1
|
Blöcher JA, Meyer-Tönnies MJ, Morof F, Rönnpagel V, Bethmann J, Vollmer M, Engeli S, Tzvetkov MV. Sex-Dependent Effects of CYP2D6 on the Pharmacokinetics of Berberine in Humans. Clin Pharmacol Ther 2025; 117:250-260. [PMID: 39488825 DOI: 10.1002/cpt.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/14/2024] [Indexed: 11/05/2024]
Abstract
An over-the-counter product berberine (a major alkaloid in goldenseal) is a substrate of the uptake transporter OCT1 and the metabolizing enzyme CYP2D6. The two genes exhibit common functional polymorphisms. Approximately 9% of Europeans and white Americans are either poor CYP2D6 metabolizers or poor OCT1 transporters. In this study, we investigated the effects of OCT1 and CYP2D6 polymorphisms on berberine pharmacokinetics in humans. We confirmed in vitro that berberine is an OCT1 substrate (KM of 7.0 μM, CLint of 306 ± 29 μL/min/mg). Common OCT1 alleles *3 to *6 showed uptake reduced by at least 65% and Oct1/2 knockout mice showed 3.2-fold higher AUCs in liver perfusion experiments. However, in humans, poor OCT1 transporters did not show any differences in berberine pharmacokinetics compared with reference participants. In contrast, CYP2D6 polymorphisms significantly affected berberine metabolism, but exclusively in females. Females who were poor CYP2D6 metabolizers had an 80% lower M1-to-berberine ratio. General linear model analyses suggest strong synergistic, rather than additive, effects between female sex and CYP2D6 genotype. Overall, berberine displayed low oral bioavailability, yet females had a 2.8-fold higher AUC and a 3.6-fold higher Cmax than males (P < 0.001). These effects were only partially attributable to the sex-CYP2D6 genotype interaction. In conclusion, despite berberine being an OCT1 substrate, OCT1 deficiency did not affect berberine pharmacokinetics in humans. In contrast, CYP2D6 emerges as a critical enzyme for berberine metabolism in females, but not in males, highlighting sex-specific differences. We suggest that factors beyond CYP2D6 metabolism are determining berberine's systemic exposure, especially in males (NCT05463003).
Collapse
Affiliation(s)
- Jonas A Blöcher
- Department of Clinical Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Marleen J Meyer-Tönnies
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Morof
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Vincent Rönnpagel
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Jonas Bethmann
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Vollmer
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Engeli
- Department of Clinical Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Ganguly S, Sasi A, Nagaraju SKK, Bakhshi S. Anti-Emetics in Children Receiving Chemotherapy for Solid Tumors and Leukemia: Pharmacology and Optimization of Therapy for Nausea and Vomiting. Pharmaceuticals (Basel) 2024; 17:616. [PMID: 38794186 PMCID: PMC11124061 DOI: 10.3390/ph17050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The management of chemotherapy-induced nausea and vomiting (CINV) in children remains challenging due to differences in the chemotherapy regimens, their relative emetogenicity compared to that in adults and differences in drug metabolism and the available formulations. The common four classes of anti-emetics used for the treatment and prophylaxis of CINV in children include dexamethasone, neurokinin-1 receptor antagonists, 5-hydroxytryptamine-3 receptor antagonists (5HT3RAs), and olanzapine. The appropriate dose of dexamethasone for CINV prophylaxis in children is unknown, with a significant variability in dosage ranging between 6 and 32 mg/m2/day. The dose of dexamethasone is decreased by 30% when this drug is combined with (fos)aprepitant in children, in contrast to a decrease of 50% required in adults. The use of aprepitant in younger children (<12 years) is often hampered by the non-availability of oral suspension formulations in many countries; alternatively, 80 mg capsules are administered for 1-3 days in certain institutes to children weighing between 15 and 40 kg. Among the different 5HT3RAs, palonosetron is comparatively metabolized faster in children than in adults, requiring a higher dosage for similar efficacy to that achieved in adults. Olanzapine is a newer agent, used in doses between 0.1 and 0.14 mg/kg/day in children, with good anti-emetic efficacy, but has sedation and hyperglycemia as concerning adverse effects. Drug interactions between anti-emetics and between anti-emetics and chemotherapy/supportive agents (azole antifungals, cyclosporine, arsenic trioxide), especially QTc prolongation, should be considered during prescription.
Collapse
Affiliation(s)
| | | | | | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; (S.G.); (A.S.); (S.K.K.N.)
| |
Collapse
|
3
|
Likhodii S, Chin AC, Baskin LB. Role of therapeutic drug monitoring to identify clinically significant drug–herbal supplement interaction. Ther Drug Monit 2024:515-544. [DOI: 10.1016/b978-0-443-18649-3.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Zacharia GS, Jacob A. Acetaminophen: A Liver Killer or Thriller. Cureus 2023; 15:e47071. [PMID: 38022064 PMCID: PMC10645398 DOI: 10.7759/cureus.47071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Acetaminophen, or paracetamol, ranks among the most extensively utilized analgesic and antipyretic medications globally. The administration of acetaminophen to individuals with underlying liver disease has long sparked concerns regarding the potential risk of hepatotoxicity. However, the available literature and recommendations consider it a safe option in all forms of liver diseases and is deemed safe when used at recommended doses. This article aims to offer a concise review of the pharmacokinetics, toxicity profile, and the intricate considerations surrounding the safety of acetaminophen in patients with liver disease. By delving into the liver-acetaminophen interactions, we seek to provide a nuanced perspective on the use of acetaminophen in this critical patient population.
Collapse
Affiliation(s)
- George S Zacharia
- Gastroenterology and Hepatology, Al Ahalia Hospital Mussafah, Abu Dhabi, ARE
| | - Anu Jacob
- Anesthesiology and Perioperative Medicine, Al Ahalia Hospital Mussafah, Abu Dhabi, ARE
| |
Collapse
|
5
|
Evaluation of Concomitant Use of Anticancer Drugs and Herbal Products: From Interactions to Synergic Activity. Cancers (Basel) 2022; 14:cancers14215203. [PMID: 36358622 PMCID: PMC9657145 DOI: 10.3390/cancers14215203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 01/07/2023] Open
Abstract
CAM is used by about 40% of cancer patients in Western Countries, with peaks of 80% for breast cancer patients. Cancer patients use CAM to boost immune function, to control cancer symptoms and treatment-related side effects, and to improve health-related quality of life (HR-QoL) and survival. Unfortunately, self-prescription of natural remedies in cancer patients can lead to unexpected toxicities and can reduce the effectiveness of cancer therapy. Although CAM usually refers to all the "natural or organic" products/methods that are generally considered less toxic, there are concerns about drug interactions, especially in patients participating in clinical trials with experimental agents. Despite the claims of the promising and potential benefits made by prescribers, many CAMs lack clear scientific evidence of their safety and efficacy. Given the widespread use of CAM-both clearly declared and overt-in this review, we focused on the most important known data on the risk of interactions between biologics and oncology drugs with the goal of opening up CAM in accordance with the meaning of integrative medicine.
Collapse
|
6
|
Miedziaszczyk M, Bajon A, Jakielska E, Primke M, Sikora J, Skowrońska D, Idasiak-Piechocka I. Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food. Pharmaceutics 2022; 14:pharmaceutics14102154. [PMID: 36297591 PMCID: PMC9611668 DOI: 10.3390/pharmaceutics14102154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Tacrolimus is an immunosuppressive calcineurin inhibitor used to prevent rejection in allogeneic organ transplant recipients, such as kidney, liver, heart or lung. It is metabolized in the liver, involving the cytochrome P450 (CYP3A4) isoform CYP3A4, and is characterized by a narrow therapeutic window, dose-dependent toxicity and high inter-individual and intra-individual variability. In view of the abovementioned facts, the aim of the study is to present selected interactions between tacrolimus and the commonly used dietary supplements, herbs and food. The review was based on the available scientific literature found in the PubMed, Scopus and Cochrane databases. An increase in the serum concentration of tacrolimus can be caused by CYP3A4 inhibitors, such as grapefruit, pomelo, clementine, pomegranate, ginger and turmeric, revealing the side effects of this drug, particularly nephrotoxicity. In contrast, CYP3A4 inducers, such as St. John’s Wort, may result in a lack of therapeutic effect by reducing the drug concentration. Additionally, the use of Panax ginseng, green tea, Schisandra sphenanthera and melatonin in patients receiving tacrolimus is highly controversial. Therefore, since alternative medicine constitutes an attractive treatment option for patients, modern healthcare should emphasize the potential interactions between herbal medicines and synthetic drugs. In fact, each drug or herbal supplement should be reported by the patient to the physician (concordance) if it is taken in the course of immunosuppressive therapy, since it may affect the pharmacokinetic and pharmacodynamic parameters of other preparations.
