1
|
Nordengen K, Cappelletti C, Bahrami S, Frei O, Pihlstrøm L, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Andreassen OA, Toft M. Pleiotropy with sex-specific traits reveals genetic aspects of sex differences in Parkinson's disease. Brain 2024; 147:858-870. [PMID: 37671566 PMCID: PMC10907091 DOI: 10.1093/brain/awad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease is an age-related neurodegenerative disorder with a higher incidence in males than females. The causes for this sex difference are unknown. Genome-wide association studies (GWAS) have identified 90 Parkinson's disease risk loci, but the genetic studies have not found sex-specific differences in allele frequency on autosomal chromosomes or sex chromosomes. Genetic variants, however, could exert sex-specific effects on gene function and regulation of gene expression. To identify genetic loci that might have sex-specific effects, we studied pleiotropy between Parkinson's disease and sex-specific traits. Summary statistics from GWASs were acquired from large-scale consortia for Parkinson's disease (n cases = 13 708; n controls = 95 282), age at menarche (n = 368 888 females) and age at menopause (n = 69 360 females). We applied the conditional/conjunctional false discovery rate (FDR) method to identify shared loci between Parkinson's disease and these sex-specific traits. Next, we investigated sex-specific gene expression differences in the superior frontal cortex of both neuropathologically healthy individuals and Parkinson's disease patients (n cases = 61; n controls = 23). To provide biological insights to the genetic pleiotropy, we performed sex-specific expression quantitative trait locus (eQTL) analysis and sex-specific age-related differential expression analysis for genes mapped to Parkinson's disease risk loci. Through conditional/conjunctional FDR analysis we found 11 loci shared between Parkinson's disease and the sex-specific traits age at menarche and age at menopause. Gene-set and pathway analysis of the genes mapped to these loci highlighted the importance of the immune response in determining an increased disease incidence in the male population. Moreover, we highlighted a total of nine genes whose expression or age-related expression in the human brain is influenced by genetic variants in a sex-specific manner. With these analyses we demonstrated that the lack of clear sex-specific differences in allele frequencies for Parkinson's disease loci does not exclude a genetic contribution to differences in disease incidence. Moreover, further studies are needed to elucidate the role that the candidate genes identified here could have in determining a higher incidence of Parkinson's disease in the male population.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Chiara Cappelletti
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet—Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, 0424 Oslo, Norway
| | - Shahram Bahrami
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Oleksandr Frei
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Hanneke Geut
- Section of Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Section of Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 Amsterdam, The Netherlands
| | - Ole A Andreassen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
2
|
Grotewold N, Albin RL. Update: Descriptive epidemiology of Parkinson disease. Parkinsonism Relat Disord 2024; 120:106000. [PMID: 38233324 PMCID: PMC10922566 DOI: 10.1016/j.parkreldis.2024.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
We review the descriptive epidemiology of Parkinson disease (PD). PD is a prevalent neurologic disorder in high Socio-Demographic Index (SDI) nations with rising prevalence in low and middle SDI nations. PD became a prevalent disorder in high SDI nations during the 20th century. Population growth, population aging, and increased disease duration are major drivers of rising PD prevalence. Exposure to industrial toxicants may also be a contributor to rising PD prevalence. PD is an age-related disorder with incidence likely peaking in the 8th decade of life and prevalence in the 9th decade of life. PD is notable for significant sex difference in PD risk with greater risk in men. There may be ancestral differences in PD prevalence and risk. PD is associated with moderately increased mortality though this may be underestimated. Despite significant research, there is considerable uncertainty about basic features of PD epidemiology.
Collapse
Affiliation(s)
- Nikolas Grotewold
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger L Albin
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; GRECC, VAAAHS, Ann Arbor, MI, 48105, USA; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, 48109, USA; University of Michigan Parkinson's Foundation Research Center of Excellence, USA.
| |
Collapse
|
3
|
Guo N, Zhang L, He N, Guo H, Liu J. The causal effects of age at menarche and age at menopause on sepsis: A two-sample Mendelian randomization analysis. PLoS One 2024; 19:e0293540. [PMID: 38324609 PMCID: PMC10849219 DOI: 10.1371/journal.pone.0293540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/15/2023] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVES To determine whether the age at menarche (AAM) and the age at menopause (ANM) are causally related to the development of sepsis. METHODS We performed a two-sample Mendelian randomization (MR) analysis by utilizing summary statistics from genome-wide association study (GWAS) datasets for both the exposure and outcome variables. Single nucleotide polymorphisms (SNPs) that exhibited significant associations with AAM and ANM were chosen as instrumental variables to estimate the causal effects on sepsis. Our study employed a variety of methods, including MR-Egger regression, weighted median estimation, inverse variance weighting, a simple model, and a weighted model. Odds ratios (ORs) along with their corresponding 95% confidence intervals (CIs) were used as the primary indicators for assessing causality. Furthermore, we conducted sensitivity analyses to explore the presence of genetic heterogeneity and validate the robustness of the tools employed. RESULT Our analysis revealed a significant negative causal relationship between AAM and the risk of sepsis (IVW: OR = 0.870, 95% CI = 0.793-0.955, P = 0.003). However, our Mendelian randomization (MR) analysis did not yield sufficient evidence to support a causal link between ANM and sepsis (IVW: OR = 0.987, 95% CI = 0.971-1.004, P = 0.129). CONCLUSIONS Our findings suggest that an earlier AAM may be associated with an increased risk of sepsis. However, we did not find sufficient evidence to support a causal relationship between ANM and sepsis.
