1
|
Nicoletto G, Terreri M, Maurizio I, Ruggiero E, Cernilogar FM, Vaine CA, Cottini MV, Shcherbakova I, Penney EB, Gallina I, Monchaud D, Bragg DC, Schotta G, Richter SN. G-quadruplexes in an SVA retrotransposon cause aberrant TAF1 gene expression in X-linked dystonia parkinsonism. Nucleic Acids Res 2024; 52:11571-11586. [PMID: 39287133 DOI: 10.1093/nar/gkae797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that form in guanine (G)-rich genomic regions. X-linked dystonia parkinsonism (XDP) is an inherited neurodegenerative disease in which a SINE-VNTR-Alu (SVA) retrotransposon, characterised by amplification of a G-rich repeat, is inserted into the coding sequence of TAF1, a key partner of RNA polymerase II. XDP SVA alters TAF1 expression, but the cause of this outcome in XDP remains unknown. To assess whether G4s form in XDP SVA and affect TAF1 expression, we first characterised bioinformatically predicted XDP SVA G4s in vitro. We next showed that highly stable G4s can form and stop polymerase amplification at the SVA region from patient-derived fibroblasts and neural progenitor cells. Using chromatin immunoprecipitazion (ChIP) with an anti-G4 antibody coupled to sequencing or quantitative PCR, we showed that XDP SVA G4s are folded even when embedded in a chromatin context in patient-derived cells. Using the G4 ligands BRACO-19 and quarfloxin and total RNA-sequencing analysis, we showed that stabilisation of the XDP SVA G4s reduces TAF1 transcripts downstream and around the SVA, and increases upstream transcripts, while destabilisation using the G4 unfolder PhpC increases TAF1 transcripts. Our data indicate that G4 formation in the XDP SVA is a major cause of aberrant TAF1 expression, opening the way for the development of strategies to unfold G4s and potentially target the disease.
Collapse
Affiliation(s)
- Giulia Nicoletto
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Marianna Terreri
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Ilaria Maurizio
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Filippo M Cernilogar
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Christine A Vaine
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Maria Vittoria Cottini
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Irina Shcherbakova
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Ellen B Penney
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Irene Gallina
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne, ICMUB CNRS UMR6302, 9, Rue Alain Savary, 21078 Dijon, France
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig Maximilian University of Munich, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
- Microbiology and Virology Unit, Padua University Hospital, via Giustiniani 2, 35121 Padua, Italy
| |
Collapse
|
2
|
Crombie EM, Cleverley K, Timmers HTM, Fisher EMC. The roles of TAF1 in neuroscience and beyond. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240790. [PMID: 39323550 PMCID: PMC11423858 DOI: 10.1098/rsos.240790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
The transcriptional machinery is essential for gene expression and regulation; dysregulation of transcription can result in a range of pathologies, including neurodegeneration, cancer, developmental disorders and cardiovascular disease. A key component of RNA polymerase II-mediated transcription is the basal transcription factor IID, which is formed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), the largest of which is the TAF1 protein, encoded on the X chromosome (Xq13.1). TAF1 is dysregulated in X-linked dystonia-parkinsonism and congenital mutations in the gene are causative for neurodevelopmental phenotypes; TAF1 dysfunction is also associated with cardiac anomalies and cancer. However, how TAF1 contributes to pathology is unclear. Here, we highlight the key aspects of the TAF1 gene and protein function that may link transcriptional regulation with disorders of development, growth and adult-onset disorders of motor impairment. We highlight the need to experimentally investigate the full range of TAF1 messenger RNA variants and protein isoforms in human and mouse to aid our understanding of TAF1 biology. Furthermore, the X-linked nature of TAF1-related diseases adds complexity to understanding phenotypes. Overall, we shed light on the aspects of TAF1 biology that may contribute to disease and areas that could be addressed for future research and targeted therapeutics.
