1
|
Ding L, Colman ER, Wang Y, Ramachandran M, Maloney SK, Chen N, Yin J, Chen L, Lier EV, Blache D, Wang M. Novel pathways linked to the expression of temperament in Merino sheep: a genome-wide association study. Animal 2024; 18:101279. [PMID: 39396416 DOI: 10.1016/j.animal.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 10/15/2024] Open
Abstract
Animal temperament refers to the inherent behavioural and emotional characteristics of an animal, influencing how it interacts with its environment. The selection of sheep for temperament can change the temperament traits of the selected line and improve the welfare and production (reproduction, growth, immunity) of those animals. To understand the genetics that underly variation in temperament in sheep, and how selection on temperament can affect other production traits, a genome-wide association study was carried out. Merino sheep from lines selected for traits of calm and nervous temperament, and a commercial population, on which the temperament traits had never been assessed, were used. Blood samples from the three populations were genotyped using an Illumina GGP Ovine 50 K Genotyping BeadChip. The calm and nervous populations in the selected lines presented as distinct genetic populations, and 2 729 of the 45 761 single nucleotide polymorphisms (SNPs) had significantly different proportions between the two lines. Of those 2 729 SNPs, 2 084 were also associated with temperament traits in the commercial population. A genomic annotation identified 81 candidate genes for temperament, nearly half of which are associated with disorders of social behaviour in humans. Five of those 81 candidate genes are related to production traits in sheep. Two genes were associated with personality disorders in humans and with production traits in sheep. We identified significant enrichment in genes involved in nervous system processes such as the regulation of systemic arterial blood pressure, ventricular myocyte action, multicellular organismal signalling, ion transmembrane transport, and calcium ion binding, suggesting that temperament is underpinned by variation in multiple biological systems. Our results contribute to understanding of the genetic basis of animal temperament which could be applied to the genetic evaluation of temperament in sheep and other farm animals.
Collapse
Affiliation(s)
- L Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - E R Colman
- Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China; State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - M Ramachandran
- School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - S K Maloney
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Human Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - N Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - J Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - L Chen
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China; Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - E V Lier
- Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay
| | - D Blache
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth 6009, WA, Australia
| | - M Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, PR China.
| |
Collapse
|
2
|
Ferranti AS, Luessen DJ, Niswender CM. Novel pharmacological targets for GABAergic dysfunction in ADHD. Neuropharmacology 2024; 249:109897. [PMID: 38462041 DOI: 10.1016/j.neuropharm.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopment disorder that affects approximately 5% of the population. The disorder is characterized by impulsivity, hyperactivity, and deficits in attention and cognition, although symptoms vary across patients due to the heterogenous and polygenic nature of the disorder. Stimulant medications are the standard of care treatment for ADHD patients, and their effectiveness has led to the dopaminergic hypothesis of ADHD in which deficits in dopaminergic signaling, especially in cortical brain regions, mechanistically underly ADHD pathophysiology. Despite their effectiveness in many individuals, almost one-third of patients do not respond to stimulant treatments and the long-term negative side effects of these medications remain unclear. Emerging clinical evidence is beginning to highlight an important role of dysregulated excitatory/inhibitory (E/I) balance in ADHD. These deficits in E/I balance are related to functional abnormalities in glutamate and Gamma-Aminobutyric Acid (GABA) signaling in the brain, with increasing emphasis placed on GABAergic interneurons driving specific aspects of ADHD pathophysiology. Recent genome-wide association studies (GWAS) have also highlighted how genes associated with GABA function are mutated in human populations with ADHD, resulting in the generation of several new genetic mouse models of ADHD. This review will discuss how GABAergic dysfunction underlies ADHD pathophysiology, and how specific receptors/proteins related to GABAergic interneuron dysfunction may be pharmacologically targeted to treat ADHD in subpopulations with specific comorbidities and symptom domains. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
4
|
Fontana BD, Reichmann F, Tilley CA, Lavlou P, Shkumatava A, Alnassar N, Hillman C, Karlsson KÆ, Norton WHJ, Parker MO. adgrl3.1-deficient zebrafish show noradrenaline-mediated externalizing behaviors, and altered expression of externalizing disorder-candidate genes, suggesting functional targets for treatment. Transl Psychiatry 2023; 13:304. [PMID: 37783687 PMCID: PMC10545713 DOI: 10.1038/s41398-023-02601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Externalizing disorders (ED) are a cause of concern for public health, and their high heritability makes genetic risk factors a priority for research. Adhesion G-Protein-Coupled Receptor L3 (ADGRL3) is strongly linked to several EDs, and loss-of-function models have shown the impacts of this gene on several core ED-related behaviors. For example, adgrl3.1-/- zebrafish show high levels of hyperactivity. However, our understanding of the mechanisms by which this gene influences behavior is incomplete. Here we characterized, for the first time, externalizing behavioral phenotypes of adgrl3.1-/- zebrafish and found them to be highly impulsive, show risk-taking in a novel environment, have attentional deficits, and show high levels of hyperactivity. All of these phenotypes were rescued by atomoxetine, demonstrating noradrenergic mediation of the externalizing effects of adgrl3.1. Transcriptomic analyses of the brains of adgrl3.1-/- vs. wild-type fish revealed several differentially expressed genes and enriched gene clusters that were independent of noradrenergic manipulation. This suggests new putative functional pathways underlying ED-related behaviors, and potential targets for the treatment of ED.
