1
|
Rungratanawanich W, LeFort KR, Cho YE, Li X, Song BJ. Melatonin Prevents Thioacetamide-Induced Gut Leakiness and Liver Fibrosis Through the Gut-Liver Axis via Modulating Sirt1-Related Deacetylation of Gut Junctional Complex and Hepatic Proteins. J Pineal Res 2024; 76:e13007. [PMID: 39269018 PMCID: PMC11480967 DOI: 10.1111/jpi.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Intestinal barrier dysfunction with high serum endotoxin is common in patients with liver fibrosis, but the mechanisms underlying liver fibrosis remain unclear. Melatonin is a well-recognized antioxidant and an anti-inflammatory agent that benefits multiple organs. However, the beneficial effects of melatonin on gut leakiness-associated liver fibrosis have not been systemically studied. Here, we investigated the protective mechanisms of melatonin against thioacetamide (TAA)-induced gut barrier dysfunction and hepatic fibrosis by focusing on posttranslational protein modifications through the gut-liver axis. Our results showed that gut leakiness markers, including decreased gut tight/adherens junction proteins (TJ/AJs) with increased intestinal deformation, apoptosis, and serum endotoxin, were observed early at 1 week after TAA exposure. Liver injury, apoptosis, and fibrosis were prominent at 2 and 4 weeks. Mechanistically, we found that gut TJ/AJs were hyper-acetylated, followed by ubiquitin-dependent proteolysis, leading to their degradation and gut leakiness. Gut dysbiosis, hepatic protein hyper-acetylation, and SIRT1 downregulation were also observed. Consistently, intestinal Sirt1 deficiency greatly enhanced protein hyper-acetylation, gut leakiness, endotoxemia, and liver fibrosis. Pretreatment with melatonin prevented or improved all these changes in both the gut and liver. Furthermore, melatonin blunted protein acetylation and injury in TAA-exposed T84 human intestinal and AML12 mouse liver cells. Overall, this study demonstrated novel mechanisms by which melatonin prevents gut leakiness and liver fibrosis through the gut-liver axis by attenuating the acetylation of intestinal and hepatic proteins. Thus, melatonin consumption can become a potentially safe supplement for liver fibrosis patients by preventing protein hyper-acetylation and gut leakiness.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Karli Rae LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Republic of Korea
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, BG 101, Research Triangle Park, NC 27709, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Zheng KY, Gao B, Wang HJ, He JG, Chen HS, Hu ZL, Long LH, Chen JG, Wang F. Melatonin Ameliorates Depressive-Like Behaviors in Ovariectomized Mice by Improving Tryptophan Metabolism via Inhibition of Gut Microbe Alistipes Inops. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309473. [PMID: 38978348 PMCID: PMC11425877 DOI: 10.1002/advs.202309473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is reported to improve mood disorders in perimenopausal women and gut microbiome composition is altered during menopausal period. The possible role of microbiome in the treatment effect of melatonin on menopausal depression remains unknown. Here, it is shown that melatonin treatment reverses the gut microbiota dysbiosis and depressive-like behaviors in ovariectomy (OVX) operated mice. This effect of melatonin is prevented by antibiotic cocktails (ABX) treatment. Transferring microbiota harvested from adolescent female mice to OVX-operated mice is sufficient to ameliorate depressive-like behaviors. Conversely, microbiota transplantation from OVX-operated mice or melatonin-treated OVX-operated mice to naïve recipient mice exhibits similar phenotypes to donors. The colonization of Alistipes Inops, which is abundant in OVX-operated mice, confers the recipient with depressive-like behaviors. Further investigation indicates that the expansion of Alistipes Inops induced by OVX leads to the degradation of intestinal tryptophan, which destroys systemic tryptophan availability. Melatonin supplementation restores systemic tryptophan metabolic disorders by suppressing the growth of Alistipes Inops, which ameliorates depressive-like behaviors. These results highlight the previously unrecognized role of Alistipes Inops in the modulation of OVX-induced behavioral disorders and suggest that the application of melatonin to inhibit Alistipes Inops may serve as a potential strategy for preventing menopausal depressive symptoms.
Collapse
Affiliation(s)
- Kai-Yu Zheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Gang He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
| | - Hong-Sheng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuang-Li Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
| | - Li-Hong Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- Hubei Shizhen Laboratory, Wuhan, 430030, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Zhen L, Huang Y, Bi X, Gao A, Peng L, Chen Y. Melatonin feeding changed the microbial diversity and metabolism of the broiler cecum. Front Microbiol 2024; 15:1422272. [PMID: 39224220 PMCID: PMC11367786 DOI: 10.3389/fmicb.2024.1422272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
To study the effect of melatonin supplementation on the gut microbes of broilers, 160 healthy 3-week-old Ross 308 broilers with similar body weights were selected and randomly divided into four groups (M0, M20, M40, and M80) supplemented with 0, 20, 40, or 80 mg/kg melatonin. The results showed that the abundance-based coverage estimator (ACE) index of cecum microorganisms was significantly lower in the M80 group. The dominant phyla of intestinal contents in the M0, M20, M40, and M80 groups were Bacteroidetes and Firmicutes. The M40 group showed an increase in the relative abundance of Bacteroidetes spp. in the intestine, while the relative abundance of Ruminococcus spp. in the intestine of the M20, M40, and M80 groups was significantly greater than that of the M0 group. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses revealed that the supplementation of melatonin increases the expression of genes related to cellular processes (cell motility, cell growth and death, and cellular community-eukaryotes), environmental information processing (membrane transport and signal transduction), and genetic information processing (transport and transcription), and Cluster of Orthologous Groups (COG) of proteins functional analyses revealed that the supplementation of melatonin resulted in a significant increase in cellular processes and signaling (cell motility, signal transduction mechanisms, intracellular trafficking, secretion, and vesicular transport), information storage and processing (RNA processing and modification, chromatin structure and dynamics, translation, ribosomal structure, and biogenesis), metabolism (energy production and conversion, lipid transportation and metabolism, inorganic ion transport and metabolism, secondary metabolite biosynthesis, transport, and catabolism), and poorly characterized (general function prediction only). In summary, supplementation of feed with melatonin can increase the diversity of intestinal microorganisms and the relative abundance of Bacteroides and Firmicutes in the cecum, improve digestive ability and nutrient absorption ability, and positively regulate the metabolic ability of broilers.
Collapse
Affiliation(s)
- Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| | - Yi Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuewen Bi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Anyu Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Linlin Peng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yong Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
4
|
Li C, Wen Y, Tong Q, Peng Y, Yu D, Rao Y, Zeng Y. Gut microbiota-melatonin signaling axis in acute pancreatitis: Revealing the impact of gut health on pancreatic inflammation and disease severity in a case-control study. Medicine (Baltimore) 2024; 103:e38689. [PMID: 38996098 PMCID: PMC11245267 DOI: 10.1097/md.0000000000038689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
Acute pancreatitis (AP), a severe inflammatory condition affecting the pancreas requires investigation into its predictors. Melatonin, a compound with anti-inflammatory and antioxidant properties, has shown promise in managing AP. Additionally, the gut microbiota, a community of microorganisms residing in the intestines has been linked to AP development. This study aims to explore the correlation between melatonin and gut microbiota in predicting AP severity. This study involved 199 participants, with 99 diagnosed with AP and 100 serving as healthy controls. The AP patients were categorized into 2 groups based on the severity of their condition: mild AP (MAP) and severe AP (SAP). Serum melatonin levels were measured on Days 1, 3, and 5 of hospitalization, and gut microbiota composition was examined via 16S rRNA gene sequencing. Other parameters were evaluated, such as the Acute Physiology and Chronic Health Evaluation (APACHE) score, Ranson, and Acute Gastrointestinal Injury (AGI) scores. Melatonin levels were significantly lower in subjects with severe AP compared those with mild AP (18.2 ng/mL vs 32.2 ng/mL, P = .001), and melatonin levels decreased significantly in patients with AP on Days 3 and 5. The study also revealed that individuals with AP exhibited a significantly altered gut microbiota composition compared to control individuals, with a lower Shannon index and higher Simpson index. The AUCs for Simpson index and F/B ratio were significantly higher than those for other biomarkers, indicating that these gut microbiota markers may also be useful for AP prediction. The study proposes that there is a relationship between melatonin levels and the dynamics of gut microbiota profiles in relation to the severity of AP. As a result, the severity of the disease can be assessed by assessing the levels of serum melatonin and gut microbiota profiles.
Collapse
Affiliation(s)
- Chao Li
- Department of General Surgery, Yiyang Central Hospital, Yiyang City, China
| | - Yangfen Wen
- Department of General Surgery, Yiyang Central Hospital, Yiyang City, China
| | - Qiwen Tong
- Department of General Surgery, Yiyang Central Hospital, Yiyang City, China
| | - Yi Peng
- Department of General Surgery, Yiyang Central Hospital, Yiyang City, China
| | - Dan Yu
- Department of General Surgery, Yiyang Central Hospital, Yiyang City, China
| | - Yisong Rao
- Department of General Surgery, Yiyang Central Hospital, Yiyang City, China
| | - Yuehong Zeng
- Department of General Surgery, Yiyang Central Hospital, Yiyang City, China
| |
Collapse
|
5
|
Kulsoom K, Ali W, Saba Z, Hussain S, Zahra S, Irshad M, Ramzan MS. Revealing Melatonin's Mysteries: Receptors, Signaling Pathways, and Therapeutics Applications. Horm Metab Res 2024; 56:405-418. [PMID: 38081221 DOI: 10.1055/a-2226-3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Melatonin (5-methoxy-acetyl tryptamine) is a sleep-inducing hormone, and the pineal gland produces it in response to the circadian clock of darkness. In the body, MT1 and MT2 receptors are mostly found, having an orthosteric pocket and ligand binding determinants. Melatonin acts by binding on melatonin receptors, intracellular proteins, and orphan nuclear receptors. It inhibits adenyl cyclase and activates phospholipase C, resulting in gene expression and an intracellular alteration environment. Melatonin signaling pathways are also associated with other intracellular signaling pathways, i. e., cAMP/PKA and MAPK/ERK pathways. Relative expression of different proteins depends on the coupling profile of G protein, accounting pharmacology of the melatonin receptor bias system, and mediates action in a Gi-dependent manner. It shows antioxidant, antitumor, antiproliferative, and neuroprotective activity. Different types of melatonin agonists have been synthesized for the treatment of sleeping disorders. Researchers have developed therapeutics that target melatonin signaling, which could benefit a wide range of medical conditions. This review focuses on melatonin receptors, pharmacology, and signaling cascades; it aims to provide basic mechanical aspects of the receptor's pharmacology, melatonin's functions in cancer and neurodegenerative diseases, and any treatments and drugs designed for these diseases. This will allow a basic comparison between the receptors in question, highlighting any parallels and differences that may exist and providing fundamental knowledge about these receptors to future researchers.
