1
|
Yadav R, SanuKhan R, Kalita N, Mendiratta S, Sivaramakrishnan S, Murugan S, Samanta A. Molecular Imaging of Nitric Oxide Surrogates with Organelle-Specific Fluorescent Probes. Chem Asian J 2024:e202401237. [PMID: 39629512 DOI: 10.1002/asia.202401237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Indexed: 12/13/2024]
Abstract
Nitric oxide is an important signalling molecule responsible for maintaining body's homeostasis. Any dysregulation in NO can lead to many pathological conditions like atherosclerosis, cancers, neurodegenerative disorders, hypertension and inflammation. Several, sensing technologies are used for sensing NO. Among these, fluorescent imaging is considered to be one of the most efficient. Till date, approximately 123 fluorescent probes are reported related to nitric oxide (NO) sensing fluorescent probes for the sensitive, selective, and real-time detection of NO at both the cellular and subcellular levels. In the past five years, around 41 fluorescent probes and four review articles have been published, specifically focusing on the detection of nitric oxide. Despite considerable advancements in this area, no systematic review has summarized various organelle-targeting NO-sensing fluorescent probes. Herein, we summarized last five years from 2019 to 2024 along with the key pioneering research in this field covering divergent roles of NO across various cellular organelles. We have included 41 probes by classifying into different organelle targeting sections. We strongly believe this review will provide an advanced summary of NO specific fluorescent probes and their applications for monitoring the progression of diseases in in vitro to in vivo models such as drosophila, zebrafish, mouse models.
Collapse
Affiliation(s)
- Rashmi Yadav
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Rafique SanuKhan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Nripankar Kalita
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sana Mendiratta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Shreya Sivaramakrishnan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Shreekanth Murugan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| |
Collapse
|
2
|
Tortella Fuentes G, Fincheira P, Rubilar O, Leiva S, Fernandez I, Schoebitz M, Pelegrino MT, Paganotti A, dos Reis RA, Seabra AB. Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities. Antibiotics (Basel) 2024; 13:1047. [PMID: 39596741 PMCID: PMC11591520 DOI: 10.3390/antibiotics13111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Nitric oxide (NO) is an antimicrobial and anti-biofilm agent with significant potential for combating biofilm-associated infections and antibiotic resistance. However, owing to its high reactivity due to the possession of a free radical and short half-life (1-5 s), the practical application of NO in clinical settings is challenging. Objectives: This review explores the development of NO-releasing nanoparticles that provide a controlled, targeted delivery system for NO, enhancing its antimicrobial efficacy while minimizing toxicity. The review discusses various NO donors, nanoparticle platforms, and how NO disrupts biofilm formation and eradicates pathogens. Additionally, we examine the highly encouraging and inspiring results of NO-releasing nanoparticles against multidrug-resistant strains and their applications in medical and environmental contexts. This review highlights the promising role of NO-based nanotechnologies in overcoming the challenges posed by increasing antibiotic resistance and biofilm-associated infections. Conclusions: Although NO donors and nanoparticle delivery systems show great potential for antimicrobial and anti-biofilm uses, addressing challenges related to controlled release, toxicity, biofilm penetration, resistance, and clinical application is crucial.
Collapse
Affiliation(s)
- Gonzalo Tortella Fuentes
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sebastian Leiva
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
| | - Ivette Fernandez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente-CIBAMA, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile; (O.R.); (S.L.); (I.F.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile;
- Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile
| | | | - André Paganotti
- Departamento de Farmácia, Universidade Federal de São Paulo, Diadema 09972-270, SP, Brazil
| | - Roberta Albino dos Reis
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09606-045, SP, Brazil; (R.A.d.R.); (A.B.S.)
| | - Amedea B. Seabra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09606-045, SP, Brazil; (R.A.d.R.); (A.B.S.)