Collapse
Affiliation(s)
- Barbara D Fontana
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ceinwen A Tilley
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK
| | - Perrine Lavlou
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nancy Alnassar
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - Karl Ægir Karlsson
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
- 3Z, Reykjavik, Iceland
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Biology, Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
5
|
Kuś J, Saramowicz K, Czerniawska M, Wiese W, Siwecka N, Rozpędek-Kamińska W, Kucharska-Lusina A, Strzelecki D, Majsterek I. Molecular Mechanisms Underlying NMDARs Dysfunction and Their Role in ADHD Pathogenesis. Int J Mol Sci 2023; 24:12983. [PMID: 37629164 PMCID: PMC10454781 DOI: 10.3390/ijms241612983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, although the aetiology of ADHD is not yet understood. One proposed theory for developing ADHD is N-methyl-D-aspartate receptors (NMDARs) dysfunction. NMDARs are involved in regulating synaptic plasticity and memory function in the brain. Abnormal expression or polymorphism of some genes associated with ADHD results in NMDAR dysfunction. Correspondingly, NMDAR malfunction in animal models results in ADHD-like symptoms, such as impulsivity and hyperactivity. Currently, there are no drugs for ADHD that specifically target NMDARs. However, NMDAR-stabilizing drugs have shown promise in improving ADHD symptoms with fewer side effects than the currently most widely used psychostimulant in ADHD treatment, methylphenidate. In this review, we outline the molecular and genetic basis of NMDAR malfunction and how it affects the course of ADHD. We also present new therapeutic options related to treating ADHD by targeting NMDAR.
Collapse
Affiliation(s)
- Justyna Kuś
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Maria Czerniawska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.K.); (K.S.); (M.C.); (W.W.); (N.S.); (W.R.-K.); (A.K.-L.)
| |
Collapse
|
6
|
Carbajal MS, Bounmy AJC, Harrison OB, Nolen HG, Regan SL, Williams MT, Vorhees CV, Sable HJK. Impulsive choice in two different rat models of ADHD-Spontaneously hypertensive and Lphn3 knockout rats. Front Neurosci 2023; 17:1094218. [PMID: 36777639 PMCID: PMC9909198 DOI: 10.3389/fnins.2023.1094218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Impulsivity is a symptom of attention-deficit/hyperactivity disorder (ADHD) and variants in the Lphn3 (Adgrl3) gene (OMIM 616417) have been linked to ADHD. This project utilized a delay-discounting (DD) task to examine the impact of Lphn3 deletion in rats on impulsive choice. "Positive control" measures were also collected in spontaneously hypertensive rats (SHRs), another animal model of ADHD. Methods For Experiment I, rats were given the option to press one lever for a delayed reward of 3 food pellets or the other lever for an immediate reward of 1 pellet. Impulsive choice was measured as the tendency to discount the larger, delayed reward. We hypothesized that impulsive choice would be greater in the SHR and Lphn3 knockout (KO) rats relative to their control strains - Wistar-Kyoto (WKY) and Lphn3 wildtype (WT) rats, respectively. Results The results did not completely support the hypothesis, as only the SHRs (but not the Lphn3 KO rats) demonstrated a decrease in the percent choice for the larger reward. Because subsequent trials did not begin until the end of the delay period regardless of which lever was selected, rats were required to wait for the next trial to start even if they picked the immediate lever. Experiment II examined whether the rate of reinforcement influenced impulsive choice by using a DD task that incorporated a 1 s inter-trial interval (ITI) immediately after delivery of either the immediate (1 pellet) or delayed (3 pellet) reinforcer. The results of Experiment II found no difference in the percent choice for the larger reward between Lphn3 KO and WT rats, demonstrating reinforcement rate did not influence impulsive choice in Lphn3 KO rats. Discussion Overall, there were impulsivity differences among the ADHD models, as SHRs exhibited deficits in impulsive choice, while the Lphn3 KO rats did not.
Collapse
Affiliation(s)
- Monica S. Carbajal
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Asiah J. C. Bounmy
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Olivia B. Harrison
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, TN, United States
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, TN, United States,*Correspondence: Helen J. K. Sable,
| |
Collapse
|
7
|
ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the incretin polypeptide GIP. Sci Rep 2022; 12:15922. [PMID: 36151371 PMCID: PMC9508192 DOI: 10.1038/s41598-022-20343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is the most common childhood neurodevelopmental disorder. Single nucleotide polymorphisms (SNPs) in the Adhesion G Protein-Coupled Receptor L3 (ADGRL3) gene are associated with increased susceptibility to developing ADHD worldwide. However, the effect of ADGRL3 non-synonymous SNPs (nsSNPs) on the ADGRL3 protein function is vastly unknown. Using several bioinformatics tools to evaluate the impact of mutations, we found that nsSNPs rs35106420, rs61747658, and rs734644, previously reported to be associated and in linkage with ADHD in disparate populations from the world over, are predicted as pathogenic variants. Docking analysis of rs35106420, harbored in the ADGLR3-hormone receptor domain (HRM, a common extracellular domain of the secretin-like GPCRs family), showed that HRM interacts with the Glucose-dependent insulinotropic polypeptide (GIP), part of the incretin hormones family. GIP has been linked to the pathogenesis of diabetes mellitus, and our analyses suggest a potential link to ADHD. Overall, the comprehensive application of bioinformatics tools showed that functional mutations in the ADGLR3 gene disrupt the standard and wild ADGRL3 structure, most likely affecting its metabolic regulation. Further in vitro experiments are granted to evaluate these in silico predictions of the ADGRL3-GIP interaction and dissect the complexity underlying the development of ADHD.
Collapse
|
8
|
ADGRL1 haploinsufficiency causes a variable spectrum of neurodevelopmental disorders in humans and alters synaptic activity and behavior in a mouse model. Am J Hum Genet 2022; 109:1436-1457. [PMID: 35907405 PMCID: PMC9388395 DOI: 10.1016/j.ajhg.2022.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.