Collapse
Affiliation(s)
- Elisa M Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - H T Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ, Germany
- Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, Freiburg, 79106, Germany
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
3
|
Petrozziello T, Motlagh NJ, Monsanto RZB, Lei D, Murcar MG, Penney EB, Bragg DC, Fernandez-Cerado C, Legarda GP, Sy M, Muñoz E, Ang MC, Diesta CCE, Zhang C, Tanzi RE, Qureshi IA, Chen JW, Sadri-Vakili G. Targeting myeloperoxidase to reduce neuroinflammation in X-linked dystonia parkinsonism. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.25.24309481. [PMID: 38978657 PMCID: PMC11230314 DOI: 10.1101/2024.06.25.24309481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Although the genetic locus of X-linked dystonia parkinsonism (XDP), a neurodegenerative disease endemic in the Philippines, is well-characterized, the exact molecular mechanisms leading to neuronal loss are not yet fully understood. Recently, we demonstrated a significant increase in astrogliosis and microgliosis together with an increase in myeloperoxidase (MPO) levels in XDP post-mortem prefrontal cortex (PFC), suggesting a role for neuroinflammation in XDP pathogenesis. Here, we demonstrated a significant increase in MPO activity in XDP PFC using a novel specific MPO-activatable fluorescent agent (MAFA). Additionally, we demonstrated a significant increase in reactive oxygen species (ROS) in XDP-derived fibroblasts as well as in SH-SY5Y cells treated with post-mortem XDP PFC, further supporting a role for MPO in XDP. To determine whether increases in MPO activity were linked to increases in ROS, MPO content was immuno-depleted from XDP PFC [MPO(-)], which resulted in a significant decrease in ROS in SH-SY5Y cells. Consistently, the treatment with verdiperstat, a potent and selective MPO inhibitor, significantly decreased ROS in both XDP-derived fibroblasts and XDP PFC-treated SH-SY5Y cells. Collectively, our results suggest that MPO inhibition mitigates oxidative stress and may provide a novel therapeutic strategy for XDP treatment. Highlights MPO activity is increased in XDP post-mortem prefrontal cortex.MPO activity is increased in cellular models of XDP.MPO increases reactive oxygen species (ROS) in vitro.Inhibiting MPO mitigates ROS in XDP.The MPO inhibitor, verdiperstat, dampens ROS suggesting a potential therapeutic strategy for XDP.
Collapse
|
4
|
Alonto AHD, Jamora RDG. A scoping review on the diagnosis and treatment of X-linked dystonia-parkinsonism. Parkinsonism Relat Disord 2024; 119:105949. [PMID: 38072720 DOI: 10.1016/j.parkreldis.2023.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/21/2024]
Abstract
INTRODUCTION X-linked dystonia-parkinsonism (XDP) is a progressive neurodegenerative disorder that has been studied well in recent years. OBJECTIVES This scoping review aimed to describe the current state of knowledge about the diagnosis and treatment of XDP, to provide clinicians with a concise and up-to-date overview. METHODS We conducted a scoping review of pertinent literature on the diagnosis and treatment of XDP using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS There were 24 articles on diagnostic methods and 20 articles on therapeutic interventions for XDP, with 7 review articles describing both. The detection of the SVA retrotransposon insertion within the TAF1 gene is confirmatory for XDP. Oral medications are marginally effective. Chemodenervation with botulinum toxin is an effective treatment. Pallidal deep brain stimulation (DBS) has been shown to provide significant improvement in the dystonia and quality of life of patients with XDP for a longer time. A less invasive surgical option is the transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS), which has shown promising effects with the limited number of case reports available. CONCLUSION XDP is a geneti disorder characterized by striatal symptoms and pathology on neuroimaging. No effective oral medications are available for the management of XDP. The use of botulinum toxin is limited by its cost and duration of effects. As of now, pallidal DBS is deemed to be the best option. Another promising option is the tcMRgFUS but still has limited studies on its safety and efficacy in XDP.
Collapse
Affiliation(s)
- Anisah Hayaminnah D Alonto
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.
| | - Roland Dominic G Jamora
- Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines; Institute for Neurosciences, St. Luke's Medical Center, Quezon City & Global City, Philippines.
| |
Collapse
|
5
|
Tshilenge KT, Bons J, Aguirre CG, Geronimo-Olvera C, Shah S, Rose J, Gerencser AA, Mak SK, Ehrlich ME, Bragg DC, Schilling B, Ellerby LM. Proteomic analysis of X-linked dystonia parkinsonism disease striatal neurons reveals altered RNA metabolism and splicing. Neurobiol Dis 2024; 190:106367. [PMID: 38042508 PMCID: PMC11103251 DOI: 10.1016/j.nbd.2023.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.