Collapse
Affiliation(s)
- Miłosz Miedziaszczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Correspondence:
| | - Aleksander Bajon
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Ewelina Jakielska
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Marta Primke
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Jędrzej Sikora
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Dagmara Skowrońska
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Ilona Idasiak-Piechocka
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
7
|
Melchert PW, Qian Y, Zhang Q, Klee BO, Xing C, Markowitz JS. In vitro inhibition of carboxylesterase 1 by Kava (Piper methysticum) Kavalactones. Chem Biol Interact 2022; 357:109883. [PMID: 35278473 PMCID: PMC9244838 DOI: 10.1016/j.cbi.2022.109883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Kava refers to the extracts from the rhizome of the plant Piper methysticum which is of particular significance to various indigenous cultures in the South Pacific region. Kavalactones are the active constituents of kava products and are associated with sedative and anxiolytic effects. Kavalactones have been evaluated in vitro for their potential to alter the activity of various CYP450 enzymes but have undergone little systematic investigation as to their potential influence on esterases. This study investigated the inhibition effects of kava and its kavalactones on carboxylesterase 1 (CES1) in an in vitro system and established associated kinetic parameters. Kava and its kavalactones were found to produce reversible inhibition of CES1 to varying degrees. Kavain, dihydrokavain, and desmethoxyyangonin displayed competitive type inhibition, while methysticin, dihydromethysticin, and yangonin displayed a mixed competitive-noncompetitive type inhibition. The inhibition constants (Ki) values for each of the kavalactones were as follows: methysticin (35.2 μM), dihydromethysticin (68.2 μM), kavain (81.6 μM), dihydrokavain (105.3 μM), yangonin (24.9 μM), and desmethoxyyangonin (25.2 μM). With consideration to the in vitro Ki for each evaluated kavalactone as well as available clinical kavalactone concentrations in blood circulation, co-administration of CES1 substrate medications and kava products at the recommended daily dose is generally free of drug interaction concerns. However, uncertainty around kavalactone exposure in humans has been noted and a clinically relevant CES1 inhibition by kavain, dihydrokavain, and dihydromethysticin is indeed possible if the kavalactone consumption is higher than 1000 mg in the context of over-the-counter usage. Further clinical studies would be required to assess the possibility of clinically significant kava drug-drug interactions with CES1 substrate medications.
Collapse
Affiliation(s)
- Philip W Melchert
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Yuli Qian
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Brandon O Klee
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Physiologically based pharmacokinetic model predictions of natural product-drug interactions between goldenseal, berberine, imatinib and bosutinib. Eur J Clin Pharmacol 2022; 78:597-611. [DOI: 10.1007/s00228-021-03266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022]
|
9
|
Bertuccioli A, Cardinali M, Di Pierro F, Magi S, Zonzini G. A Practical Perspective on the Use of Botanicals During the COVID-19 Pandemic: From Proven to Potential Interactions. J Med Food 2022; 25:1-11. [PMID: 34788575 PMCID: PMC8787711 DOI: 10.1089/jmf.2021.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we examined the top 10 nutraceutical products sold in Italian pharmacies and parapharmacies as well as hypermarkets and supermarkets; in the first, three product categories saw the greatest increase in sales (vitamins and minerals, immunostimulants, and sleep products) for the 12-month period between October 2019 and October 2020 (including first pandemic wave of SARS-CoV-2). We are investigating their respective formulas and isolating the botanicals that are used to make them. Many of these products have undergone preclinical and clinical studies. We performed a systematic literature search in the MEDLINE database using PubMed and Google Scholar from November 15, 2020 to December 15, 2020 (including studies carried out between 1980 and 2020). The search terms that were used included the complete name of the medicinal plant in English or Latin and the terms "cytochrome" or "drug interactions," crossing, respectively, the Latin name and English common names with "cytochrome" and "drug interactions." The search included in vitro and in vivo studies describing the effects of interaction between the plant (extract or botanical medicine) and human cytochromes. Despite their great complexity, there is decidedly limited clinical data on botanical medicine. In fact, of the 28 botanicals that were examined, only 2 (Citrus paradisi and Rhodiola rosea) show in vivo pharmacological interactions in human subjects. On the contrary, for the other botanicals, there is only weak evidence of dubious clinical significance or potential interactions shown in animal models or in vitro without clinical confirmation. This study provides a rational assessment of the most widely used products, including those used in self-medication, to simplify patient management during the COVID-19 health emergency.
Collapse
Affiliation(s)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Francesco Di Pierro
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, Brescia, Italy
- Scientific & Research Department, Velleja Research, Milano, Italy
| | - Simone Magi
- Italian Association of Fitness e Medicine (AIFeM), Ravenna, Italy
| | - Giordano Zonzini
- Italian Association of Fitness e Medicine (AIFeM), Ravenna, Italy
| |
Collapse
|
10
|
Mitchell CA, Dever JT, Gafner S, Griffiths JC, Marsman DS, Rider C, Welch C, Embry MR. The Botanical Safety Consortium: A public-private partnership to enhance the botanical safety toolkit. Regul Toxicol Pharmacol 2021; 128:105090. [PMID: 34863907 DOI: 10.1016/j.yrtph.2021.105090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
Botanical dietary supplement use is widespread and growing, therefore, ensuring the safety of botanical products is a public health priority. This commentary describes the mission and objectives of the Botanical Safety Consortium (BSC) - a public-private partnership aimed at enhancing the toolkit for conducting the safety evaluation of botanicals. This partnership is the result of a Memorandum of Understanding between the US FDA, the National Institute of Environmental Health Sciences, and the Health and Environmental Sciences Institute. The BSC serves as a global forum for scientists from government, academia, consumer health groups, industry, and non-profit organizations to work collaboratively on adapting and integrating new approach methodologies (NAMs) into routine botanical safety assessments. The objectives of the BSC are to: 1) engage with a group of global stakeholders to leverage scientific safety approaches; 2) establish appropriate levels of chemical characterization for botanicals as complex mixtures; 3) identify pragmatic, fit-for-purpose NAMs to evaluate botanical safety; 4) evaluate the application of these tools via comparison to the currently available safety information on selected botanicals; 5) and integrate these tools into a framework that can facilitate the evaluation of botanicals. Initially, the BSC is focused on oral exposure from dietary supplements, but this scope could be expanded in future phases of work. This commentary provides an overview of the structure, goals, and strategies of this initiative and insights regarding our first objectives, namely the selection and prioritization of botanicals based on putative toxicological properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Cynthia Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Cara Welch
- US Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle R Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| |
Collapse
|
11
|
Surana AR, Agrawal SP, Kumbhare MR, Gaikwad SB. Current perspectives in herbal and conventional drug interactions based on clinical manifestations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Herbs are an important source of pharmaceuticals. Herbs are traditionally used by millions of peoples for medicine, food and drink in developed and developing nations considering that they are safe. But, interaction of herbs with other medicines may cause serious adverse effects or reduces their efficacy. The demand for “alternative” medicines has been increased significantly, which include medicine derived from plant or herbal origin. The objective of this review article mainly focuses on drug interactions of commonly used herbs along with possible mechanisms. The method adopted for this review is searching of herb-drug interactions in online database.
Main text
Herb-drug interaction leads to pharmacological modification. The drug use along with herbs may show pharmacodynamic and pharmacokinetic interactions. Pharmacokinetic interaction causes alteration in absorption, distribution, metabolism and elimination. Similarly, pharmacodynamic interaction causes additive or synergistic or antagonist effect on the drugs or vice versa. Researchers had demonstrated that herbs show the toxicities and drug interactions like other pharmacologically active compounds. There is lack of knowledge amongst physician, pharmacist and consumers related to pharmacological action and mechanism of herb-drug interaction. This review article focuses on the herb-drug interaction of danshen (Salvia miltiorrhiza), Echinacea (Echinacea purpurea), garlic (Allium sativum), ginkgo (Ginkgo biloba), goldenseal (Hydrastis canadensis), green tea (Camellia sinensis), kava (Piper methysticum), liquorice (Glycyrrhiza glabra), milk thistle (Silybum marianum) and St. John’s wort (Hypericum perforatum) along with probable mechanisms and clinical manifestation based on case studies reported in literature.
Conclusion
Herb-drug interactions may lead to serious side effects. Physician, pharmacist and patients must be more cautious while prescribing and or consuming these herbs.
Collapse
|
12
|
Matura JM, Shea LA, Bankes VA. Dietary supplements, cytochrome metabolism, and pharmacogenetic considerations. Ir J Med Sci 2021; 191:2357-2365. [PMID: 34734388 DOI: 10.1007/s11845-021-02828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Dietary supplement use has continued to rise. In addition to supplement-drug interactions, it is prudent to consider how dietary supplements may interact with a patient's specific pharmacogenetics. Variations in genes associated with CYP 450 enzymes have evidence of impacting drug metabolism and adverse effects. AIMS This research was performed to evaluate CYP P450 enzyme activity of the top 15 dietary supplements used in the USA in order to initiate pharmacogenetic considerations specific to commonly used dietary supplements. METHODS The most common dietary supplements used in the USA were obtained from the National Health and Nutrition Examination Survey (NHANES). Primary literature detailing supplement CYP P450 activity was compiled from PubMed using MeSH search terms: supplement name(s), cytochrome P450 enzymes, metabolism, and pharmacokinetics. Additional resources utilized for documented CYP enzyme genotypes were the pharmacogenetic databases from Clinical Pharmacogenetics Implementation Consortium and The Pharmacogenomic Variation Consortium. RESULTS Of the 15 most common dietary supplements used in the USA, 53% (cranberry, echinacea, garlic, ginkgo biloba, ginseng, melatonin, milk thistle, and valerian) exhibit CYP P450 metabolism, with some having possible induction activity as well. Melatonin and garlic are substrates of CYP1A2 and CYP2C19, respectively. Additionally, there is evidence of echinacea having possible CYP3A4 induction activity. CONCLUSION CYP P450 activity is an important consideration for any patient but becomes increasingly critical if patients have certain CYP P450 phenotypes that impact metabolism. These popular supplements have the potential for changes in supplement exposure, and adverse effects based on pharmacogenetic profiles. Furthermore, these sites of metabolism are shared with many medications, setting the stage for possibly more profound interactions between medications and supplements. This paper highlights the mechanisms in which dietary supplements may constitute a risk for patients with certain CYP P450 phenotypes. Further research is needed in the area of dietary supplements and their pharmacogenomic implications.