| |
Collapse
|
3
|
Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, Martyka T, Stochel G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants (Basel) 2024; 13:1213. [PMID: 39456466 PMCID: PMC11504650 DOI: 10.3390/antiox13101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) is a key signaling molecule involved in numerous physiological and pathological processes within the human body. This review specifically examines the involvement of NO in age-related diseases, focusing on the cardiovascular, nervous, and immune systems. The discussion delves into the mechanisms of NO signaling in these diseases, emphasizing the post-translational modifications of involved proteins, such as S-nitrosation and nitration. The review also covers the dual nature of NO, highlighting both its protective and harmful effects, determined by concentration, location, and timing. Additionally, potential therapies that modulate NO signaling, including the use of NO donors and nitric oxide synthases (NOSs) inhibitors in the treatment of cardiovascular, neurodegenerative, and oncological diseases, are analyzed. Particular attention is paid to the methods for the determination of NO and its derivatives in the context of illness diagnosis and monitoring. The review underscores the complexity and dual role of NO in maintaining cellular balance and suggests areas for future research in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Ilona Gurgul
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Konrad Kieca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ewelina Bieszczad-Żak
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Tobiasz Martyka
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| |
Collapse
|
4
|
Xu Z, Liu S, Xu L, Li Z, Zhang X, Kang H, Liu Y, Yu J, Jing J, Niu G, Zhang X. A novel ratiometric fluorescent probe with high selectivity for lysosomal nitric oxide imaging. Anal Chim Acta 2024; 1297:342303. [PMID: 38438223 DOI: 10.1016/j.aca.2024.342303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
Nitric oxide (NO) plays critical roles in both physiology and pathology, serving as a significant signaling molecule. Recent investigations have uncovered the pivotal role of lysosome as a critical organelle where intracellular NO exists and takes function. In this study, we developed a novel ratiometric fluorescent probe called XL-NO and modified it with a morpholine unit, which followed the intramolecular charge transfer (ICT) mechanism. The probe could detect lysosomal nitric oxide with high selectivity and sensitivity. The probe XL-NO contained a secondary amine moiety that could readily react with NO in lysosomes, leading to the formation of the N-nitrosation product. The N-nitroso structure enhanced the capability in push-pull electron, which obviously led to the change of fluorescence from 621 nm to 521 nm. In addition, XL-NO was discovered to have some evident advantages, such as significant ratiometric signal (I521/I621) change, strong anti-interference ability, good biocompatibility, and a low detection limit (LOD = 44.3 nM), which were crucial for the detection of lysosomal NO. To evaluate the practical application of XL-NO, NO imaging experiments were performed in both living cells and zebrafish. The results from these experiments confirmed the feasibility and reliability of XL-NO for exogenous/endogenous NO imaging and lysosome targeting.
Collapse
Affiliation(s)
- Zhiling Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Songtao Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Liren Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zichun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoli Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yifan Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Guangle Niu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
5
|
Liu H, Chen R, Wu K, Zhang Y, Wang X, Zhou N. Ratiometric fluorescent biosensor for detection and real-time imaging of nitric oxide in mitochondria of living cells. Biosens Bioelectron 2024; 248:116000. [PMID: 38183790 DOI: 10.1016/j.bios.2024.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Nitric oxide (NO), a ubiquitous gaseous messenger, plays critical roles in various pathological and physiological progresses. The abnormal levels of NO in organisms are closely related to a large number of maladies. Mitochondria are the main area that produce NO in mammalian cells. Thus, detecting and real-time imaging of NO in mitochondria is of great significance for exploring the biological functions of NO. Herein, a ratiometric fluorescent biosensor (Mito-GNP-pNO520) is developed for sensitive and selective detection and real-time imaging of NO in mitochondria of living cells. The detection is achieved through the fluorescence off-on response of Mito-GNP-pNO520 toward NO. This biosensor shows excellent characteristics, such as high sensitivity toward NO with a low detection limit of 0.25 nM, exclusive selectivity to NO without interference from other substances, good biological stability and low cytotoxicity. More importantly, the biosensor is specifically located in mitochondria, enabling the detection and real-time imaging of endogenous and exogenous NO in mitochondria of living cells. Therefore, our biosensor offers a new approach for dynamic detecting and real-time imaging of NO in subcellular organelles, providing an opportunity to explore new biological effects of NO.