biomarkers for PD diagnosis. To achieve this goal, we used mass spectrometry technology to determine the complete metabolomic profile of liver and striatal tissue samples from WT mice, 6-hydroxydopamine-treated mice (idiopathic model) and mice affected by the G2019S-LRRK2 mutation in LRRK2/PARK8 gene (genetic model). This analysis revealed that the metabolism of carbohydrates, nucleotides and nucleosides was similarly altered in the liver from the two PD mouse models. However, long-chain fatty acids, phosphatidylcholine and other related lipid metabolites were only altered in hepatocytes from G2019S-LRRK2 mice. In summary, these results reveal specific differences, mainly in lipid metabolism, between idiopathic and genetic PD models in peripheral tissues and open up new possibilities to better understand the etiology of this neurological disorder.
Collapse
Affiliation(s)
- Yaiza Corral Nieto
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sokhna M. S. Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Paula Moreno-Cruz
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Manrique García
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Amanda Gabrielly Pereira
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José A. Morales-García
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Rosa A. González-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Maria Chiara Maiuri
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, OSAKIDETZA, 20014 San Sebastian, Spain
- Ilundain Foundation, 20018 San Sebastian, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, 20014 San Sebastián, Spain
| | - Jordi Pérez-Tur
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Biomedicina de Valencia-CSIC, Unidad de Genética Molecular, 46010 Valencia, Spain
- Unidad Mixta de Genética y Neurología, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ana Pérez-Castillo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hopital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
- Correspondence: (J.M.F.); (J.M.B.-S.P.)
| | - José M. Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Correspondence: (J.M.F.); (J.M.B.-S.P.)
| |
Collapse
|