1
|
Siddique TA, Rafi KJ, Akter S, Bithy FY, Aktar R, Khan AN, Majid M, Sultana F, Saha S, Ahmed AMA, Rahman A. Nutritional, Antibacterial and Thrombolytic Prospects of Freshwater Paludomas conica Protein Hydrolysate and Its Anti-Inflammatory Potential in LPS-Induced RAW 264.7 Macrophage Cells. Food Sci Nutr 2025; 13:e4711. [PMID: 39803236 PMCID: PMC11717026 DOI: 10.1002/fsn3.4711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic inflammation and heme-iron overload can result from bacterial hemolysis. Along with the synthetic drugs, numerous traditional and functional food approaches are equally trialed to eradicate the problem. As a prospective new source of dietary protein hydrolysates, freshwater mollusks (Paludomas conica) have recently drawn huge interest from researchers. In this research, protein hydrolysate (PhPC) of Paludomas conica, prepared by the enzyme digestion method, was analyzed for proximate nutritional and minerals contents and deciphered its suppressive effects on inflammatory gene expression in LPS-stimulated RAW264.7 macrophage cells. The inhibitory action of protein denaturation is also unfolded with established in vitro and in vivo models. Anti-hemolytic, antibacterial, and thrombolytic effects of PhPC were respectively assessed by H2O2-induced hemolysis of RBCs, the disc diffusion method, and the clot lysis method. The proximate nutritional and mineral contents of PhPC revealed it to be an enriched source of nutrients, crude protein, carbohydrates, Calcium, and Magnesium. Heavy metals were found to be within the prescribed limit. The PhPC suppressed the expression of inflammatory genes, including COX-2, iNOS, IL-6, TNF-α, and IL-1, multifold in LPS-stimulated RAW264.7 macrophages. The inhibition concentrations (IC50) of PhPC in the bovine serum albumin denaturation inhibition test and membrane stabilization tests were 431.39 and 285.25 μg/mL, respectively. The PhPC was discerned to be active against Shigella flexneri, Pseudomonas aeruginosa, and Shigella dysenteriae; its maximum thrombolytic effect was displayed to be 23.72% ± 2.71%. The findings demonstrate that the nutritionally enriched PhPC could be affirmed as an exciting invertebrate anti-inflammatory agent Extending other biological functions needs to be further characterized with its pure protein or protein products.
Collapse
Affiliation(s)
- Tanvir Ahmed Siddique
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Khalid Juhani Rafi
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Sumaiya Akter
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Farhana Yesmin Bithy
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Rasheda Aktar
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Asif Nadim Khan
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - Srabonti Saha
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| | - A. M. Abu Ahmed
- Department of Genetic Engineering and BiotechnologyUniversity of ChittagongChittagongBangladesh
| | - Atiar Rahman
- Department of Biochemistry and Molecular BiologyUniversity of ChittagongChittagongBangladesh
| |
Collapse
|
2
|
Wu T, Shi Y, Yang T, Zhao P, Yang Z, Yang B. Polymer-DNA assembled nanoflower for targeted delivery of dolastatin-derived microtubule inhibitors. RSC Adv 2024; 14:9602-9608. [PMID: 38516154 PMCID: PMC10956646 DOI: 10.1039/d3ra08146j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Dolastatin derivatives possess excellent anticancer activity and have been translated into clinical trials for cancer therapy. Drug delivery systems enable dolastatin derivatives to break the limitation of instability during blood circulation and ineffective cell internalization in the application. Nevertheless, their potential has not been thoroughly established because of the limited loading efficacy and complicated chemical modification. Herein, we rationally propose a rolling circle amplification-based polymer-DNA assembled nanoflower for targeted and efficient delivery of dolastatin-derived drugs to achieve efficient anticancer therapy. The polymer-DNA assembled nanoflower with targeted aptamer conjugate is widely applicable for loading dolastatin-derived drugs with high encapsulation efficiency. The developed monomethyl auristatin E (MMAE) loaded PN@M exhibited increased cellular uptake and enhanced inhibitory effect, especially in multidrug-resistant tumor cells. The results of in vivo anticancer effects indicate that nanoflower as a dolastatin derivatives delivery system holds considerable potential for the treatment of malignant cancer.
Collapse
Affiliation(s)
- Tiantian Wu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University Guangzhou 510091 China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University Haikou 571199 China
| | - Yanqiang Shi
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University Guangzhou 510091 China
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University Haikou 571199 China
| | - Pengxuan Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University Haikou 571199 China
| | - Zhu Yang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University Fuzhou 350212 China
| | - Bin Yang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University Guangzhou 510091 China
| |
Collapse
|
3
|
Arfin S, Agrawal K, Maurya S, Asthana S, Di Silvestre D, Kumar D. Lead phytochemicals and marine compounds against ceruloplasmin in cancer targeting. J Biomol Struct Dyn 2023; 42:12703-12719. [PMID: 37878121 DOI: 10.1080/07391102.2023.2272753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
In silico docking studies serve as a swift and efficient means to sift through a vast array of natural and synthetic small molecules, aiding in the identification of potential inhibitors for cancer biomarkers. One such biomarker, ceruloplasmin (CP), has been implicated in various tumor types due to its overexpression, earning it recognition as a marker of aggressive tumors. This study focused on pinpointing inhibitors for the CP -Myeloperoxidase (MPO) interaction site, a complex formation known to impede HOCl production, a crucial process for inducing apoptotic cell death in tumor cells. The initial phase of our investigation involved in silico docking studies, which screened a diverse library of phytochemicals and marine compounds. Through this process, we identified several promising drug candidates based on their binding affinities. Subsequently, these candidates underwent rigorous filtration based on Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. Finally, we subjected the selected compounds to molecular dynamics (MDs) simulation to further assess their viability. Lycoperoside F, a steroidal alkaloid glycoside derived from tomatoes (Lycopersicon esculentum), stood out with notable interactions at the binding site. Another noteworthy compound was Xyloglucan (XG) oligosaccharides, predominantly found in the primary cell walls of higher plants. During the subsequent MDs simulations, these interactions were accompanied by highly stable root mean square deviation (RMSD) plots, signifying the consistency and robustness of the observed MDs behavior. XG oligosaccharides demonstrated the highest binding affinity with CP, reaffirming their potential as strong candidates. Additionally, Ardimerin digallate, known as a retroviral ribonuclease H inhibitor for HIV-1 and HIV-2, displayed favorable interactions at the MPO interaction site. Given that promising drug candidates must meet stringent criteria, including non-toxicity, effectiveness, specificity, stability and potency, these phytochemicals have the potential to progress to in vitro studies as CP inhibitors. Ultimately, this could contribute to the suppression of tumor growth, marking a significant step in cancer treatment research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saniya Arfin