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Rou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Kexin Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yuting Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaoli Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Nandi Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
6
|
Omidkhah N, Hadizadeh F, Ghodsi R, Kesharwani P, Sahebkar A. In silico Evaluation of NO-Sartans against SARS-CoV-2. Curr Drug Discov Technol 2024; 21:e050324227669. [PMID: 38445698 DOI: 10.2174/0115701638279362240223070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Numerous clinical trials are currently investigating the potential of nitric oxide (NO) as an antiviral agent against coronaviruses, including SARS-CoV-2. Additionally, some researchers have reported positive effects of certain Sartans against SARS-CoV-2. METHOD Considering the impact of NO-Sartans on the cardiovascular system, we have compiled information on the general structure, synthesis methods, and biological studies of synthesized NOSartans. In silico evaluation of all NO-Sartans and approved sartans against three key SARS-CoV- -2 targets, namely Mpro (PDB ID: 6LU7), NSP16 (PDB ID: 6WKQ), and ACE-2 (PDB ID: 1R4L), was performed using MOE. RESULTS Almost all NO-Sartans and approved sartans demonstrated promising results in inhibiting these SARS-CoV-2 targets. Compound 36 (CLC-1280) showed the best docking scores against the three evaluated targets and was further evaluated using molecular dynamics (MD) simulations. CONCLUSION Based on our in silico studies, CLC-1280 (a Valsartan dinitrate) has the potential to be considered as an inhibitor of the SARS-CoV-2 virus. However, further in vitro and in vivo evaluations are necessary for the drug development process.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Cha SG, Rhim WK, Kim JY, Lee EH, Lee SY, Park JM, Lee JE, Yoon H, Park CG, Kim BS, Kwon TG, Lee Y, Lee DR, Han DK. Kidney tissue regeneration using bioactive scaffolds incorporated with differentiating extracellular vesicles and intermediate mesoderm cells. Biomater Res 2023; 27:126. [PMID: 38049879 PMCID: PMC10696796 DOI: 10.1186/s40824-023-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND To overcome the limitations of current alternative therapies for chronic kidney disease (CKD), tissue engineering-mediated regeneration strategies have demonstrated the possibilities for complete kidney tissue regeneration. Given the challenges associated with the reproducibility of renal basal cells, the incorporation of intermediate mesoderm (IM) cells and bioactive materials to control bioactivities of cells with supported scaffolds should be considered as a viable approach to enable the regeneration of the complex kidney structure via renal differentiation. METHODS We developed PMEZ scaffolds by combining crucial bioactive components, such as ricinoleic acid-grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) integrated into biodegradable porous PLGA (P) platform. Additionally, we utilized differentiating extracellular vesicles (dEV) isolated during intermediate mesoderm differentiation into kidney progenitor cells, and IM cells were serially incorporated to facilitate kidney tissue regeneration through their differentiation into kidney progenitor cells in the 3/4 nephrectomy mouse model. RESULTS The use of differentiating extracellular vesicles facilitated IM differentiation into kidney progenitor cells without additional differentiation factors. This led to improvements in various regeneration-related bioactivities including tubule and podocyte regeneration, anti-fibrosis, angiogenesis, and anti-inflammation. Finally, implanting PMEZ/dEV/IM scaffolds in mouse injury model resulted in the restoration of kidney function. CONCLUSIONS Our study has demonstrated that utilizing biodegradable PLGA-based scaffolds, which include multipotent cells capable of differentiating into various kidney progenitor cells along with supporting components, can facilitate kidney tissue regeneration in the mouse model that simulates CKD through 3/4 nephrectomy.