Collapse
Affiliation(s)
- Na Guo
- The Fist Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Lu Zhang
- The Fist Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Nannan He
- The Fist Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Hong Guo
- Department of Intensive Care Unit, The First Hospital of Lanzhou University, Lan Zhou, Gansu Province, China
| | - Jian Liu
- The Fist Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
- Department of Intensive Care Unit, Gansu Provincial Maternity and Child Health Hospital/Gansu Provincial General Hospital, Lan Zhou, Gansu Province, China
| |
Collapse
|
4
|
Bourque M, Morissette M, Di Paolo T. Neuroactive steroids and Parkinson's disease: Review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105479. [PMID: 38007170 DOI: 10.1016/j.neubiorev.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada; Faculté de pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
5
|
Pedrosa MA, Labandeira CM, Lago-Baameiro N, Valenzuela R, Pardo M, Labandeira-Garcia JL, Rodriguez-Perez AI. Extracellular Vesicles and Their Renin-Angiotensin Cargo as a Link between Metabolic Syndrome and Parkinson's Disease. Antioxidants (Basel) 2023; 12:2045. [PMID: 38136165 PMCID: PMC10741149 DOI: 10.3390/antiox12122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Several studies showed an association between metabolic syndrome (MetS) and Parkinson's disease (PD). The linking mechanisms remain unclear. MetS promotes low-grade peripheral oxidative stress and inflammation and dysregulation of the adipose renin-angiotensin system (RAS). Interestingly, brain RAS dysregulation is involved in the progression of dopaminergic degeneration and PD. Circulating extracellular vesicles (EVs) from MetS fat tissue can cross the brain-blood barrier and may act as linking signals. We isolated and characterized EVs from MetS and control rats and analyzed their mRNA and protein cargo using RT-PCR and the ExoView R200 platform, respectively. Furthermore, cultures of the N27 dopaminergic cell line and the C6 astrocytic cell line were treated with EVs from MetS rats. EVs were highly increased in MetS rat serum, which was inhibited by treatment of the rats with the angiotensin type-1-receptor blocker candesartan. Furthermore, EVs from MetS rats showed increased pro-oxidative/pro-inflammatory and decreased anti-oxidative/anti-inflammatory RAS components, which were inhibited in candesartan-treated MetS rats. In cultures, EVs from MetS rats increased N27 cell death and modulated C6 cell function, upregulating markers of neuroinflammation and oxidative stress, which were inhibited by the pre-treatment of cultures with candesartan. The results from rat models suggest EVs and their RAS cargo as a mechanism linking Mets and PD.
Collapse
Affiliation(s)
- Maria A. Pedrosa
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.P.); (R.V.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | | | - Nerea Lago-Baameiro
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, 15706 Santiago de Compostela, Spain; (N.L.-B.); (M.P.)
| | - Rita Valenzuela
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.P.); (R.V.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Maria Pardo
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, 15706 Santiago de Compostela, Spain; (N.L.-B.); (M.P.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.P.); (R.V.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Ana I. Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.A.P.); (R.V.)
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
6
|
Zhang X, Huangfu Z, Wang S. Review of mendelian randomization studies on age at natural menopause. Front Endocrinol (Lausanne) 2023; 14:1234324. [PMID: 37766689 PMCID: PMC10520463 DOI: 10.3389/fendo.2023.1234324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Menopause marks the end of the reproductive phase of life. Based on epidemiological studies, abnormal age at natural menopause (ANM) is thought to contribute to a number of adverse outcomes, such as osteoporosis, cardiovascular disease, and cancer. However, the causality of these associations remains unclear. A powerful epidemiological method known as Mendelian randomization (MR) can be used to clarify the causality between ANM and other diseases or traits. The present review describes MR studies that included ANM as an exposure, outcome and mediator. The findings of MR analyses on ANM have revealed that higher body mass index, poor educational level, early age at menarche, early age at first live birth, early age at first sexual intercourse, and autoimmune thyroid disease appear to be involved in early ANM etiology. The etiology of late ANM appears to be influenced by higher free thyroxine 4 and methylene tetrahydrofolate reductase gene mutations. Furthermore, early ANM has been found to be causally associated with an increased risk of osteoporosis, fracture, type 2 diabetes mellitus, glycosylated hemoglobin, and the homeostasis model of insulin resistance level. In addition, late ANM has been found to be causally associated with an increased systolic blood pressure, higher risk of breast cancer, endometrial cancer, endometrioid ovarian carcinoma, lung cancer, longevity, airflow obstruction, and lower risk of Parkinson's disease. ANM is also a mediator for breast cancer caused by birth weight and childhood body size. However, due to the different instrumental variables used, some results of studies are inconsistent. Future studies with more valid genetic variants are needed for traits with discrepancies between MRs or between MR and other types of epidemiological studies.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Huangfu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Kusters CDJ, Paul KC, Romero T, Sinsheimer JS, Ritz BR. Among men, androgens are associated with a decrease in Alzheimer's disease risk. Alzheimers Dement 2023; 19:3826-3834. [PMID: 36938850 PMCID: PMC10509321 DOI: 10.1002/alz.13013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/21/2023]
Abstract
INTRODUCTION Increased levels of sex hormones have been hypothesized to decrease Alzheimer's disease (AD) risk. We assessed the association between sex steroid hormones with AD using a Mendelian randomization (MR) approach. METHODS An inverse-variance weighting (IVW) MR analysis was performed using effect estimates from external genome-wide association study (GWAS) summary statistics. We included independent variants (linkage disequilibrium R2 < 0.001) and a p-value threshold of 5 × 10-8 . RESULTS An increase in androgens was associated with a decreased AD risk among men: testosterone (odds ratio [OR]: 0.53; 95% confidence interval [CI]: 0.32-0.88; p-value: 0.01; false discovery rate [FDR] p-value: 0.03); dehydroepiandrosterone sulfate (DHEAS; OR: 0.56; 95% CI: 0.38-0.85; p-value: 0.01; FDR p-value: 0.03); and androsterone sulfate (OR: 0.69; 95% CI: 0.46-1.02; p-value: 0.06; FDR p-value: 0.10). There was no association between sex steroid hormones and AD among women, although analysis for estradiol had limited statistical power. DISCUSSION A higher concentration of androgens was associated with a decreased risk of AD among men of European ancestry, suggesting that androgens among men might be neuroprotective and could potentially prevent or delay an AD diagnosis. HIGHLIGHTS Sex hormones are hypothesized to play a role in developing Alzheimer's disease (AD). The effect of sex hormones on AD was assessed using Mendelian randomization (MR) analysis. Among women, genetically determined effects of sex hormones were limited or null. Among men, a higher concentration of androgens decreased AD risk. This study suggests a causal relationship between androgens and AD among men.