- School of Health Sciences and Technology, UPES, Dehradun, India
| | - Kirti Agrawal
- School of Health Sciences and Technology, UPES, Dehradun, India
| | - Sujata Maurya
- School of Health Sciences and Technology, UPES, Dehradun, India
| | | | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
4
|
Gomes AR, Varela CL, Pires AS, Tavares-da-Silva EJ, Roleira FMF. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorg Chem 2023; 138:106600. [PMID: 37209561 DOI: 10.1016/j.bioorg.2023.106600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Guanidines are fascinating small nitrogen-rich organic compounds, which have been frequently associated with a wide range of biological activities. This is mainly due to their interesting chemical features. For these reasons, for the past decades, researchers have been synthesizing and evaluating guanidine derivatives. In fact, there are currently on the market several guanidine-bearing drugs. Given the broad panoply of pharmacological activities displayed by guanidine compounds, in this review, we chose to focus on antitumor, antibacterial, antiviral, antifungal, and antiprotozoal activities presented by several natural and synthetic guanidine derivatives, which are undergoing preclinical and clinical studies from January 2010 to January 2023. Moreover, we also present guanidine-containing drugs currently in the market for the treatment of cancer and several infectious diseases. In the preclinical and clinical setting, most of the synthesized and natural guanidine derivatives are being evaluated as antitumor and antibacterial agents. Even though DNA is the most known target of this type of compounds, their cytotoxicity also involves several other different mechanisms, such as interference with bacterial cell membranes, reactive oxygen species (ROS) formation, mitochondrial-mediated apoptosis, mediated-Rac1 inhibition, among others. As for the compounds already used as pharmacological drugs, their main application is in the treatment of different types of cancer, such as breast, lung, prostate, and leukemia. Guanidine-containing drugs are also being used for the treatment of bacterial, antiprotozoal, antiviral infections and, recently, have been proposed for the treatment of COVID-19. To conclude, the guanidine group is a privileged scaffold in drug design. Its remarkable cytotoxic activities, especially in the field of oncology, still make it suitable for a deeper investigation to afford more efficient and target-specific drugs.
Collapse
Affiliation(s)
- Ana R Gomes
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Carla L Varela
- Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra, CIEPQPF, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Ana S Pires
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Rua Larga, 3004-504 Coimbra, Portugal
| | - Elisiário J Tavares-da-Silva
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CIEPQPF, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
5
|
Depsipeptides Targeting Tumor Cells: Milestones from In Vitro to Clinical Trials. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020670. [PMID: 36677728 PMCID: PMC9864405 DOI: 10.3390/molecules28020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Cancer is currently considered one of the most threatening diseases worldwide. Diet could be one of the factors that can be enhanced to comprehensively address a cancer patient's condition. Unfortunately, most molecules capable of targeting cancer cells are found in uncommon food sources. Among them, depsipeptides have emerged as one of the most reliable choices for cancer treatment. These cyclic amino acid oligomers, with one or more subunits replaced by a hydroxylated carboxylic acid resulting in one lactone bond in a core ring, have broadly proven their cancer-targeting efficacy, some even reaching clinical trials and being commercialized as "anticancer" drugs. This review aimed to describe these depsipeptides, their reported amino acid sequences, determined structure, and the specific mechanism by which they target tumor cells including apoptosis, oncosis, and elastase inhibition, among others. Furthermore, we have delved into state-of-the-art in vivo and clinical trials, current methods for purification and synthesis, and the recognized disadvantages of these molecules. The information collated in this review can help researchers decide whether these molecules should be incorporated into functional foods in the near future.
Collapse
|
6
|
Habib MR, Hamed AA, Ali REM, Zayed KM, Gad El-Karim RM, Sabour R, Abu El-Einin HM, Ghareeb MA. Thais savignyi tissue extract: bioactivity, chemical composition, and molecular docking. PHARMACEUTICAL BIOLOGY 2022; 60:1899-1914. [PMID: 36200747 PMCID: PMC9553184 DOI: 10.1080/13880209.2022.2123940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Thais savignyi Deshayes (Muricidae) is widely distributed in the Red Sea. Its abundance and the history of Muricidae in traditional medicine make it a tempting target for investigation. OBJECTIVE To investigate the chemical profile and biological activities of T. savignyi tissue extracts. MATERIALS AND METHODS Methanol, ethanol, acetone, and ethyl acetate extracts from T. savignyi tissue were compared in their antioxidant by total antioxidant capacity, DPPH free radical scavenging, and total phenolic content. In addition, the antimicrobial, and antibiofilm properties (at 250 µg/mL) of the extracts were tested against Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans. The antioxidant extract with greatest activity was assessed for cytotoxicity (range 0.4-100 µg/mL) against 3 human cancer cell lines (UO-31, A549 and A431), and its chemical composition was investigated using GC-MS. Moreover, docking simulation was performed to predict its constituents' binding modes/scores to the active sites of thymidylate kinase. RESULTS The ethyl acetate extract (Ts-EtOAc) showed the highest total antioxidant capacity (551.33 mg AAE/g dry weight), total phenolics (254.46 mg GAE/g dry weight), and DPPH scavenging (IC50= 24.0 µg/mL). Ts-EtOAc exhibited strong antibacterial (MIC: 3.9 µg/mL against K. pneumoniae), antibiofilm (MIC: 7.81 µg/mL against S. aureus), and antifungal (MIC: 3.9 µg/mL against C. albicans) activities and considerable cytotoxicity against cancer cells (UO-31: IC50= 19.96 ± 0.93, A549: IC50= 25.04 ± 1.15 μg/mL). GC-MS identified multiple bioactive metabolites in Ts-EtOAc extract belonging to miscellaneous chemical classes. Molecular docking studies revealed that the constituents of Ts-EtOAc have antibacterial potential. DISCUSSION AND CONCLUSIONS T. savignyi extract has considerable antimicrobial and cytotoxic activities. Further studies are needed to isolate the active constituents of this snail for comprehensive drug discovery tests.