Collapse
Affiliation(s)
- Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jeoung Eun Lee
- Bundang Medical Center, CHA Advanced Research Institute, CHA University, Sungnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Hyeji Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Bum Soo Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Tae Gyun Kwon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Youngmi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
- Bundang Medical Center, CHA Advanced Research Institute, CHA University, Sungnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Wang D, Li ZX, Jiang DM, Liu YZ, Wang X, Liu YP. Magnesium ions improve vasomotor function in exhausted rats. PLoS One 2023; 18:e0279318. [PMID: 36780490 PMCID: PMC9925009 DOI: 10.1371/journal.pone.0279318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 02/15/2023] Open
Abstract
To observe the effect of magnesium ion on vascular function in rats after long-term exhaustive exercise. Forty male SD rats were divided into two groups, the control group (CON group, n = 20) and the exhaustive exercise group (EEE group, n = 20). Exhausted rats performed 1W adaptive swimming exercise (6 times/W, 15min/time), and then followed by 3W formal exhaustive exercise intervention. Hematoxylin and eosin (HE) staining was used to detect the morphological changes of rat thoracic aorta. The contents of interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum of rats were determined by enzyme-linked immunosorbent assay (ELISA), and the contents of malondialdehyde (MDA), reactive oxygen species (ROS), nitric oxide (NO) and endothelin 1 (ET-1) in serum of rats were determined by biochemical kit. Vascular ring test detects vascular function. Compared with the CON group, the smooth muscle layer of the EEE group became thicker, the cell arrangement was disordered, and the integrity of endothelial cells was destroyed; the serum Mg2+ in EEE group was decreased; the serum levels of IL-1β, TNF-α, MDA and ROS in EEE group were significantly higher than those in the CON group (P are all less than 0.05); the serum NO content in EEE group was significantly decreased, and the ratio of NO/ET-1 was significantly decreased. In the exhaustion group, the vasoconstriction response to KCl was increased, and the relaxation response to Ach was weakened, while 4.8mM Mg2+ could significantly improve this phenomenon (P are all less than 0.01). The damage of vascular morphology and function in rats after exhaustion exercise may be related to the significant increase of serum IL-1β, TNF-α, ROS, MDA and ET-1/NO ratio in rats after exhaustion exercise, while Mg2+ can significantly improve the vasomotor function of rats after exhaustion exercise.
Collapse
Affiliation(s)
- Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Zong-Xiang Li
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Dong-Mou Jiang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Yan-Zhong Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Xin Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- * E-mail:
| |
Collapse
|
9
|
Xi X, Zheng X, Zhang R, Zeng L. Upregulation of circFOXP1 attenuates inflammation and apoptosis induced by ox-LDL in human umbilical vein endothelial cells by regulating the miR-185-5p/BCL-2 axis. Can J Physiol Pharmacol 2022; 100:1045-1054. [PMID: 36286345 DOI: 10.1139/cjpp-2020-0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The pathogenesis of coronary artery disease (CAD) is closely related to an abnormal function of the coronary arteries due to myocardial ischemia, hypoxia, or necrosis, which poses a threat to human health. Therefore, this study was conducted to evaluate the role of circFOXP1 in controlling endothelial cell function during atherosclerosis (AS), and further investigate its potential molecular mechanism of regulation. Through Starbase database analysis, we predicted that circFOXP1 can sponge miR-185-5p that targets BCL-2. We found that interleukin (IL)-6, tumor necrois factor (TNF)-α, and IL-1β were significantly upregulated in high-fat diet (HFD)-induced apolipoprotein E-deficient (ApoE-/-) mice compared with those in the control mice. CircFOXP1 was also significantly upregulated in the AS-mice model and AS-cell model. Moreover, miR-185-5p overexpression was found to inhibit BCL-2 protein expression, which consequently reduced the proliferation, and increased the oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptotic rate. Taken together, our data show that circFOXP1 can further aggravate endothelial cell injury by regulating the miR-185-5p/BCL-2 signal axis.
Collapse
Affiliation(s)
- Xuemei Xi
- Department of Cardiovascular, Chengfei Hospital, Jing 1st Rd, Chengdu 610091, Sichuan Province, P. R. China
| | - Xiaofei Zheng
- Department of Cardiovascular, Chengfei Hospital, Jing 1st Rd, Chengdu 610091, Sichuan Province, P. R. China
| | - Rongxian Zhang
- Department of Cardiovascular, Chengfei Hospital, Jing 1st Rd, Chengdu 610091, Sichuan Province, P. R. China
| | - Liangbang Zeng
- Department of Cardiovascular, Chengfei Hospital, Jing 1st Rd, Chengdu 610091, Sichuan Province, P. R. China
| |
Collapse
|
10
|
Quantitative aspects of nitric oxide production in the heart. Mol Biol Rep 2022; 49:11113-11122. [DOI: 10.1007/s11033-022-07889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
|
11
|