Collapse
Affiliation(s)
- Cynthia D J Kusters
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, California, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Tahmineh Romero
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Janet S Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, California, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, California, USA
- Department of Computational Medicine, David Geffen School of Medicine, Los Angeles, California, USA
| | - Beate R Ritz
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
- Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, California, USA
| |
Collapse
|
8
|
Leal TP, Rao SC, French-Kwawu JN, Gouveia MH, Borda V, Bandres-Ciga S, Inca-Martinez M, Mason EA, Horimoto AR, Loesch DP, Sarihan EI, Cornejo-Olivas MR, Torres LE, Mazzetti-Soler PE, Cosentino C, Sarapura-Castro EH, Rivera-Valdivia A, Medina AC, Dieguez EM, Raggio VE, Lescano A, Tumas V, Borges V, Ferraz HB, Rieder CR, Schuh AS, Santos-Lobato BL, Velez-Pardo C, Jimenez-Del-Rio M, Lopera F, Moreno S, Chana-Cuevas P, Fernandez W, Arboleda G, Arboleda H, Bustos CEA, Yearout D, Lima-Costa MF, Tarazona-Santos E, Zabetian CP, Thornton TA, O’Connor TD, Mata IF. X-Chromosome Association Study in Latin American Cohorts Identifies New Loci in Parkinson's Disease. Mov Disord 2023; 38:1625-1635. [PMID: 37469269 PMCID: PMC10524402 DOI: 10.1002/mds.29508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Sex differences in Parkinson's disease (PD) risk are well-known. However, the role of sex chromosomes in the development and progression of PD is still unclear. OBJECTIVE The objective of this study was to perform the first X-chromosome-wide association study for PD risk in a Latin American cohort. METHODS We used data from three admixed cohorts: (1) Latin American Research consortium on the Genetics of Parkinson's Disease (n = 1504) as discover cohort, and (2) Latino cohort from International Parkinson Disease Genomics Consortium (n = 155) and (3) Bambui Aging cohort (n = 1442) as replication cohorts. We also developed an X-chromosome framework specifically designed for admixed populations. RESULTS We identified eight linkage disequilibrium regions associated with PD. We replicated one of these regions (top variant rs525496; discovery odds ratio [95% confidence interval]: 0.60 [0.478-0.77], P = 3.13 × 10-5 replication odds ratio: 0.60 [0.37-0.98], P = 0.04). rs5525496 is associated with multiple expression quantitative trait loci in brain and non-brain tissues, including RAB9B, H2BFM, TSMB15B, and GLRA4, but colocalization analysis suggests that rs5525496 may not mediate risk by expression of these genes. We also replicated a previous X-chromosome-wide association study finding (rs28602900), showing that this variant is associated with PD in non-European populations. CONCLUSIONS Our results reinforce the importance of including X-chromosome and diverse populations in genetic studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thiago P. Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jennifer N. French-Kwawu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Victor Borda
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, Maryland, USA
| | - Miguel Inca-Martinez
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emily A. Mason
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | - Douglas P. Loesch
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elif I. Sarihan
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mario R. Cornejo-Olivas
- Neurogenetics Working Group, Universidad Científica del Sur, Lima, Peru
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Luis E. Torres
- Movement Disorders Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Pilar E. Mazzetti-Soler
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
- Departamento de Medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carlos Cosentino
- Movement Disorders Unit, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | | | | | | | - Elena M. Dieguez
- Neurology Institute, Universidad de la República, Montevideo, Uruguay
| | - Víctor E. Raggio
- Department of Genetics, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Lescano
- Neurology Institute, Universidad de la República, Montevideo, Uruguay
| | - Vitor Tumas
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanderci Borges
- Movement Disorders Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Henrique B. Ferraz
- Movement Disorders Unit, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos R. Rieder
- Departamento de Neurologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Artur Schumacher Schuh
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Sonia Moreno
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Pedro Chana-Cuevas
- CETRAM, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - William Fernandez
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gonzalo Arboleda
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Humberto Arboleda
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E. Arboleda Bustos
- Neuroscience and Cell Death Research Groups, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Dora Yearout
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | - Eduardo Tarazona-Santos