Collapse
|
9
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
10
|
Cervantes-Henríquez ML, Acosta-López JE, Martinez AF, Arcos-Burgos M, Puentes-Rozo PJ, Vélez JI. Machine Learning Prediction of ADHD Severity: Association and Linkage to ADGRL3, DRD4, and SNAP25. J Atten Disord 2022; 26:587-605. [PMID: 34009035 DOI: 10.1177/10870547211015426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate whether single nucleotide polymorphisms (SNPs) in the ADGRL3, DRD4, and SNAP25 genes are associated with and predict ADHD severity in families from a Caribbean community. METHOD ADHD severity was derived using latent class cluster analysis of DSM-IV symptomatology. Family-based association tests were conducted to detect associations between SNPs and ADHD severity latent phenotypes. Machine learning algorithms were used to build predictive models of ADHD severity based on demographic and genetic data. RESULTS Individuals with ADHD exhibited two seemingly independent latent class severity configurations. SNPs harbored in DRD4, SNAP25, and ADGRL3 showed evidence of linkage and association to symptoms severity and a potential pleiotropic effect on distinct domains of ADHD severity. Predictive models discriminate severe from non-severe ADHD in specific symptom domains. CONCLUSION This study supports the role of DRD4, SNAP25, and ADGRL3 genes in outlining ADHD severity, and a new prediction framework with potential clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Pedro J Puentes-Rozo
- Universidad Simón Bolívar, Barranquilla, Colombia
- Universidad del Atlántico, Barranquilla, Colombia
| | | |
Collapse
|
11
|
Sable HJK, Lester DB, Potter JL, Nolen HG, Cruthird DM, Estes LM, Johnson AD, Regan SL, Williams MT, Vorhees CV. An assessment of executive function in two different rat models of attention-deficit hyperactivity disorder: Spontaneously hypertensive versus Lphn3 knockout rats. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12767. [PMID: 34427038 PMCID: PMC10114166 DOI: 10.1111/gbb.12767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 01/21/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) a common neurodevelopmental disorder of childhood and often comorbid with other externalizing disorders (EDs). There is evidence that externalizing behaviors share a common genetic etiology. Recently, a genome-wide, multigenerational sample linked variants in the Lphn3 gene to ADHD and other externalizing behaviors. Likewise, limited research in animal models has provided converging evidence that Lphn3 plays a role in EDs. This study examined the impact of Lphn3 deletion (i.e., Lphn3-/- ) in rats on measures of behavioral control associated with externalizing behavior. Impulsivity was assessed for 30 days via a differential reinforcement of low rates (DRL) task and working memory evaluated for 25 days using a delayed spatial alternation (DSA) task. Data from both tasks were averaged into 5-day testing blocks. We analyzed overall performance, as well as response patterns in just the first and last blocks to assess acquisition and steady-state performance, respectively. "Positive control" measures on the same tasks were measured in an accepted animal model of ADHD-the spontaneously hypertensive rat (SHR). Compared with wildtype controls, Lphn3-/- rats exhibited deficits on both the DRL and DSA tasks, indicative of deficits in impulsive action and working memory, respectively. These deficits were less severe than those in the SHRs, who were profoundly impaired on both tasks compared with their control strain, Wistar-Kyoto rats. The results provide evidence supporting a role for Lphn3 in modulating inhibitory control and working memory, and suggest additional research evaluating the role of Lphn3 in the manifestation of EDs more broadly is warranted.
Collapse
Affiliation(s)
- Helen J. K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Deranda B. Lester
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Joshua L. Potter
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Hunter G. Nolen
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | | | - Lauren M. Estes
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Alyssa D. Johnson
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Regan SL, Pitzer EM, Hufgard JR, Sugimoto C, Williams MT, Vorhees CV. A novel role for the ADHD risk gene latrophilin-3 in learning and memory in Lphn3 knockout rats. Neurobiol Dis 2021; 158:105456. [PMID: 34352385 PMCID: PMC8440465 DOI: 10.1016/j.nbd.2021.105456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion G protein-coupled receptors with three isoforms but only LPHN3 is brain specific (caudate, prefrontal cortex, dentate, amygdala, and cerebellum). Variants of LPHN3 are associated with ADHD. Null mutations of Lphn3 in rat, mouse, zebrafish, and Drosophila result in hyperactivity, but its role in learning and memory (L&M) is largely unknown. Using our Lphn3 knockout (KO) rats we examined the cognitive abilities, long-term potentiation (LTP) in CA1, NMDA receptor expression, and neurohistology from heterozygous breeding pairs. KO rats were impaired in egocentric L&M in the Cincinnati water maze, spatial L&M and cognitive flexibility in the Morris water maze (MWM), with no effects on conditioned freezing, novel object recognition, or temporal order recognition. KO-associated locomotor hyperactivity had no effect on swim speed. KO rats had reduced early-LTP but not late-LTP and had reduced hippocampal NMDA-NR1 expression. In a second experiment, KO rats responded to a light prepulse prior to an acoustic startle pulse, reflecting visual signal detection. In a third experiment, KO rats given extra MWM pretraining and hidden platform overtraining showed no evidence of reaching WT rats' levels of learning. Nissl histology revealed no structural abnormalities in KO rats. LPHN3 has a selective effect on egocentric and allocentric L&M without effects on conditioned freezing or recognition memory.
Collapse
Affiliation(s)
- Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Emily M Pitzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
14
|
Bruxel EM, Moreira-Maia CR, Akutagava-Martins GC, Quinn TP, Klein M, Franke B, Ribasés M, Rovira P, Sánchez-Mora C, Kappel DB, Mota NR, Grevet EH, Bau CHD, Arcos-Burgos M, Rohde LA, Hutz MH. Meta-analysis and systematic review of ADGRL3 (LPHN3) polymorphisms in ADHD susceptibility. Mol Psychiatry 2021; 26:2277-2285. [PMID: 32051549 DOI: 10.1038/s41380-020-0673-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/28/2022]
Abstract
The gene encoding adhesion G protein-coupled receptor L3 (ADGRL3, also referred to as latrophilin 3 or LPHN3) has been associated with ADHD susceptibility in independent ADHD samples. We conducted a systematic review and a comprehensive meta-analysis to summarize the associations between the most studied ADGRL3 polymorphisms (rs6551665, rs1947274, rs1947275, and rs2345039) and both childhood and adulthood ADHD. Eight association studies (seven published and one unpublished) fulfilled criteria for inclusion in our meta-analysis. We also incorporated GWAS data for ADGRL3. In order to avoid overlapping samples, we started with summary statistics from GWAS samples and then added data from gene association studies. The results of our meta-analysis suggest an effect of ADGRL3 variants on ADHD susceptibility in children (n = 8724/14,644 cases/controls and 1893 families): rs6551665 A allele (Z score = -2.701; p = 0.0069); rs1947274 A allele (Z score = -2.033; p = 0.0421); rs1947275 T allele (Z score = 2.339; p = 0.0978); and rs2345039 C allele (Z score = 3.806; p = 0.0026). Heterogeneity was found in analyses for three SNPs (rs6551665, rs1947274, and rs2345039). In adults, results were not significant (n = 6532 cases/15,874 controls): rs6551665 A allele (Z score = 2.005; p = 0.0450); rs1947274 A allele (Z score = 2.179; p = 0.0293); rs1947275 T allele (Z score = -0.822; p = 0.4109); and rs2345039 C allele (Z score = -1.544; p = 0.1226). Heterogeneity was found just for rs6551665. In addition, funnel plots did not suggest publication biases. Consistent with ADGRL3's role in early neurodevelopment, our findings suggest that the gene is predominantly associated with childhood ADHD.