Collapse
Affiliation(s)
- Kulsoom Kulsoom
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Wajahat Ali
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xian, China
| | - Zainab Saba
- Department of Optometry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Shabab Hussain
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Universita degli studi di Messina, Messina, Italy
| | - Samra Zahra
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Maria Irshad
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Muhammad Saeed Ramzan
- Department of Pharmacology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
6
|
Wang Q, Li C, Yuan B, Yu A, Qu G, Sun Z. Engineering the Activity of a Newly Identified Arylalkylamine N-Acetyltransferase in the Acetylation of 5-Hydroxytryptamine. Chembiochem 2024; 25:e202400069. [PMID: 38504591 DOI: 10.1002/cbic.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Arylalkylamine N-acetyltransferase (AANAT) serves as a key enzyme in the biosynthesis of melatonin by transforming 5-hydroxytryptamine (5-HT) to N-acetyl-5-hydroxytryptamine (NAS), while its low activity may hinder melatonin yield. In this study, a novel AANAT derived from Sus scrofa (SsAANAT) was identified through data mining using 5-HT as a model substrate, and a rational design of SsAANAT was conducted in the quest to improving its activity. After four rounds of mutagenesis procedures, a triple combinatorial dominant mutant M3 was successfully obtained. Compared to the parent enzyme, the conversion of the whole-cell reaction bearing the best variant M3 exhibted an increase from 50 % to 99 % in the transformation of 5-HT into NAS. Additionally, its catalytic efficiency (kcat/Km) was enhanced by 2-fold while retaining the thermostability (Tm>45 °C). In the up-scaled reaction with a substrate loading of 50 mM, the whole-cell system incorporating variant M3 achieved a 99 % conversion of 5-HT in 30 h with an 80 % yield. Molecular dynamics simulations were ultilized to shed light on the origin of improved activity. This study broadens the repertoire of AANAT for the efficient biosynthesis of melatonin.
Collapse
Affiliation(s)
- Qing Wang
- College of Biotechnology, Tianjin University of Science and Technology, 300457, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Aiqun Yu
- College of Biotechnology, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| |
Collapse
|
7
|
Liu C, Huang D, Sheng X, Zhu J, Dong S, Chen S, Wang Y, Tang A, Duan R, Yang Z, Bai J, Zheng Y. Integrated physiological, intestinal microbiota, and metabolomic responses of adult zebrafish (Danio rerio) to subacute exposure to antimony at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116326. [PMID: 38640800 DOI: 10.1016/j.ecoenv.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The available information regarding the impact of antimony (Sb), a novel environmental pollutant, on the intestinal microbiota and host health is limited. In this study, we conducted physiological characterizations to investigate the response of adult zebrafish to different environmental concentrations (0, 30, 300, and 3000 µg/L) of Sb over a period of 14 days. Biochemical and pathological changes demonstrated that Sb effectively compromised the integrity of the intestinal physical barrier and induced inflammatory responses as well as oxidative stress. Analysis of both intestinal microbial community and metabolome revealed that exposure to 0 and 30 µg/L of Sb resulted in similar microbiota structures; however, exposure to 300 µg/L altered microbial communities' composition (e.g., a decline in genus Cetobacterium and an increase in Vibrio). Furthermore, exposure to 300 µg/L significantly decreased levels of bile acids and glycerophospholipids while triggering intestinal inflammation but activating self-protective mechanisms such as antibiotic presence. Notably, even exposure to 30 µg/L of Sb can trigger dysbiosis of intestinal microbiota and metabolites, potentially impacting fish health through the "microbiota-intestine-brain axis" and contributing to disease initiation. This study provides valuable insights into toxicity-related information concerning environmental impacts of Sb on aquatic organisms with significant implications for developing management strategies.
Collapse
Affiliation(s)
- Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Dongmei Huang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Xiangquan Sheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianzhong Zhu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Si Dong
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Song Chen
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Yaying Wang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Ao Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Renyan Duan
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Zeliang Yang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| |
Collapse
|
8
|
Andersen TO, Sejling C, Jensen AK, Dissing AS, Severinsen ER, Drews HJ, Sørensen TIA, Varga TV, Rod NH. Self-reported and tracked nighttime smartphone use and their association with overweight and cardiometabolic risk markers. Sci Rep 2024; 14:4861. [PMID: 38418905 PMCID: PMC10902390 DOI: 10.1038/s41598-024-55349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Nighttime smartphone use is associated with sleep problems, which in turn have a bidirectional association with overweight. We aim to investigate whether nighttime smartphone use and sleep are related to overweight and metabolic dysfunction in adult populations. We used data from three population samples (aged 16-89) from the SmartSleep Study, which included survey data (N = 29,838), high-resolution tracking data (N = 3446), follow-up data (N = 1768), and cardiometabolic risk markers (N = 242). Frequent self-reported nighttime smartphone use was associated with 51% higher odds (95% CI: 1.32; 1.70) of overweight compared with no use. Tracked nighttime smartphone use was also associated with overweight. Similar results were found for obesity as an outcome. No consistent associations were found between nighttime smartphone use and cardiometabolic risk markers in a small subsample of healthy young women. Poor sleep quality (vs. good sleep quality) was associated with overweight (OR = 1.19, 85% CI: 1.10; 1.28). Overall, frequent nighttime smartphone use was consistently associated with overweight and a higher BMI across diverse population samples. The bidirectional interplay between nighttime smartphone use, sleep, and overweight may create a vicious circle of metabolic dysfunction over time. Therefore, nighttime smartphone use may be a potential target point for public health interventions to reduce overweight at the population level.
Collapse
Affiliation(s)
- Thea Otte Andersen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Christoffer Sejling
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kryger Jensen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Agnete Skovlund Dissing
- Real World Evidence & Epidemiology, Department of Value Evidence and Patient Insights, H. Lundbeck A/S, Copenhagen, Denmark
| | - Elin Rosenbek Severinsen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Henning Johannes Drews
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tibor V Varga
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Naja Hulvej Rod
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Lei X, Xu Z, Huang L, Huang Y, Tu S, Xu L, Liu D. The potential influence of melatonin on mitochondrial quality control: a review. Front Pharmacol 2024; 14:1332567. [PMID: 38273825 PMCID: PMC10808166 DOI: 10.3389/fphar.2023.1332567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024] Open
Abstract
Mitochondria are critical for cellular energetic metabolism, intracellular signaling orchestration and programmed death regulation. Therefore, mitochondrial dysfunction is associated with various pathogeneses. The maintenance of mitochondrial homeostasis and functional recovery after injury are coordinated by mitochondrial biogenesis, dynamics and autophagy, which are collectively referred to as mitochondrial quality control. There is increasing evidence that mitochondria are important targets for melatonin to exert protective effects under pathological conditions. Melatonin, an evolutionarily conserved tryptophan metabolite, can be synthesized, transported and metabolized in mitochondria. In this review, we summarize the important role of melatonin in the damaged mitochondria elimination and mitochondrial energy supply recovery by regulating mitochondrial quality control, which may provide new strategies for clinical treatment of mitochondria-related diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Tu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
11
|
Xue C, Wang Y, He Z, Lu Z, Wu F, Wang Y, Zhen Y, Meng J, Shahzad K, Yang K, Wang M. Melatonin disturbed rumen microflora structure and metabolic pathways in vitro. Microbiol Spectr 2023; 11:e0032723. [PMID: 37929993 PMCID: PMC10714781 DOI: 10.1128/spectrum.00327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE In in vitro studies, it has been found that the effects of MLT on rumen microorganisms and metabolites can change the rumen flora structure, significantly inhibit the relative abundance of harmful Acinetobacter, and improve the relative abundance of beneficial bacteria. MLT may regulate the "arginine-glutathione" pathway, "phenylalanine, tyrosine and tryptophan biosynthesis-tryptophan generation" branch, "tryptophan-kynurenine" metabolism, and "tryptophan-tryptamine-serotonin" pathway through microorganisms.
Collapse
Affiliation(s)
- Chun Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Yifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaoyuan He
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhiqi Lu
- Ningxia Dairy Science and Innovation Center of Guangming Animal Husbandry Co., Ltd., Zhongwei, China
| | - Feifan Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
12
|
Qin W, Wang J, Hu Q, Qin R, Ma N, Zheng F, Tian W, Jiang J, Li T, Jin Y, Liao M, Qin A. Melatonin-pretreated human umbilical cord mesenchymal stem cells improved endometrium regeneration and fertility recovery through macrophage immunomodulation in rats with intrauterine adhesions†. Biol Reprod 2023; 109:918-937. [PMID: 37672216 DOI: 10.1093/biolre/ioad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Intrauterine adhesions (IUA) are a common gynecological problem. Stem cell therapy has been widely used in the treatment of IUA. However, due to the complex and harsh microenvironment of the uterine cavity, the effectiveness of such therapy is greatly inhibited. This study aimed to investigate whether melatonin pretreatment enhances the efficacy of human umbilical cord mesenchymal stem cells (HucMSCs) in IUA treatment in rats. First, we explored the effect of melatonin on the biological activity of HucMSCs in vitro through a macrophage co-culture system, Cell Counting Kit 8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), flow cytometry, immunofluorescence staining, and qRT-PCR. Subsequently, we established the IUA rat model and tracked the distribution of HucMSCs in this model. In addition, we observed the number of M1 and M2 macrophages through immunofluorescence staining and detected the levels of inflammatory cytokines. Four weeks after cell transplantation, HE, Masson, and immunohistochemical staining were performed. In vitro experiments showed that melatonin pretreatment of HucMSCs promoted proliferation, reduced apoptosis, up-regulated the stemness gene, and regulated macrophage polarization. In vivo, melatonin pretreatment caused more HucMSCs to remain in the uterine cavity. Melatonin-pretreated HucMSCs recruited more macrophages, regulated macrophage polarization, and reduced inflammation. Melatonin-pretreated HucMSCs relieved fibrosis, increased endometrium thickness, and up-regulated CD34, vimentin, proliferating cell nuclear antigen (PCNA), and alpha small muscle antigen (α-SMA) expression. Fertility tests showed that melatonin-pretreated HucMSCs increased the number of embryos. In summary, pretreatment with melatonin was beneficial for HucMSC treatment because it enhanced the cell's ability to recruit macrophages and regulate macrophage polarization, which led to the regeneration of the endometrium and improved pregnancy outcomes.