Collapse
Affiliation(s)
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Carlos Galicia Aguirre
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | | | - Samah Shah
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Jacob Rose
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Akos A Gerencser
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Sally K Mak
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, USA
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| |
Collapse
|
6
|
Wu MC, Chang YY, Lan MY, Chen YF, Tai CH, Chen SJ, Lin CH. Blood neurofilament light chain as a surrogate marker for dystonia. Eur J Neurol 2023; 30:3098-3104. [PMID: 37422850 DOI: 10.1111/ene.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Dystonia is a heterogeneous movement disorder, and it remains unclear whether neurodegeneration is involved. Neurofilament light chain (NfL) is a biosignature of neurodegeneration. We aimed to investigate whether plasma NfL levels were elevated and associated with disease severity in patients with dystonia. METHOD We enrolled 231 unrelated dystonia patients (isolated dystonia n = 203; combined dystonia n = 28) and 54 healthy controls from movement disorder clinics. Clinical severity was evaluated using the Fahn Marsden Dystonia Rating Scale, the Unified Dystonia Rating Scale, and the Global Dystonia Rating Scale. Blood NfL levels were measured by single-molecule array. RESULTS Plasma NfL levels were significantly higher in those with generalized dystonia compared to those with focal dystonia (20.1 ± 8.8 vs. 11.7 ± 7.2 pg/mL; p = 0.01) or controls (p < 0.01), while the level was comparable between the focal dystonia group and controls (p = 0.08). Furthermore, the dystonia combined with parkinsonism group had higher NfL levels than the isolated dystonia group (17.4 ± 6.2 vs. 13.5 ± 7.5 pg/mL; p = 0.04). Notably, whole-exome sequencing was performed in 79 patients and two patients were identified as having likely pathogenic variants: one had a heterozygous c.122G>A (p.R41H) variant in THAP1 (DYT6) and the other carried a c.1825G>A (p.D609N) substitution in ATP1A3 (DYT12). No significant correlation was found between plasma NfL levels and dystonia rating scores. CONCLUSION Plasma NfL levels are elevated in patients with generalized dystonia and dystonia combined with parkinsonism, suggesting that neurodegeneration is involved in the disease process of this subgroup of patients.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ying-Fa Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Leid J, Gray R, Rakita P, Koenig AL, Tripathy R, Fitzpatrick JAJ, Kaufman C, Solnica-Krezel L, Lavine KJ. Deletion of taf1 and taf5 in zebrafish capitulate cardiac and craniofacial abnormalities associated with TAFopathies through perturbations in metabolism. Biol Open 2023; 12:bio059905. [PMID: 37746814 PMCID: PMC10354717 DOI: 10.1242/bio.059905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 09/26/2023] Open
Abstract
Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.
Collapse
Affiliation(s)
- Jamison Leid
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Gray
- Departments of Nutritional Sciences, Dell Pediatrics Research Institute, University of Texas at Austin, Austin, TX 78723, USA
| | - Peter Rakita
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew L. Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohan Tripathy
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A. J. Fitzpatrick
- Departments of Neuroscience and Cell Biology, Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles Kaufman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Rufino-Ramos D, Leandro K, Perdigão PRL, O'Brien K, Pinto MM, Santana MM, van Solinge TS, Mahjoum S, Breakefield XO, Breyne K, Pereira de Almeida L. Extracellular communication between brain cells through functional transfer of Cre mRNA mediated by extracellular vesicles. Mol Ther 2023; 31:2220-2239. [PMID: 37194237 PMCID: PMC10362460 DOI: 10.1016/j.ymthe.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo over time. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain, exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEV transfer at physiological levels, which will shed light on the role of bdEVs in neural communication within the brain and beyond.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kevin Leandro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Pedro R L Perdigão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Maria Manuel Pinto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Magda M Santana