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cyrus P. Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | | | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Timothy D. O’Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Health Equity and Population Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ignacio F. Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Gonzalez-Latapi P, Lo RY. Bone First or Brain First: "Picking at the Bones" of Parkinson's Disease. Mov Disord 2023; 38:1579-1581. [PMID: 37718269 DOI: 10.1002/mds.29567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Paulina Gonzalez-Latapi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Raymond Y Lo
- Department of Neurology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
10
|
Lamontagne-Proulx J, Coulombe K, Morissette M, Rieux M, Calon F, Di Paolo T, Soulet D. Sex and Age Differences in a Progressive Synucleinopathy Mouse Model. Biomolecules 2023; 13:977. [PMID: 37371557 DOI: 10.3390/biom13060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The mutation and overexpression of the alpha-synuclein protein (αSyn), described as synucleinopathy, is associated with Parkinson's disease (PD)-like pathologies. A higher prevalence of PD is documented for men versus women, suggesting female hormones' implication in slowing PD progression. The nigrostriatal dopamine (DA) neurons in rodent males are more vulnerable to toxins than those in females. The effect of biological sex on synucleinopathy remains poorly described and was investigated using mice knocked out for murine αSyn (SNCA-/-) and also overexpressing human αSyn (SNCA-OVX) compared to wildtype (WT) mice. All the mice showed decreased locomotor activity with age, and more abruptly in the male than in the female SNCA-OVX mice; anxiety-like behavior increased with age. The SNCA-OVX mice had an age-dependent accumulation of αSyn. Older age was associated with the loss of nigral DA neurons and decreased striatal DA contents. The astrogliosis, microgliosis, and cytokine concentrations increased with aging. More abrupt nigrostriatal DA decreases and increased microgliosis were observed in the male SNCA-OVX mice. Human αSyn overexpression and murine αSyn knockout resulted in behavioral dysfunctions, while only human αSyn overexpression was toxic to DA neurons. At 18 months, neuroprotection was lost in the female SNCA-OVX mice, with a likely loss of estrus cycles. In conclusion, sex-dependent αSyn toxicity was observed, affecting the male mice more significantly.
Collapse
Affiliation(s)
- Jérôme Lamontagne-Proulx
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-32, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
- Laboratoire International Associé OptiNutriBrain (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-32, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-32, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Marie Rieux
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-32, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Frédéric Calon
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-32, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
- Laboratoire International Associé OptiNutriBrain (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, 2440, Boulevard Hochelaga, Bureau 1705, Québec, QC G1V 0A6, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-32, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
- Laboratoire International Associé OptiNutriBrain (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-32, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
- Laboratoire International Associé OptiNutriBrain (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, 2440, Boulevard Hochelaga, Bureau 1705, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Rao SC, Li Y, Lapin B, Pattipati S, Ghosh Galvelis K, Naito A, Gutierrez N, Leal TP, Salim A, Salles PA, De Leon M, Mata IF. Association of women-specific health factors in the severity of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:86. [PMID: 37277346 PMCID: PMC10241917 DOI: 10.1038/s41531-023-00524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Parkinson's disease (PD) is an age-related neurological disorder known for the observational differences in its risk, progression, and severity between men and women. While estrogen has been considered to be a protective factor in the development of PD, there is little known about the role that fluctuations in hormones and immune responses from sex-specific health experiences have in the disease's development and severity. We sought to identify women-specific health experiences associated with PD severity, after adjusting for known PD factors, by developing and distributing a women-specific questionnaire across the United States and creating multivariable models for PD severity. We created a questionnaire that addresses women's specific experiences and their PD clinical history and deployed it through The Parkinson's Foundation: PD Generation. To determine the association between women-specific health factors and PD severity, we constructed multivariable logistic regression models based on the MDS-UPDRS scale and the participants' questionnaire responses, genetics, and clinical data. For our initial launch in November 2021, we had 304 complete responses from PD GENEration. Univariate and multivariate logistic modeling found significant associations between major depressive disorder, perinatal depression, natural childbirth, LRRK2 genotype, B12 deficiency, total hysterectomy, and increased PD severity. This study is a nationally available questionnaire for women's health and PD. It shifts the paradigm in understanding PD etiology and acknowledging how sex-specific experiences may contribute to PD severity. In addition, the work in this study sets the foundation for future research to investigate the factors behind sex differences in PD.