Collapse
Affiliation(s)
- E M Bruxel
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C R Moreira-Maia
- ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - G C Akutagava-Martins
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,College of Medicine, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - T P Quinn
- Bioinformatics Core Research Group, Deakin University, Geelong, VIC, Australia
| | - M Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - P Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - C Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D B Kappel
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - N R Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E H Grevet
- ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C H D Bau
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil.,ADHD Outpatient Program (PRODAH - A), Adult Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Instituto de Investigaciones Medicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - L A Rohde
- ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - M H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, Porto Alegre, RS, 91501-970, Brazil. .,ADHD Outpatient Program (PRODAH) and Developmental Psychiatry Program, Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
15
|
McNeill RV, Palladino VS, Brunkhorst-Kanaan N, Grimm O, Reif A, Kittel-Schneider S. Expression of the adult ADHD-associated gene ADGRL3 is dysregulated by risk variants and environmental risk factors. World J Biol Psychiatry 2021; 22:335-349. [PMID: 32787626 DOI: 10.1080/15622975.2020.1809014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES ADGRL3 is a well-replicated risk gene for adult ADHD, encoding the G protein-coupled receptor latrophilin-3 (LPHN3). However, LPHN3's potential role in pathogenesis is unclear. We aimed to determine whether ADGRL3 expression could be dysregulated by genetic risk variants and/or ADHD-associated environmental risk factors. METHODS Eighteen adult ADHD patients and healthy controls were genotyped for rs734644, rs1397547, rs1397548, rs2271338, rs2305339, rs2345039 and rs6551665 ADGRL3 SNPs, and fibroblast cells were derived from skin punches. The environmental ADHD risk factors 'low birthweight' and 'maternal smoking' were modelled in fibroblast cell culture using starvation and nicotine exposure, respectively. Quantitative real-time PCR and western blotting were performed to quantify ADGRL3 gene and protein expression under control, starvation and nicotine-exposed conditions. RESULTS Starvation was found to significantly decrease ADGRL3 expression, whereas nicotine exposure significantly increased ADGRL3 expression. rs1397547 significantly elevated ADGRL3 transcription and protein expression. rs6551665 and rs2345039 interacted with environment to modulate ADGRL3 transcription. ADGRL3 SNPs were significantly able to predict its transcription under both baseline and starvation conditions, and rs1397547 was identified as a significant independent predictor. CONCLUSIONS ADGRL3 SNPs and environmental risk factors can regulate ADGRL3 expression, providing a potential functional mechanism by which LPHN3 may play a role in ADHD pathogenesis.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Frankfurt, Frankfurt, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Regan SL, Williams MT, Vorhees CV. Latrophilin-3 disruption: Effects on brain and behavior. Neurosci Biobehav Rev 2021; 127:619-629. [PMID: 34022279 DOI: 10.1016/j.neubiorev.2021.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/22/2022]
Abstract
Latrophilin-3 (LPHN3), a G-protein-coupled receptor belonging to the adhesion subfamily, is a regulator of synaptic function and maintenance in brain regions that mediate locomotor activity, attention, and memory for location and path. Variants of LPHN3 are associated with increased risk for attention deficit hyperactivity disorder (ADHD) in some patients. Here we review the role of LPHN3 in the central nervous system (CNS). We describe synaptic localization of LPHN3, its trans-synaptic binding partners, links to neurodevelopmental disorders, animal models of Lphn3 disruption in different species, and evidence that LPHN3 is involved in cognition as well as activity and attention. The evidence shows that LPHN3 plays a more significant role in neuroplasticity than previously appreciated.
Collapse
Affiliation(s)
- Samantha L Regan
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
17
|
Adhesion G protein-coupled receptor L3 gene variants: Statistically significant association observed in the male Indo-caucasoid Attention deficit hyperactivity disorder probands. Mol Biol Rep 2021; 48:3213-3222. [PMID: 33914279 DOI: 10.1007/s11033-021-06365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Primary symptoms of Attention Deficit Hyperactivity Disorder (ADHD) are age inappropriate inattention, hyperactivity and impulsivity. Caucasoid individuals showed increased susceptibility to ADHD and disruptive behaviour in presence of Adhesion G-protein-coupled receptor L3 (ADGRL3) gene variants. We investigated ADGRL3 rs1868790, rs6551665, rs2345039 in Indo-Caucasoid families with ADHD probands (N = 249) and controls (N = 350). Behavioural traits, executive function, and IQ of probands were measured through Conner's Parent Rating Scale-Revised, Parental Account of Children's Symptoms, Barkley Deficit in Executive Functioning-Child & Adolescent Scale, and Wechsler Intelligence Scale for Children-III respectively. After obtaining informed written consent, peripheral blood was collected for genomic DNA isolation and target sites were analyzed by PCR based methods or TaqMan assay. Case-control analysis showed higher frequency of rs2345039 'C' allele, 'CC' genotype and A-A-C haplotype in the ADHD probands, principally due to higher occurrence of the 'C' allele and A-A-C haplotype in the male probands (P < 0.05). Mother of the probands also showed higher occurrence of the 'C' allele and "CC" genotype (P < 0.01). Executive function was better in presence of rs2345039 "GG" (P = 0.04) while IQ score was higher in presence of rs6551665 "AA" (P = 0.06). Linkage disequilibrium between rs6551665 and rs2345039 was stronger in the ADHD cases, chiefly in the male probands. Multifactor dimensionality reduction analysis showed strong interaction between rs6551665 and rs2345039 in the male probands while in the female probands rs1868790 and rs6551665 revealed non-linear interaction. Based on these observations, we infer that ADGRL3 may have a role in the aetiology of ADHD in this population warranting further in depth investigation.