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Thomas S van Solinge
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Maalouf KE, Vaine CA, Frederick DM, Yoshinaga A, Obuchi W, Mahjoum S, Nieland L, Al Ali J, Bragg DC, Breakefield XO, Breyne K. Tracking human neurologic disease status in mouse brain/plasma using reporter-tagged, EV-associated biomarkers. Mol Ther 2023; 31:2206-2219. [PMID: 37198883 PMCID: PMC10362415 DOI: 10.1016/j.ymthe.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease caused by a retrotransposon insertion in intron 32 of the TAF1 gene. This insertion causes mis-splicing of intron 32 (TAF1-32i) and reduced TAF1 levels. TAF1-32i transcript is unique to XDP patient cells and can be detected in their extracellular vesicles (EVs). We engrafted patient and control iPSC-derived neural progenitor cells (hNPCs) into the striatum of mice. To track TAF1-32i transcript spread by EVs, we transduced the brain-implanted hNPCs with a lentiviral construct called ENoMi, which consists of a re-engineered tetraspanin scaffold tagged with bioluminescent and fluorescent reporter proteins under an EF-1α promoter. Alongside this improved detection in ENoMi-hNPCs-derived EVs, their surface allows specific immunocapture purification, thereby facilitating TAF1-32i analysis. Using this ENoMi-labeling method, TAF1-32i was demonstrated in EVs released from XDP hNPCs implanted in mouse brains. Post-implantation of ENoMi-XDP hNPCs, TAF1-32i transcript was retrieved in EVs isolated from mouse brain and blood, and levels increased over time in plasma. We compared and combined our EV isolation technique to analyze XDP-derived TAF1-32i with other techniques, including size exclusion chromatography and Exodisc. Overall, our study demonstrates the successful engraftment of XDP patient-derived hNPCs in mice as a tool for monitoring disease markers with EVs.
Collapse
Affiliation(s)
- Katia E Maalouf
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Christine A Vaine
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Dawn M Frederick
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Akiko Yoshinaga
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wataru Obuchi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shadi Mahjoum
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lisa Nieland
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jamal Al Ali
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA; Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA.
| | - Koen Breyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Goss DM, Vasilescu SA, Sacks G, Gardner DK, Warkiani ME. Microfluidics facilitating the use of small extracellular vesicles in innovative approaches to male infertility. Nat Rev Urol 2023; 20:66-95. [PMID: 36348030 DOI: 10.1038/s41585-022-00660-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Sperm are transcriptionally and translationally quiescent and, therefore, rely on the seminal plasma microenvironment for function, survival and fertilization of the oocyte in the oviduct. The male reproductive system influences sperm function via the binding and fusion of secreted epididymal (epididymosomes) and prostatic (prostasomes) small extracellular vesicles (S-EVs) that facilitate the transfer of proteins, lipids and nucleic acids to sperm. Seminal plasma S-EVs have important roles in sperm maturation, immune and oxidative stress protection, capacitation, fertilization and endometrial implantation and receptivity. Supplementing asthenozoospermic samples with normospermic-derived S-EVs can improve sperm motility and S-EV microRNAs can be used to predict non-obstructive azoospermia. Thus, S-EV influence on sperm physiology might have both therapeutic and diagnostic potential; however, the isolation of pure populations of S-EVs from bodily fluids with current conventional methods presents a substantial hurdle. Many conventional techniques lack accuracy, effectiveness, and practicality; yet microfluidic technology has the potential to simplify and improve S-EV isolation and detection.
Collapse
Affiliation(s)
- Dale M Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- IVF Australia, Sydney, NSW, Australia
| | - Steven A Vasilescu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- NeoGenix Biosciences pty ltd, Sydney, NSW, Australia
| | - Gavin Sacks
- IVF Australia, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - David K Gardner
- Melbourne IVF, East Melbourne, VIC, Australia.