Zhang S, Rao S, Yang MW, Huang YT, Hong FF, Yang SL. Pharmacological effects of the Cassia Seed on atherosclerosis: A meta-analysis based on network pharmacology. Medicine (Baltimore) 2022; 101:e30411. [PMID: 36086754 PMCID: PMC10980403 DOI: 10.1097/md.0000000000030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The aim of this study was to shed light on the active ingredients and potential targets of Cassia Seed about anti-atherosclerosis based on network pharmacology. METHODS The active ingredients and potential targets of Cassia Seed were obtained from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and SwissTargetPrediction database. Then, atherosclerosis-related targets were screened via GeneCards, online mendelian inheritance in man, therapeutic target database and DrugBank database. The common targets and protein-protein interaction (PPI) network was later identified and built. Furthermore, we used the database for annotation, visualization and integrated discovery (DAVID) database server to accomplish the enrichment analysis. The compounds-targets-pathways network was ultimately constructed by Cytoscape. RESULTS A total of 14 active ingredients and 475 related targets were sifted from Cassia Seed. Among 574 potential atherosclerotic targets, there were 99 targets overlapped with those of Cassia Seed. Topological analysis with Cytoscape revealed that proto-oncogene tyrosine-protein kinase proto-oncogene tyrosine-protein kinase Src, transcription factor AP-1 (JUN), mitogen-activated protein kinase 8 (MAPK8), mitogen-activated protein kinase 14 (MAPK14) and catenin beta-1 were considered as the hub gene. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis suggested that the Cassia Seed had the potential to influence varieties of biological processes and pathways, including positive regulation of smooth muscle cell proliferation, inflammatory response, tumor necrosis factor (TNF) signaling pathway, vascular endothelial growth factor (VEGF) signaling pathway and arachidonic acid (ARA) metabolism. CONCLUSION Taken together, our findings support that anti-atherosclerosis effects of Cassia Seed are characterized by multi-component, multi-target and multi-path mechanism of action.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Sijing Rao
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Mei Wen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Jiangxi, Fuzhou, China
| | - Ya-Ting Huang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
- Key Research Laboratory of Chronic Diseases, Fuzhou Medical College, Nanchang University, Fuzhou, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Jiangxi, Fuzhou, China
| |
Collapse
|
12
|
Chen T, Li L, Ye B, Chen W, Zheng G, Xie H, Guo Y. Knockdown of hsa_circ_0005699 attenuates inflammation and apoptosis induced by ox-LDL in human umbilical vein endothelial cells through regulation of the miR-450b-5p/NFKB1 axis. Mol Med Rep 2022; 26:290. [PMID: 35904173 PMCID: PMC9366159 DOI: 10.3892/mmr.2022.12806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Atherosclerosis (AS) remains the leading cause of mortality throughout the world, and vascular endothelial cell dysfunction is one of the key events leading to this pathology. In recent years, there has been an increased interest in the role of circulating RNAs in various diseases; these noncoding RNAs can regulate gene products by acting as microRNA (miR) sponges. Furthermore, it has been shown that foam cells exhibit high expression levels of hsa_circ_0005699 (circ_0005699); however, to the best of our knowledge, no previous study has investigated the role of circ_0005699 in the regulation of vascular endothelial function. The present study employed human umbilical vein endothelial cells (HUVECs), which have been widely used to study vascular endothelial cell function. In addition, apolipoprotein E (ApoE)-deficient mice were used, which have been shown to rapidly develop AS and are widely used as a model of this disease. Cellular and biochemical techniques were performed, including gene transfection and short hairpin RNA-mediated gene silencing for cell transfection, luciferase reporter gene assay to confirm predicted genes, Cell Counting Kit-8 assay and flow cytometry to assess cell viability and apoptosis, and reverse transcription-quantitative PCR and western blotting for detection of mRNA and protein expression. In the present study, the expression levels of circ_0005699 were increased by oxidized low-density lipoprotein in a time- and dose-dependent manner in HUVECs; this was also associated with increased apoptosis of these cells. In addition, the expression levels of circ_0005699 were elevated, along with increased levels of inflammatory cytokines, in ApoE-deficient mice. An RNA pull-down assay indicated that circ_0005699 can bind miR-450b-5p to decrease its expression, whereas silencing of circ_0005699 resulted in increased expression of miR-450b-5p. In addition, the online bioinformatics tool starBase predicted NFKB1 as a target gene of miR-450b-5p, which was further confirmed by the luciferase reporter gene assay. Notably, knockdown of circ_0005699 resulted in the increased survival of HUVECs, which was associated with decreased protein expression levels of NFKB1 and inflammatory cytokines. By contrast, the effects of circ-0005699 silencing on survival were reversed by miR-450b-5p inhibition or NFKB1 overexpression. In conclusion, knockdown of circ_0005699 may ameliorate endothelial cell injury through regulation of the miR-450b-5P/NFKB1 signaling axis.