Collapse
Affiliation(s)
- Weili Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiawei Wang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Reproductive and Genetic Hospital, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianwen Hu
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongyan Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nana Ma
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fengque Zheng
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wencai Tian
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinghang Jiang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufu Jin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Liao
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Zheng H, Zhang C, Zhang J, Duan L. "Sentinel or accomplice": gut microbiota and microglia crosstalk in disorders of gut-brain interaction. Protein Cell 2023; 14:726-742. [PMID: 37074139 PMCID: PMC10599645 DOI: 10.1093/procel/pwad020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Abnormal brain-gut interaction is considered the core pathological mechanism behind the disorders of gut-brain interaction (DGBI), in which the intestinal microbiota plays an important role. Microglia are the "sentinels" of the central nervous system (CNS), which participate in tissue damage caused by traumatic brain injury, resist central infection and participate in neurogenesis, and are involved in the occurrence of various neurological diseases. With in-depth research on DGBI, we could find an interaction between the intestinal microbiota and microglia and that they are jointly involved in the occurrence of DGBI, especially in individuals with comorbidities of mental disorders, such as irritable bowel syndrome (IBS). This bidirectional regulation of microbiota and microglia provides a new direction for the treatment of DGBI. In this review, we focus on the role and underlying mechanism of the interaction between gut microbiota and microglia in DGBI, especially IBS, and the corresponding clinical application prospects and highlight its potential to treat DGBI in individuals with psychiatric comorbidities.
Collapse
Affiliation(s)
- Haonan Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
14
|
Wang K, Hu S. The synergistic effects of polyphenols and intestinal microbiota on osteoporosis. Front Immunol 2023; 14:1285621. [PMID: 37936705 PMCID: PMC10626506 DOI: 10.3389/fimmu.2023.1285621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Osteoporosis is a common metabolic disease in middle-aged and elderly people. It is characterized by a reduction in bone mass, compromised bone microstructure, heightened bone fragility, and an increased susceptibility to fractures. The dynamic imbalance between osteoblast and osteoclast populations is a decisive factor in the occurrence of osteoporosis. With the increase in the elderly population in society, the incidence of osteoporosis, disability, and mortality have gradually increased. Polyphenols are a fascinating class of compounds that are found in both food and medicine and exhibit a variety of biological activities with significant health benefits. As a component of food, polyphenols not only provide color, flavor, and aroma but also act as potent antioxidants, protecting our cells from oxidative stress and reducing the risk of chronic disease. Moreover, these natural compounds exhibit anti-inflammatory properties, which aid in immune response regulation and potentially alleviate symptoms of diverse ailments. The gut microbiota can degrade polyphenols into more absorbable metabolites, thereby increasing their bioavailability. Polyphenols can also shape the gut microbiota and increase its abundance. Therefore, studying the synergistic effect between gut microbiota and polyphenols may help in the treatment and prevention of osteoporosis. By delving into how gut microbiota can enhance the bioavailability of polyphenols and how polyphenols can shape the gut microbiota and increase its abundance, this review offers valuable information and references for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Keyu Wang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
15
|
Sun Y, Wang S, Liu B, Hu W, Zhu Y. Host-Microbiome Interactions: Tryptophan Metabolism and Aromatic Hydrocarbon Receptors after Traumatic Brain Injury. Int J Mol Sci 2023; 24:10820. [PMID: 37445997 DOI: 10.3390/ijms241310820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Traumatic brain injury refers to the damage caused to intracranial tissues by an external force acting on the head, leading to both immediate and prolonged harmful effects. Neuroinflammatory responses play a critical role in exacerbating the primary injury during the acute and chronic phases of TBI. Research has demonstrated that numerous neuroinflammatory responses are mediated through the "microbiota-gut-brain axis," which signifies the functional connection between the gut microbiota and the brain. The aryl hydrocarbon receptor (AhR) plays a vital role in facilitating communication between the host and microbiota through recognizing specific ligands produced directly or indirectly by the microbiota. Tryptophan (trp), an indispensable amino acid in animals and humans, represents one of the key endogenous ligands for AhR. The metabolites of trp have significant effects on the functioning of the central nervous system (CNS) through activating AHR signalling, thereby establishing bidirectional communication between the gut microbiota and the brain. These interactions are mediated through immune, metabolic, and neural signalling mechanisms. In this review, we emphasize the co-metabolism of tryptophan in the gut microbiota and the signalling pathway mediated by AHR following TBI. Furthermore, we discuss the impact of these mechanisms on the underlying processes involved in traumatic brain injury, while also addressing potential future targets for intervention.
Collapse
Affiliation(s)
- Yanming Sun
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Bingwei Liu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
16
|
Li Z, Zhang K, Zhou Y, Zhao J, Wang J, Lu W. Role of Melatonin in Bovine Reproductive Biotechnology. Molecules 2023; 28:4940. [PMID: 37446601 PMCID: PMC10343719 DOI: 10.3390/molecules28134940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Melatonin has profound antioxidant activity and numerous functions in humans as well as in livestock and poultry. Additionally, melatonin plays an important role in regulating the biological rhythms of animals. Combining melatonin with scientific breeding management has considerable potential for optimizing animal physiological functions, but this idea still faces significant challenges. In this review, we summarized the beneficial effects of melatonin supplementation on physiology and reproductive processes in cattle, including granulosa cells, oocytes, circadian rhythm, stress, inflammation, testicular function, spermatogenesis, and semen cryopreservation. There is much emerging evidence that melatonin can profoundly affect cattle. In the future, we hope that melatonin can not only be applied to cattle, but can also be used to safely and effectively improve the efficiency of animal husbandry.
Collapse
Affiliation(s)
- Zhiqiang Li
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuming Zhou
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
17
|
Li X, Cao Y, Xu X, Wang C, Ni Q, Lv X, Yang C, Zhang Z, Qi X, Song G. Sleep Deprivation Promotes Endothelial Inflammation and Atherogenesis by Reducing Exosomal miR-182-5p. Arterioscler Thromb Vasc Biol 2023; 43:995-1014. [PMID: 37021573 DOI: 10.1161/atvbaha.123.319026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Insufficient or disrupted sleep increases the risk of cardiovascular disease, including atherosclerosis. However, we know little about the molecular mechanisms by which sleep modulates atherogenesis. This study aimed to explore the potential role of circulating exosomes in endothelial inflammation and atherogenesis under sleep deprivation status and the molecular mechanisms involved. METHODS Circulating exosomes were isolated from the plasma of volunteers with or without sleep deprivation and mice subjected to 12-week sleep deprivation or control littermates. miRNA array was performed to determine changes in miRNA expression in circulating exosomes. RESULTS Although the total circulating exosome levels did not change significantly, the isolated plasma exosomes from sleep-deprived mice or human were a potent inducer of endothelial inflammation and atherogenesis. Through profiling and functional analysis of the global microRNA in the exosomes, we found miR-182-5p is a key exosomal cargo that mediates the proinflammatory effects of exosomes by upregulation of MYD88 (myeloid differentiation factor 88) and activation of NF-ĸB (nuclear factor kappa-B)/NLRP3 pathway in endothelial cells. Moreover, sleep deprivation or the reduction of melatonin directly decreased the synthesis of miR-182-5p and led to the accumulation of reactive oxygen species in small intestinal epithelium. CONCLUSIONS The findings illustrate an important role for circulating exosomes in distant communications, suggesting a new mechanism underlying the link between sleep disorder and cardiovascular disease.
Collapse
Affiliation(s)
- Xiao Li
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Ying Cao
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Xinxin Xu
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Chongyue Wang
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Qingbin Ni
- Hydrogen medicine center, Tai 'an City Central Hospital, China (Q.N.)
| | - Xiang Lv
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Chao Yang
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Zhaoqiang Zhang
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China (X.Q.)
| | - Guohua Song
- School of Basic Medical Sciences, and The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China (X.L., Y.C., X.X., C.W., X.L., C.Y., Z.Z., G.S.)
| |
Collapse
|
18
|
Li F, Lai J, Ma F, Cai Y, Li S, Feng Z, Lu Z, Liu X, Ke Q, Hao H, Xiao X. Maternal melatonin supplementation shapes gut microbiota and protects against inflammation in early life. Int Immunopharmacol 2023; 120:110359. [PMID: 37257272 DOI: 10.1016/j.intimp.2023.110359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Gut microbiota colonization is critical for immune education and nutrient metabolism. Research shows that melatonin has beneficial effects as a therapy for many diseases via modulating gut dysbiosis. However, it is unclear whether melatonin alters gut microbiota colonization in early life. METHODS In the experimental group (Mel), mice were intraperitoneally injected with melatonin at 10 mg/kg body weight for embryonic days 14-16 and received drinking water containing 0.4 mg/mL melatonin until 28 days postpartum. In the control group (Ctrl), mice were injected with the same volume of 2.5% ethanol in saline and provided with standard water. Two more groups were created by treating neonatal mice with 20 mg/kg lipopolysaccharide (LPS) to induce inflammation, resulting in the groups Ctrl + LPS and Mel + LPS, respectively. We examined the gut microbiota of the neonatal mice in the Ctrl and Mel group on Days 7, 14, 21, and 28 post-birth. On Day 14, melatonin and short-chain fatty acids (SCFAs) concentrations were measured in the Ctrl and Mel group and the mice were treated with LPS to be evaluated for intestinal injury and inflammatory response 15 h post treatment. According to the result of the SCFAs concentrations, some neonatal mice were intraperitoneally injected with 500 mg/kg sodium butyrate (SB) from Days 11-13, intraperitoneally injected with 20 mg/kg LPS on Day 14, and then euthanized by carbon dioxide inhalation the next morning. Intestinal injury and inflammatory responses were evaluated in the Ctrl + LPS and SB + LPS groups, respectively. RESULTS By Day 14, it was evident that maternal melatonin supplementation significantly increased the relative abundance of Firmicutes in the ileal [61.03 (35.35 - 76.18) % vs. 98.02 (86.61 - 99.01) %, P = 0.003] and colonic [73.88 (69.77 - 85.99) % vs. 96.16 (94.57 - 96.34) %, P = 0.04] microbiota, the concentration of melatonin (0.79 ± 0.49 ng/ml vs. 6.11 ± 3.48 ng/ml, P = 0.008) in the gut lumen, and the fecal butyric acid (12.91 ± 5.74 μg/g vs. 23.58 ± 10.71 μg/g, P = 0.026) concentration of neonatal mice. Melatonin supplementation, and sodium butyrate treatment markedly alleviated intestinal injury and decreased inflammatory factors in neonatal mice. CONCLUSION This study suggests that maternal melatonin supplementation can shape the gut microbiota and metabolism of offspring under normal physiological conditions and protect them against LPS-induced inflammation in early life.