Collapse
Affiliation(s)
- Mohamed R. Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Center, Giza, Egypt
| | - Rasha E. M. Ali
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Khaled M. Zayed
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Rehab Sabour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | | | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
7
|
Fernandes AS, Oliveira C, Reis RL, Martins A, Silva TH. Marine-Inspired Drugs and Biomaterials in the Perspective of Pancreatic Cancer Therapies. Mar Drugs 2022; 20:689. [PMID: 36355012 PMCID: PMC9698933 DOI: 10.3390/md20110689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 05/12/2024] Open
Abstract
Despite its low prevalence, pancreatic cancer (PC) is one of the deadliest, typically characterised as silent in early stages and with a dramatically poor prognosis when in its advanced stages, commonly associated with a high degree of metastasis. Many efforts have been made in pursuing innovative therapeutical approaches, from the search for new cytotoxic drugs and other bioactive compounds, to the development of more targeted approaches, including improved drug delivery devices. Marine biotechnology has been contributing to this quest by providing new chemical leads and materials originating from different organisms. In this review, marine biodiscovery for PC is addressed, particularly regarding marine invertebrates (namely sponges, molluscs, and bryozoans), seaweeds, fungi, and bacteria. In addition, the development of biomaterials based on marine-originating compounds, particularly chitosan, fucoidan, and alginate, for the production of advanced cancer therapies, is also discussed. The key role that drug delivery can play in new cancer treatments is highlighted, as therapeutical outcomes need to be improved to give further hope to patients.
Collapse
Affiliation(s)
- Andreia S. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| |
Collapse
|
8
|
Marine Cyanobacteria as Sources of Lead Anticancer Compounds: A Review of Families of Metabolites with Cytotoxic, Antiproliferative, and Antineoplastic Effects. Molecules 2022; 27:molecules27154814. [PMID: 35956762 PMCID: PMC9369884 DOI: 10.3390/molecules27154814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
The marine environment is highly diverse, each living creature fighting to establish and proliferate. Among marine organisms, cyanobacteria are astounding secondary metabolite producers representing a wonderful source of biologically active molecules aimed to communicate, defend from predators, or compete. Studies on these molecules’ origins and activities have been systematic, although much is still to be discovered. Their broad chemical diversity results from integrating peptide and polyketide synthetases and synthases, along with cascades of biosynthetic transformations resulting in new chemical structures. Cyanobacteria are glycolipid, macrolide, peptide, and polyketide producers, and to date, hundreds of these molecules have been isolated and tested. Many of these compounds have demonstrated important bioactivities such as cytotoxicity, antineoplastic, and antiproliferative activity with potential pharmacological uses. Some are currently under clinical investigation. Additionally, conventional chemotherapeutic treatments include drugs with a well-known range of side effects, making anticancer drug research from new sources, such as marine cyanobacteria, necessary. This review is focused on the anticancer bioactivities of metabolites produced by marine cyanobacteria, emphasizing the identification of each variant of the metabolite family, their chemical structures, and the mechanisms of action underlying their biological and pharmacological activities.
Collapse
|
9
|
Recent Discoveries on Marine Organism Immunomodulatory Activities. Mar Drugs 2022; 20:md20070422. [PMID: 35877715 PMCID: PMC9324980 DOI: 10.3390/md20070422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.
Collapse
|
10
|
Physiological and Clinical Aspects of Bioactive Peptides from Marine Animals. Antioxidants (Basel) 2022; 11:antiox11051021. [PMID: 35624884 PMCID: PMC9137753 DOI: 10.3390/antiox11051021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Biological molecules in nutraceuticals and functional foods have proven physiological properties to treat human chronic diseases. These molecules contribute to applications in the food and pharmaceutical industries by preventing food spoilage and cellular injury. Technological advancement in the screening and characterization of bioactive peptides has enabled scientists to understand the associated molecules. Consistent collaboration among nutritionists, pharmacists, food scientists, and bioengineers to find new bioactive compounds with higher therapeutic potential against nutrition-related diseases highlights the potential of the bioactive peptides for food and pharmaceutic industries. Among the popular dietary supplements, marine animals have always been considered imperative due to their rich nutritional values and byproduct use in the food and pharmaceutical industries. The bioactive peptides isolated from marine animals are well-known for their higher bioactivities against human diseases. The physiological properties of fish-based hydrolyzed proteins and peptides have been claimed through in vitro, in vivo, and clinical trials. However, systematic study on the physiological and clinical significance of these bioactive peptides is scarce. In this review, we not only discuss the physiological and clinical significance of antioxidant and anticancer peptides derived from marine animals, but we also compare their biological activities through existing in vitro and in vivo studies.
Collapse
|
11
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
12
|
Recent advances and limitations in the application of kahalalides for the control of cancer. Biomed Pharmacother 2022; 148:112676. [PMID: 35149387 PMCID: PMC9004612 DOI: 10.1016/j.biopha.2022.112676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/24/2022] Open
Abstract
Since the discovery of the kahalalide family of marine depsipeptides in 1993, considerable work has been done to develop these compounds as new and biologically distinct anti-cancer agents. Clinical trials and laboratory research have yielded a wealth of data that indicates tolerance of kahalalides in healthy cells and selective activity against diseased cells. Currently, two molecules have attracted the greates level of attention, kahalalide F (KF) and isokahalalide F (isoKF, Irvalec, PM 02734, elisidepsin). Both compounds were originally isolated from the sarcoglossan mollusk Elysia rufescens but due to distinct structural characteristics it has been hypothesized and recently shown that the ultimate origin of the molecules is microbial. The search for their true source has been a subject of considerable research in the anticipation of finding new analogs and a culturable expression system that can produce sufficient material through fermentation to be industrially relevant.