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
X-linked dystonia parkinsonism: epidemiology, genetics, clinical features, diagnosis, and treatment. Acta Neurol Belg 2023; 123:45-55. [PMID: 36418540 DOI: 10.1007/s13760-022-02144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
X-linked dystonia parkinsonism (XDP) is a rare X-linked recessive degenerative movement disorder that only affects Filipino descent, predominantly males. Its underlying cause is associated with the genetic alterations in the TAF1/DYT3 multiple transcription system. SINE-VNTR-Alu (SVA) retrotransposon insertion was suggested to be the responsible genetic mutation. Clinically, it initially presents as focal dystonia and generalizes within years. Parkinsonism arises years later and coexists with dystonia. Nonmotor symptoms like cognitive impairment and mood disorders are also common among XDP patients. XDP diagnosis relies on clinical history and physical examination. On imaging, abnormalities of the striatum, such as atrophy, are widely seen and can explain the clinical presentations with a three-model pathway of the striatum. Treatments aim for symptomatic relief of dystonia and parkinsonism and to prevent complications. Oral medications, chemo-denervation, and surgery are used in XDP patients. This review summarizes the currently important information regarding XDP, providing a synoptic overview and understanding of XDP for future studies.
Collapse
|
12
|
Rufino-Ramos D, Leandro K, Perdigão PR, O’Brien K, Pinto MM, Santana MM, van Solinge TS, Mahjoum S, Breakefield XO, Breyne K, de Almeida LP. Extracellular communication between brain cells through functional transfer of Cre mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.525937. [PMID: 36811091 PMCID: PMC9942248 DOI: 10.1101/2023.01.29.525937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo overtime. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEVs transfer at physiological levels which will shed light on the role of bdEVs in neural communication within the brain and beyond.
Collapse
Affiliation(s)
- David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB – Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Portugal
| | - Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB – Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Portugal
| | - Pedro R.L. Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB – Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Killian O’Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Maria Manuel Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB – Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Magda M. Santana
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB – Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Thomas S van Solinge
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB – Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Portugal
| |
Collapse
|
13
|
D'Ignazio L, Jacomini RS, Qamar B, Benjamin KJM, Arora R, Sawada T, Evans TA, Diffenderfer KE, Pankonin AR, Hendriks WT, Hyde TM, Kleinman JE, Weinberger DR, Bragg DC, Paquola ACM, Erwin JA. Variation in TAF1 expression in female carrier induced pluripotent stem cells and human brain ontogeny has implications for adult neostriatum vulnerability in X-linked Dystonia Parkinsonism. eNeuro 2022; 9:ENEURO.0129-22.2022. [PMID: 35868859 PMCID: PMC9428949 DOI: 10.1523/eneuro.0129-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/14/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. The mechanisms underlying regional differences in degeneration and adult onset are unknown. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due, in part, to a partial loss of TAF1 function. A disease-specific SINE-VNTR-Alu (SVA) retrotransposon insertion occurs within intron 32 of TAF1, a subunit of TFIID involved in transcription initiation. While all XDP males are usually clinically affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight iPSC lines from three XDP female carrier individuals for X chromosome inactivation status and identified clonal lines that express either the wild-type X or XDP haplotype. Furthermore, we characterized XDP-relevant transcript expression in neurotypical humans, and found that SVA-F expression decreases after 30 years of age in the brain and that TAF1 is decreased in most female samples. Uniquely in the caudate nucleus, TAF1 expression is not sexually dimorphic and decreased after adolescence. These findings indicate that regional-, age- and sex-specific mechanisms regulate TAF1, highlighting the importance of disease-relevant models and postmortem tissue. We propose that the decreased TAF1 expression in the adult caudate may synergize with the XDP-specific partial loss of TAF1 function in patients, thereby passing a minimum threshold of TAF1 function, and triggering degeneration in the neostriatum.Significance StatementXDP is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due to a partial loss of TAF1 function. While all XDP males are usually affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight stem cell lines from XDP female carrier individuals. Furthermore, we found that, uniquely in the caudate nucleus, TAF1 expression decreases after adolescence in healthy humans. We hypothesize that the decrease of TAF1 after adolescence in human caudate, in general, may underlie the vulnerability of the adult neostriatum in XDP.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ricardo S Jacomini