Collapse
Affiliation(s)
- Fei Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Jiahao Lai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Fei Ma
- Department of Pediatrics, Zhuhai Maternity and Child Health Hospital, Zhuhai, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Zhoushan Feng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhendong Lu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Xiao Liu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| |
Collapse
|
19
|
Lian Z, Xu Y, Wang C, Chen Y, Yuan L, Liu Z, Liu Y, He P, Cai Z, Zhao J. Gut microbiota-derived melatonin from Puerariae Lobatae Radix-resistant starch supplementation attenuates ischemic stroke injury via a positive microbial co-occurrence pattern. Pharmacol Res 2023; 190:106714. [PMID: 36863429 DOI: 10.1016/j.phrs.2023.106714] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Ischemic stroke is closely associated with gut microbiota dysbiosis and intestinal barrier dysfunction. Prebiotic intervention could modulate the intestinal microbiota, thus considered a practical strategy for neurological disorders. Puerariae Lobatae Radix-resistant starch (PLR-RS) is a potential novel prebiotic; however, its role in ischemic stroke remains unknown. This study aimed to clarify the effects and underlying mechanisms of PLR-RS in ischemic stroke. Middle cerebral artery occlusion surgery was performed to establish a model of ischemic stroke in rats. After gavage for 14 days, PLR-RS attenuated ischemic stroke-induced brain impairment and gut barrier dysfunction. Moreover, PLR-RS rescued gut microbiota dysbiosis and enriched Akkermansia and Bifidobacterium. We transplanted the fecal microbiota from PLR-RS-treated rats into rats with ischemic stroke and found that the brain and colon damage were also ameliorated. Notably, we found that PLR-RS promoted the gut microbiota to produce a higher level of melatonin. Intriguingly, exogenous gavage of melatonin attenuated ischemic stroke injury. In particular, melatonin attenuated brain impairment via a positive co-occurrence pattern in the intestinal microecology. Specific beneficial bacteria served as leaders or keystone species to promoted gut homeostasis, such as Enterobacter, Bacteroidales_S24-7_group, Prevotella_9, Ruminococcaceae and Lachnospiraceae. Thus, this new underlying mechanism could explain that the therapeutic efficacy of PLR-RS on ischemic stroke at least partly attributed to gut microbiota-derived melatonin. In summary, improving intestinal microecology by prebiotic intervention and melatonin supplementation in the gut were found to be effective therapies for ischemic stroke.
Collapse
Affiliation(s)
- Zhuoshi Lian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chan Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ye Chen
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Li Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongyu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yarui Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peishi He
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
20
|
Salminen A. Activation of aryl hydrocarbon receptor (AhR) in Alzheimer's disease: role of tryptophan metabolites generated by gut host-microbiota. J Mol Med (Berl) 2023; 101:201-222. [PMID: 36757399 PMCID: PMC10036442 DOI: 10.1007/s00109-023-02289-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Gut microbiota in interaction with intestinal host tissues influences many brain functions and microbial dysbiosis has been linked with brain disorders, such as neuropsychiatric conditions and Alzheimer's disease (AD). L-tryptophan metabolites and short-chained fatty acids (SCFA) are major messengers in the microbiota-brain axis. Aryl hydrocarbon receptors (AhR) are main targets of tryptophan metabolites in brain microvessels which possess an enriched expression of AhR protein. The Ah receptor is an evolutionarily conserved, ligand-activated transcription factor which is not only a sensor of xenobiotic toxins but also a pleiotropic regulator of both developmental processes and age-related tissue degeneration. Major microbiota-produced tryptophan metabolites involve indole derivatives, e.g., indole 3-pyruvic acid, indole 3-acetaldehyde, and indoxyl sulfate, whereas indoleamine and tryptophan 2,3-dioxygenases (IDO/TDO) of intestine host cells activate the kynurenine (KYN) pathway generating KYN metabolites, many of which are activators of AhR signaling. Chronic kidney disease (CKD) increases the serum level of indoxyl sulfate which promotes AD pathogenesis, e.g., it disrupts integrity of blood-brain barrier (BBB) and impairs cognitive functions. Activation of AhR signaling disturbs vascular homeostasis in brain; (i) it controls blood flow via the renin-angiotensin system, (ii) it inactivates endothelial nitric oxide synthase (eNOS), thus impairing NO production and vasodilatation, and (iii) it induces oxidative stress, stimulates inflammation, promotes cellular senescence, and enhances calcification of vascular walls. All these alterations are evident in cerebral amyloid angiopathy (CAA) in AD pathology. Moreover, AhR signaling can disturb circadian regulation and probably affect glymphatic flow. It seems plausible that dysbiosis of gut microbiota impairs the integrity of BBB via the activation of AhR signaling and thus aggravates AD pathology. KEY MESSAGES: Dysbiosis of gut microbiota is associated with dementia and Alzheimer's disease. Tryptophan metabolites are major messengers from the gut host-microbiota to brain. Tryptophan metabolites activate aryl hydrocarbon receptor (AhR) signaling in brain. The expression of AhR protein is enriched in brain microvessels and blood-brain barrier. Tryptophan metabolites disturb brain vascular integrity via AhR signaling. Dysbiosis of gut microbiota promotes inflammation and AD pathology via AhR signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland.
| |
Collapse
|
21
|
Matsumoto S, Ren L, Iigo M, Murai A, Yoshimura T. Mimicking seasonal changes in light-dark cycle and ambient temperature modulates gut microbiome in mice under the same dietary regimen. PLoS One 2023; 18:e0278013. [PMID: 36791094 PMCID: PMC9931110 DOI: 10.1371/journal.pone.0278013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
To better adapt to seasonal environmental changes, physiological processes and behaviors are regulated seasonally. The gut microbiome interacts with the physiology, behavior, and even the diseases of host animals, including humans and livestock. Seasonal changes in gut microbiome composition have been reported in several species under natural environments. Dietary content significantly affects the composition of the microbiome, and, in the natural environment, the diet varies between different seasons. Therefore, understanding the seasonal regulatory mechanisms of the gut microbiome is important for understanding the seasonal adaptation strategies of animals. Herein, we examined the effects of changing day length and temperature, which mimic summer and winter conditions, on the gut microbiome of laboratory mice. Principal coordinate analysis and analysis of the composition of microbiomes of 16S rRNA sequencing data demonstrated that the microbiomes of the cecum and large intestine showed significant differences between summer and winter mimicking conditions. Similar to previous studies, a daily rhythm was observed in the composition of the microbiome. Furthermore, the phylogenetic investigation of communities by reconstruction of unobserved states predicted seasonal changes in several metabolic pathways. Changing day length and temperature can affect the composition of the gut microbiome without changing dietary contents.
Collapse
Affiliation(s)
- Shoko Matsumoto
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Liang Ren
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Masayuki Iigo
- Department of Applied Biological Chemistry, Utsunomiya University, Utsunomiya, Japan
| | - Atsushi Murai
- Laboratory of Animal Nutrition, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
22
|
da Silva JL, Barbosa LV, Pinzan CF, Nardini V, Brigo IS, Sebastião CA, Elias-Oliveira J, Brazão V, Júnior JCDP, Carlos D, Cardoso CRDB. The Microbiota-Dependent Worsening Effects of Melatonin on Gut Inflammation. Microorganisms 2023; 11:microorganisms11020460. [PMID: 36838425 PMCID: PMC9962441 DOI: 10.3390/microorganisms11020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Dysbiosis and disturbances in gut homeostasis may result in dysregulated responses, which are common in inflammatory bowel diseases (IBD). These conditions may be refractory to the usual treatments and novel therapies are still necessary to reach a more successful regulation of intestinal immunity. The hormone melatonin (MLT) has been raised as a therapeutic alternative because of its known interactions with immune responses and gut microbiota. Hence, we evaluated the effects of MLT in experimental colitis that evolves with intestinal dysbiosis, inflammation and bacterial translocation. C57BL/6 mice were exposed to dextran sulfate sodium and treated with MLT. In acute colitis, the hormone led to increased clinical, systemic and intestinal inflammatory parameters. During remission, continued MLT administration delayed recovery, increased TNF, memory effector lymphocytes and diminished spleen regulatory cells. MLT treatment reduced Bacteroidetes and augmented Actinobacteria and Verrucomicrobia phyla in mice feces. Microbiota depletion resulted in a remarkable reversion of the colitis phenotype after MLT administration, including a counter-regulatory immune response, reduction in TNF and colon macrophages. There was a decrease in Actinobacteria, Firmicutes and, most strikingly, Verrucomicrobia phylum in recovering mice. Finally, these results pointed to a gut-microbiota-dependent effect of MLT in the potentiation of intestinal inflammation.
Collapse
Affiliation(s)
- Jefferson Luiz da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Lia Vezenfard Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Camila Figueiredo Pinzan
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Viviani Nardini
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Irislene Simões Brigo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Cássia Aparecida Sebastião
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Vânia Brazão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - José Clóvis do Prado Júnior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
- Correspondence: ; Tel.:+55-(16)-3315-0257; Fax: +55-(16)-3315-4725
| |
Collapse
|
23
|
Xia Y, Ding X, Wang S, Ren W. Circadian orchestration of host and gut microbiota in infection. Biol Rev Camb Philos Soc 2023; 98:115-131. [PMID: 36106627 DOI: 10.1111/brv.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
24
|
Mirsepasi-Lauridsen HC. Therapy Used to Promote Disease Remission Targeting Gut Dysbiosis, in UC Patients with Active Disease. J Clin Med 2022; 11:7472. [PMID: 36556089 PMCID: PMC9784819 DOI: 10.3390/jcm11247472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing non-transmural chronic inflammatory disease of the colon characterized by bloody diarrhea. The etiology of UC is unknown. The goal is to reduce the inflammation and induce disease remission in UC patients with active disease. The aim of this study is to investigate the innovative treatment method used to promote disease remission in UC patients with active disease targeting gut dysbiosis. Immunosuppressants such as TNF-α blocker are used to promote disease remission in UC, but it is expensive and with side effects. Probiotic, prebiotic and diet are shown to be effective in maintaining disease remission. Fecal microbiota transplantation (FMT) might be the future therapy option to promote disease remission in UC patients with active disease. However, correct manufacturing and administration of the FMT are essential to achieve successful outcome. A few cohorts with FMT capsules show promising results in UC patients with active disease. However, randomized controlled clinical trials with long-term treatment and follow-up periods are necessary to show FMT capsules' efficacy to promote disease remission in UC patients.