Collapse
|
13
|
Liang JJ, Yu WL, Yang L, Xie BH, Qin KM, Yin YP, Yan JJ, Gong S, Liu TY, Zhou HB, Hong K. Design and synthesis of marine sesterterpene analogues as novel estrogen receptor α degraders for breast cancer treatment. Eur J Med Chem 2022; 229:114081. [PMID: 34992039 DOI: 10.1016/j.ejmech.2021.114081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Targeted protein degradation using small molecules is an intriguing strategy for drug development. The marine sesterterpene compound MHO7 had been reported to be a potential ERα degradation agent. In order to further improve its biological activity, two series of novel MHO7 derivatives with long side chains were designed and identified as novel selective estrogen receptor down-regulators (SERDs). The growth inhibition activity of the novel SERD compounds were significantly affected by the type and length of the side chain. Most of the derivatives were significantly more potent than MHO7 against both drug-sensitive and drug-resistant breast cancer cells. Among them, compound 16a, with IC50 values of 0.41 μM against MCF-7 cell lines and 9.6-fold stronger than MHO7, was the most potential molecule. A whole-genome transcriptomic analysis of MCF-7 cells revealed that the mechanism of 16a against MCF-7 cell was similar with that of MHO7. The estrogen signaling pathway was the most affected among the disturbed genes, but the ERα degradation activity of 16a was observed higher than that of MHO7. Other effects of 16a were confirmed similar with MHO7, which means that the basic mechanisms of the derivatives are the same with the ophiobolin backbone, i.e. the degradation of ERα is mediated via proteasome-mediated process, the induction of apoptosis and the cell cycle arrest at the G1 phase. Meanwhile, a decrease of mitochondrial membrane potential and an increase of cellular ROS were also detected. Based on these results, as a novel modified ophiobolin derived compound, 16a may warrant further exploitation as a promising SERD candidate agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jian-Jia Liang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Wu-Lin Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Liang Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Bao-Hua Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Kong-Ming Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yu-Ping Yin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jing-Jing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Shuang Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Ten-Yue Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Hai-Bing Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
14
|
Rauf A, Khalil AA, Khan M, Anwar S, Alamri A, Alqarni AM, Alghamdi A, Alshammari F, Rengasamy KRR, Wan C. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health? Crit Rev Food Sci Nutr 2022; 62:7072-7116. [PMID: 33840324 DOI: 10.1080/10408398.2021.1910482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adel Alghamdi
- Pharmaceutical Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Farhan Alshammari
- Department Of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
15
|
Tortorella E, Giugliano R, De Troch M, Vlaeminck B, de Viçose GC, de Pascale D. The Ethyl Acetate Extract of the Marine Edible Gastropod Haliotis tuberculata coccinea: a Potential Source of Bioactive Compounds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:892-903. [PMID: 34714443 DOI: 10.1007/s10126-021-10073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The phylum Mollusca represents one of the largest groups of marine invertebrates. Nowadays, molluscan shellfish belonging to the classes Bivalvia and Gastropoda are of commercial interest for fisheries and aquaculture. Although bioactive properties of bivalve molluscs have been widely investigated and several dietary supplements have been brought to the market, the bioactive potentialities of marine gastropods are poorly documented. The present study investigated the bioactive properties of tissue extracts derived from Haliotis tuberculata coccinea, or "European abalone," an edible abalone species distributed in the Mediterranean Sea and the northeast Atlantic Ocean. A bioactive organic compound-rich extract was obtained using ethyl acetate as extracting solvent. It showed antimicrobial activity towards the methicillin-resistant Staphylococcus epidermidis strain RP62A, the emerging multi-drug-resistant Stenotrophomonas maltophilia D71 and Staphylococcus aureus ATCC 6538P, being the most sensitive strain. It also showed anthelmintic activity, evaluated through the toxicity against the target model helminth Caenorhabditis elegans. In addition, the ethyl acetate extract demonstrated a selective cytotoxic activity on the cancer cell lines A375, MBA-MD 231, HeLa, and MCF7, at the concentration of 250 µg/mL. The fatty acid composition of the bioactive extract was also investigated through FAME analysis. The fatty acid profile showed 45% of saturated fatty acids (SAFA), 22% of monounsaturated fatty acids (MUFA), and 33% of polyunsaturated fatty acids (PUFA). The presence of some biologically important secondary metabolites in the extract was also analysed, revealing the presence of alkaloids, terpenes, and flavonoids.
Collapse
Affiliation(s)
- Emiliana Tortorella
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino, 111-80131, Naples, Italy
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli, " Via Santa Maria di Costantinopoli, 16-80138, Naples, Italy
| | - Marleen De Troch
- Marine Biology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000, Gent, Belgium
| | - Bruno Vlaeminck
- Marine Biology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000, Gent, Belgium
| | | | - Donatella de Pascale
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino, 111-80131, Naples, Italy.
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
16
|
Bocharova EA, Kopytina NI, Slynko ЕЕ. Anti-tumour drugs of marine origin currently at various stages of clinical trials (review). REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oncological diseases for a long time have remained one of the most significant health problems of modern society, which causes great losses in its labour and vital potential. Contemporary oncology still faces unsolved issues as insufficient efficacy of treatment of progressing and metastatic cancer, chemoresistance, and side-effects of the traditional therapy which lead to disabilities among or death of a high number of patients. Development of new anti-tumour preparations with a broad range of pharmaceutical properties and low toxicity is becoming increasingly relevant every year. The objective of the study was to provide a review of the recent data about anti-tumour preparations of marine origin currently being at various phases of clinical trials in order to present the biological value of marine organisms – producers of cytotoxic compounds, and the perspectives of their use in modern biomedical technologies. Unlike the synthetic oncological preparations, natural compounds are safer, have broader range of cytotoxic activity, can inhibit the processes of tumour development and metastasis, and at the same time have effects on several etiopathogenic links of carcinogenesis. Currently, practical oncology uses 12 anti-tumour preparations of marine origin (Fludarabine, Cytarabine, Midostaurin, Nelarabine, Eribulin mesylate, Brentuximab vedotin, Trabectedin, Plitidepsin, Enfortumab vedotin, Polatuzumab vedotin, Belantamab mafodotin, Lurbinectedin), 27 substances are at different stages of clinical trials. Contemporary approaches to the treatment of oncological diseases are based on targeted methods such as immune and genetic therapies, antibody-drug conjugates, nanoparticles of biopolymers, and metals. All those methods employ bioactive compounds of marine origin. Numerous literature data from recent years indicate heightened attention to the marine pharmacology and the high potential of marine organisms for the biomedicinal and pharmaceutic industries.
Collapse
|
17
|
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Mar Drugs 2020; 18:657. [PMID: 33371188 PMCID: PMC7767343 DOI: 10.3390/md18120657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The natural products of heterobranch molluscs display a huge variability both in structure and in their bioactivity. Despite the considerable lack of information, it can be observed from the recent literature that this group of animals possesses an astonishing arsenal of molecules from different origins that provide the molluscs with potent chemicals that are ecologically and pharmacologically relevant. In this review, we analyze the bioactivity of more than 450 compounds from ca. 400 species of heterobranch molluscs that are useful for the snails to protect themselves in different ways and/or that may be useful to us because of their pharmacological activities. Their ecological activities include predator avoidance, toxicity, antimicrobials, antifouling, trail-following and alarm pheromones, sunscreens and UV protection, tissue regeneration, and others. The most studied ecological activity is predation avoidance, followed by toxicity. Their pharmacological activities consist of cytotoxicity and antitumoral activity; antibiotic, antiparasitic, antiviral, and anti-inflammatory activity; and activity against neurodegenerative diseases and others. The most studied pharmacological activities are cytotoxicity and anticancer activities, followed by antibiotic activity. Overall, it can be observed that heterobranch molluscs are extremely interesting in regard to the study of marine natural products in terms of both chemical ecology and biotechnology studies, providing many leads for further detailed research in these fields in the near future.