Collapse
Affiliation(s)
- Shilpa C Rao
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yadi Li
- Center for Outcomes Research and Evaluation, Cleveland Clinic, Cleveland, OH, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Brittany Lapin
- Center for Outcomes Research and Evaluation, Cleveland Clinic, Cleveland, OH, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Sreya Pattipati
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | - Amira Salim
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Philippe A Salles
- Center for Movement Disorders CETRAM, University of Santiago de Chile, Santiago, Chile
| | - Maria De Leon
- DefeatParkinsons, Houston, TX, USA
- De Leon Enterprises, Houston, TX, USA
| | - Ignacio F Mata
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
12
|
Zhou L, Li Y, Wang M, Han W, Chen Q, Zhang J, Sun B, Fan Y. Disruption of α-Synuclein proteostasis in the striatum and midbrain of long-term ovariectomized female mice. Neuroscience 2023:S0306-4522(23)00224-5. [PMID: 37257555 DOI: 10.1016/j.neuroscience.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Epidemiological studies have demonstrated that women are less susceptible to Parkinson's disease (PD) than men. Estrogen exposure is hypothesized to confer protection against dopaminergic neuronal loss in patients with PD. Although the accumulation and propagation of α-synuclein (α-Syn) are closely linked to the clinical progression of PD, no relevant research has examined whether α-Syn proteostasis in the brain is altered in women after menopause. In this study, we established long-term ovariectomized (OVX) mice to simulate late post-menopause and investigated the expression and aggregation of α-Syn following the ovariectomy procedure. We observed that the OVX mice exhibited a significant increase in the expression and aggregation of α-Syn in the striatum and midbrain accompanied by impaired motor performance at 3 months after ovariectomy. The accumulation of α-Syn did not result in a significant loss of nigral dopaminergic neurons but did enhance autophagy and neuroglial activation. These findings imply that menopause may disrupt α-Syn proteostasis and exacerbate the accumulation of α-Syn in the basal ganglia circuit.
Collapse
Affiliation(s)
- Linfeng Zhou
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yun Li
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wenjing Han
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Ji Zhang
- Division of Clinical Pharmacy, Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Bo Sun
- Department of Neurology, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China; Department of Neurology, the Huaian Clinical College of Xuzhou Medical University, Huai'an, Jiangsu 223300, China.
| | - Yi Fan
- Neuroprotective Drug Discovery Center of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
14
|
Leal TP, French-Kwawu JN, Gouveia MH, Borda V, Inca-Martinez M, Mason EA, Horimoto ARVR, Loesch DP, Sarihan EI, Cornejo-Olivas MR, Torres LE, Mazzetti-Soler PE, Cosentino C, Sarapura-Castro EH, Rivera-Valdivia A, Medina AC, Dieguez EM, Raggio VE, Lescano A, Tumas V, Borges V, Ferraz HB, Rieder CR, Schumacher-Schuh A, Santos-Lobato BL, Velez-Pardo C, Jimenez-Del-Rio M, Lopera F, Moreno S, Chana-Cuevas P, Fernandez W, Arboleda G, Arboleda H, Arboleda Bustos CE, Yearout D, Lima-Costa MF, Tarazona E, Zabetian C, Thornton TA, O’Connor TD, Mata IF. X-Chromosome Association Study in Latin American Cohorts Identifies New Loci in Parkinson Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.31.23285199. [PMID: 36778409 PMCID: PMC9915833 DOI: 10.1101/2023.01.31.23285199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sex differences in Parkinson Disease (PD) risk are well-known. However, it is still unclear the role of sex chromosomes in the development and progression of PD. We performed the first X-chromosome Wide Association Study (XWAS) for PD risk in Latin American individuals. We used data from three admixed cohorts: (i) Latin American Research consortium on the GEnetics of Parkinson's Disease (n=1,504) as discover cohort and (ii) Latino cohort from International Parkinson Disease Genomics Consortium (n = 155) and (iii) Bambui Aging cohort (n= 1,442) as replication cohorts. After developing a X-chromosome framework specifically designed for admixed populations, we identified eight linkage disequilibrium regions associated with PD. We fully replicated one of these regions (top variant rs525496; discovery OR [95%CI]: 0.60 [0.478 - 0.77], p = 3.13 × 10 -5 ; replication OR: 0.60 [0.37-0.98], p = 0.04). rs525496 is an expression quantitative trait loci for several genes expressed in brain tissues, including RAB9B, H2BFM, TSMB15B and GLRA4 . We also replicated a previous XWAS finding (rs28602900), showing that this variant is associated with PD in non-European populations. Our results reinforce the importance of including X-chromosome and diverse populations in genetic studies.
Collapse
|
15
|
Abstract
The lower prevalence of Parkinson disease (PD) in females is not well understood but may be partially explained by sex differences in nigrostriatal circuitry and possible neuroprotective effects of estrogen. PD motor and nonmotor symptoms differ between sexes, and women experience disparities in care including undertreatment with DBS and less access to caregiving. Our knowledge about PD in gender diverse individuals is limited. Future studies should improve our understanding of the role of hormone replacement therapy in PD, address gender-based inequities in PD care and expand our understanding of PD in SGM and marginalized communities.
Collapse
|
16
|
Three-Dimensional Analysis of Sex- and Gonadal Status- Dependent Microglial Activation in a Mouse Model of Parkinson’s Disease. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by neurodegeneration and neuroinflammation. PD prevalence and incidence are higher in men than in women and modulation of gonadal hormones could have an impact on the disease course. This was investigated in male and female gonadectomized (GDX) and SHAM operated (SHAM) mice. Dutasteride (DUT), a 5α-reductase inhibitor, was administered to these mice for 10 days to modulate their gonadal sex hormones. On the fifth day of DUT treatment, mice received 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to model PD. We have previously shown in these mice the toxic effect of MPTP in SHAM and GDX males and in GDX females on dopamine markers and astrogliosis whereas SHAM females were protected by their female sex hormones. In SHAM males, DUT protected against MPTP toxicity. In the present study, microglial density and the number of doublets, representative of a microglial proliferation, were increased by the MPTP lesion only in male mice and prevented by DUT in SHAM males. A three-dimensional morphological microglial analysis showed that MPTP changed microglial morphology from quiescent to activated only in male mice and was not prevented by DUT. In conclusion, microgliosis can be modulated by sex hormone-dependent and independent factors in a mice model of PD.