Collapse
|
25
|
Miao Z, Miao Z, Teng X, Xu S. Melatonin alleviates lead-induced intestinal epithelial cell pyroptosis in the common carps (Cyprinus carpio) via miR-17-5p/TXNIP axis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:127-136. [PMID: 36202203 DOI: 10.1016/j.fsi.2022.09.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb) has been concerned as one of the most severe hazardous contaminants, because it can cause pyroptosis in multiple tissues of mammals and birds. Melatonin (Mel) has attracted much interest for its role in governing intestinal injury via microRNAs (miRNAs). To explore the effect of Mel on Pb exposure-induced intestinal epithelial cell pyroptosis in common carps by regulating miR-17-5p/TXNIP axis, the Pb exposure and Pb-Mel treated models were constructed in vivo. The results elucidated that the suppressed expression of miR-17-5p and intensified level of TXNIP were primarily detected in Pb-exposed gut tissues, and both abolished with Mel addition, along with downregulated Pb-mediated elevated expression of NLRP3, CASP1, IL1β and GSDMD. Additionally, the targeting relationship between miR-17-5p and TXNIP were demonstrated by dual-luciferase reporter assay, and on this basis, miR-17-5p NC, mimic and inhibitor cell models were established. Thereby, Thereby, the expression of TXNIP in the miR-17-5p mimic groups was significant lower in the Pb-exposure but still elevated than the Control group, and the expression of NLRP3 and NLRP3-dependent pyrotposis-related genes performed consistent alterations. Noticeably, the expression of TXNIP suppressed with Mel addition even in the miR-17-5p inhibitor cell model, resulting in the inactivation of NLRP3 inflammasome-dependent pyroptosis. Overall, we draw the conclusion as Mel attenuates Pb-induced intestinal epithelial cell pyroptosis via miR-17-5p/TXNIP axis. The present study provides a novel perspective for toxicological mechanism of Pb, and new insights for the detoxification mechanism of Mel.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
26
|
Ma N, Chen X, Johnston LJ, Ma X. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. IMETA 2022; 1:e54. [PMID: 38867904 PMCID: PMC10989768 DOI: 10.1002/imt2.54] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/14/2024]
Abstract
Intestinal epithelium undergoes rapid cellular turnover, relying on the local niche, to support intestinal stem cells (ISCs) function and self-renewal. Research into the association between ISCs and disease continues to expand at a rapid rate. However, the detailed interaction of ISCs and gut microbes remains to be elucidated. Thus, this review witnessed major advances in the crosstalk between ISCs and gut microbes, delivering key insights into (1) construction of ISC niche and molecular mechanism of how to jointly govern epithelial homeostasis and protect against intestinal diseases with the participation of Wnt, bone morphogenetic protein, and Notch; (2) differentiation fate of ISCs affect the gut microbiota. Meanwhile, the presence of intestinal microbes also regulates ISC function; (3) microbiota regulation on ISCs by Wnt and Notch signals through pattern recognition receptors; (4) how do specific microbiota-related postbiotics influence ISCs to maintain intestinal epithelial regeneration and homeostasis that provide insights into a promising alternative therapeutic method for intestinal diseases. Considering the detailed interaction is still unclear, it is necessary to further explore the regulatory role of gut microbiota on ISCs to utilize microbes to alleviate gut disorders. Furthermore, these major advances collectively drive us ever closer to breakthroughs in regenerative medicine and cancer treatment by microbial transplantation in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Lee J. Johnston
- West Central Research & Outreach CenterUniversity of MinnesotaMorrisMinnesotaUSA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
27
|
Bruňáková K, Bálintová M, Petijová L, Čellárová E. Does phenotyping of Hypericum secondary metabolism reveal a tolerance to biotic/abiotic stressors? FRONTIERS IN PLANT SCIENCE 2022; 13:1042375. [PMID: 36531362 PMCID: PMC9748567 DOI: 10.3389/fpls.2022.1042375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
In this review we summarize the current knowledge about the changes in Hypericum secondary metabolism induced by biotic/abiotic stressors. It is known that the extreme environmental conditions activate signaling pathways leading to triggering of enzymatic and non-enzymatic defense systems, which stimulate production of secondary metabolites with antioxidant and protective effects. Due to several groups of bioactive compounds including naphthodianthrones, acylphloroglucinols, flavonoids, and phenylpropanes, the world-wide Hypericum perforatum represents a high-value medicinal crop of Hypericum genus, which belongs to the most diverse genera within flowering plants. The summary of the up-to-date knowledge reveals a relationship between the level of defense-related phenolic compounds and interspecific differences in the stress tolerance. The chlorogenic acid, and flavonoids, namely the amentoflavone, quercetin or kaempferol glycosides have been reported as the most defense-related metabolites associated with plant tolerance against stressful environment including temperature, light, and drought, in association with the biotic stimuli resulting from plant-microbe interactions. As an example, the species-specific cold-induced phenolics profiles of 10 Hypericum representatives of different provenances cultured in vitro are illustrated in the case-study. Principal component analysis revealed a relationship between the level of defense-related phenolic compounds and interspecific differences in the stress tolerance indicating a link between the provenance of Hypericum species and inherent mechanisms of cold tolerance. The underlying metabolome alterations along with the changes in the activities of ROS-scavenging enzymes, and non-enzymatic physiological markers are discussed. Given these data it can be anticipated that some Hypericum species native to divergent habitats, with interesting high-value secondary metabolite composition and predicted high tolerance to biotic/abiotic stresses would attract the attention as valuable sources of bioactive compounds for many medicinal purposes.
Collapse
|
28
|
Pourrajab B, Naderi N, Janani L, Hajahmadi M, Mofid V, Dehnad A, Sohouli MH, Hosseini S, Shidfar F. The impact of probiotic yogurt versus ordinary yogurt on serum sTWEAK, sCD163, ADMA, LCAT and BUN in patients with chronic heart failure: a randomized, triple-blind, controlled trial. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6024-6035. [PMID: 35460085 DOI: 10.1002/jsfa.11955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND To date, no study has investigated the effects of probiotic yogurt as a functional food in patients with chronic heart failure (CHF). Therefore, the aim of this study was to compare the impact of probiotic yogurt versus ordinary yogurt on inflammatory, endothelial, lipid and renal indices in CHF patients. In this randomized, triple-blind clinical trial, 90 patients with CHF were randomly allocated into two groups to take either probiotic or ordinary yogurt for 10 weeks. Serum levels of soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK), soluble cluster of differentiation 163 (sCD163), asymmetric dimethylarginine (ADMA), and lecithin cholesterol acyltransferase (LCAT) were measured by using ELISA kits, and blood urea nitrogen (BUN) was measured by calorimetry method at baseline and at the end of trial. The P-value <0.05 was defined as statistically significant. RESULTS Seventy-eight patients completed the study. At the end of the intervention, the levels of sTWEAK in both groups increased significantly, and this increase was greater in the probiotic yogurt group [691.84 (335.60, 866.95)] compared to control group [581.96 (444.99, 929.40)], and the difference between the groups was statistically significant after adjusting for confounders (P-value: 0.257, adjusted P-value: 0.038). However, no significant differences were found between the groups in the cases of other study indices. CONCLUSION Probiotic yogurt may be useful for improving the inflammatory status in patients with CHF through increasing sTWEAK levels, however, further studies are needed in this area. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Behnaz Pourrajab
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Hajahmadi
- Department of Cardiology, Hazrat Rasoul Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Mofid
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, National Nutritional and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Dehnad
- Center for Educational Research in Medical Sciences (CERMS), Department of Medical Education, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharieh Hosseini
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Huang X, Qiu Y, Gao Y, Zhou R, Hu Q, He Z, Lv Y, Wang X, Chen W, Deng Y, An Z, Zhang H, Mo Z, Lin R. Gut microbiota mediate melatonin signalling in association with type 2 diabetes. Diabetologia 2022; 65:1627-1641. [PMID: 35768541 DOI: 10.1007/s00125-022-05747-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS It has been shown that melatonin plays a general beneficial role in type 2 diabetes in rodents but its role in humans is controversial. In the present study, we investigated the association between serum melatonin and type 2 diabetes risk in a southern Chinese population in a case-control study. We also examined the role of gut microbiota in this relationship. METHODS Individuals with type 2 diabetes (cases) and healthy individuals (controls) (n=2034) were recruited from a cross-sectional study and were matched for age and sex in a case-control study. The levels of serum melatonin were measured and the association between serum melatonin and type 2 diabetes risk was examined using a multivariable logistic regression model. We further conducted a rigorously matched case-control study (n=120) in which gut microbial 16S rRNA was sequenced and metabolites were profiled using an untargeted LC-MS/MS approach. RESULTS Higher levels of serum melatonin were significantly associated with a lower risk of type 2 diabetes (OR 0.82 [95% CI 0.74, 0.92]) and with lower levels of fasting glucose after adjustment for covariates (β -0.25 [95% CI -0.38, -0.12]). Gut microbiota exhibited alteration in the individuals with type 2 diabetes, in whom lower levels of serum melatonin, lower α- and β-diversity of gut microbiota (p<0.05), greater abundance of Bifidobacterium and lower abundance of Coprococcus (linear discriminant analysis [LDA] >2.0) were found. Seven genera were correlated with melatonin and type 2 diabetes-related traits; among them Bifidobacterium was positively correlated with serum lipopolysaccharide (LPS) and IL-10, whereas Coprococcus was negatively correlated with serum IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS (Benjamini-Hochberg-adjusted p value [false discovery rate (FDR)] <0.05). Moreover, altered metabolites were detected in the participants with type 2 diabetes and there was a significant correlation between tryptophan (Trp) metabolites and the melatonin-correlated genera including Bifidobacterium and Coprococcus (FDR<0.05). Similarly, a significant correlation was found between Trp metabolites and inflammation factors, such as IL-1β, IL-6, IL-10, IL-17, TNF-α and LPS (FDR<0.05). Further, we showed that Trp metabolites may serve as a biomarker to predict type 2 diabetes status (AUC=0.804). CONCLUSIONS/INTERPRETATION A higher level of serum melatonin was associated with a lower risk of type 2 diabetes. Gut microbiota-mediated melatonin signalling was involved in this association; especially, Bifidobacterium- and Coprococcus-mediated Trp metabolites may be involved in the process. These findings uncover the importance of melatonin and melatonin-related bacteria and metabolites as potential therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Xueran Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yang Qiu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yongfen Gao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Rong Zhou
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiantu Hu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zouyan He
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yingnan Lv
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Wanrong Chen
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuqing Deng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhuangzhuang An
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
| | - Rui Lin
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, China.