Collapse
Affiliation(s)
- Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| |
Collapse
|
18
|
Summer K, Browne J, Liu L, Benkendorff K. Molluscan Compounds Provide Drug Leads for the Treatment and Prevention of Respiratory Disease. Mar Drugs 2020; 18:md18110570. [PMID: 33228163 PMCID: PMC7699502 DOI: 10.3390/md18110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory diseases place an immense burden on global health and there is a compelling need for the discovery of new compounds for therapeutic development. Here, we identify research priorities by critically reviewing pre-clinical and clinical studies using extracts and compounds derived from molluscs, as well as traditional molluscan medicines, used in the treatment of respiratory diseases. We reviewed 97 biomedical articles demonstrating the anti-inflammatory, antimicrobial, anticancer, and immunomodulatory properties of >320 molluscan extracts/compounds with direct relevance to respiratory disease, in addition to others with promising bioactivities yet to be tested in the respiratory context. Of pertinent interest are compounds demonstrating biofilm inhibition/disruption and antiviral activity, as well as synergism with approved antimicrobial and chemotherapeutic agents. At least 100 traditional medicines, incorporating over 300 different mollusc species, have been used to treat respiratory-related illness in cultures worldwide for thousands of years. These medicines provide useful clues for the discovery of bioactive components that likely underpin their continued use. There is particular incentive for investigations into anti-inflammatory compounds, given the extensive application of molluscan traditional medicines for symptoms of inflammation, and shells, which are the principal molluscan product used in these preparations. Overall, there is a need to target research toward specific respiratory disease-related hypotheses, purify bioactive compounds and elucidate their chemical structures, and develop an evidence base for the integration of quality-controlled traditional medicines.
Collapse
Affiliation(s)
- Kate Summer
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, GPO Box 157, Lismore, NSW 2480, Australia;
| | - Jessica Browne
- School of Health and Human Sciences, Southern Cross University, Terminal Drive, Bilinga, QLD 4225, Australia;
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, GPO Box 157, Lismore, NSW 2480, Australia;
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
- Correspondence: ; Tel.: +61-429-520-589
| |
Collapse
|
19
|
Apoptosis-Inducing Active Protein from Marine Clam Donax variabilis on NSCLC Cells. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Shikov AN, Flisyuk EV, Obluchinskaya ED, Pozharitskaya ON. Pharmacokinetics of Marine-Derived Drugs. Mar Drugs 2020; 18:E557. [PMID: 33182407 PMCID: PMC7698100 DOI: 10.3390/md18110557] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Marine organisms represent an excellent source of innovative compounds that have the potential for the development of new drugs. The pharmacokinetics of marine drugs has attracted increasing interest in recent decades due to its effective and potential contribution to the selection of rational dosage recommendations and the optimal use of the therapeutic arsenal. In general, pharmacokinetics studies how drugs change after administration via the processes of absorption, distribution, metabolism, and excretion (ADME). This review provides a summary of the pharmacokinetics studies of marine-derived active compounds, with a particular focus on their ADME. The pharmacokinetics of compounds derived from algae, crustaceans, sea cucumber, fungus, sea urchins, sponges, mollusks, tunicate, and bryozoan is discussed, and the pharmacokinetics data in human experiments are analyzed. In-depth characterization using pharmacokinetics is useful for obtaining information for understanding the molecular basis of pharmacological activity, for correct doses and treatment schemes selection, and for more effective drug application. Thus, an increase in pharmacokinetic research on marine-derived compounds is expected in the near future.
Collapse
Affiliation(s)
- Alexander N. Shikov
- Department of Technology of Pharmacutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14a, Saint-Petersburg 197376, Russia;
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| | - Elena V. Flisyuk
- Department of Technology of Pharmacutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14a, Saint-Petersburg 197376, Russia;
| | - Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, Murmansk 183010, Russia; (E.D.O.); (O.N.P.)
| |
Collapse
|
21
|
Chakraborty K, Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res Int 2020; 137:109637. [PMID: 33233216 PMCID: PMC7457972 DOI: 10.1016/j.foodres.2020.109637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Extensive biodiversity and availability of marine and estuarine molluscs, along with their their wide-range of utilities as food and nutraceutical resources developed keen attention of the food technologists and dieticians, particularly during the recent years. The current review comprehensively summarized the nutritional qualities, functional food attributes, and bioactive properties of these organisms. Among the phylum mollusca, Cephalopoda, Bivalvia, and Gastropoda were mostly reported for their nutraceutical applications and bioactive properties. The online search tools, like Scifinder/Science Direct/PubMed/Google Scholar/MarinLit database and marine natural product reports (1984-2019) were used to comprehend the information about the molluscs. More than 1334 secondary metabolites were reported from marine molluscs between the periods from 1984 to 2019. Among various classes of specialized metabolites, terpenes were occupied by 55% in gastropods, whereas sterols occupied 41% in bivalves. The marketed nutraceuticals, such as CadalminTM green mussel extract (Perna viridis) and Lyprinol® (Perna canaliculus) were endowed with potential anti-inflammatory activities, and were used against arthritis. Molluscan-derived therapeutics, for example, ziconotide was used as an analgesic, and elisidepsin was used in the treatment of cancer. Greater numbers of granted patents (30%) during 2016-2019 recognized the increasing importance of bioactive compounds from molluscs. Consumption of molluscs as daily diets could be helpful in the enhancement of immunity, and reduce the risk of several ailments. The present review comprehended the high value compounds and functional food ingredients from marine and estuarine molluscs.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India.