Collapse
|
18
|
Roy A, Earley CJ, Allen RP, Kaminsky ZA. Developing a biomarker for restless leg syndrome using genome wide DNA methylation data. Sleep Med 2020; 78:120-127. [PMID: 33422814 DOI: 10.1016/j.sleep.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
This study reports on an epigenetic biomarker for restless leg syndrome (RLS) developed using whole genome DNA methylation data. Lymphocyte-derived DNA methylation was examined in 15 subjects with and without RLS (discovery cohort). T-tests and linear regressions were used followed by a principal component analysis (PCA). The principal component model from the discovery cohort was used to predict RLS status in a peripheral blood (N = 24; including 12 cases and 12 controls) and a post-mortem neural tissue (N = 71; including 36 cases and 35 controls) replication cohort as well as iron deficiency anemia status in a publicly available dataset (N = 71, 59 cases with iron deficiency anemia, 12 controls). Using receiver-operating characteristic analysis the optimum biomarker model - that included 49 probes - predicted RLS status in the blood-based replication cohort with an area under the curve (AUC) of 87.5% (confidence interval = 71.9%-100%). In the neural tissue samples, the model predicted RLS status with an AUC of 73.4% (confidence interval = 61.5%-85.3%). An AUC of 83% was found for predictions of iron deficiency anemia. Thus, the blood-based biomarker model reported here and built with epigenome-wide data showed reasonable replicability in lymphocytes and neural tissue samples. A limitation of this study is that we could not determine the metabolic or neurobiological pathways linking epigenetic changes with RLS. Further research is needed to fine-tune this model for prospective predictions of RLS and to enable translation for clinical use.
Collapse
Affiliation(s)
- Arunima Roy
- The Royal's Institute of Mental Health Research, University of Ottawa, Canada
| | - Christopher J Earley
- Department of Neurology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21209, USA
| | - Richard P Allen
- Department of Neurology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21209, USA
| | - Zachary A Kaminsky
- The Royal's Institute of Mental Health Research, University of Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa Ontario Canada; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
19
|
Özaslan A, Güney E, Ergün MA, Okur İ, Yapar D. CDH13 and LPHN3 Gene Polymorphisms in Attention-Deficit/Hyperactivity Disorder: Their Relation to Clinical Characteristics. J Mol Neurosci 2020; 71:394-408. [PMID: 32691279 DOI: 10.1007/s12031-020-01662-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Genetic factors play a major role in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). In this study, we aimed to investigate the relationship between the CDH13 (rs6565113, rs11150556) and LPHN3 (rs6551665, rs6858066, rs1947274, rs2345039) gene polymorphisms and ADHD. We also sought to examine possible relationships between these polymorphisms and the clinical course and treatment response in ADHD. A total of 120 patients (79% boys), aged 6 to 18 years, newly diagnosed (medication-naïve) with ADHD according to the DSM-5 and a group of 126 controls (74% girls) were enrolled in the study. We examined the association between the aforementioned polymorphisms and ADHD. Univariate and multivariate logistic regression analysis were used to evaluate factors influencing the treatment response of ADHD. A significant difference was found between ADHD and control groups in terms of genotype distribution of the LPHN3 rs6551665 and rs1947274 polymorphisms. The results also showed that having the GG genotype of rs6551665 and CC genotype of rs1947274 of the LPHN3 gene was associated with risk for ADHD, and this relationship was more prominent in male participants. In the multivariate logistic regression model established with variables shown to have a significant relationship with treatment response, the presence of the GG genotype of the LPHN3 rs6551665 polymorphism and high severity of ADHD assessed by CGI-S were associated with poor response to treatment. This study is the first study to investigate the relationship between ADHD and these polymorphisms among Turkish adolescents. Our results imply that the LPHN3 rs6551665 and rs1947274 polymorphisms have a significant effect on ADHD in a Turkish population, and support previous observations that the presence of the GG genotype of the LPHN3 rs6551665 polymorphism may be associated with poor response to treatment in ADHD.
Collapse
Affiliation(s)
- Ahmet Özaslan
- Child and Adolescent Psychiatry Department, Yıldırım Beyazıt Univesity Yenimahalle Training and Research Hospital, 2026. Street, Number: 4, Yenimahalle, Ankara, Turkey.