| |
Collapse
|
30
|
Zemanova N, Omelka R, Mondockova V, Kovacova V, Martiniakova M. Roles of Gut Microbiome in Bone Homeostasis and Its Relationship with Bone-Related Diseases. BIOLOGY 2022; 11:1402. [PMID: 36290306 PMCID: PMC9598716 DOI: 10.3390/biology11101402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
The extended microbial genome-the gut microbiome (GM)-plays a significant role in host health and disease. It is able to influence a number of physiological functions. During dysbiosis, GM is associated with the development of various chronic diseases with impaired bone quality. In general, GM is important for bone homeostasis and can affect it via several mechanisms. This review describes the roles of GM in bone homeostasis through influencing the immune and endocrine functions, short-chain fatty acids production, calcium absorption and the gut-brain axis. The relationship between GM composition and several bone-related diseases, specifically osteoporosis, osteoarthritis, rheumatoid arthritis, diabetes mellitus, obesity and bone cancer, is also highlighted and summarized. GM manipulation may become a future adjuvant therapy in the prevention of many chronic diseases. Therefore, the beneficial effects of probiotic therapy to improve the health status of individuals with aforementioned diseases are provided, but further studies are needed to clearly confirm its effectiveness. Recent evidence suggests that GM is responsible for direct and indirect effects on drug efficacy. Accordingly, various GM alterations and interactions related to the treatment of bone-related diseases are mentioned as well.
Collapse
Affiliation(s)
- Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| |
Collapse
|
31
|
Liu D, Saikam V, Skrada KA, Merlin D, Iyer SS. Inflammatory bowel disease biomarkers. Med Res Rev 2022; 42:1856-1887. [PMID: 35603998 PMCID: PMC10321231 DOI: 10.1002/med.21893] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/16/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized as chronic inflammation in the gastrointestinal tract, which includes two main subtypes, Crohn's disease and ulcerative colitis. Endoscopy combined with biopsy is the most effective way to establish IBD diagnosis and disease management. Imaging techniques have also been developed to monitor IBD. Although effective, the methods are expensive and invasive, which leads to pain and discomfort. Alternative noninvasive biomarkers are being explored as tools for IBD prognosis and disease management. This review focuses on novel biomarkers that have emerged in recent years. These serological biomarkers and microRNAs could potentially be used for disease management in IBD, thereby decreasing patient discomfort and morbidity.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Varma Saikam
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Katie A Skrada
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- 790 Petit Science Center, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Atlanta Veterans Medical Center, Decatur, Georgia, USA
| | - Suri S Iyer
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
32
|
The melatonergic agonist agomelatine ameliorates high fat diet-induced obesity in mice through the modulation of the gut microbiome. Biomed Pharmacother 2022; 153:113445. [DOI: 10.1016/j.biopha.2022.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
|
33
|
The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev 2022; 65:101691. [DOI: 10.1016/j.smrv.2022.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
34
|
Liu Y, Chen XQ, Wang F, Cheng B, Zhou G. Melatonin relieves Th17/CD4−CD8− T cells inflammatory responses via nuclear-receptor dependent manner in peripheral blood of primary Sjögren’s syndrome. Int Immunopharmacol 2022; 109:108778. [DOI: 10.1016/j.intimp.2022.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
35
|
Zhang X, Akhtar M, Chen Y, Ma Z, Liang Y, Shi D, Cheng R, Cui L, Hu Y, Nafady AA, Ansari AR, Abdel-Kafy ESM, Liu H. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. MICROBIOME 2022; 10:107. [PMID: 35836252 PMCID: PMC9284917 DOI: 10.1186/s40168-022-01299-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/05/2022] [Indexed: 12/11/2022]
Abstract
Background Intestinal inflammation is prevalent in chicken, which results in decreased growth performance and considerable economic losses. Accumulated findings established the close relationship between gut microbiota and chicken growth performance. However, whether gut microbiota impacts chicken growth performance by lessening intestinal inflammation remains elusive. Results Seven-weeks-old male and female chickens with the highest or lowest body weights were significantly different in breast and leg muscle indices and average cross-sectional area of muscle cells. 16S rRNA gene sequencing indicated Gram-positive bacteria, such as Lactobacilli, were the predominant species in high body weight chickens. Conversely, Gram-negative bacteria, such as Comamonas, Acinetobacter, Brucella, Escherichia-Shigella, Thermus, Undibacterium, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were significantly abundant in low body weight chickens. Serum lipopolysaccharide (LPS) level was significantly higher in low body weight chickens (101.58 ± 5.78 ng/mL) compared with high body weight chickens (85.12 ± 4.79 ng/mL). The expression of TLR4, NF-κB, MyD88, and related inflammatory cytokines in the jejunum was significantly upregulated in low body weight chickens, which led to the damage of gut barrier integrity. Furthermore, transferring fecal microbiota from adult chickens with high body weight into 1-day-old chicks reshaped the jejunal microbiota, mitigated inflammatory response, and improved chicken growth performance. Conclusions Our findings suggested that jejunal microbiota could affect chicken growth performance by mitigating intestinal inflammation. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s40168-022-01299-8.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Muhammad Akhtar
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yan Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ziyu Ma
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuyun Liang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ranran Cheng
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Cui
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yafang Hu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Abdallah A Nafady
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
36
|
Lassmann Ł, Pollis M, Żółtowska A, Manfredini D. Gut Bless Your Pain—Roles of the Gut Microbiota, Sleep, and Melatonin in Chronic Orofacial Pain and Depression. Biomedicines 2022; 10:biomedicines10071528. [PMID: 35884835 PMCID: PMC9313154 DOI: 10.3390/biomedicines10071528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Increased attention has been paid to the gut–brain axis recently, but little is known so far regarding how this translates into pain susceptibility. Aim. The aim of this review is to determine whether gastroenterological disorders and sleep disorders (directly or indirectly) contribute to an increased susceptibility to depression and chronic orofacial pain. Method. A search was performed in the U.S. National Library of Medicine (PubMed) database in order to find studies published before 19 December 2021. We used the following terms: gut microbiome, OR sleep quality, OR melatonin, OR GERD, OR IBS, AND: depression OR chronic pain, in different configurations. Only papers in English were selected. Given the large number of papers retrieved in the search, their findings were described and organized narratively. Results. A link exists between sleep disorders and gastroenterological disorders, which, by adversely affecting the psyche and increasing inflammation, disturb the metabolism of tryptophan and cause excessive microglial activation, leading to increased susceptibility to pain sensation and depression. Conclusions. Pain therapists should pay close attention to sleep and gastrointestinal disorders in patients with chronic pain and depression.
Collapse
Affiliation(s)
- Łukasz Lassmann
- Dental Sense Medicover, 80-283 Gdańsk, Poland
- Correspondence:
| | - Matteo Pollis
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| | - Agata Żółtowska
- Department of Conservative Dentistry, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Daniele Manfredini
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| |
Collapse
|
37
|
Ma N, Chen X, Liu C, Sun Y, Johnston LJ, Ma X. Dietary nutrition regulates intestinal stem cell homeostasis. Crit Rev Food Sci Nutr 2022; 63:11263-11274. [PMID: 35694795 DOI: 10.1080/10408398.2022.2087052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intestinal stem cells (ISCs), which locate at the base of intestinal crypts, are key determinants of governing proliferation and differentiation of the intestinal epithelium. The surrounding cells of ISCs and their related growth factors form ISC niche, supporting ISC function and self-renewal. ISC has an underappreciated but emerging role as a sensor of dietary nutrients, which fate decisions is adjusted in response to nutritional states to regulate gut homeostasis. Here, we review endogenous and exogenous factors, such as caloric restriction, fasting, fat, glucose and trace element. They instruct ISCs via mTORC1, PPAR/CPT1α, PPARγ/β-catenin, Wnt/GSK-3β pathway, respectively, jointly affect intestinal homeostasis. These dietary responses regulate ISC regenerative capacity and may be a potential target for cancer prevention. However, without precise definitions of nutrition intervene, it will be difficult to generate sufficient data to extending our knowledge of the biological response of ISC on nutrients. More accurately modeling organoids or high-throughput automated organoid culture in microcavity arrays have provided unprecedented opportunities for modeling diet-host interactions. These major advances collectively provide new insights into nutritional regulation of ISC proliferation and differentiation and drive us ever closer to breakthroughs for regenerative medicine and disease treatment by nutrition intervention in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunchen Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiwei Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Li H, Sun P. Insight of Melatonin: The Potential of Melatonin to Treat Bacteria-Induced Mastitis. Antioxidants (Basel) 2022; 11:antiox11061107. [PMID: 35740004 PMCID: PMC9219804 DOI: 10.3390/antiox11061107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Bovine mastitis is a common inflammatory disease, mainly induced by bacterial pathogens, such as Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae. Mastitis has negative effects on the production and quality of milk, resulting in huge economic losses. Melatonin, which is synthesized and secreted by the pineal gland and other organs, is ubiquitous throughout nature and has different effects on different tissues. Melatonin is crucial in modulating oxidative stress, immune responses, and cell autophagy and apoptosis, via receptor-mediated or receptor-independent signaling pathways. The potent antioxidative and anti-inflammatory activities of melatonin and its metabolites suggest that melatonin can be used to treat various infections. This article reviews the potential for melatonin to alleviate bovine mastitis through its pleiotropic effect on reducing oxidative stress, inhibiting pro-inflammatory cytokines, and regulating the activation of NF-κB, STATs, and their cascade reactions. Therefore, it is promising that melatonin supplementation may be an alternative to antibiotics for the treatment of bovine mastitis.