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India
| |
Collapse
|
22
|
Patra S, Praharaj PP, Panigrahi DP, Panda B, Bhol CS, Mahapatra KK, Mishra SR, Behera BP, Jena M, Sethi G, Patil S, Patra SK, Bhutia SK. Bioactive compounds from marine invertebrates as potent anticancer drugs: the possible pharmacophores modulating cell death pathways. Mol Biol Rep 2020; 47:7209-7228. [PMID: 32797349 DOI: 10.1007/s11033-020-05709-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022]
Abstract
Marine invertebrates are extremely diverse, largely productive, untapped oceanic resources with chemically unique bioactive lead compound contributing a wide range of screening for the discovery of anticancer compounds. The lead compounds have unfurled an extensive array of pharmacological properties owing to the presence of polyphenols, alkaloids, terpenoids and other secondary metabolites. The antioxidant, immunomodulatory and anti-tumor activities exhibited, are possibly regulated by the apoptosis induction, scavenging of ROS and modulation of cellular signaling pathways to defy the cellular deafness during carcinogenesis. Despite the enriched bioactive compounds, the marine invertebrates are largely unexplored as identification, screening, pre-clinical and clinical assessment of lead compounds and their synthetic analogs remain a major task to be solved. In the current review, we focus on the principle strategy and underlying mechanisms deployed by the bioactive anticancer compounds derived from marine invertebrates to combat cancer with special insight into the cell death mechanism.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Biswajit Panda
- College of Basic Science & Humanities OUAT, Bhubaneswar, 751003, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Mrutyunjay Jena
- PG Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India. .,Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
23
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agro-ressources (LG2A), CNRS FRE 3517, 33 rue Saint-Leu, 80039 Amiens, France
| | - Maris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1007, Latvia
| | - Maria Kolympadi Markovic
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Gabriela Ambrožić
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
24
|
García-Romo JS, Noguera-Artiaga L, Gálvez-Iriqui AC, Hernández-Zazueta MS, Valenzuela-Cota DF, González-Vega RI, Plascencia-Jatomea M, Burboa-Zazueta MG, Sandoval-Petris E, Robles-Sánchez RM, Juárez J, Hernández-Martínez J, Santacruz-Ortega HDC, Burgos-Hernández A. Antioxidant, antihemolysis, and retinoprotective potentials of bioactive lipidic compounds from wild shrimp (Litopenaeus stylirostris) muscle. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1719210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| | - Luis Noguera-Artiaga
- Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández de Elche, Grupo Calidad y Seguridad Alimentaria, Alicante, Spain
| | | | | | | | | | | | | | - Edgar Sandoval-Petris
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Mexico
| | | | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo, Mexico
| | | | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| |
Collapse
|
25
|
From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules 2020; 10:biom10020248. [PMID: 32041255 PMCID: PMC7072248 DOI: 10.3390/biom10020248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
The marine environment represents an outstanding source of antitumoral compounds and, at the same time, remains highly unexplored. Organisms living in the sea synthesize a wide variety of chemicals used as defense mechanisms. Interestingly, a large number of these compounds exert excellent antitumoral properties and have been developed as promising anticancer drugs that have later been approved or are currently under validation in clinical trials. However, due to the high need for these compounds, new methodologies ensuring its sustainable supply are required. Also, optimization of marine bioactives is an important step for their success in the clinical setting. Such optimization involves chemical modifications to improve their half-life in circulation, potency and tumor selectivity. In this review, we outline the most promising marine bioactives that have been investigated in cancer models and/or tested in patients as anticancer agents. Moreover, we describe the current state of development of anticancer marine compounds and discuss their therapeutic limitations as well as different strategies used to overcome these limitations. The search for new marine antitumoral agents together with novel identification and chemical engineering approaches open the door for novel, more specific and efficient therapeutic agents for cancer treatment.
Collapse
|
26
|
Venkateskumar K, Parasuraman S, Chuen LY, Ravichandran V, Balamurgan S. Exploring Antimicrobials from the Flora and Fauna of Marine: Opportunities and Limitations. Curr Drug Discov Technol 2020; 17:507-514. [PMID: 31424372 DOI: 10.2174/1570163816666190819141344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/24/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
About 95% of earth living space lies deep below the ocean's surface and it harbors extraordinary diversity of marine organisms. Marine biodiversity is an exceptional reservoir of natural products, bioactive compounds, nutraceuticals and other potential compounds of commercial value. Timeline for the development of the drug from a plant, synthetic and other alternative sources is too lengthy. Exploration of the marine environment for potential bioactive compounds has gained focus and huge opportunity lies ahead for the exploration of such vast resources in the ocean. Further, the evolution of superbugs with increasing resistance to the currently available drugs is alarming and it needs coordinated efforts to resolve them. World Health Organization recommends the need and necessity to develop effective bioactive compounds to combat problems associated with antimicrobial resistance. Based on these factors, it is imperative to shift the focus towards the marine environment for potential bioactive compounds that could be utilized to tackle antimicrobial resistance. Current research trends also indicate the huge strides in research involving marine environment for drug discovery. The objective of this review article is to provide an overview of marine resources, recently reported research from marine resources, challenges, future research prospects in the marine environment.
Collapse
Affiliation(s)
| | - Subramani Parasuraman
- Faculty of Pharmacy, AIMST University, Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia
| | - Leow Y Chuen
- Faculty of Pharmacy, AIMST University, Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia
| | - Veerasamy Ravichandran
- Faculty of Pharmacy, AIMST University, Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia
| | | |
Collapse
|
27
|
Gavagnin M, Carbone M, Ciavatta ML, Mollo E. Natural Products from Marine Heterobranchs: an Overview of Recent Results. CHEMISTRY JOURNAL OF MOLDOVA 2019. [DOI: 10.19261/cjm.2019.617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
28
|
Li W, Xie X, Wu T, Lin H, Luo L, Yang H, Li J, Xin Y, Lin X, Chen Y. Loading Auristatin PE onto boron nitride nanotubes and their effects on the apoptosis of Hep G2 cells. Colloids Surf B Biointerfaces 2019; 181:305-314. [PMID: 31154141 DOI: 10.1016/j.colsurfb.2019.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
Auristatin PE (PE) as an anti-microtubule agent possesses good anticancer activity. However, the poor target effect and strong side effect limit the clinical application of PE. Boron nitride nanotubes (BNNTs) represent an outstanding carrier candidate providing a wise choice for liver-targeted drug delivery. A drug delivery system based on BNNTs and PE (BNNTs-PE) against liver cancer cells was designed and constructed in this study. Firstly, BNNTs were prepared and hydroxylated, subsequently, PE was loaded onto BNNTs by noncovalent conjugation and was stable at neutral pH but released at pH 4.49. It was found that BNNTs-PE demonstrates an enhanced anticancer activity against Hep G2 cells in comparison with free PE. BNNTs-PE kills cancer cells in a manner of mitochondria-mediated apoptosis pathway through reducing the mitochondrial membrane potential, activating caspase cascade. This BNNTs-PE system may be very promising for the treatment of liver cancer in the future.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xi Xie
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Science, Hainan University, Haikou 570228, China.
| | - Tiantian Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hong Lin
- State Key Laboratory of New Ceramics and Fine Processing, College of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijie Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Huan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Jianbao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yu Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xiaoding Lin
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Science, Hainan University, Haikou 570228, China.