| | - Esra Güney
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Mehmet Ali Ergün
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| | - İlyas Okur
- Department of Child Health and Diseases, Gazi University Medical Faculty, Ankara, Turkey
| | - Dilek Yapar
- Public Health Department, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
20
|
Regan SL, Cryan MT, Williams MT, Vorhees CV, Ross AE. Enhanced Transient Striatal Dopamine Release and Reuptake in Lphn3 Knockout Rats. ACS Chem Neurosci 2020; 11:1171-1177. [PMID: 32203648 DOI: 10.1021/acschemneuro.0c00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Latrophilin-3 (LPHN3) is an adhesion G protein coupled receptor involved in regulating neuroplasticity. Variants of LPHN3 are associated with increased risk of attention-deficit hyperactivity disorder. Data from mouse, zebrafish, Drosophila, and rat show that disruption of LPHN3 results in hyperactivity, and in the Sprague-Dawley Lphn3 knockout rat, exhibit deficits in learning and memory and changes in dopamine (DA) markers in the neostriatum. To determine the effects of Lphn3 deletion on DA neurotransmission, we compared the concentration, duration, and frequency of DA transients in KO and wild-type rats using fast-scan cyclic voltammetry in brain slices. Lphn3 KO rats showed higher release of DA, and the duration and interevent time were markedly decreased compared with wild-type rats. The data demonstrate that LPHN3 plays a heretofore unrecognized role in DA signaling and may represent a new target for small molecule regulation of DA neurotransmission with translational implications.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Michael T. Cryan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Ashley E. Ross
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229, United States
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45229, United States
| |
Collapse
|
21
|
Dunn HA, Orlandi C, Martemyanov KA. Beyond the Ligand: Extracellular and Transcellular G Protein-Coupled Receptor Complexes in Physiology and Pharmacology. Pharmacol Rev 2019; 71:503-519. [PMID: 31515243 DOI: 10.1124/pr.119.018044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) remain one of the most successful targets of U.S. Food and Drug Administration-approved drugs. GPCR research has predominantly focused on the characterization of the intracellular interactome's contribution to GPCR function and pharmacology. However, emerging evidence uncovers a new dimension in the biology of GPCRs involving their extracellular and transcellular interactions that critically impact GPCR function and pharmacology. The seminal examples include a variety of adhesion GPCRs, such as ADGRLs/latrophilins, ADGRBs/brain angiogenesis inhibitors, ADGRG1/GPR56, ADGRG6/GPR126, ADGRE5/CD97, and ADGRC3/CELSR3. However, recent advances have indicated that class C GPCRs that contain large extracellular domains, including group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8), γ-aminobutyric acid receptors, and orphans GPR158 and GPR179, can also participate in this form of transcellular regulation. In this review, we will focus on a variety of identified extracellular and transcellular GPCR-interacting partners, including teneurins, neurexins, integrins, fibronectin leucine-rich transmembranes, contactin-6, neuroligin, laminins, collagens, major prion protein, amyloid precursor protein, complement C1q-likes, stabilin-2, pikachurin, dystroglycan, complement decay-accelerating factor CD55, cluster of differentiation CD36 and CD90, extracellular leucine-rich repeat and fibronectin type III domain containing 1, and leucine-rich repeat, immunoglobulin-like domain and transmembrane domains. We provide an account on the diversity of extracellular and transcellular GPCR complexes and their contribution to key cellular and physiologic processes, including cell migration, axon guidance, cellular and synaptic adhesion, and synaptogenesis. Furthermore, we discuss models and mechanisms by which extracellular GPCR assemblies may regulate communication at cellular junctions. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) continue to be the prominent focus of pharmacological intervention for a variety of human pathologies. Although the majority of GPCR research has focused on the intracellular interactome, recent advancements have identified an extracellular dimension of GPCR modulation that alters accepted pharmacological principles of GPCRs. Herein, we describe known endogenous allosteric modulators acting on GPCRs both in cis and in trans.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | | |
Collapse
|
22
|
Previously Identified Genetic Variants in ADGRL3 Are not Associated with Risk for Equine Degenerative Myeloencephalopathy across Breeds. Genes (Basel) 2019; 10:genes10090681. [PMID: 31491999 PMCID: PMC6770705 DOI: 10.3390/genes10090681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022] Open
Abstract
Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is a neurologic disease that has been reported in young horses from a wide range of breeds. The disease is inherited and associated with vitamin E deficiency during the first two years of life, resulting in bilateral symmetric ataxia. A missense mutation (chr3:71,917,591 C > T) within adhesion G protein-coupled receptor L3 (ADGRL3) was recently associated with risk for EDM in the Caspian breed. In order to confirm these findings, genotyping of this missense mutation, along with the three other associated single nucleotide polymorphisms (SNPs) in the genomic region, was carried out on 31 postmortem-confirmed eNAD/EDM cases and 43 clinically phenotyped controls from various breeds. No significant association was found between eNAD/EDM confirmed cases and genotype at any of the four identified SNPs (P > 0.05), including the nonsynonymous variant (EquCab2.0 chr3:71,917,591; allelic P = 0.85). These findings suggest that the four SNPs, including the missense variant in the ADGRL3 region, are not associated with risk for eNAD/EDM across multiple breeds of horses.
Collapse
|
23
|
Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019; 8:cells8080907. [PMID: 31426340 PMCID: PMC6721689 DOI: 10.3390/cells8080907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 × 10−4), rs2282794-FGF1 (A allele; p = 1.33 × 10−2), rs2122642-ADGRL3 (C allele, p = 3.5 × 10−2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.
Collapse
|
24
|
Moreno-Salinas AL, Avila-Zozaya M, Ugalde-Silva P, Hernández-Guzmán DA, Missirlis F, Boucard AA. Latrophilins: A Neuro-Centric View of an Evolutionary Conserved Adhesion G Protein-Coupled Receptor Subfamily. Front Neurosci 2019; 13:700. [PMID: 31354411 PMCID: PMC6629964 DOI: 10.3389/fnins.2019.00700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
The adhesion G protein-coupled receptors latrophilins have been in the limelight for more than 20 years since their discovery as calcium-independent receptors for α-latrotoxin, a spider venom toxin with potent activity directed at neurotransmitter release from a variety of synapse types. Latrophilins are highly expressed in the nervous system. Although a substantial amount of studies has been conducted to describe the role of latrophilins in the toxin-mediated action, the recent identification of endogenous ligands for these receptors helped confirm their function as mediators of adhesion events. Here we hypothesize a role for latrophilins in inter-neuronal contacts and the formation of neuronal networks and we review the most recent information on their role in neurons. We explore molecular, cellular and behavioral aspects related to latrophilin adhesion function in mice, zebrafish, Drosophila melanogaster and Caenorhabditis elegans, in physiological and pathophysiological conditions, including autism spectrum, bipolar, attention deficit and hyperactivity and substance use disorders.