Collapse
|
39
|
Gonçalves S, Nunes-Costa D, Cardoso SM, Empadinhas N, Marugg JD. Enzyme Promiscuity in Serotonin Biosynthesis, From Bacteria to Plants and Humans. Front Microbiol 2022; 13:873555. [PMID: 35495641 PMCID: PMC9048412 DOI: 10.3389/fmicb.2022.873555] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Serotonin is a phylogenetically ancient compound found in animals, plants, and some bacteria. In eukaryotes, serotonin is synthesized from the aromatic amino acid tryptophan via the key enzymes aromatic amino acid hydroxylase (AAAH) and aromatic amino acid decarboxylase (AAAD). Serotonin is also an intermediate in the melatonin biosynthetic pathway and is involved in several vital functions. In humans, serotonin is produced in the gut and in the brain, is critical in the regulation of multiple body functions, and its depletion has been implicated in multiple neurological disorders including depression and Alzheimer’s disease, as well as other peripheral conditions namely irritable bowel syndrome and fibromyalgia. The serotonin biosynthetic pathway is well described in eukaryotes, but very little is known about this pathway in bacteria. Evidence points to similar pathways since eukaryote-like AAAH and AAAD (and their genes) have been identified in multiple bacteria, even though serotonin production has not yet been detected in most species. Although data on bacterial tryptophan decarboxylase genes are very limited and no bacterial tryptophan hydroxylase genes have been identified to date, evidence suggests that serotonin production in bacteria might occur through different AAAH and AAAD. Substrate promiscuity in these enzymes has been previously reported and seems to be the key aspect in bacterial serotonin synthesis. Considering the human gut microbiota as a potential source of serotonin, further investigation on its biosynthetic pathways in microbes might lead to important discoveries, which may ultimately foster the development of new therapeutic strategies to treat serotonin depletion-related disorders in humans.
Collapse
Affiliation(s)
- Sara Gonçalves
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute of Cell and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - John David Marugg
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
40
|
Wang J, He P, Deng T, Xu X, Zou D, Wang Y, Zeng W, Zhao M, Wang W, Lin H, Deng M, Kuang L, Chen D, Yang M. The difference of disrupted rhythms of life, work and entertainment between patients with FGIDs and healthy people and their associations with psychological disorders under COVID-19 pandemic. Int J Soc Psychiatry 2022; 68:628-638. [PMID: 33557677 DOI: 10.1177/0020764021992835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS To investigate the differences in disrupted rhythms between healthy people and patients with functional gastrointestinal disorders (FGIDs) and their associations with mood disorders during the coronavirus disease 2019 (COVID-19) pandemic. METHODS The rhythm scales were composed of subscales 1 and 2 for the assessment of life-work and entertainment rhythms, respectively; Zung's Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) were used to assess mood disorders. RESULTS A total of 671 patients with FGIDs and 4373 healthy people successfully participated. The scores of subscales 1 and 2 for patients with FGIDs were significantly higher than those for healthy people (p < .005). The SAS and SDS scores, their prevalence rates were significantly higher than those for the healthy group (all p < .001). Health status, current occupation, life-work rhythm, SDS, and SAS were independent related factors of FGIDs. The score of life-work-entertainment rhythm was significantly positively correlated with SDS and SAS (both p < .001). CONCLUSION Disrupted rhythms in patients with FGIDs under the COVID-19 pandemic were more frequently and significantly positively associated with mood disorders.
Collapse
Affiliation(s)
- Jing Wang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ping He
- Department of Gastroenterology, Yongchuan Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Tianwei Deng
- Department of Gastroenterology, Three Gorges Hospital of Chongqing University, Chongqing, P.R. China
| | - Xiaoming Xu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Yanjun Wang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Weiwei Zeng
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, P.R. China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Hui Lin
- Department of Statistics, Army Medical University, Chongqing, P.R. China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dongfeng Chen
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Min Yang
- Army Medical Center of PLA, Daping Hospital, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
41
|
Tan YQ, Wang YN, Feng HY, Guo ZY, Li X, Nie XL, Zhao YY. Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling. Free Radic Biol Med 2022; 184:30-41. [PMID: 35367341 DOI: 10.1016/j.freeradbiomed.2022.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that induces the expression of a broad range of downstream genes such as cytochromes P450 enzymes and cyclooxygenase-2. Recent research focuses are shifting from AhR activation induced by xenobiotics to its response patterns to physiological ligands that expand our understanding of how endogenous metabolites as ligands to modulate AhR signaling pathway under homeostasis and pathological conditions. With increasing interest in AhR and its endogenous ligands, it would seem advisable to summarize a variety of endogenous ligands especially host/gut microbiota-derived tryptophan metabolites. Mounting evidence has indicated that AhR play a critical role in the regulation of redox homeostasis and immune responses. In this review, we outline the canonical and non-canonical AhR signalling pathway that is mediated by host/gut microbiota-derived tryptophan metabolites. Through several typical endogenous AhR ligands, we investigated the molecular mechanisms of AhR-induced oxidative stress and inflammation in the pathological milieu, including diabetes, diabetic kidney disease and end-stage renal disease. Finally, we summarize and emphasize the limitations and breakthrough of endogenous AhR ligands from host/microbial tryptophan catabolites. This review might provide novel diagnostic and prognostic approach for refractory human diseases and establish new therapeutic strategies for AhR activation.
Collapse
Affiliation(s)
- Yue-Qi Tan
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Hao-Yu Feng
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yuan Guo
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China; Department of General Practice, Xi'an International Medical Center Hospital, Northwest University, No. 777 Xitai Road, Xi'an, Shaanxi, 710100, China.
| | - Xiao-Li Nie
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong, 510315, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
42
|
Sevilla A, Chéret J, Slominski RM, Slominski AT, Paus R. Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. J Pineal Res 2022; 72:e12790. [PMID: 35133682 PMCID: PMC8930624 DOI: 10.1111/jpi.12790] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
The evolutionarily ancient methoxyindoleamine, melatonin, has long perplexed investigators by its versatility of functions and mechanisms of action, which include the regulation of vertebrate pigmentation. Although first discovered through its potent skin-lightening effects in amphibians, melatonin's role in human skin and hair follicle pigmentation and its impact on melanocyte physiology remain unclear. Synthesizing our limited current understanding of this role, we specifically examine its impact on melanogenesis, oxidative biology, mitochondrial function, melanocyte senescence, and pigmentation-related clock gene activity, with emphasis on human skin, yet without ignoring instructive pointers from nonhuman species. Given the strict dependence of melanocyte functions on the epithelial microenvironment, we underscore that melanocyte responses to melatonin are best interrogated in a physiological tissue context. Current evidence suggests that melatonin and some of its metabolites inhibit both, melanogenesis (via reducing tyrosinase activity) and melanocyte proliferation by stimulating melatonin membrane receptors (MT1, MT2). We discuss whether putative melanogenesis-inhibitory effects of melatonin may occur via activation of Nrf2-mediated PI3K/AKT signaling, estrogen receptor-mediated and/or melanocortin-1 receptor- and cAMP-dependent signaling, and/or via melatonin-regulated changes in peripheral clock genes that regulate human melanogenesis, namely Bmal1 and Per1. Melatonin and its metabolites also accumulate in melanocytes where they exert net cyto- and senescence-protective as well as antioxidative effects by operating as free radical scavengers, stimulating the synthesis and activity of ROS scavenging enzymes and other antioxidants, promoting DNA repair, and enhancing mitochondrial function. We argue that it is clinically and biologically important to definitively clarify whether melanocyte cell culture-based observations translate into melatonin-induced pigmentary changes in a physiological tissue context, that is, in human epidermis and hair follicles ex vivo, and are confirmed by clinical trial results. After defining major open questions in this field, we close by suggesting how to begin answering them in clinically relevant, currently available preclinical in situ research models.
Collapse
Affiliation(s)
- Alec Sevilla
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Radomir M. Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL35294, USA
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON – Skin & Hair Innovations, Hamburg, Germany
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| |
Collapse
|
43
|
Ma N, Sun Y, Chen J, Qi Z, Liu C, Ma X. Micro-Coevolution of Genetics Rather Than Diet With Enterotype in Pigs. Front Nutr 2022; 9:846974. [PMID: 35392290 PMCID: PMC8982514 DOI: 10.3389/fnut.2022.846974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Based on the characteristic of low diarrhea in native Chinese breeds, we introduce the enterotype model for piglets, which is a new perspective to decipher the colonization and the transition of the gut microbiota among various pig breeds. After eliminating environmental influences represented by diet, the microbiota, mainly shaped by host genetics, is focused. Three representative enterotype clusters were identified, which were represented by Bacteroides, Streptococcus, and Lactobacillus. Chinese native breeds were distributed in enterotype 1 (E1) and E3, which collectively drove the diversification and functionality of the microbial community of various Chinese pig breeds. Next, the Lactobacillus reuteri (L. reuteri), which is the representative strain of E3, was specifically isolated in all three enterotypes. The excellent stress-resistance of L. reuteri-E3 not only highlighted the stronger disease resistance of Chinese breeds but also had a great potential to intervene in weaned piglet diseases. Enterotype classification based on host genetics is much more deterministic and predictable, clarifying the driver of the host-microbiome dynamics and constructing the picture of the micro-coevolution of human host genetics with the gut microbiome.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiwei Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zengkai Qi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunchen Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Xi Ma
| |
Collapse
|
44
|
The Role of Aeromonas-Goblet Cell Interactions in Melatonin-Mediated Improvements in Sleep Deprivation-Induced Colitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8133310. [PMID: 35355860 PMCID: PMC8958064 DOI: 10.1155/2022/8133310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022]
Abstract
Background. Our previous studies demonstrated that melatonin could effectively ameliorate sleep deprivation- (SD-) caused oxidative stress-mediated gut microbiota disorder and colitis. The research further clarified the mechanism of melatonin in improving colitis from the perspective of the interaction between Aeromonas and goblet cells. Methods. A seventy-two hours SD mouse model with or without melatonin intervention and fecal microbiota transplantation (FMT) to explore the vital position of Aeromonas-goblet cell interactions in melatonin improving SD-induced colitis. Moreover, Aeromonas or LPS-supplied mice were assessed, and the influence of melatonin on Aeromonas-goblet cell interactions-mediated oxidative stress caused colitis. Furthermore, in vitro experiment investigated the regulation mechanism of melatonin.Results. Our study showed that SD induced colitis, with upregulation of Aeromonas and LPS levels and reductions in goblet cells number and MUC2 protein. Similarly, FMT from SD mice, Aeromonas veronii colonization, and LPS treatment restored the SD-like goblet cells number and MUC2 protein decrease and colitis. Moreover, LPS treatment downregulated the colonic antioxidant capacity. Yet, melatonin intervention reversed all consequence in SD, A.veronii colonization, and LPS-treated mice. In vitro, melatonin reversed A. veronii- or LPS-induced MUC2 depletion in mucus-secreting human HT-29 cells via increasing the expression level of Villin, Tff3, p-GSK-3β, β-catenin, and melatonin receptor 2 (MT2) and decreasing the level of p-IκB, p-P65, ROS, TLR4, and MyD88 proteins, while the improvement effect was blocked with pretreatment with a MT2 antagonist but were mimicked by TLR4 and GSK-3β antagonists and ROS scavengers. Conclusions. Our results demonstrated that melatonin-mediated MT2 inhibits Aeromonas-goblet cell interactions to restore the level of MUC2 production via LPS/TLR4/MyD88/GSK-3β/ROS/NF-κB loop, further improving colitis in SD mice.