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bareera Qamar
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ria Arora
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Aimee R Pankonin
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - William T Hendriks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University Baltimore, MD 21205, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Apua C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Erwin
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Campion LN, Mejia Maza A, Yadav R, Penney EB, Murcar MG, Correia K, Gillis T, Fernandez-Cerado C, Velasco-Andrada MS, Legarda GP, Ganza-Bautista NG, Lagarde JBB, Acuña PJ, Multhaupt-Buell T, Aldykiewicz G, Supnet ML, De Guzman JK, Go C, Sharma N, Munoz EL, Ang MC, Diesta CCE, Bragg DC, Ozelius LJ, Wheeler VC. Tissue-specific and repeat length-dependent somatic instability of the X-linked dystonia parkinsonism-associated CCCTCT repeat. Acta Neuropathol Commun 2022; 10:49. [PMID: 35395816 PMCID: PMC8994295 DOI: 10.1186/s40478-022-01349-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a progressive adult-onset neurodegenerative disorder caused by insertion of a SINE-VNTR-Alu (SVA) retrotransposon in the TAF1 gene. The SVA retrotransposon contains a CCCTCT hexameric repeat tract of variable length, whose length is inversely correlated with age at onset. This places XDP in a broader class of repeat expansion diseases, characterized by the instability of their causative repeat mutations. Here, we observe similar inverse correlations between CCCTCT repeat length with age at onset and age at death and no obvious correlation with disease duration. To gain insight into repeat instability in XDP we performed comprehensive quantitative analyses of somatic instability of the XDP CCCTCT repeat in blood and in seventeen brain regions from affected males. Our findings reveal repeat length-dependent and expansion-based instability of the XDP CCCTCT repeat, with greater levels of expansion in brain than in blood. The brain exhibits regional-specific patterns of instability that are broadly similar across individuals, with cerebellum exhibiting low instability and cortical regions exhibiting relatively high instability. The spectrum of somatic instability in the brain includes a high proportion of moderate repeat length changes of up to 5 repeats, as well as expansions of ~ 20- > 100 repeats and contractions of ~ 20–40 repeats at lower frequencies. Comparison with HTT CAG repeat instability in postmortem Huntington’s disease brains reveals similar brain region-specific profiles, indicating common trans-acting factors that contribute to the instability of both repeats. Analyses in XDP brains of expansion of a different SVA-associated CCCTCT located in the LIPG gene, and not known to be disease-associated, reveals repeat length-dependent expansion at overall lower levels relative to the XDP CCCTCT repeat, suggesting that expansion propensity may be modified by local chromatin structure. Together, the data support a role for repeat length-dependent somatic expansion in the process(es) driving the onset of XDP and prompt further investigation into repeat dynamics and the relationship to disease.
Collapse
|
15
|
Pozojevic J, Algodon SM, Cruz JN, Trinh J, Brüggemann N, Laß J, Grütz K, Schaake S, Tse R, Yumiceba V, Kruse N, Schulz K, Sreenivasan VKA, Rosales RL, Jamora RDG, Diesta CCE, Matschke J, Glatzel M, Seibler P, Händler K, Rakovic A, Kirchner H, Spielmann M, Kaiser FJ, Klein C, Westenberger A. Transcriptional Alterations in X-Linked Dystonia–Parkinsonism Caused by the SVA Retrotransposon. Int J Mol Sci 2022; 23:ijms23042231. [PMID: 35216353 PMCID: PMC8875906 DOI: 10.3390/ijms23042231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
X-linked dystonia–parkinsonism (XDP) is a severe neurodegenerative disorder that manifests as adult-onset dystonia combined with parkinsonism. A SINE-VNTR-Alu (SVA) retrotransposon inserted in an intron of the TAF1 gene reduces its expression and alters splicing in XDP patient-derived cells. As a consequence, increased levels of the TAF1 intron retention transcript TAF1-32i can be found in XDP cells as compared to healthy controls. Here, we investigate the sequence of the deep intronic region included in this transcript and show that it is also present in cells from healthy individuals, albeit in lower amounts than in XDP cells, and that it undergoes degradation by nonsense-mediated mRNA decay. Furthermore, we investigate epigenetic marks (e.g., DNA methylation and histone modifications) present in this intronic region and the spanning sequence. Finally, we show that the SVA evinces regulatory potential, as demonstrated by its ability to repress the TAF1 promoter in vitro. Our results enable a better understanding of the disease mechanisms underlying XDP and transcriptional alterations caused by SVA retrotransposons.