Collapse
Affiliation(s)
- Janelle M Matura
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA
| | - Leticia A Shea
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA.
| | - Victoria A Bankes
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA
| |
Collapse
|
13
|
Suroowan S, Abdallah HH, Mahomoodally MF. Herb-drug interactions and toxicity: Underscoring potential mechanisms and forecasting clinically relevant interactions induced by common phytoconstituents via data mining and computational approaches. Food Chem Toxicol 2021; 156:112432. [PMID: 34293424 DOI: 10.1016/j.fct.2021.112432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/05/2023]
Abstract
Herbals in the form of medicine are employed extensively around the world. Herbal and conventional medicine combination is a potentially dangerous practice mainly in comorbid, hepato insufficient and frail patients leading to perilous herb-drug interactions (HDI) and toxicity. This study features potential HDI of 15 globally famous plant species through data mining and computational methods. Several plant species were found to mimic warfarin. Phytochemicals from M. charantia induced hypoglycemica. M. chamomila and G. biloba possessed anticoagulant activities. S. hispanica reduces postprandial glycemia. R. officinalis has been reported to inhibit the efflux of anticancer substrates while A. sativum can boost the clearance of anticancer agents. P. ginseng can alter blood coagulation. A cross link of the biological and in silico data revealed that a plethora of herbal metabolites such as ursolic and rosmarinic acid among others are possible/probable inhibitors of specific CYP450 enzymes. Consequently, plant species/metabolites with a given pharmacological property/metabolizing enzyme should not be mixed with drugs having the same pharmacological property/metabolizing enzyme. Even if combined with drugs, herbal medicines must be used at low doses for a short period of time and under the supervision of a healthcare professional to avoid potential adverse and toxic effects.
Collapse
Affiliation(s)
- Shanoo Suroowan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Hassan Hadi Abdallah
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbīl, Iraq
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius.
| |
Collapse
|
14
|
Tvrdý V, Pourová J, Jirkovský E, Křen V, Valentová K, Mladěnka P. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med Res Rev 2021; 41:2195-2246. [PMID: 33587317 DOI: 10.1002/med.21791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Silymarin is an extract from the seeds (fruits) of Silybum marianum that contains flavonolignans and flavonoids. Although it is frequently used as a hepatoprotective agent, its application remains somewhat debatable, in particular, due to the low oral bioavailability of flavonolignans. Moreover, there are claims of its potential interactions with concomitantly used drugs. This review aims at a systematic summary and critical assessment of known information on the pharmacokinetics of particular silymarin flavonolignans. There are two known major reasons for poor systemic oral bioavailability of flavonolignans: (1) rapid conjugation in intestinal cells or the liver and (2) efflux of parent flavonolignans or formed conjugates back to the lumen of the gastrointestinal tract by intestinal cells and rapid excretion by the liver into the bile. The metabolism of phase I appears to play a minor role, in contrast to extensive conjugation and indeed the unconjugated flavonolignans reach low plasma levels after common doses. Only about 1%-5% of the administered dose is eliminated by the kidneys. Many in vitro studies tested the inhibitory potential of silymarin and its components toward different enzymes and transporters involved in the absorption, metabolism, and excretion of xenobiotics. In most cases, effective concentrations are too high to be relevant under real biological conditions. Most human studies showed no silymarin-drug interactions explainable by these suggested interferences. More interactions were found in animal studies, likely due to the much higher doses administered.
Collapse
Affiliation(s)
- Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Amaeze O, Eng H, Horlbogen L, Varma MVS, Slitt A. Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. Eur J Drug Metab Pharmacokinet 2021; 46:437-450. [PMID: 33844145 PMCID: PMC11774566 DOI: 10.1007/s13318-021-00685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The use of herbal medicines is common in Africa, and patients often use a combination of herbs and drugs. Concurrent herbal and pharmaceuticals treatments can cause adverse effects through herb-drug interactions (HDI). This study evaluated the potential risk of HDI for five medicinal plants, Vernonia amygdalina, Ocimum gratissimum, Moringa oleifera, Azadirachta indica, and Picralima nitida, using in vitro assays. Patients with diabetes and some other disease conditions commonly use these medicinal plants in Nigeria, and little is known regarding their potential for drug interaction, despite their enormous use. METHODS Crude extracts of the medicinal plants were evaluated for reversible and time-dependent inhibition (TDI) activity of six cytochrome P450 (CYP) enzymes using pooled human liver microsomes and cocktail probe-based assays. Enzyme activity was determined by quantifying marker metabolites' formation using liquid chromatography-mass spectrometry/mass spectrometry. The drug interaction potential was predicted for each herbal extract using the in vitro half-maximal inhibitory concentration (IC50) values and the percentage yield. RESULTS O. gratissimum methanol extracts reversibly inhibited CYP 1A2, 2C8, 2C9 and 2C19 enzymes (IC50: 6.21 µg/ml, 2.96 µg/ml, 3.33 µg/ml and 1.37 µg/ml, respectively). Additionally, V. amygdalina methanol extract inhibited CYP2C8 activity (IC50: 5.71 µg/ml); P. nitida methanol and aqueous extracts inhibited CYP2D6 activity (IC50: 1.99 µg/ml and 2.36 µg/ml, respectively) while A. indica methanol extract inhibited CYP 3A4/5, 2C8 and 2C9 activity (IC50: 7.31 µg/ml, 9.97 µg/ml and 9.20 µg/ml, respectively). The extracts showed a potential for TDI of the enzymes when incubated at 200 µg/ml; V. amygdalina and A. indica methanol extracts exhibited TDI potential for all the major CYPs. CONCLUSIONS The medicinal plants inhibited CYP activity in vitro, with the potential to cause in vivo HDI. Clinical risk assessment and proactive monitoring are recommended for patients who use these medicinal plants concurrently with drugs that are cleared through CYP metabolism.
Collapse
Affiliation(s)
- Ogochukwu Amaeze
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA
- Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Heather Eng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | - Lauren Horlbogen
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | | | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.
| |
Collapse
|
16
|
Gougis P, Hilmi M, Geraud A, Mir O, Funck-Brentano C. Potential Cytochrome P450-mediated pharmacokinetic interactions between herbs, food, and dietary supplements and cancer treatments. Crit Rev Oncol Hematol 2021; 166:103342. [PMID: 33930533 DOI: 10.1016/j.critrevonc.2021.103342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022] Open
Abstract
Herbs, food and dietary supplements (HFDS), can interact significantly with anticancer drug treatments via cytochrome p450 isoforms (CYP) CYP3A4, CYP2D6, CYP1A2, and CYP2C8. The objective of this review was to assess the influence of HFDS compounds on these cytochromes. Interactions with CYP activities were searched for 189 herbs and food products, 72 dietary supplements in Web of Knowledge® databases. Analyses were made from 140 of 3,125 clinical trials and 236 of 3,374 in vitro, animal model studies or case reports. 18 trials were found to report direct interactions between 9 HFDS with 8 anticancer drugs. 21 HFDS were found to interact with CYP3A4, a major metabolic pathway for many anticancer drugs. All 261 HFDS were classified for their interaction with the main cytochromes P450 involved in the metabolism of anticancer drugs. We provided an easy-to-use colour-coded table to easily match potential interactions between 261 HFDS and 117 anticancer drugs.
Collapse
Affiliation(s)
- Paul Gougis
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; CLIP² Galilée, Department of Medical Oncology Pitié-Salpêtrière Hospital, F-75013, Paris, France.