Collapse
Affiliation(s)
- Ana L. Moreno-Salinas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Monserrat Avila-Zozaya
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - David A. Hernández-Guzmán
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Antony A. Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
25
|
Huang X, Zhang Q, Gu X, Hou Y, Wang M, Chen X, Wu J. LPHN3 gene variations and susceptibility to ADHD in Chinese Han population: a two-stage case-control association study and gene-environment interactions. Eur Child Adolesc Psychiatry 2019; 28:861-873. [PMID: 30406846 DOI: 10.1007/s00787-018-1251-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Polymorphisms in latrophilin 3 (LPHN3) were recently reported to be associated with attention-deficit/hyperactivity disorder (ADHD), and subsequently other researchers tried to replicate the findings in different populations. This study was aimed to confirm the role of the LPHN3 in ADHD and explore the potential interactions with environmental risk factors in Chinese Han population. We examined the association of LPHN3 with ADHD in a population of 473 ADHD children and 585 controls. As a supplement of ADHD diagnosis, Conners Parent Symptom Questionnaire (PSQ) was used to evaluate ADHD symptoms. Blood lead levels (BLLs) were measured by atomic absorption spectrophotometry and other potential environmental risk factors were determined via a questionnaire filled out by the parents. Finally, after validation in an independent sample (284 cases and 390 controls), we observed significant associations between LPHN3 variants rs1868790 and ADHD risk in combined stage within codominant model [TA/AA: OR (95% CI) = 1.636 (1.325-2.021)], dominant model [OR (95% CI) = 1.573 (1.288-1.922)], and additive model [OR (95% CI) = 1.535 (1.266-1.862)]. Furthermore, rs1868790 significantly interacted with BLLs and maternal stress to modify ADHD susceptibility (P < 0.05), and rs1868790 was found to be related with ADHD symptoms (P < 0.05). Expression quantitative trait loci analysis further indicated that rs1868790 took part in the regulation of LPHN3 gene expression. As the first study to comprehensively explore the role of LPHN3 in ADHD in Chinese children, our research suggests that LPHN3 gene has a significant effect on the ADHD in a Chinese population.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuwei Hou
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China. .,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
26
|
Gisbert L, Vilar L, Rovira P, Sánchez-Mora C, Pagerols M, Garcia-Martínez I, Richarte V, Corrales M, Casas M, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Genome-wide analysis of emotional lability in adult attention deficit hyperactivity disorder (ADHD). Eur Neuropsychopharmacol 2019; 29:795-802. [PMID: 31085060 DOI: 10.1016/j.euroneuro.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/11/2019] [Accepted: 04/23/2019] [Indexed: 01/08/2023]
Abstract
Emotional lability is strongly associated with Attention Deficit Hyperactivity Disorder (ADHD), represents a major source of impairment and predicts poor clinical outcome in ADHD. Given that no specific genes with a role in the co-occurrence of both conditions have been described, we conducted a GWAS of emotional lability in 563 adults with ADHD. Despite not reaching genome-wide significance, the results highlighted genes related with neurotransmission, cognitive function and a wide range of psychiatric disorders that have emotional lability as common clinical feature. By constructing polygenic risk scores on mood instability in the UK Biobank sample and assessing their association with emotional lability in our clinical dataset, we found suggestive evidence of common genetic variation contributing to emotional lability in general population and in clinically diagnosed ADHD. Although not conclusive, these tentative results are in agreement with previous studies that suggest emotion dysregulation as a transdiagnostic construct and highlight the need for further investigation to disentangle the genetic basis of mood instability in ADHD and co-occurring psychiatric disorders.
Collapse
Affiliation(s)
- Laura Gisbert
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Vilar
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Rovira
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Pagerols
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iris Garcia-Martínez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Grup de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Catalonia, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Marta Ribasés
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
27
|
Kiser DP, Popp S, Schmitt-Böhrer AG, Strekalova T, van den Hove DL, Lesch KP, Rivero O. Early-life stress impairs developmental programming in Cadherin 13 (CDH13)-deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:158-168. [PMID: 30165120 DOI: 10.1016/j.pnpbp.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cadherin-13 (CDH13), a member of the calcium-dependent cell adhesion molecule family, has been linked to neurodevelopmental disorders, including autism spectrum (ASD) and attention-deficit/hyperactivity (ADHD) disorders, but also to depression. In the adult brain, CDH13 expression is restricted e.g. to the presynaptic compartment of inhibitory GABAergic synapses in the hippocampus and Cdh13 knockout mice show an increased inhibitory drive onto hippocampal CA1 pyramidal neurons, leading to a shift in excitatory/inhibitory balance. CDH13 is also moderating migration of serotonergic neurons in the dorsal raphe nucleus, establishing projections preferentially to the thalamus and cerebellum during brain development. Furthermore, CDH13 is upregulated by chronic stress as well as in depression, suggesting a role in early-life adaptation to stressful experience. Here, we therefore investigated the interaction between Cdh13 variation and neonatal maternal separation (MS) in mice. METHODS Male and female wild-type (Cdh13+/+), heterozygous (Cdh13+/-) and homozygous (Cdh13-/-) knockout mice exposed to MS, or daily handling as control, were subjected to a battery of behavioural tests to assess motor activity, learning and memory as well as anxiety-like behaviour. A transcriptome analysis of the hippocampus was performed in an independent cohort of mice which was exposed to MS or handling, but remained naïve for behavioural testing. RESULTS MS lead to increased anxiety-like behaviour in Cdh13-/- mice compared to the other two MS groups. Cdh13-/- mice showed a context-dependent effect on stress- and anxiety-related behaviour, impaired extinction learning following contextual fear conditioning and decreased impulsivity, as well as a mild decrease in errors in the Barnes maze and reduced risk-taking in the light-dark transition test after MS. We also show sex differences, with increased locomotor activity in female Cdh13-/- mice, but unaltered impulsivity and activity in male Cdh13-/- mice. Transcriptome analysis revealed several pathways associated with cell surface/adhesion molecules to be altered following Cdh13 deficiency, together with an influence on endoplasmic reticulum function. CONCLUSION MS resulted in increased stress resilience, increased exploration and an overall anxiolytic behavioural phenotype in male Cdh13+/+ and Cdh13+/- mice. Cdh13 deficiency, however, obliterated most of the effects caused by early-life stress, with Cdh13-/- mice exhibiting delayed habituation, no reduction of anxiety-like behaviour and decreased fear extinction. Our behavioural findings indicate a role of CDH13 in the programming of and adaptation to early-life stress. Finally, our transcriptomic data support the view of CDH13 as a neuroprotective factor as well as a mediator in cell-cell interactions, with an impact on synaptic plasticity.