Collapse
Affiliation(s)
- Jelena Pozojevic
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany; (V.Y.); (N.K.); (K.S.); (V.K.A.S.); (K.H.); (H.K.); (M.S.)
| | - Shela Marie Algodon
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Joseph Neos Cruz
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
- Department of Neurology, University Hospital Schleswig Holstein, 23538 Lübeck, Germany
| | - Joshua Laß
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Karen Grütz
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Ronnie Tse
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Veronica Yumiceba
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany; (V.Y.); (N.K.); (K.S.); (V.K.A.S.); (K.H.); (H.K.); (M.S.)
| | - Nathalie Kruse
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany; (V.Y.); (N.K.); (K.S.); (V.K.A.S.); (K.H.); (H.K.); (M.S.)
| | - Kristin Schulz
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany; (V.Y.); (N.K.); (K.S.); (V.K.A.S.); (K.H.); (H.K.); (M.S.)
| | - Varun K. A. Sreenivasan
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany; (V.Y.); (N.K.); (K.S.); (V.K.A.S.); (K.H.); (H.K.); (M.S.)
| | - Raymond L. Rosales
- The Hospital Neuroscience Institute, Department of Neurology and Psychiatry and The FMS-Research Center for Health Sciences, University of Santo Tomas, Manila 1008, Philippines;
| | - Roland Dominic G. Jamora
- Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| | - Cid Czarina E. Diesta
- Department of Neurosciences, Movement Disorders Clinic, Makati Medical Center, Makati City 1229, Philippines;
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.M.); (M.G.)
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.M.); (M.G.)
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Kristian Händler
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany; (V.Y.); (N.K.); (K.S.); (V.K.A.S.); (K.H.); (H.K.); (M.S.)
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
| | - Henriette Kirchner
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany; (V.Y.); (N.K.); (K.S.); (V.K.A.S.); (K.H.); (H.K.); (M.S.)
| | - Malte Spielmann
- Institute of Human Genetics, University of Lübeck, 23538 Lübeck, Germany; (V.Y.); (N.K.); (K.S.); (V.K.A.S.); (K.H.); (H.K.); (M.S.)
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23538 Lübeck, Germany
| | - Frank J. Kaiser
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45147 Essen, Germany;
- Essener Zentrum für Seltene Erkrankungen, Universitätsmedizin Essen, 45147 Essen, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
- Correspondence: (C.K.); (A.W.)
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (S.M.A.); (J.N.C.); (J.T.); (N.B.); (J.L.); (K.G.); (S.S.); (R.T.); (P.S.); (A.R.)
- Correspondence: (C.K.); (A.W.)
| |
Collapse
|
16
|
Rufino-Ramos D, Lule S, Mahjoum S, Ughetto S, Cristopher Bragg D, Pereira de Almeida L, Breakefield XO, Breyne K. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 2022; 281:121366. [PMID: 35033904 PMCID: PMC8886823 DOI: 10.1016/j.biomaterials.2022.121366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sevda Lule
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Shadi Mahjoum
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Stefano Ughetto
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - D Cristopher Bragg
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Xandra O Breakefield
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Koen Breyne
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
17
|
Pozojevic J, Cruz JN, Westenberger A. X-linked dystonia-parkinsonism: over and above a repeat disorder. MED GENET-BERLIN 2021; 33:319-324. [PMID: 38835428 PMCID: PMC11006257 DOI: 10.1515/medgen-2021-2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/24/2021] [Indexed: 06/06/2024]
Abstract
X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative movement disorder, caused by a founder retrotransposon insertion in an intron of the TAF1 gene. This insertion contains a polymorphic hexanucleotide repeat (CCCTCT)n, the length of which inversely correlates with the age at disease onset (AAO) and other clinical parameters, aligning XDP with repeat expansion disorders. Nevertheless, many other pathogenic mechanisms are conceivably at play in XDP, indicating that in contrast to other repeat disorders, the (CCCTCT)n repeat may not be the actual (or only) disease cause. Here, we summarize and discuss genetic and molecular aspects of XDP, highlighting the role of the hexanucleotide repeat in age-related disease penetrance and expressivity.
Collapse
Affiliation(s)
- Jelena Pozojevic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Joseph Neos Cruz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Disease Molecular Biology and Epigenetics Laboratory, University of the Philippines Diliman, Quezon City, Philippines
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|