| | - Marc Hilmi
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| | - Arthur Geraud
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Olivier Mir
- Department of Ambulatory Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christian Funck-Brentano
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| |
Collapse
|
17
|
Nguyen JT, Tian DD, Tanna RS, Hadi DL, Bansal S, Calamia JC, Arian CM, Shireman LM, Molnár B, Horváth M, Kellogg JJ, Layton ME, White JR, Cech NB, Boyce RD, Unadkat JD, Thummel KE, Paine MF. Assessing Transporter-Mediated Natural Product-Drug Interactions Via In vitro-In Vivo Extrapolation: Clinical Evaluation With a Probe Cocktail. Clin Pharmacol Ther 2020; 109:1342-1352. [PMID: 33174626 DOI: 10.1002/cpt.2107] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
Abstract
The botanical natural product goldenseal can precipitate clinical drug interactions by inhibiting cytochrome P450 (CYP) 3A and CYP2D6. Besides P-glycoprotein, effects of goldenseal on other clinically relevant transporters remain unknown. Established transporter-expressing cell systems were used to determine the inhibitory effects of a goldenseal extract, standardized to the major alkaloid berberine, on transporter activity. Using recommended basic models, the extract was predicted to inhibit the efflux transporter BCRP and uptake transporters OATP1B1/3. Using a cocktail approach, effects of the goldenseal product on BCRP, OATP1B1/3, OATs, OCTs, MATEs, and CYP3A were next evaluated in 16 healthy volunteers. As expected, goldenseal increased the area under the plasma concentration-time curve (AUC0-inf ) of midazolam (CYP3A; positive control), with a geometric mean ratio (GMR) (90% confidence interval (CI)) of 1.43 (1.35-1.53). However, goldenseal had no effects on the pharmacokinetics of rosuvastatin (BCRP and OATP1B1/3) and furosemide (OAT1/3); decreased metformin (OCT1/2, MATE1/2-K) AUC0-inf (GMR, 0.77 (0.71-0.83)); and had no effect on metformin half-life and renal clearance. Results indicated that goldenseal altered intestinal permeability, transport, and/or other processes involved in metformin absorption, which may have unfavorable effects on glucose control. Inconsistencies between model predictions and pharmacokinetic outcomes prompt further refinement of current basic models to include differential transporter expression in relevant organs and intestinal degradation/metabolism of the precipitant(s). Such refinement should improve in vitro-in vivo prediction accuracy, contributing to a standard approach for studying transporter-mediated natural product-drug interactions.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Rakshit S Tanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Deena L Hadi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.,Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA
| | - Sumit Bansal
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Justina C Calamia
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Christopher M Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Laura M Shireman
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Bálint Molnár
- SOLVO Biotechnology, SZTE Biológiai Epület, University of Szeged, Szeged, Hungary
| | - Miklós Horváth
- SOLVO Biotechnology, SZTE Biológiai Epület, University of Szeged, Szeged, Hungary
| | - Joshua J Kellogg
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Matthew E Layton
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - John R White
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Nadja B Cech
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Richard D Boyce
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jashvant D Unadkat
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA.,Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Kenneth E Thummel
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA.,Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.,Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington, USA
| |
Collapse
|
18
|
Fliszár-Nyúl E, Mohos V, Csepregi R, Mladěnka P, Poór M. Inhibitory effects of polyphenols and their colonic metabolites on CYP2D6 enzyme using two different substrates. Biomed Pharmacother 2020; 131:110732. [PMID: 32942157 DOI: 10.1016/j.biopha.2020.110732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polyphenolic compounds (including flavonoids, chalcones, phenolic acids, and furanocoumarins) represent a common part of our diet, but are also the active ingredients of several dietary supplements and/or medications. These compounds undergo extensive metabolism by human biotransformation enzymes and the microbial flora of the colon. CYP2D6 enzyme metabolizes approximately 25% of the drugs, some of which has narrow therapeutic window. Therefore, its inhibition can lead to the development of pharmacokinetic interactions and the disruption of drug therapy. In this study, the inhibitory effects of 17 plant-derived compounds and 19 colonic flavonoid metabolites on CYP2D6 were examined, employing two assays with different test substrates. The O-demethylation of dextromethorphan was tested employing CypExpress 2D6 kit coupled to HPLC analysis; while the O-demethylation of another CYP2D6 specific substrate (AMMC) was investigated in a plate reader assay with BioVision Fluorometric CYP2D6 kit. Interestingly, some compounds (e.g., bergamottin) inhibited both dextromethorphan and AMMC demethylation; however, certain substances proved to be inhibitors only in one of the assays applied. Our results demonstrate that some polyphenols and colonic metabolites are inhibitors of CYP2D6-catalyzed reactions. Nevertheless, the inhibitory effects showed strong substrate dependence.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, University of Pécs, Medical School, Ifjúság útja 13, H-7624, Pécs, Hungary.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|
19
|
Feltrin C, Farias IV, Sandjo LP, Reginatto FH, Simões CMO. Effects of Standardized Medicinal Plant Extracts on Drug Metabolism Mediated by CYP3A4 and CYP2D6 Enzymes. Chem Res Toxicol 2020; 33:2408-2419. [DOI: 10.1021/acs.chemrestox.0c00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ingrid Vicente Farias
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Louis Pergaud Sandjo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| |
Collapse
|
20
|
Mandal SK, Maji AK, Mishra SK, Ishfaq PM, Devkota HP, Silva AS, Das N. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res 2020; 160:105085. [PMID: 32683037 DOI: 10.1016/j.phrs.2020.105085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, 713206, West Bengal, India
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Pir Mohammad Ishfaq
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, Health Life Sciences: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, 4051-401, Portugal
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, 799155, Tripura, India.
| |
Collapse
|
21
|
Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life (Basel) 2020; 10:life10070106. [PMID: 32635538 PMCID: PMC7400069 DOI: 10.3390/life10070106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/20/2023] Open
Abstract
The therapeutic efficacy of a drug or its unexpected unwanted side effects may depend on the concurrent use of a medicinal plant. In particular, constituents in the medicinal plant extracts may influence drug bioavailability, metabolism and half-life, leading to drug toxicity or failure to obtain a therapeutic response. This narrative review focuses on clinical studies improving knowledge on the ability of selected herbal medicines to influence the pharmacokinetics of co-administered drugs. Moreover, in vitro studies are useful to anticipate potential herbal medicine-drug interactions. In particular, they help to elucidate the cellular target (metabolic or transporter protein) and the mechanism (induction or inhibition) by which a single constituent of the herbal medicine acts. The authors highlight the difficulties in predicting herbal–drug interactions from in vitro data where high concentrations of extracts or their constituents are used and pharmacokinetics are missed. Moreover, the difficulty to compare results from human studies where different kinds of herbal extracts are used is discussed. The herbal medicines discussed are among the best sellers and they are reported in the “Herbal Medicines for Human Use” section of the European Medicinal Agency (EMA).
Collapse
|
22
|
McDonald MG, Tian DD, Thummel KE, Paine MF, Rettie AE. Modulation of Major Human Liver Microsomal Cytochromes P450 by Component Alkaloids of Goldenseal: Time-Dependent Inhibition and Allosteric Effects. Drug Metab Dispos 2020; 48:1018-1027. [PMID: 32591416 DOI: 10.1124/dmd.120.091041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Botanical and other natural products (NPs) are often coconsumed with prescription medications, presenting a risk for cytochrome P450 (P450)-mediated NP-drug interactions. The NP goldenseal (Hydrastis canadensis) has exhibited antimicrobial activities in vitro attributed to isoquinoline alkaloids contained in the plant, primarily berberine, (-)-β-hydrastine, and to a lesser extent, hydrastinine. These alkaloids contain methylenedioxyphenyl rings, structural alerts with potential to inactivate P450s through formation of metabolic intermediate complexes. Time-dependent inhibition experiments were conducted to evaluate their ability to inhibit major P450 activities in human liver microsomes by using a cocktail of isozyme-specific substrate probes. Berberine inhibited CYP2D6 (dextromethorphan O-demethylation; K I = 2.7 μM, kinact = 0.065 minute-1) and CYP3A4/5 (midazolam 1'-hydroxylation; K I = 14.8 μM, kinact = 0.019 minute-1); (-)-β-hydrastine inhibited CYP2C9 (diclofenac 4'-hydroxylation; K I = 49 μM, kinact = 0.036 minute-1), CYP2D6 (K I > 250 μM, kinact > 0.06 minute-1), and CYP3A4/5 (K I = 28 μM, kinact = 0.056 minute-1); and hydrastinine inhibited CYP2D6 (K I = 37 μM, kinact = 0.049 minute-1) activity. Berberine additionally exhibited allosteric effects on midazolam hydroxylation, showing both positive and negative heterotropic cooperativity. Experiments with recombinant isozymes showed that berberine activated midazolam 1'-hydroxylation by CYP3A5, lowering K m(app), but showed mixed inhibition and negative cooperativity toward this reaction when catalyzed by CYP3A4. Berberine inactivated CYP3A4 at a much faster rate than CYP3A5 and was a noncompetitive inhibitor of midazolam 4-hydroxylation by CYP3A4 but a strong mixed inhibitor of the CYP3A5 catalyzed reaction. These complex kinetics should be considered when extrapolating the risk for NP-drug interactions involving goldenseal. SIGNIFICANCE STATEMENT: Robust kinetic parameters were determined for the reversible and time-dependent inhibition of CYP2C9, CYP2D6, and CYP3A4/5 activities in human liver microsomes by major component isoquinoline alkaloids contained in the botanical natural product goldenseal. The alkaloid berberine also exhibited opposing, isozyme-specific allosteric effects on midazolam hydroxylation mediated by recombinant CYP3A4 (inhibition) and CYP3A5 (activation). These data will inform the development of a physiologically based pharmacokinetic model that can be used to predict potential clinically relevant goldenseal-drug interactions.
Collapse
Affiliation(s)
- Matthew G McDonald
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| | - Dan-Dan Tian
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| | - Kenneth E Thummel
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| | - Mary F Paine
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| | - Allan E Rettie
- Departments of Medicinal Chemistry (M.G.M., A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Pharmaceutical Sciences (D.-D.T., M.F.P.), College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (K.E.T., M.F.P., A.E.R.)
| |
Collapse
|
23
|
Don CG, Smieško M. In Silico Pharmacogenetics CYP2D6 Study Focused on the Pharmacovigilance of Herbal Antidepressants. Front Pharmacol 2020; 11:683. [PMID: 32477141 PMCID: PMC7237870 DOI: 10.3389/fphar.2020.00683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 01/27/2023] Open
Abstract
The annual increase in depression worldwide together with an upward trend in the use of alternative medicine as treatment asks for developing reliable safety profiles of herbal based medicine. A considerable risk on adverse reactions exists when herbal remedies are combined with prescription medication. Around 25% of the drugs, including many antidepressants, depend on the activity of CYP2D6 for their metabolism and corresponding efficacy. Therefore, probing CYP2D6 inhibition by the active substances in herbal based medicine within the wild-type enzyme and clinically relevant allelic variants is crucial to avoid toxicity issues. In this in silico study several compounds with herbal origin suggested to have antidepressant activity were analyzed on their CYP2D6 wild-type and CYP2D6*53 inhibition potential using molecular docking. In addition, several pharmacokinetic properties were evaluated to assess their probability to cross the blood brain barrier and subsequently reach sufficient brain bioavailability for the modulation of central nervous system targets as well as characteristics which may hint toward potential safety issues.