| | - Yongjun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
29
|
Marine Macrolides with Antibacterial and/or Antifungal Activity. Mar Drugs 2019; 17:md17040241. [PMID: 31018512 PMCID: PMC6520931 DOI: 10.3390/md17040241] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/11/2022] Open
Abstract
Currently, the increasing resistance of microorganisms to antibiotics is a serious problem. Marine organisms are the source of thousands of substances, which also have antibacterial and antifungal effects. Among them, marine macrolides are significant. In this review, the antibacterial and/or antifungal activities of 34 groups of marine macrolides are presented. Exemplary groups are chalcomycins, curvulides, halichondramides, lobophorins, macrolactins, modiolides, scytophycins, spongistatins, or zearalanones. In the paper, 74 antibiotics or their analog sets, among which 29 with antifungal activity, 25 that are antibacterial, and 20 that are both antifungal and antibacterial are summarized. Also, 36 macrolides or their sets are produced by bacteria, 18 by fungi, ten by sponges, seven by algae, two by porifera, and one by nudibranch. Moreover, the chemical structures of representatives from each of the 34 groups of these antibiotics are presented. To summarize, marine organisms are rich in natural macrolides. Some of these may be used in the future in the treatment of bacterial and fungal infections. Marine macrolides can also be potential drugs applicable against pathogens resistant to currently known antibiotics.
Collapse
|
30
|
Induction of Apoptosis by Extract of Persian Gulf Marine Mollusk, Turbo Coronatus through the ROS-Mediated Mitochondrial Targeting on Human Epithelial Ovarian Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:263-274. [PMID: 31089361 PMCID: PMC6487418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite recent improvements in treatment, ovarian cancer is still the leading cause of death from gynaecological malignancies. Today, marine mollusks are considered as natural source of new biologically and pharmacologically active compounds by scientists and the pharmaceutical industries. The aim of this study is to investigate the selective apoptotic effects of Turbo coronatus crude extract fractions on human epithelial ovarian cancer (EOC) cells and mitochondria. The cells and mitochondria were isolated from cancerous and non-cancerous ovarian tissues and exposed to IC50 concentration of F1 fraction for evaluation of mitochondrial and cellular parameters. Our results showed that F1 fraction of T. coronatus crude extract significantly induced toxic effects only in the cancerous ovarian mitochondria, including increased reactive oxygen species (ROS) formation, mitochondrial membrane depolarization, mitochondrial swelling, and cytochrome c release.Flow-cytometry analysis demonstrated that F1 fraction of T. coronatus progressively induced apoptosis and necrosis only on EOC but not non-cancerous cells. We eventuallyconcluded that F1 fraction of T. coronatus crude extract selectively induces apoptosis in EOC through a ROS- mediated pathway.
Collapse
|
31
|
Yildiz T, Gu R, Zauscher S, Betancourt T. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int J Nanomedicine 2018; 13:6961-6986. [PMID: 30464453 PMCID: PMC6217908 DOI: 10.2147/ijn.s174068] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Despite significant progress in the field of oncology, cancer remains one of the leading causes of death. Chemotherapy is one of the most common treatment options for cancer patients but is well known to result in off-target toxicity. Theranostic nanomedicines that integrate diagnostic and therapeutic functions within an all-in-one platform can increase tumor selectivity for more effective chemotherapy and aid in diagnosis and monitoring of therapeutic responses. MATERIAL AND METHODS In this work, theranostic nanoparticles were synthesized with commonly used biocompatible and biodegradable polymers and used as cancer contrast and therapeutic agents for optical imaging and treatment of breast cancer. These core-shell nanoparticles were prepared by nanoprecipitation of blends of the biodegradable and biocompatible amphiphilic copolymers poly(lactic-co-glycolic acid)-b-poly-l-lysine and poly(lactic acid)-b-poly(ethylene glycol). Poly-l-lysine in the first copolymer was covalently decorated with near-infrared fluorescent Alexa Fluor 750 molecules. RESULTS The spherical nanoparticles had an average size of 60-80 nm. The chemotherapeutic drug doxorubicin was encapsulated in the core of nanoparticles at a loading of 3% (w:w) and controllably released over a period of 30 days. A 33-fold increase in near-infrared fluorescence, mediated by protease-mediated cleavage of the Alexa Fluor 750-labeled poly-l-lysine on the surface of the nanoparticles, was observed upon interaction with the model protease trypsin. The cytocompatibility of drug-free nanoparticles and growth inhibition of drug-loaded nanoparticles on MDA-MB-231 breast cancer cells were investigated with a luminescence cell-viability assay. Drug-free nanoparticles were found to cause minimal toxicity, even at high concentrations (0.2-2,000 µg/mL), while doxorubicin-loaded nanoparticles significantly reduced cell viability at drug concentrations >10 µM. Finally, the interaction of the nanoparticles with breast cancer cells was studied utilizing fluorescence microscopy, demonstrating the potential of the nanoparticles to act as near-infrared fluorescence optical imaging agents and drug-delivery carriers. CONCLUSION Doxorubicin-loaded, enzymatically activatable nanoparticles of less than 100 nm were prepared successfully by nanoprecipitation of copolymer blends. These nanoparticles were found to be suitable as controlled drug delivery systems and contrast agents for imaging of cancer cells.
Collapse
Affiliation(s)
- Tugba Yildiz
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX,
| | - Renpeng Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC
| | - Tania Betancourt
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX,
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA,
| |
Collapse
|
32
|
Phyo YZ, Ribeiro J, Fernandes C, Kijjoa A, Pinto MMM. Marine Natural Peptides: Determination of Absolute Configuration Using Liquid Chromatography Methods and Evaluation of Bioactivities. Molecules 2018; 23:E306. [PMID: 29385101 PMCID: PMC6017543 DOI: 10.3390/molecules23020306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, many naturally occurring peptides have attracted the attention of medicinal chemists due to their promising applicability as pharmaceuticals or as models for drugs used in therapeutics. Marine peptides are chiral molecules comprising different amino acid residues. Therefore, it is essential to establish the configuration of the stereogenic carbon of their amino acid constituents for a total characterization and further synthesis to obtain higher amount of the bioactive marine peptides or as a basis for structural modifications for more potent derivatives. Moreover, it is also a crucial issue taking into account the mechanisms of molecular recognition and the influence of molecular three-dimensionality in this process. In this review, a literature survey covering the report on the determination of absolute configuration of the amino acid residues of diverse marine peptides by chromatographic methodologies is presented. A brief summary of their biological activities was also included emphasizing to the most promising marine peptides. A case study describing an experience of our group was also included.