Collapse
|
45
|
Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci 2022; 16:825246. [PMID: 35356051 PMCID: PMC8959415 DOI: 10.3389/fnins.2022.825246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are cyclic patterns of physiological, behavioural and molecular events that occur over a 24-h period. They are controlled by the suprachiasmatic nucleus (SCN), the brain’s master pacemaker which governs peripheral clocks and melatonin release. While circadian systems are endogenous, there are external factors that synchronise the SCN to the ambient environment including light/dark cycles, fasting/fed state, temperature and physical activity. Circadian rhythms also provide internal temporal organisation which ensures that any internal changes that take place are centrally coordinated. Melatonin synchronises peripheral clocks to the external time and circadian rhythms are regulated by gene expression to control physiological function. Synchronisation of the circadian system with the external environment is vital for the health and survival of an organism and as circadian rhythms play a pivotal role in regulating GI physiology, disruption may lead to gastrointestinal (GI) dysfunction. Disorders of gut-brain interactions (DGBIs), also known as functional gastrointestinal disorders (FGIDs), are a group of diseases where patients experience reoccurring gastrointestinal symptoms which cannot be explained by obvious structural abnormalities and include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Food timing impacts on the production of melatonin and given the correlation between food intake and symptom onset reported by patients with DGBIs, chronodisruption may be a feature of these conditions. Recent advances in immunology implicate circadian rhythms in the regulation of immune responses, and DGBI patients report fatigue and disordered sleep, suggesting circadian disruption. Further, melatonin treatment has been demonstrated to improve symptom burden in IBS patients, however, the mechanisms underlying this efficacy are unclear. Given the influence of circadian rhythms on gastrointestinal physiology and the immune system, modulation of these rhythms may be a potential therapeutic option for reducing symptom burden in these patients.
Collapse
Affiliation(s)
- Sophie Fowler
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L. Burns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Grace L. Burns,
| |
Collapse
|
46
|
Xie X, Ding D, Bai D, Zhu Y, Sun W, Sun Y, Zhang D. Melatonin biosynthesis pathways in nature and its production in engineered microorganisms. Synth Syst Biotechnol 2022; 7:544-553. [PMID: 35087957 PMCID: PMC8761603 DOI: 10.1016/j.synbio.2021.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Melatonin is a biogenic amine that can be found in plants, animals and microorganism. The metabolic pathway of melatonin is different in various organisms, and biosynthetic endogenous melatonin acts as a molecular signal and antioxidant protection against external stress. Microbial synthesis pathways of melatonin are similar to those of animals but different from those of plants. At present, the method of using microorganism fermentation to produce melatonin is gradually prevailing, and exploring the biosynthetic pathway of melatonin to modify microorganism is becoming the mainstream, which has more advantages than traditional chemical synthesis. Here, we review recent advances in the synthesis, optimization of melatonin pathway. l-tryptophan is one of the two crucial precursors for the synthesis of melatonin, which can be produced through a four-step reaction. Enzymes involved in melatonin synthesis have low specificity and catalytic efficiency. Site-directed mutation, directed evolution or promotion of cofactor synthesis can enhance enzyme activity and increase the metabolic flow to promote microbial melatonin production. On the whole, the status and bottleneck of melatonin biosynthesis can be improved to a higher level, providing an effective reference for future microbial modification.
Collapse
Affiliation(s)
- Xiaotong Xie
- Dalian Polytechnic University, Dalian, 116000, PR China
| | - Dongqin Ding
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Danyang Bai
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yaru Zhu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wei Sun
- Tianjin University of science and technology, Tianjin, 300308, PR China
| | - Yumei Sun
- Dalian Polytechnic University, Dalian, 116000, PR China
- Corresponding author.
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
- Corresponding author. Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
47
|
Li L, Gang X, Wang J, Gong X. Role of melatonin in respiratory diseases (Review). Exp Ther Med 2022; 23:271. [PMID: 35251337 PMCID: PMC8892605 DOI: 10.3892/etm.2022.11197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lijie Li
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaochao Gang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Jiajia Wang
- Department of Pediatrics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaoyan Gong
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
48
|
Kvetnoy I, Ivanov D, Mironova E, Evsyukova I, Nasyrov R, Kvetnaia T, Polyakova V. Melatonin as the Cornerstone of Neuroimmunoendocrinology. Int J Mol Sci 2022; 23:ijms23031835. [PMID: 35163757 PMCID: PMC8836571 DOI: 10.3390/ijms23031835] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
Much attention has been recently drawn to studying melatonin – a hormone whose synthesis was first found in the epiphysis (pineal gland). This interest can be due to discovering the role of melatonin in numerous physiological processes. It was the discovery of melatonin synthesis in endocrine organs (pineal gland), neural structures (Purkinje cells in the cerebellum, retinal photoreceptors), and immunocompetent cells (T lymphocytes, NK cells, mast cells) that triggered the evolution of new approaches to the unifield signal regulation of homeostasis, which, at the turn of the 21st century, lead to the creation of a new integral biomedical discipline — neuroimmunoendocrinology. While numerous hormones have been verified over the last decade outside the “classical” locations of their formation, melatonin occupies an exclusive position with regard to the diversity of locations where it is synthesized and secreted. This review provides an overview and discussion of the major data regarding the role of melatonin in various physiological and pathological processes, which affords grounds for considering melatonin as the “cornerstone” on which neuroimmunoendocrinology has been built as an integral concept of homeostasis regulation.
Collapse
Affiliation(s)
- Igor Kvetnoy
- Center of Molecular Biomedicine, Saint-Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia;
- Department of Physiology and Department of Pathology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Dmitry Ivanov
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| | - Ekaterina Mironova
- Center of Molecular Biomedicine, Saint-Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia;
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint-Petersburg, Russia;
- Correspondence:
| | - Inna Evsyukova
- Department of Perinatal Pathology, Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia;
| | - Ruslan Nasyrov
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| | - Tatiana Kvetnaia
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint-Petersburg, Russia;
| | - Victoria Polyakova
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| |
Collapse
|
49
|
Wang X, Liu Y, Wu Z, Zhang P, Zhang X. Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants (Basel) 2022; 11:253. [PMID: 35204136 PMCID: PMC8868443 DOI: 10.3390/antiox11020253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal tract of a healthy human body hosts many microorganisms that are closely linked to all aspects of people's lives. The impact of intestinal flora on host health is no longer limited to the gut but can also affect every organ in the body through various pathways. Studies have found that intestinal flora can be altered by external factors, which provides new ideas for treating some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a natural antioxidant in various bioactive foods. In recent years, with the progress of research, there have been many experiments that provide strong evidence for the ability of TP to regulate intestinal flora. However, there are very few studies on the use of TP to modify the composition of intestinal microorganisms to maintain health or treat related diseases, and this area has not received sufficient attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the essential role in maintaining suitable health. In addition, we highlighted the protective effects of TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on certain chronic diseases, which will help further explore measures to prevent related chronic diseases.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| |
Collapse
|
50
|
Zhao ZX, Yuan X, Cui YY, Liu J, Shen J, Jin BY, Feng BC, Zhai YJ, Zheng MQ, Kou GJ, Zhou RC, Li LX, Zuo XL, Li SY, Li YQ. Melatonin Mitigates Oxazolone-Induced Colitis in Microbiota-Dependent Manner. Front Immunol 2022; 12:783806. [PMID: 35116024 PMCID: PMC8805729 DOI: 10.3389/fimmu.2021.783806] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Levels of type 2 cytokines are elevated in the blood and intestinal tissues of ulcerative colitis (UC) patients in the active phase; this phenomenon indicates the participation of type 2 immune response in UC progression. The beneficial effects of melatonin in dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis models have been illustrated, but its role in the oxazolone (Oxa)-induced colitis model (driven by type 2 immune response) remains relatively unknown. We investigated the relationship between melatonin concentration and the severity of UC, revealing a significantly negative correlation. Subsequently, we investigated the effects of melatonin in Oxa-induced colitis mice and the potential underlying mechanisms. Administration of melatonin significantly counteracted body weight loss, colon shortening, and neutrophil infiltration in Oxa-induced colitis mice. Melatonin treatment mitigated Oxa-induced colitis by suppressing type 2 immune response. In addition, melatonin attenuated intestinal permeability by enhancing the expression of ZO-1 and occludin in colitis mice. Interestingly, the protective effect of melatonin was abolished when the mice were co-housed, indicating that the regulation of gut microbiota by melatonin was critical in alleviating Oxa-induced colitis. Subsequently, 16S rRNA sequencing was performed to explore the microbiota composition. Decreased richness and diversity of intestinal microbiota at the operational taxonomic unit (OTU) level resulted from melatonin treatment. Melatonin also elevated the abundance of Bifidobacterium, a well-known probiotic, and reduced proportions of several harmful bacterial genera, such as Desulfovibrio, Peptococcaceae, and Lachnospiraceae. Fecal microbiota transplantation (FMT) was used to explore the role of microbiota in the function of melatonin in Oxa-induced colitis. Microbiota transplantation from melatonin-treated mice alleviated Oxa-induced colitis, suggesting that the microbiome participates in the relief of Oxa-induced colitis by melatonin. Our findings demonstrate that melatonin ameliorates Oxa-induced colitis in a microbiota-dependent manner, suggesting the therapeutic potential of melatonin in treating type 2 immunity-associated UC.
Collapse
Affiliation(s)
- Zi-xiao Zhao
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xi Yuan
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yan-yan Cui
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Jun Liu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Shen
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Bi-ying Jin
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing-cheng Feng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun-jiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Meng-qi Zheng
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guan-jun Kou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ru-chen Zhou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li-xiang Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiu-li Zuo
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shi-yang Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, China
| | - Yan-qing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Laboratory of Translational Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|