Collapse
|
24
|
Li Y, Zhang W, Yin T, Wang C, Wang F, Sun J, Liu L, Zhang Q, Zhang C. Inhibition of UDP-glucuronosyltransferases by different furoquinoline alkaloids. Xenobiotica 2020; 50:1170-1179. [PMID: 32367776 DOI: 10.1080/00498254.2020.1760400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Herbs are often administered in combination with therapeutic drugs, raising the possibility for herb-drug interactions (HDIs). Furoquinoline alkaloids are found in Rutaceae plants, which are structurally similar and have many medicinal properties. This study aims to investigate the inhibition of four furoquinoline alkaloids on the activity of UDP-glucuronosyltransferases (UGTs).The recombinant UGTs-catalyzed glucuronidation metabolism of 4-methylumbelliferone (4-MU) was utilized to investigate the inhibition potential. Inhibition type and parameters were determined, and in silico docking was employed to elucidate the inhibition difference of furoquinoline alkaloids towards UGTs.Dictamine, haplopine, γ-fagarine and skimmianine strongly inhibited UGT1A3, UGT1A7, UGT1A9 and UGT2B4, respectively. Among them, dictamnine inhibited more than 70% of the four UGTs. Inhibition kinetics determination showed that they all exerted competitive inhibition, and the inhibition kinetic constant (Ki) was determined to be 8.3, 7.2, 3.7 and 33.9 μM, respectively. In vitro-in vivo extrapolation (IVIVE) was employed to demonstrate the inhibition possibility for four alkaloids. Skimmianine was proved to be more suitable for clinical application. In silico docking study indicated that the hydrophobic interactions played a key role in the inhibition of furoquinoline alkaloids towards three of the four UGTs. In conclusion, monitoring the interactions between furoquinoline alkaloids and drugs mainly undergoing UGTs-catalyzed metabolism is necessary.
Collapse
Affiliation(s)
- Yixuan Li
- School of integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Weihua Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tingting Yin
- School of integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Ce Wang
- Basic Medical College, Hebei North University, Hebei, China
| | - Feige Wang
- School of integrative medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Sun
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lina Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Qinghuai Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| |
Collapse
|
25
|
Drozdoff L, Klein E, Kalder M, Brambs C, Kiechle M, Paepke D. Potential Interactions of Biologically Based Complementary Medicine in Gynecological Oncology. Integr Cancer Ther 2019; 18:1534735419846392. [PMID: 31046491 PMCID: PMC6501502 DOI: 10.1177/1534735419846392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The aim of this study was to assess the potential risks of interactions between biologically based complementary and alternative medication (BB-CAM) and conventional drugs during systemic therapy in breast and gynecological cancer patients by analyzing the actual CAM-drug combinations from individual patients' records. METHODS From September 2014 to December 2014 and from February 2017 to May 2017, all patients (n = 717) undergoing systemic therapy at the Gynecologic Oncology Day Care Unit in the Gynecology and Obstetrics Department of the Technical University of Munich, Germany, were asked to participate in a questionnaire about all their medications. To assess the potential risk of CAM-drug interactions (CDIs), we initially utilized the Lexicomp drug interaction database. This assessment was then expanded with a systematic search of other digital databases, such as the National Center for Complementary and Integrative Health, Memorial Sloan Kettering Cancer Center, PubMed, and MEDLINE as well as the Cochrane Library. RESULTS Among 448 respondents, 74.1% reported using BB-CAM simultaneously with their systemic therapy. The assessment showed 1 patient with a potentially clinically relevant CDI, where the interaction was based on a self-medicated combination of Echinacea and cyclophosphamide. Furthermore, 81 patients (18.1%) were thought to have interactions because of a combination of BB-CAMs and cytochrome P450 3A4-metabolized anticancer drugs. CONCLUSIONS Our data demonstrated high overall use of BB-CAMs by cancer patients undergoing systemic therapy. The analyses showed only 1 clinically relevant CDI.
Collapse
Affiliation(s)
- Loisa Drozdoff
- 1 Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Evelyn Klein
- 1 Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | | | | | - Marion Kiechle
- 1 Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Daniela Paepke
- 1 Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
26
|
Xie Y, Zhang D, Zhang J, Yuan J. Metabolism, Transport and Drug-Drug Interactions of Silymarin. Molecules 2019; 24:E3693. [PMID: 31615114 PMCID: PMC6832356 DOI: 10.3390/molecules24203693] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Silymarin, the extract of milk thistle, and its major active flavonolignan silybin, are common products widely used in the phytotherapy of liver diseases. They also have promising effects in protecting the pancreas, kidney, myocardium, and the central nervous system. However, inconsistent results are noted in the different clinical studies due to the low bioavailability of silymarin. Extensive studies were conducted to explore the metabolism and transport of silymarin/silybin as well as the impact of its consumption on the pharmacokinetics of other clinical drugs. Here, we aimed to summarize and highlight the current knowledge of the metabolism and transport of silymarin. It was concluded that the major efflux transporters of silybin are multidrug resistance-associated protein (MRP2) and breast cancer resistance protein (BCRP) based on results from the transporter-overexpressing cell lines and MRP2-deficient (TR-) rats. Nevertheless, compounds that inhibit the efflux transporters MRP2 and BCRP can enhance the absorption and activity of silybin. Although silymarin does inhibit certain drug-metabolizing enzymes and drug transporters, such effects are unlikely to manifest in clinical settings. Overall, silymarin is a safe and well-tolerated phytomedicine.
Collapse
Affiliation(s)
- Ying Xie
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao 999078, China.
| | - Dingqi Zhang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao 999078, China.
| | - Jin Zhang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao 999078, China.
| | - Jialu Yuan
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao 999078, China.
| |
Collapse
|
27
|
Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metab Rev 2019; 51:453-497. [DOI: 10.1080/03602532.2019.1655570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
28
|
The Sex-Gender Effects in the Road to Tailored Botanicals. Nutrients 2019; 11:nu11071637. [PMID: 31319627 PMCID: PMC6682902 DOI: 10.3390/nu11071637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Phenols are a wide family of phytochemicals that are characterized by large chemical diversity and are considered to bioactive molecules of foods, beverages, and botanicals. Although they have a multitude of biological actions, their beneficial effects are rarely evidenced in clinical research with high scientific rigor. This may occur due to the presence of numerous confounders, such as the modulation of phenol bioavailability, which can be regulated by microbiota, age, sex-gender. Sex-gender is an important determinant of health and well-being, and has an impact on environmental and occupational risks, access to health care, disease prevalence, and treatment outcomes. In addition, xenobiotic responses may be strongly influenced by sex-gender. This review describes how sex–gender differentially influences the activities of phenols also in some critical periods of women life such as pregnancy and lactation, considering also the sex of fetuses and infants. Thus, sex–gender is a variable that must be carefully considered and should be used to propose directions for future research on the road to tailored medicine and nutrition.
Collapse
|
29
|
Study Protocol for a Pilot, Open-Label, Prospective, and Observational Study to Evaluate the Pharmacokinetics of Drugs Administered to Patients during Extracorporeal Circulation; Potential of In Vivo Cytochrome P450 Phenotyping to Optimise Pharmacotherapy. Methods Protoc 2019; 2:mps2020038. [PMID: 31164617 PMCID: PMC6632166 DOI: 10.3390/mps2020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/05/2022] Open
Abstract
Pharmacokinetic alterations of medications administered during surgeries involving cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO) have been reported. The impact of CPB on the cytochrome P450 (CYP) enzymes’ activity is the key factor. The metabolic rates of caffeine, dextromethorphan, midazolam, omeprazole, and Losartan to the CYP-specific metabolites are validated measures of in vivo CYP 1A2, 2D6, 3A4, 2C19, and 2C9 activities, respectively. The study aim is to assess the activities of major CYPs in patients on extracorporeal circulation (EC). This is a pilot, prospective, open-label, observational study in patients undergoing surgery using EC and patients undergoing laparoscopic cholecystectomy as a control group. CYP activities will be measured on the day, and 1–2 days pre-surgery/3–4 days post-surgery (cardiac surgery and Laparoscopic cholecystectomy) and 1–2 days after starting ECMO, 1–2 weeks after starting ECMO, and 1–2 days after discontinuation from ECMO. Aforementioned CYP substrates will be administered to the patient and blood samples will be collected at 0, 1, 2, 4, and 6 h post-dose. Major CYP enzymes’ activities will be compared in each participant on the day, and before/after surgery. The CYP activities will be compared in three study groups to investigate the impact of CYPs on EC.