Collapse
|
17
|
Unda SR, Marciano S, Milner TA, Marongiu R. State-of-the-art review of the clinical research on menopause and hormone replacement therapy association with Parkinson's disease: What meta-analysis studies cannot tell us. Front Aging Neurosci 2022; 14:971007. [PMID: 36337706 PMCID: PMC9631815 DOI: 10.3389/fnagi.2022.971007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2023] Open
Abstract
The menopause is a midlife endocrinological process that greatly affects women's central nervous system functions. Over the last 2 decades numerous clinical studies have addressed the influence of ovarian hormone decline on neurological disorders like Parkinson's disease and Alzheimer's disease. However, the findings in support of a role for age at menopause, type of menopause and hormone replacement therapy on Parkinson's disease onset and its core features show inconsistencies due to the heterogeneity in the study design. Here, we provide a unified overview of the clinical literature on the influence of menopause and ovarian hormones on Parkinson's disease. We highlight the possible sources of conflicting evidence and gather considerations for future observational clinical studies that aim to explore the neurological impact of menopause-related features in Parkinson's disease.
Collapse
Affiliation(s)
- Santiago R. Unda
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
| | - Sabina Marciano
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Roberta Marongiu
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
18
|
The Effect of Menopause on Antipsychotic Response. Brain Sci 2022; 12:brainsci12101342. [PMID: 36291276 PMCID: PMC9599119 DOI: 10.3390/brainsci12101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background: It has been hypothesized that, whenever estrogen levels decline, psychosis symptoms in women increase. At menopause, this can happen in two main ways: (a) the loss of estrogen (mainly estradiol) can directly affect central neurotransmission, leading to increase in schizophrenia-related symptoms, and (b) the loss of estrogen can decrease the synthesis of enzymes that metabolize antipsychotic drugs, thus weakening their efficacy. Aims and Methods: The aim of this narrative review was to investigate the second possibility by searching PubMed and ClinicalTrials.gov for studies over the last two decades that investigated the metabolism of antipsychotics and their efficacy before and after menopause in women or that studied systemic and local estrogen level effects on the pharmacokinetics and pharmacodynamics of individual antipsychotic drugs. Results: The evidence suggests that symptom level in women with schizophrenia rises after menopause for many reasons beyond hormones but, importantly, there is an estrogen-dependent loss of efficacy related to antipsychotic treatment. Conclusion: Effective clinical intervention is challenging; nevertheless, several promising routes forward are suggested.
Collapse
|
19
|
Mehanna R, Smilowska K, Fleisher J, Post B, Hatano T, Pimentel Piemonte ME, Kumar KR, McConvey V, Zhang B, Tan E, Savica R. Age Cutoff for Early-Onset Parkinson's Disease: Recommendations from the International Parkinson and Movement Disorder Society Task Force on Early Onset Parkinson's Disease. Mov Disord Clin Pract 2022; 9:869-878. [PMID: 36247919 PMCID: PMC9547138 DOI: 10.1002/mdc3.13523] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Background Early-onset Parkinson's disease (EOPD)/young-onset Parkinson's disease (YOPD) is defined as Parkinson's disease (PD) with an age at onset (AAO) after age 21 years but before the usual AAO for PD. Consensus is lacking, and the reported maximal age for EOPD/YOPD has varied from 40 to 60 years, leading to a lack of uniformity in published studies and difficulty in harmonization of data. EOPD and YOPD have both been used in the literature, somewhat interchangeably. Objective To define the nomenclature and AAO cutoff for EOPD/YOPD. Methods An extensive review of the literature and task force meetings were conducted. Conclusions were reached by consensus. Results First, the literature has seen a shift from the use of YOPD toward EOPD. This seems motivated by an attempt to avoid age-related stigmatization of patients. Second, in defining EOPD, 56% of the countries use 50 or 51 years as the cutoff age. Third, the majority of international genetic studies in PD use an age cutoff of younger than 50 years to define EOPD. Fourth, many studies suggest that changes in the estrogen level can affect the predisposition to develop PD, making the average age at menopause of 50 years an important factor to consider when defining EOPD. Fifth, considering the differential impact of the AAO of PD on professional and social life, using 50 years as the upper cutoff for the definition of EOPD seems reasonable. Conclusions This task force recommends the use of EOPD rather than YOPD. It defines EOPD as PD with AAO after 21 years but before 50 years.