Collapse
Affiliation(s)
- Tao Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Bo Ye
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Weiqing Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Guofu Zheng
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Hailiang Xie
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yi Guo
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
13
|
Biological Sensing of Nitric Oxide in Macrophages and Atherosclerosis Using a Ruthenium-Based Sensor. Biomedicines 2022; 10:biomedicines10081807. [PMID: 36009353 PMCID: PMC9405170 DOI: 10.3390/biomedicines10081807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Macrophage-derived nitric oxide (NO) plays a critical role in atherosclerosis and presents as a potential biomarker. We assessed the uptake, distribution, and NO detection capacity of an irreversible, ruthenium-based, fluorescent NO sensor (Ru-NO) in macrophages, plasma, and atherosclerotic plaques. In vitro, incubation of Ru-NO with human THP1 monocytes and THP1-PMA macrophages caused robust uptake, detected by Ru-NO fluorescence using mass-cytometry, confocal microscopy, and flow cytometry. THP1-PMA macrophages had higher Ru-NO uptake (+13%, p < 0.05) than THP1 monocytes with increased Ru-NO fluorescence following lipopolysaccharide stimulation (+14%, p < 0.05). In mice, intraperitoneal infusion of Ru-NO found Ru-NO uptake was greater in peritoneal CD11b+F4/80+ macrophages (+61%, p < 0.01) than CD11b+F4/80− monocytes. Infusion of Ru-NO into Apoe−/− mice fed high-cholesterol diet (HCD) revealed Ru-NO fluorescence co-localised with atherosclerotic plaque macrophages. When Ru-NO was added ex vivo to aortic cell suspensions from Apoe−/− mice, macrophage-specific uptake of Ru-NO was demonstrated. Ru-NO was added ex vivo to tail-vein blood samples collected monthly from Apoe−/− mice on HCD or chow. The plasma Ru-NO fluorescence signal was higher in HCD than chow-fed mice after 12 weeks (37.9%, p < 0.05). Finally, Ru-NO was added to plasma from patients (N = 50) following clinically-indicated angiograms. There was lower Ru-NO fluorescence from plasma from patients with myocardial infarction (−30.7%, p < 0.01) than those with stable coronary atherosclerosis. In conclusion, Ru-NO is internalised by macrophages in vitro, ex vivo, and in vivo, can be detected in atherosclerotic plaques, and generates measurable changes in fluorescence in murine and human plasma. Ru-NO displays promising utility as a sensor of atherosclerosis.
Collapse
|
14
|
Yuan F, Xia Y, Lu Q, Xu Q, Shu Y, Hu X. Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta 2022; 244:123419. [DOI: 10.1016/j.talanta.2022.123419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/13/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
|
15
|
Wu M, Zhang Z, Yong J, Schenk PM, Tian D, Xu ZP, Zhang R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Top Curr Chem (Cham) 2022; 380:29. [PMID: 35695976 PMCID: PMC9192387 DOI: 10.1007/s41061-022-00392-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes' evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.
Collapse
Affiliation(s)
- Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
16
|
Jenni S, Renault K, Dejouy G, Debieu S, Laly M, Romieu A. In Situ Synthesis of Phenoxazine Dyes in Water: Application for "Turn‐On" Fluorogenic and Chromogenic Detection of Nitric Oxide. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sébastien Jenni
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Kévin Renault
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Garance Dejouy
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Sylvain Debieu
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Myriam Laly
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Anthony Romieu
- University of Burgundy Franche-Comté ICMUB - UMR CNRS 6302 Faculté des Sciences Mirande9, avenue Alain SavaryBP 47870 21078 Dijon FRANCE
| |
Collapse
|
17
|
Liu Z, Sun C, Wang H, Wu T, Qiu B, Xiong X, Liu L. A far-red-emitting fluorescence probe for selective and sensitive detection of no in live cells and in C. elegans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120030. [PMID: 34118523 DOI: 10.1016/j.saa.2021.120030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), a ubiquitous intracellular and intercellular messenger molecule, plays vital roles in many physiological processes and is closely related to many diseases. Although a lot of fluorescent probes have been developed for real-time detection of NO successfully, the probes still suffer from poor tissue permeability and limited selectivity. In this study, a novel far-red fluorescent probe ZJL-3 based on rhodamine fluorescent dye was designed, synthesized, and used for NO determination. The probe contains a rhodamine as fluorophore and o-phenylenediamino as recognition unit. Upon addition of NO, the probe ZJL-3 showed an obvious far-red emission at 637 nm. The results of fluorescence spectrum experiments indicated that probe ZJL-3 exhibited desirable selectivity to NO. Furthermore, probe ZJL-3 has low cytotoxicity and was applied for the detection of exogenous and endogenous NO in RAW264.7 cells and C. elegans with satisfactory results.