Collapse
|
30
|
Development of Caco-2 cells-based gene reporter assays and evaluation of herb-drug interactions involving CYP3A4 and CYP2D6 gene expression. Chem Biol Interact 2019; 303:79-89. [PMID: 30772286 DOI: 10.1016/j.cbi.2019.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/03/2019] [Accepted: 01/25/2019] [Indexed: 01/03/2023]
Abstract
The indiscriminate use of medicinal plants and herbal medicinal products concomitantly with conventional drugs may result in herb-drug interactions that may lead to fluctuations in drug bioavailability, therapeutic failure, and/or toxic effects. CYP450 enzymes play an important role in drug biotransformation and herb-drug interactions. Thus, the aim of this study was to develop and apply Caco-2 cells-based gene reporter assays to study in vitro the potential occurrence of CYP3A4 and CYP2D6 gene expression modulation by standardized extracts of selected medicinal plants. Reporter cell lines developed showed a significant increase in CYP3A4 and CYP2D6 reporter fluorescent emission, 4 and 16-fold respectively, when compared to the controls. The standardized extracts of Cecropia glaziovii, Bauhinia forficata and Echinacea sp. significantly increased CYP3A4 reporter fluorescence, and those of Ilex paraguariensis, Bauhinia forficata and Echinacea sp. significantly decreased CYP2D6 reporter fluorescence in Caco-2 cells-based gene reporter assays. The data obtained suggest that CYP3A4 and CYP2D6 gene expression seem to be modulated by the extracts tested. In addition, the reporter cell lines developed are functional assays that could be used to study drug-drug and herb-drug interactions during the research and development of new drugs.
Collapse
|
31
|
Zahner C, Kruttschnitt E, Uricher J, Lissy M, Hirsch M, Nicolussi S, Krähenbühl S, Drewe J. No Clinically Relevant Interactions of St. John's Wort Extract Ze 117 Low in Hyperforin With Cytochrome P450 Enzymes and P-glycoprotein. Clin Pharmacol Ther 2019; 106:432-440. [PMID: 30739325 PMCID: PMC6766782 DOI: 10.1002/cpt.1392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Hypericum perforatum L. (St. John's wort) is used to treat mild-to-moderate depression. Its potential safety risks are pharmacokinetic drug interactions via cytochrome P450 (CYP) enzymes and P-glycoprotein, presumably caused by hyperforin. In a phase I, open-label, nonrandomized, single-sequence study, the low-hyperforin Hypericum extract Ze 117 was investigated using a drug cocktail in 20 healthy volunteers. No pharmacokinetic interactions of Ze 117 were observed for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP3A4, and P-glycoprotein. Area under the curve (AUC) and peak plasma concentration (Cmax ) of the used probe drugs showed 90% confidence intervals (CIs) of the geometric mean ratios of the drugs taken together with Ze 117 vs. probe drug alone, well within the predefined bioequivalence range of 80-125%. Though Ze 117 did not induce dextromethorphan metabolism by CYP2D6, it weakly increased dextromethorphan AUC ratio (mean 147.99, 95% CI 126.32-173.39) but not the corresponding metabolic ratio. Ze 117 does not show clinically relevant pharmacokinetic interactions with important CYPs and P-glycoprotein.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | | |
Collapse
|
32
|
Physiologically Based Pharmacokinetic Modelling of Hyperforin to Predict Drug Interactions with St John’s Wort. Clin Pharmacokinet 2019; 58:911-926. [DOI: 10.1007/s40262-019-00736-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Showande SJ, Fakeye TO, Kajula M, Hokkanen J, Tolonen A. Potential inhibition of major human cytochrome P450 isoenzymes by selected tropical medicinal herbs-Implication for herb-drug interactions. Food Sci Nutr 2019; 7:44-55. [PMID: 30680158 PMCID: PMC6341161 DOI: 10.1002/fsn3.789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/30/2018] [Accepted: 08/05/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Increasing use of medicinal herbs as nutritional supplements and traditional medicines for the treatment of diabetes, hypertension, hyperlipidemia, and malaria fever with conventional drugs poses possibilities of herb-drug interactions (HDIs). The potential of nine selected widely used tropical medicinal herbs in inhibiting human cytochrome P450 (CYP) isoenzymes was investigated. MATERIALS AND METHODS In vitro inhibition of eight major CYP isoenzymes by aqueous extracts of Allium sativum, Gongronema latifolium, Moringa oleifera, Musa sapientum, Mangifera indica, Tetracarpidium conophorum, Alstonia boonei, Bauhinia monandra, and Picralima nitida was estimated in human liver microsomes by monitoring twelve probe metabolites of nine probe substrates with UPLC/MS-MS using validated N-in-one assay method. RESULTS Mangifera indica moderately inhibited CYP2C8, CYP2B6, CYP2D6, CYP1A2, and CYP2C9 with IC 50 values of 37.93, 57.83, 67.39, 54.83, and 107.48 μg/ml, respectively, and Alstonia boonei inhibited CYP2D6 (IC 50 = 77.19 μg/ml). Picralima nitida inhibited CYP3A4 (IC 50 = 45.58 μg/ml) and CYP2C19 (IC 50 = 73.06 μg/ml) moderately but strongly inhibited CYP2D6 (IC 50 = 1.19 μg/ml). Other aqueous extracts of Gongronema latifolium, Bauhinia monandra, and Moringa oleifera showed weak inhibitory activities against CYP1A2. Musa sapientum, Allium sativum, and Tetracarpidium conophorum did not inhibit the CYP isoenzymes investigated. CONCLUSION Potential for clinically important CYP-metabolism-mediated HDIs is possible for Alstonia boonei, Mangifera indica, and Picralima nitida with drugs metabolized by CYP 2C8, 2B6, 2D6, 1A2, 2C9, 2C19, and 3A4. Inhibition of CYP2D6 by Picralima nitida is of particular concern and needs immediate in vivo investigations.
Collapse
Affiliation(s)
- Segun Johnson Showande
- Faculty of PharmacyDepartment of Clinical Pharmacy and Pharmacy AdministrationUniversity of IbadanIbadanNigeria
| | - Titilayo Oyelola Fakeye
- Faculty of PharmacyDepartment of Clinical Pharmacy and Pharmacy AdministrationUniversity of IbadanIbadanNigeria
| | | | | | | |
Collapse
|
34
|
Detection of adulteration in Hydrastis canadensis (goldenseal) dietary supplements via untargeted mass spectrometry-based metabolomics. Food Chem Toxicol 2018; 120:439-447. [PMID: 30031041 DOI: 10.1016/j.fct.2018.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022]
Abstract
Current estimates report that approximately 25% of U.S. adults use dietary supplements for medicinal purposes. Yet, regulation and transparency within the dietary supplement industry remains a challenge, and economic incentives encourage adulteration or augmentation of botanical dietary supplement products. Undisclosed changes to the dietary supplement composition could impact safety and efficacy; thus, there is a continued need to monitor possible botanical adulteration or mis-identification. Goldenseal, Hydrastis canadensis L. (Ranunculaceae), is a well-known botanical used to combat bacterial infections and digestive problems and is widely available as a dietary supplement. The goal of this study was to evaluate potential adulteration in commercial botanical products using untargeted metabolomics, with H. canadensis supplements serving as a test case. An untargeted ultraperformance liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis was performed on 35 H. canadensis commercial products. Visual inspection of the chemometric data via principal component analysis (PCA) revealed several products that were distinct from the main groupings of samples, and subsequent evaluation of contributing metabolites led to their confirmation of the outliers as originating from a non-goldenseal species or a mixture of plant materials. The obtained results demonstrate the potential for untargeted metabolomics to discriminate between multiple unknown products and predict possible adulteration.
Collapse
|
35
|
Wang C, Chen F, Liu Y, Xu Q, Guo L, Zhang X, Ruan Y, Shi Y, Shen L, Li M, Du H, Sun X, Ma J, He L, Qin S. Genetic Association of Drug Response to Erlotinib in Chinese Advanced Non-small Cell Lung Cancer Patients. Front Pharmacol 2018; 9:360. [PMID: 29695969 PMCID: PMC5904969 DOI: 10.3389/fphar.2018.00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/27/2018] [Indexed: 01/17/2023] Open
Abstract
The efficacy of erlotinib treatment for advanced non-small cell lung cancer (NSCLC) is due to its action as an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Patients treated with erlotinib experience different drug responses. The effect of germline mutations on therapeutic responses and adverse drug responses (ADRs) to erlotinib in Chinese patients requires elucidation. Sixty Han Chinese advanced non-small cell lung cancer patients received erlotinib monotherapy and, for each participant, 76 candidate genes (related to EGFR signaling, drug metabolism and drug transport pathways) were sequenced and analyzed. The single-nucleotide polymorphisms (SNPs) rs1042640 in UGT1A10, rs1060463, and rs1064796 in CYP4F11, and rs2074900 in CYP4F2 were significantly associated with therapeutic responses to erlotinib. Rs1064796 in CYP4F11 and rs10045685 in UGT3A1 were significantly associated with adverse drug reaction. Moreover, analysis of a validation cohort confirmed the significant association between rs10045685 in UGT3A1 and erlotinib adverse drug response(unadjusted p = 0.015). This study provides comprehensive, systematic analyses of genetic variants associated with responses to erlotinib in Chinese advanced non-small cell lung cancer patients. Newly-identified SNPs may serve as promising markers to predict responses and safety in erlotinib-treated advanced non-small cell lung cancer patients after chemotherapy doublet.
Collapse
Affiliation(s)
- Cong Wang
- Life Science College, Anhui Medical University, Hefei, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Fang Chen
- Life Science College, Anhui Medical University, Hefei, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yichen Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Liang Guo
- The Fourth Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Xiaoqing Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ye Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofang Sun
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingsong Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| |
Collapse
|
36
|
Grimstein M, Huang SM. A regulatory science viewpoint on botanical-drug interactions. J Food Drug Anal 2018; 26:S12-S25. [PMID: 29703380 PMCID: PMC9326881 DOI: 10.1016/j.jfda.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/28/2022] Open
Abstract
There is a continued predisposition of concurrent use of drugs and botanical products. Consumers often self-administer botanical products without informing their health care providers. The perceived safety of botanical products with lack of knowledge of the interaction potential poses a challenge for providers and both efficacy and safety concerns for patients. Botanical–drug combinations can produce untoward effects when botanical constituents modulate drug metabolizing enzymes and/or transporters impacting the systemic or tissue exposure of concomitant drugs. Examples of pertinent scientific literature evaluating the interaction potential of commonly used botanicals in the US are discussed. Current methodologies that can be applied to advance our efforts in predicting drug interaction liability is presented. This review also highlights the regulatory science viewpoint on botanical–drug interactions and labeling implications.