Collapse
Affiliation(s)
- Dominik P Kiser
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Angelika G Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daniel L van den Hove
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.
| |
Collapse
|
28
|
Arcos-Burgos M, Vélez JI, Martinez AF, Ribasés M, Ramos-Quiroga JA, Sánchez-Mora C, Richarte V, Roncero C, Cormand B, Fernández-Castillo N, Casas M, Lopera F, Pineda DA, Palacio JD, Acosta-López JE, Cervantes-Henriquez ML, Sánchez-Rojas MG, Puentes-Rozo PJ, Molina BSG, Boden MT, Wallis D, Lidbury B, Newman S, Easteal S, Swanson J, Patel H, Volkow N, Acosta MT, Castellanos FX, de Leon J, Mastronardi CA, Muenke M. ADGRL3 (LPHN3) variants predict substance use disorder. Transl Psychiatry 2019; 9:42. [PMID: 30696812 PMCID: PMC6351584 DOI: 10.1038/s41398-019-0396-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/02/2022] Open
Abstract
Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.
Collapse
Affiliation(s)
- Mauricio Arcos-Burgos
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia.
- Instituto de Investigaciones Médicas (IIM), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Jorge I Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Universidad del Norte, Barranquilla, Colombia
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Josep A Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Roncero
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Addiction and Dual Diagnosis Unit, Departament of Psychiatry, Hospital Universitari Vall d'Hebron-Public Health Agency, Barcelona, Spain
| | - Bru Cormand
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, CAT, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, CAT, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, CAT, Spain
| | - Noelia Fernández-Castillo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, CAT, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, CAT, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues, CAT, Spain
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Lopera
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - David A Pineda
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Juan D Palacio
- Neuroscience Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Johan E Acosta-López
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Martha L Cervantes-Henriquez
- Universidad del Norte, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Manuel G Sánchez-Rojas
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pedro J Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla, Colombia
| | - Brooke S G Molina
- Departments of Psychiatry and Psychology, University of Pittsburg, Pittsburg, PA, USA
| | - Margaret T Boden
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
| | - Deeann Wallis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Brett Lidbury
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Saul Newman
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Simon Easteal
- National Center for Indigenous Genomics, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - James Swanson
- Department of Psychiatry, Florida International University, Miami, FL, USA
- Child Development Center, University of California at Irvine, Irvine, CA, USA
| | - Hardip Patel
- Genome Discovery Unit, Genome Biology Department, John Curtin School of Medical Research, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | - Nora Volkow
- Office of the Director, National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| | - Maria T Acosta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco X Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
| | - Claudio A Mastronardi
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá, Colombia
- Center for Research in Genetics and Genomics, Institute of Translational Medicine, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Kappel DB, Schuch JB, Rovaris DL, da Silva BS, Müller D, Breda V, Teche SP, S Riesgo R, Schüler-Faccini L, Rohde LA, Grevet EH, Bau CHD. ADGRL3 rs6551665 as a Common Vulnerability Factor Underlying Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Neuromolecular Med 2019; 21:60-67. [PMID: 30652248 DOI: 10.1007/s12017-019-08525-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are prevalent, frequently occur in comorbidity and share substantial genetic correlation. Previous evidence has suggested a role for the ADGRL3 gene in Attention-Deficit/Hyperactivity Disorder (ADHD) susceptibility in several samples. Considering ADGRL3 functionality in central nervous system development and its previous association with neurodevelopmental disorders, we aimed to assess ADGRL3 influence in early-onset ADHD (before 7 years of age) and Autism Spectrum Disorder (ASD). The sample comprises 187 men diagnosed with early-onset ADHD, 135 boys diagnosed with ASD and 468 male blood donors. We tested the association of an ADGRL3 variant (rs6551665) with both early-onset ADHD and ASD susceptibility. We observed significant associations between ADGRL3-rs6551665 on ADHD and ASD susceptibilities; we found that G-carriers were at increased risk of ADHD and ASD, in accordance with previous studies. The overall evidence from the literature, corroborated by our results, suggests that ADGRL3 might be involved in brain development, and genetic modifications related to it might be part of a shared vulnerability factor associated with the underlying neurobiology of neurodevelopmental disorders such as ADHD and ASD.
Collapse
Affiliation(s)
- Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitor Breda
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania P Teche
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil
| | - Luís A Rohde
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil. .,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
30
|
Yang Q, Wu J, Zhao J, Xu T, Zhao Z, Song X, Han P. Circular RNA expression profiles during the differentiation of mouse neural stem cells. BMC SYSTEMS BIOLOGY 2018; 12:128. [PMID: 30577840 PMCID: PMC6302452 DOI: 10.1186/s12918-018-0651-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Circular RNAs (circRNAs) have recently been found to be expressed in human brain tissue, and many lines ofevidence indicate that circRNAs play regulatory roles in neurodevelopment. Proliferation and differentiation of neural stem cells (NSCs) are critical parts during development of central nervous system (CNS).To date, there have been no reports ofcircRNA expression profiles during the differentiation of mouse NSCs. We hypothesizethat circRNAs mayregulate gene expression in the proliferation anddifferentiation of NSCs. Results In this study, we obtained NSCs from the wild-type C57BL/6 J mouse fetal cerebral cortex. We extracted total RNA from NSCs in different differentiation stagesand then performed RNA-seq. By analyzing the RNA-Seq data, we found 37circRNAs and 4182 mRNAs differentially expressedduringthe NSC differentiation. Gene Ontology (GO) enrichment analysis of thecognate linear genes of these circRNAsrevealed that some enriched GO terms were related to neural activity. Furthermore, we performed a co-expression network analysis of these differentially expressed circRNAs and mRNAs. The result suggested a stronger GO enrichmentin neural features for both the cognate linear genes of circRNAs and differentially expressed mRNAs. Conclusion We performed the first circRNA investigation during the differentiation of mouse NSCs. Wefound that12 circRNAs might have regulatory roles duringthe NSC differentiation, indicating that circRNAs might be modulated during NSC differentiation.Our network analysis suggested the possible complex circRNA-mRNA mechanisms during differentiation, and future experimental workis need to validate these possible mechanisms. Electronic supplementary material The online version of this article (10.1186/s12918-018-0651-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Jing Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China.
| | - Ping Han
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210019, Jiangsu, China.
| |
Collapse
|