Collapse
Affiliation(s)
- Raja Mehanna
- UTMove, Departement of NeurologyUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Katarzyna Smilowska
- Department of NeurologySilesian Center of NeurologyKatowicePoland
- Department of Neurology5th Regional HospitalSosnowiecPoland
| | - Jori Fleisher
- Department of Neurological SciencesRush University School of MedicineChicagoIllinoisUSA
| | - Bart Post
- Department of NeurologyRadboudumcNijmegenThe Netherlands
| | - Taku Hatano
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Maria Elisa Pimentel Piemonte
- Physical Therapy, Speech Therapy, and Occupational TherapyDepartment, Medical School, University of São PauloSão PauloBrazil
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
- Kinghorn Centre for Clinical GenomicsGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
| | | | - Baorong Zhang
- Department of NeurologyThe Second Affiliated HospitalHangzhouChina
| | - Eng‐King Tan
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
| | | |
Collapse
|
20
|
Sex Differences in Parkinson’s Disease: From Bench to Bedside. Brain Sci 2022; 12:brainsci12070917. [PMID: 35884724 PMCID: PMC9313069 DOI: 10.3390/brainsci12070917] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease and gender differences have been described on several aspects of PD. In the present commentary, we aimed to collect and discuss the currently available evidence on gender differences in PD regarding biomarkers, genetic factors, motor and non-motor symptoms, therapeutic management (including pharmacological and surgical treatment) as well as preclinical studies. Methods: A systematic literature review was performed by searching the Pubmed and Scopus databases with the search strings “biomarkers”, “deep brain stimulation”, “female”, “gender”, “genetic”, “levodopa”, “men”, “male”, “motor symptoms”, “non-motor symptoms”, “Parkinson disease”, “sex”, “surgery”, and “women”. Results: The present review confirms the existence of differences between men and women in Parkinson Disease, pointing out new information regarding evidence from animal models, genetic factors, biomarkers, clinical features and pharmacological and surgical treatment. Conclusions: The overall goal is to acquire new informations about sex and gender differences in Parkinson Disease, in order to develop tailored intervetions.
Collapse
|
21
|
LeBlanc ES, Hovey KM, Cauley JA, Stefanick M, Peragallo R, Naughton MJ, Andrews CA, Crandall CJ. Cumulative Endogenous Estrogen Exposure Is Associated With Postmenopausal Fracture Risk: The Women's Health Initiative Study. J Bone Miner Res 2022; 37:1260-1269. [PMID: 35644990 PMCID: PMC9283335 DOI: 10.1002/jbmr.4613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
We aimed to evaluate the relationship between cumulative endogenous estrogen exposure and fracture risk in 150,682 postmenopausal women (aged 50 to 79 years at baseline) who participated in the Women's Health Initiative. We hypothesized that characteristics indicating lower cumulative endogenous estrogen exposure would be associated with increased fracture risk. We determined ages at menarche and menopause as well as history of irregular menses from baseline questionnaires and calculated years of endogenous estrogen exposure from ages at menarche and menopause. Incident clinical fractures were self-reported over an average 16.7 years of follow-up. We used multivariable proportional hazards models to assess the associations between the estrogen-related variables and incidence of any clinical fracture. In fully adjusted models, those with the fewest years of endogenous estrogen exposure (<30) had an 11% higher risk of developing central body fractures and a 9% higher risk of lower extremity fractures than women with 36 to 40 years of endogenous estrogen exposure (the reference category). In contrast, women with the most years of endogenous estrogen exposure (more than 45 years) had a 9% lower risk of lower extremity fractures than the reference category. Women with irregular (not monthly) menstrual cycles were 7% to 8% more likely to experience lower extremity fractures than women with regular monthly cycles. Our findings support the hypothesis that characteristics signifying lower cumulative endogenous estrogen exposure are associated with higher fracture risk. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Erin S LeBlanc
- Kaiser Permanente, Center for Health Research, Portland, OR, USA
| | - Kathleen M Hovey
- Department of Epidemiology and Environmental Health, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marcia Stefanick
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Rachel Peragallo
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Michelle J Naughton
- Division of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christopher A Andrews
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Carolyn J Crandall
- Department of Internal Medicine, David Geffen School of Medicine at University of California, Los Angeles Division of General Internal Medicine and Health Services Research, Los Angeles, CA, USA
| |
Collapse
|
22
|
Kusters CD, Paul KC, Folle AD, Keener AM, Bronstein JM, Bertram L, Hansen J, Horvath S, Sinsheimer JS, Lill CM, Ritz BR. Erratum to "Increased Menopausal Age Reduces the Risk of Parkinson's Disease: A Mendelian Approach". Mov Disord 2022; 37:1282-1283. [PMID: 35245402 PMCID: PMC10566527 DOI: 10.1002/mds.28974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Cynthia D.J. Kusters
- Department of Human Genetics, David Geffen School of
Medicine, Los Angeles, California, USA
| | - Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine,
Los Angeles, California, USA
| | - Aline Duarte Folle
- Department of Epidemiology, UCLA Fielding School of Public
Health, Los Angeles, California, USA
| | - Adrienne M. Keener
- Department of Neurology, David Geffen School of Medicine,
Los Angeles, California, USA
- Parkinson’s Disease Research, Education, and
Clinical Center, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles,
California, USA
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine,
Los Angeles, California, USA
- Brain Research Institute, University of California, Los
Angeles, California, USA
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome
Analytics, University of Lübeck, Lübeck, Germany
- Department of Psychology, Centre for Lifespan Changes in
Brain and Cognition, University of Oslo, Oslo, Norway
| | - Johnni Hansen