Collapse
Affiliation(s)
- Manuela Grimstein
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
37
|
Chrubasik-Hausmann S, Vlachojannis J, McLachlan AJ. Understanding drug interactions with St John's wort (Hypericum perforatum L.): impact of hyperforin content. J Pharm Pharmacol 2018; 71:129-138. [DOI: 10.1111/jphp.12858] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 10/24/2017] [Indexed: 02/03/2023]
Abstract
Abstract
Objective
The aim of this study was to review herb–drug interaction studies with St John's wort (Hypericum perforatum L.) with a focus on the hyperforin content of the extracts used in these studies.
Methods
PUBMED was systematically searched to identify studies describing pharmacokinetic interactions involving St John's wort. Data on study design and the St John's wort extract or product were gathered to extract hyperforin content and daily dose used in interaction studies.
Key findings
This analysis demonstrates that significant herb–drug interactions (resulting in a substantial change in systemic exposure) with St John's wort products were associated with hyperforin daily dosage. Products that had a daily dose of <1 mg hyperforin were less likely to be associated with major interaction for drugs that were CYP3A4 or p-glycoprotein substrates. Although a risk of interactions cannot be excluded even for low-dose hyperforin St. John's wort extracts, the use of products that result in a dose of not more than 1 mg hyperforin per day is recommended to minimise the risk of interactions.
Conclusions
This review highlights that the significance of herb–drug interactions with St John's wort is influenced by the nature of the herbal medicines product, particularly the hyperforin content.
Collapse
Affiliation(s)
| | - Julia Vlachojannis
- Institute of Forensic Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew J McLachlan
- Centre for Education and Research on Ageing, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Concord Repatriation General Hospital, Sydney, NSW, Australia
| |
Collapse
|
38
|
|
39
|
Phytotherapy and Nutritional Supplements on Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7207983. [PMID: 28845434 PMCID: PMC5563402 DOI: 10.1155/2017/7207983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent type of nonskin malignancy among women worldwide. In general, conventional cancer treatment options (i.e., surgery, radiotherapy, chemotherapy, biological therapy, and hormone therapy) are not completely effective. Recurrence and other pathologic situations are still an issue in breast cancer patients due to side effects, toxicity of drugs in normal cells, and aggressive behaviour of the tumours. From this point of view, breast cancer therapy and adjuvant methods represent a promising and challenging field for researchers. In the last few years, the use of some types of complementary medicines by women with a history of breast cancer has significantly increased such as phytotherapeutic products and nutritional supplements. Despite this, the use of such approaches in oncologic processes may be problematic and patient's health risks can arise such as interference with the efficacy of standard cancer treatment. The present review gives an overview of the most usual phytotherapeutic products and nutritional supplements with application in breast cancer patients as adjuvant approach. Regardless of the contradictory results of scientific evidence, we demonstrated the need to perform additional investigation, mainly well-designed clinical trials in order to establish correlations and allow for further validated outcomes concerning the efficacy, safety, and clinical evidence-based recommendation of these products.
Collapse
|
40
|
Albassam AA, Frye RF, Markowitz JS. The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes. Chem Biol Interact 2017; 271:24-29. [PMID: 28457856 DOI: 10.1016/j.cbi.2017.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/27/2017] [Indexed: 01/04/2023]
Abstract
Milk thistle is a widely-consumed botanical used for an array of purported health benefits. The primary extract of milk thistle is termed silymarin, a complex mixture that contains a number of structurally-related flavonolignans, the flavonoid, taxifolin, and a number of other constituents. The major flavonolignans present in most extracts are silybin A, silybin B, isosilybin A and isosilybin B, silydianin, silychristin and isosilychristin. Silymarin itself has been reported to inhibit CYP2C8 activity in vitro, but the effect of the individual flavonolignans on this enzyme has not been studied. To investigate the effects of milk thistle extract and its main flavonolignans (silybin A, silybin B, isosilybin A and isosilybin B) on CYP2C8 activity at relevant concentrations, the effect of milk thistle extract and the flavonolignans on CYP2C8 enzyme activity was studied in vitro using human liver microsomes (HLM) incorporating an enzyme-selective substrate for CYP2C8, amodiaquine. Metabolite formation was analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The concentration causing 50% inhibition of enzyme activity (IC50) was used to express the degree of inhibition. Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B with IC50 values (mean ± SE) of 1.64 ± 0.66 μg/mL and 2.67 ± 1.18 μg/mL, respectively. The rank order of observed inhibitory potency after isosilibinin was silibinin > isosilybin A > silybin A > milk thistle extract > and silybin B. These in vitro results suggest a potentially significant inhibitory effect of isosilibinin and isosilybin B on CYP2C8 activity. However, the observed IC50 values are unlikely to be achieved in humans supplemented with orally administered milk thistle extracts due to the poor bioavailability of flavonolignans documented with most commercially available formulations.
Collapse
Affiliation(s)
- Ahmed A Albassam
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA; Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| |
Collapse
|
41
|
Park JS, Rehman SU, Kim IS, Choi MS, Na CS, Yoo HH. Evaluation of Herb-Drug Interactions of Hovenia dulcis Fruit Extracts. Pharmacogn Mag 2017; 13:236-239. [PMID: 28539714 PMCID: PMC5421419 DOI: 10.4103/0973-1296.204552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Background: Hovenia dulcis (Rhamnaceae) fruits are popularly used as herbal medicines or dietary supplements in Asian countries due to functions such as liver protection and detoxification from alcohol poisoning. Accordingly, it is very likely for dietary supplemental products, including H. dulcis fruit extracts, to be taken with prescription drugs. Objective: In this study, possible food–drug interactions involving H. dulcis fruit extracts were evaluated based on the inhibition of cytochrome P450 (CYP) enzyme activity. Material and Methods: The water extract of H. dulcis fruit extracts was incubated in human liver microsomes with CYP-specific substrates. The formation of the CYP-specific metabolites was measured using liquid chromatography-tandem mass spectrometry. Results: H. dulcis fruit extracts showed negligible effects on seven CYP isozyme activities at all concentrations tested. Conclusion: This result suggests that H. dulcis fruit extracts may have minimal pharmacokinetic interactions with coadministered drugs through the modulation of CYP enzymes. SUMMARY Food-drug interactions involving H. dulcis fruit extracts were evaluated. The inhibition of CYPs by H. dulcis extracts was tested. H. dulcis extracts showed negligible effects on CYP activities. H. dulcis extracts may have minimal pharmacokinetic interactions with co-administered drugs.
Abbreviations Used: CYP: cytochrome P450 enzymes, HPLC: High performance liquid chromatography, LC-MS/MS : liquid chromatography-tandem mass spectrometry, MRM: multiple-reaction monitoring
Collapse
Affiliation(s)
- Jong Suk Park
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Shaheed Ur Rehman
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - In Sook Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Min Sun Choi
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Chun-Soo Na
- Lifetree Biotech Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
42
|
Patients on psychotropic medications and herbal supplement combinations: clinical considerations. Int Clin Psychopharmacol 2017; 32:63-71. [PMID: 27902536 DOI: 10.1097/yic.0000000000000158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Populations using herbs and herbal preparations are widespread and growing. As many herbal ingredients exert actions on psychotropic drug targets, psychiatrists should be well informed and aware of potential drug-drug interactions in clinical practice. Reliable and clinically useful information in this area, however, is fragmented, if not deficient. This paper reviewed the clinical aspects of herb-drug interactions, focusing in particular on the monoamine oxidase enzyme and P450 cytochrome enzyme-inhibitory properties of herbs and their potential interference with psychotropic drug actions and clinical judgement.
Collapse
|
43
|
Pannu T, Sharkey S, Burek G, Cretu D, Hill MD, Hogan DB, Poulin MJ. Medication use by middle-aged and older participants of an exercise study: results from the Brain in Motion study. Altern Ther Health Med 2017; 17:105. [PMID: 28187744 PMCID: PMC5303244 DOI: 10.1186/s12906-017-1595-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/20/2017] [Indexed: 12/18/2022]
Abstract
Background Over the past 50 years, there has been an increase in the utilization of prescribed, over-the-counter (OTC) medications, and natural health products. Although it is known that medication use is common among older persons, accurate data on the patterns of use, including the quantity and type of medications consumed in a generally healthy older population from a Canadian perspective are lacking. In this study, we study the pattern of medication use in a sedentary but otherwise healthy older persons use and determined if there was an association between medication use and aerobic fitness level. Methods All participants enrolled in the Brain in Motion study provided the name, formulation, dosage and frequency of any medications they were consuming at the time of their baseline assessment. Maximal aerobic capacity (VO2max) was determined on each participant. Results Two hundred seventy one participants (mean age 65.9 ± 6.5 years; range 55–92; 54.6% females) were enrolled. Most were taking one or more (1+) prescribed medication (n = 204, 75.3%), 1+ natural health product (n = 221, 81.5%) and/or 1+ over-the-counter (OTC) drug (n = 174, 64.2%). The most commonly used prescribed medications were HMG-CoA reductase inhibitors (statins) (n = 52, 19.2%). The most common natural health product was vitamin D (n = 201, 74.2%). For OTC drugs, non-steroidal anti-inflammatories (n = 82, 30.3%) were the most common. Females were more likely than males to take 1+ OTC medications, as well as supplements. Those over 65 years of age were more likely to consume prescription drugs than their counterparts (p ≤ 0.05). Subjects taking more than two prescribed or OTC medications were less physically fit as determined by their VO2max. The average daily Vitamin D intake was 1896.3 IU per participant. Conclusions Medication use was common in otherwise healthy older individuals. Consumption was higher among females and those older than 65 years. Vitamin D intake was over two-fold higher than the recommended 800 IU/day for older persons, but within the tolerable upper intake of 4,000 IU/day. The appropriateness of the high rate of medication use in this generally healthy population deserves further investigation.