Collapse
Affiliation(s)
- Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hailan Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tong Wu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Baoyu Qiu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
18
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
19
|
Huang N, Qiu Y, Liu Y, Liu T, Xue X, Song P, Xu J, Fu Y, Sun R, Yin Y, Li P. Floralozone protects endothelial function in atherosclerosis by ameliorating NHE1. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1310-1320. [PMID: 34409427 DOI: 10.1093/abbs/gmab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction is the pathological basis of atherosclerosis. Incomplete understanding of endothelial dysfunction etiology has impeded drug development for this devastating disease despite the currently available therapies. Floralozone, an aroma flavor, specifically exists in rabbit ear grass. Recently, floralozone has been demonstrated to inhibit atherosclerosis, but the underlying mechanisms are undefined. The present study was undertaken to explore whether floralozone pharmacologically targets endothelial dysfunction and therefore exerts therapeutic effects on atherosclerosis. The Na+/H+ exchanger 1 (NHE1), a channel protein, plays a vital role in atherosclerosis. Whether NHE1 is involved in the therapeutic effects of floralozone on endothelial dysfunction has yet to be further answered. By performing oil red staining and hematoxylin-eosin staining, vascular functional study, and oxidative stress monitoring, we found that floralozone not only reduced the size of carotid atherosclerotic plaque but also prevented endothelial dysfunction in atherosclerotic rats. NHE1 expression was upregulated in the inner membrane of carotid arteries and H2O2-induced primary rat aortic endothelial cells. Inspiringly, floralozone prevented the upregulation of NHE1 in vivo and in vitro. Notably, the administration of NHE1 activator LiCl significantly weakened the protective effect of floralozone on endothelial dysfunction in vivo and in vitro. Our study demonstrated that floralozone exerted its protective effect on endothelial dysfunction in atherosclerosis by ameliorating NHE1. NHE1 maybe a drug target for the treatment of atherosclerosis, and floralozone may be an effective drug to meet the urgent needs of atherosclerosis patients by dampening NHE1.
Collapse
Affiliation(s)
- Ning Huang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| | - Yanhua Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| | - Tianheng Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| | - Xianjun Xue
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| | - Yutian Fu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yaling Yin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 450003, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang 453003, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang 453003, China
| |
Collapse
|
20
|
Nitric Oxide and S-Nitrosylation in Cardiac Regulation: G Protein-Coupled Receptor Kinase-2 and β-Arrestins as Targets. Int J Mol Sci 2021; 22:ijms22020521. [PMID: 33430208 PMCID: PMC7825736 DOI: 10.3390/ijms22020521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiac diseases including heart failure (HF), are the leading cause of morbidity and mortality globally. Among the prominent characteristics of HF is the loss of β-adrenoceptor (AR)-mediated inotropic reserve. This is primarily due to the derangements in myocardial regulatory signaling proteins, G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins (β-Arr) that modulate β-AR signal termination via receptor desensitization and downregulation. GRK2 and β-Arr2 activities are elevated in the heart after injury/stress and participate in HF through receptor inactivation. These GPCR regulators are modulated profoundly by nitric oxide (NO) produced by NO synthase (NOS) enzymes through S-nitrosylation due to receptor-coupled NO generation. S-nitrosylation, which is NO-mediated modification of protein cysteine residues to generate an S-nitrosothiol (SNO), mediates many effects of NO independently from its canonical guanylyl cyclase/cGMP/protein kinase G signaling. Herein, we review the knowledge on the NO system in the heart and S-nitrosylation-dependent modifications of myocardial GPCR signaling components GRKs and β-Arrs.
Collapse
|