Collapse
Affiliation(s)
- Ye' Zaw Phyo
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - João Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla Fernandes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Madalena M M Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
33
|
Anžiček N, Williams S, Housden MP, Paterson I. Toward aplyronine payloads for antibody–drug conjugates: total synthesis of aplyronines A and D. Org Biomol Chem 2018; 16:1343-1350. [DOI: 10.1039/c7ob03204h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report an expedient total synthesis of aplyronines A and D, together with a linker-modified analogue for bioconjugation studies.
Collapse
Affiliation(s)
- Nika Anžiček
- University Chemical Laboratory
- University of Cambridge
- UK
| | | | | | - Ian Paterson
- University Chemical Laboratory
- University of Cambridge
- UK
| |
Collapse
|
34
|
Gogineni V, Hamann MT. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim Biophys Acta Gen Subj 2018; 1862:81-196. [PMID: 28844981 PMCID: PMC5918664 DOI: 10.1016/j.bbagen.2017.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability.
Collapse
Affiliation(s)
- Vedanjali Gogineni
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS, United States.
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
35
|
Fisch KM, Hertzer C, Böhringer N, Wuisan ZG, Schillo D, Bara R, Kaligis F, Wägele H, König GM, Schäberle TF. The Potential of Indonesian Heterobranchs Found around Bunaken Island for the Production of Bioactive Compounds. Mar Drugs 2017; 15:E384. [PMID: 29215579 PMCID: PMC5742844 DOI: 10.3390/md15120384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
The species diversity of marine heterobranch sea slugs found on field trips around Bunaken Island (North Sulawesi, Indonesia) and adjacent islands of the Bunaken National Marine Park forms the basis of this review. In a survey performed in 2015, 80 species from 23 families were collected, including 17 new species. Only three of these have been investigated previously in studies from Indonesia. Combining species diversity with a former study from 2003 reveals in total 140 species from this locality. The diversity of bioactive compounds known and yet to be discovered from these organisms is summarized and related to the producer if known or suspected (might it be down the food chain, de novo synthesised from the slug or an associated bacterium). Additionally, the collection of microorganisms for the discovery of natural products of pharmacological interest from this hotspot of biodiversity that is presented here contains more than 50 species that have never been investigated before in regard to bioactive secondary metabolites. This highlights the great potential of the sea slugs and the associated microorganisms for the discovery of natural products of pharmacological interest from this hotspot of biodiversity.
Collapse
Affiliation(s)
- Katja M Fisch
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
- Institute for Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany.
| | - Cora Hertzer
- Institute for Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany.
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
- Institute for Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany.
| | - Zerlina G Wuisan
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
- Institute for Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany.
| | - Dorothee Schillo
- Centre of Molecular Biodiversity, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany.
| | - Robert Bara
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia.
| | - Fontje Kaligis
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95115, Indonesia.
| | - Heike Wägele
- Centre of Molecular Biodiversity, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany.
| | - Gabriele M König
- Institute for Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, 53115 Bonn, Germany.
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
- Institute for Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-University Bonn, 53115 Bonn, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, 53115 Bonn, Germany.
| |
Collapse
|
36
|
Carbone M, Ciavatta ML, Mathieu V, Ingels A, Kiss R, Pascale P, Mollo E, Ungur N, Guo YW, Gavagnin M. Marine Terpenoid Diacylguanidines: Structure, Synthesis, and Biological Evaluation of Naturally Occurring Actinofide and Synthetic Analogues. JOURNAL OF NATURAL PRODUCTS 2017; 80:1339-1346. [PMID: 28406636 DOI: 10.1021/acs.jnatprod.6b00941] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new diacylguanidine, actinofide (1), has been isolated from the marine mollusk Actinocyclus papillatus. The structure, exhibiting a guanidine moiety acylated by two terpenoid acid units, has been established by spectroscopic methods and secured by synthesis. Following this, a series of structural analogues have been synthesized using the same procedure. All of the compounds have been evaluated in vitro for the growth inhibitory activity against a variety of cancer cell lines.
Collapse
Affiliation(s)
- Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - M Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Aude Ingels
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Paola Pascale
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Nicon Ungur
- Institute of Chemistry, Moldova Academy of Sciences , Academiei str. 3, MD-2028 Chisinau, Republic of Moldova
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, P.R. China
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| |
Collapse
|
37
|
Anti-Inflammatory Activity and Structure-Activity Relationships of Brominated Indoles from a Marine Mollusc. Mar Drugs 2017; 15:md15050133. [PMID: 28481239 PMCID: PMC5450539 DOI: 10.3390/md15050133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/18/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022] Open
Abstract
Marine molluscs are rich in biologically active natural products that provide new potential sources of anti-inflammatory agents. Here we used bioassay guided fractionation of extracts from the muricid Dicathais orbita to identify brominated indoles with anti-inflammatory activity, based on the inhibition of nitric oxide (NO) and tumour necrosis factor α (TNFα) in lipopolysaccharide (LPS) stimulated RAW264.7 macrophages and prostaglandin E2 (PGE2) in calcium ionophore-stimulated 3T3 ccl-92 fibroblasts. Muricid brominated indoles were then compared to a range of synthetic indoles to determine structure-activity relationships. Both hypobranchial gland and egg extracts inhibited the production of NO significantly with IC50 of 30.8 and 40 μg/mL, respectively. The hypobranchial gland extract also inhibited the production of TNFα and PGE2 with IC50 of 43.03 µg/mL and 34.24 µg/mL, respectively. The purified mono-brominated indole and isatin compounds showed significant inhibitory activity against NO, TNFα, and PGE2, and were more active than dimer indoles and non-brominated isatin. The position of the bromine atom on the isatin benzene ring significantly affected the activity, with 5Br > 6Br > 7Br. The mode of action for the active hypobranchial gland extract, 6-bromoindole, and 6-bromoisatin was further tested by the assessment of the translocation of nuclear factor kappa B (NFκB) in LPS-stimulated RAW264.7 mouse macrophage. The extract (40 µg/mL) significantly inhibited the translocation of NFκB in the LPS-stimulated RAW264.7 macrophages by 48.2%, whereas 40 µg/mL of 6-bromoindole and 6-bromoistain caused a 60.7% and 63.7% reduction in NFκB, respectively. These results identify simple brominated indoles as useful anti-inflammatory drug leads and support the development of extracts from the Australian muricid D. orbita, as a new potential natural remedy for the treatment of inflammation.
Collapse
|