- Danish Cancer Society Research Center, Danish Cancer
Society, Copenhagen, Denmark
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of
Medicine, Los Angeles, California, USA
- Department of Biostatistics, School of Public Health,
University of California, Los Angeles, California, USA
| | - Janet S. Sinsheimer
- Department of Human Genetics, David Geffen School of
Medicine, Los Angeles, California, USA
- Department of Biostatistics, School of Public Health,
University of California, Los Angeles, California, USA
- Department of Computational Medicine, David Geffen School
of Medicine, Los Angeles, California, USA
| | - Christina M. Lill
- Translational Epidemiology Group, Lübeck
Interdisciplinary Platform for Genome Analytics, University of Lübeck,
Lübeck, Germany
- Ageing Epidemiology Research Unit, School of Public
Health, Imperial College, London, UK
| | - Beate R. Ritz
- Department of Neurology, David Geffen School of Medicine,
Los Angeles, California, USA
- Department of Epidemiology, UCLA Fielding School of Public
Health, Los Angeles, California, USA
- Department of Environmental Health, UCLA Fielding School
of Public Health, Los Angeles, California, USA
| |
Collapse
|
23
|
Subramanian I, Mathur S, Oosterbaan A, Flanagan R, Keener AM, Moro E. Unmet Needs of Women Living with Parkinson's Disease: Gaps and Controversies. Mov Disord 2022; 37:444-455. [DOI: 10.1002/mds.28921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022] Open
Affiliation(s)
- Indu Subramanian
- Department of Neurology David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
- Parkinson's Disease Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Medical Center Los Angeles California USA
| | | | - Annelien Oosterbaan
- Department of Neurology Radboud University Medical Center Nijmegen The Netherlands
| | | | - Adrienne M. Keener
- Department of Neurology David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
- Parkinson's Disease Research, Education, and Clinical Center, Greater Los Angeles Veterans Affairs Medical Center Los Angeles California USA
| | - Elena Moro
- Grenoble Alpes University, Faculty of Medicine, Division of Neurology CHUGA, Grenoble Institute of Neurosciences Grenoble France
| |
Collapse
|
24
|
Xi H, Gan J, Liu S, Wang F, Chen Z, Wang XD, Shi Z, Ji Y. Reproductive factors and cognitive impairment in natural menopausal women: A cross-sectional study. Front Endocrinol (Lausanne) 2022; 13:893901. [PMID: 35979434 PMCID: PMC9376623 DOI: 10.3389/fendo.2022.893901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Little information on rural older women in northern China has been reported, apart from three studies in southern and eastern China in the past decade. This study aims to evaluate the relationships between reproductive factors and the risk of cognitive impairment, including mild cognitive impairment (MCI) and dementia, in Chinese women with natural menopause. METHODS The cross-sectional study was conducted in 112 community primary healthcare centers in rural northern China between April 2019 and January 2020. A total of 4,275 women aged ≥65 years who had natural menopause were included. Reproductive factors as well as the reproductive period (= age at menopause - age at menarche) were recorded. The relationships between reproductive factors and cognitive impairment were evaluated by correlation and logistic regression analysis. RESULTS Overall, 28.6% and 11.4% of women were diagnosed with MCI or dementia, respectively. In natural menopause women, the age at menopause (adjusted r = 0.070, p < 0.001), reproductive period (adjusted r = 0.053, p = 0.001), and number of pregnancies (adjusted r = -0.042, p = 0.007) and parities (adjusted r = -0.068, p < 0.001) were correlated with Mini-Mental State Examination (Chinese version) scores, and with similar findings concerning MCI and dementia with Lewy bodies (DLB). Greater age at menopause and a long reproductive period significantly decreased the risk of MCI and Alzheimer's disease (AD), and more parities significantly increased the risks of MCI (odds ratio (OR) = 1.111, 95% confidence interval (CI): 1.039-1.187, p = 0.002), dementia (OR = 1.162, 95% CI: 1.061-1.271, p = 0.001), particular AD (OR = 1.131, 95% CI: 1.010-1.266, p = 0.032), DLB (OR = 1.238, 95% CI: 1.003-1.528, p = 0.047), and vascular dementia (VaD) (OR = 1.288, 95% CI: 1.080-1.536, p = 0.005). CONCLUSIONS The prevalence rates of MCI and dementia were 28.6% and 11.4% in older women. Greater age at menarche, young age at menopause, shorter reproductive period, and larger numbers of pregnancies/parities were correlated with poor cognition and significantly increased the risks of MCI and dementia, particularly AD, DLB, and VaD.
Collapse
Affiliation(s)
- Haitao Xi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Fei Wang
- Department of Neurology, Yuncheng Central Hospital of Shanxi Province, Yuncheng, China
| | - Zhichao Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Dan Wang
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Yong Ji,
| |
Collapse
|
25
|
Ritz BR, Kusters CDJ. The Promise of Mendelian Randomization in Parkinson's Disease: Has the Smoke Cleared Yet for Smoking and Parkinson's Disease Risk? JOURNAL OF PARKINSON'S DISEASE 2022; 12:807-812. [PMID: 35213390 PMCID: PMC10564582 DOI: 10.3233/jpd-223188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This commentary discusses the strengths and limitations of utilizing the Mendelian randomization (MR) approach in Parkinson's disease (PD) studies. Epidemiologists proposed to employ MR when genetic instruments are available that represent reliable proxies for modifiable lifelong exposures which elude easy measurement in studies of late onset diseases like PD. Here, we are using smoking as an example. The great promise of the MR approach is its resilience to confounding and reverse causation. Nevertheless, the approach has some drawbacks such as being liable to selection- and survival-bias, it makes some strong assumptions about the genetic instruments employed, and requires very large sample sizes. When interpreted carefully and put into the context of other studies that take both genetics and the environment into consideration, MR studies help us to not only ask interesting questions but also can support causal inference and provide novel insights.
Collapse
Affiliation(s)
- Beate R. Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Cynthia DJ Kusters
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|