Collapse
|
44
|
Phyto-anesthetics: A mini-review on herb–anesthesia drug interactions. Biomed Pharmacother 2016; 84:1885-1890. [DOI: 10.1016/j.biopha.2016.10.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
|
45
|
Brooks KM, George JM, Kumar P. Drug interactions in HIV treatment: complementary & alternative medicines and over-the-counter products. Expert Rev Clin Pharmacol 2016; 10:59-79. [PMID: 27715369 DOI: 10.1080/17512433.2017.1246180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Use of complementary and alternative medicines (CAMs) and over-the-counter (OTC) medications are very common among HIV-infected patients. These products can cause clinically significant drug-drug interactions (DDIs) with antiretroviral (ARV) medications, thereby increasing risk for negative outcomes such as toxicity or loss of virologic control. Areas covered: This article provides an updated review of the different mechanisms by which CAM and OTC products are implicated in DDIs with ARV medications. Expert commentary: Much of the literature published to date involves studies of CAMs interacting with older ARV agents via the cytochrome P450 (CYP450) system. However, the HIV treatment and prevention arsenal is continually evolving. Furthermore, our elucidation of the role of non-CYP450 mediated DDIs with ARV medications is greatly increasing. Therefore, clinicians are well served to understand the various mechanisms and extent by which new ARV therapies may be involved in drug interactions with CAMs and OTC medications.
Collapse
Affiliation(s)
- Kristina M Brooks
- a Clinical Pharmacokinetics Research Unit, Clinical Center Pharmacy Department , National Institutes of Health , Bethesda , MD , USA
| | - Jomy M George
- a Clinical Pharmacokinetics Research Unit, Clinical Center Pharmacy Department , National Institutes of Health , Bethesda , MD , USA
| | - Parag Kumar
- a Clinical Pharmacokinetics Research Unit, Clinical Center Pharmacy Department , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
46
|
Individualized Hydrocodone Therapy Based on Phenotype, Pharmacogenetics, and Pharmacokinetic Dosing. Clin J Pain 2016; 31:1026-35. [PMID: 25621429 DOI: 10.1097/ajp.0000000000000214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES (1) To quantify hydrocodone (HC) and hydromorphone (HM) metabolite pharmacokinetics with pharmacogenetics in CYP2D6 ultra-rapid metabolizer (UM), extensive metabolizer (EM), and poor metabolizer (PM) metabolizer phenotypes. (2) To develop an HC phenotype-specific dosing strategy for HC that accounts for HM production using clinical pharmacokinetics integrated with pharmacogenetics for patient safety. SETTING In silico clinical trial simulation. PARTICIPANTS Healthy white men and women without comorbidities or history of opioid, or any other drug or nutraceutical use, age 26.3±5.7 years (mean±SD; range, 19 to 36 y) and weight 71.9±16.8 kg (range, 50 to 108 kg). MAIN OUTCOME MEASURES CYP2D6 phenotype-specific HC clinical pharmacokinetic parameter estimates and phenotype-specific percentages of HM formed from HC. RESULTS PMs had lower indices of HC disposition compared with UMs and EMs. Clearance was reduced by nearly 60% and the t1/2 was increased by about 68% compared with EMs. The canonical order for HC clearance was UM>EM>PM. HC elimination mainly by the liver, represented by ke, was reduced about 70% in PM. However, HC's apparent Vd was not significantly different among UMs, EMs, and PM. The canonical order of predicted plasma HM concentrations was UM>EM>PM. For each of the CYP2D6 phenotypes, the mean predicted HM levels were within HM's therapeutic range, which indicates HC has significant phenotype-dependent pro-drug effects. CONCLUSIONS Our results demonstrate that pharmacogenetics afford clinicians an opportunity to individualize HC dosing, while adding enhanced opportunity to account for its conversion to HM in the body.
Collapse
|
47
|
Sprouse AA, van Breemen RB. Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements. Drug Metab Dispos 2016; 44:162-71. [PMID: 26438626 PMCID: PMC4727115 DOI: 10.1124/dmd.115.066902] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022] Open
Abstract
The use of botanical dietary supplements has grown steadily over the last 20 years despite incomplete information regarding active constituents, mechanisms of action, efficacy, and safety. An important but underinvestigated safety concern is the potential for popular botanical dietary supplements to interfere with the absorption, transport, and/or metabolism of pharmaceutical agents. Clinical trials of drug-botanical interactions are the gold standard and are usually carried out only when indicated by unexpected consumer side effects or, preferably, by predictive preclinical studies. For example, phase 1 clinical trials have confirmed preclinical studies and clinical case reports that St. John's wort (Hypericum perforatum) induces CYP3A4/CYP3A5. However, clinical studies of most botanicals that were predicted to interact with drugs have shown no clinically significant effects. For example, clinical trials did not substantiate preclinical predictions that milk thistle (Silybum marianum) would inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight discrepancies between preclinical and clinical data concerning drug-botanical interactions and critically evaluate why some preclinical models perform better than others in predicting the potential for drug-botanical interactions. Gaps in knowledge are also highlighted for the potential of some popular botanical dietary supplements to interact with therapeutic agents with respect to absorption, transport, and metabolism.
Collapse
Affiliation(s)
- Alyssa A Sprouse
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois
| | - Richard B van Breemen
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois
| |
Collapse
|
48
|
Di Lorenzo C, Ceschi A, Kupferschmidt H, Lüde S, De Souza Nascimento E, Dos Santos A, Colombo F, Frigerio G, Nørby K, Plumb J, Finglas P, Restani P. Adverse effects of plant food supplements and botanical preparations: a systematic review with critical evaluation of causality. Br J Clin Pharmacol 2015; 79:578-92. [PMID: 25251944 DOI: 10.1111/bcp.12519] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/17/2014] [Indexed: 01/05/2023] Open
Abstract
AIMS The objective of this review was to collect available data on the following: (i) adverse effects observed in humans from the intake of plant food supplements or botanical preparations; (ii) the misidentification of poisonous plants; and (iii) interactions between plant food supplements/botanicals and conventional drugs or nutrients. METHODS PubMed/MEDLINE and Embase were searched from database inception to June 2014, using the terms 'adverse effect/s', 'poisoning/s', 'plant food supplement/s', 'misidentification/s' and 'interaction/s' in combination with the relevant plant name. All papers were critically evaluated according to the World Health Organization Guidelines for causality assessment. RESULTS Data were obtained for 66 plants that are common ingredients of plant food supplements; of the 492 papers selected, 402 (81.7%) dealt with adverse effects directly associated with the botanical and 89 (18.1%) concerned interactions with conventional drugs. Only one case was associated with misidentification. Adverse effects were reported for 39 of the 66 botanical substances searched. Of the total references, 86.6% were associated with 14 plants, including Glycine max/soybean (19.3%), Glycyrrhiza glabra/liquorice (12.2%), Camellia sinensis/green tea ( 8.7%) and Ginkgo biloba/gingko (8.5%). CONCLUSIONS Considering the length of time examined and the number of plants included in the review, it is remarkable that: (i) the adverse effects due to botanical ingredients were relatively infrequent, if assessed for causality; and (ii) the number of severe clinical reactions was very limited, but some fatal cases have been described. Data presented in this review were assessed for quality in order to make the results maximally useful for clinicians in identifying or excluding deleterious effects of botanicals.
Collapse
Affiliation(s)
- Chiara Di Lorenzo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Silva SM, Martinho A, Moreno I, Silvestre S, Granadeiro LB, Alves G, Duarte AP, Domingues F, Gallardo E. Effects of Hypericum perforatum extract and its main bioactive compounds on the cytotoxicity and expression of CYP1A2 and CYP2D6 in hepatic cells. Life Sci 2015; 144:30-6. [PMID: 26612349 DOI: 10.1016/j.lfs.2015.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/19/2015] [Accepted: 11/04/2015] [Indexed: 01/31/2023]
Abstract
AIMS Hypericum perforatum (H. perforatum) is one of the most used medicinal plants. However, it has been associated with relevant interactions with several drugs. This situation is probably mediated by cytochrome P450 enzymes (CYP450), namely the 1A2 (CYP1A2) and 2D6 (CYP2D6) isoforms This study aims to assess the cytotoxic and CYP1A2 and CYP2D6 inductive and/or inhibitory effects of a H. perforatum extract and its main bioactive components in hepatic cell lines. MAIN METHODS A MTT proliferation assay was performed in WRL-68, HepG2 and HepaRG cells after exposition to different concentrations of H. perforatum extract, hypericin and hyperforin for 24 and 72 h. Then, a real-time PCR analysis was accomplished after incubating the cells with these products evaluating the relative CYP1A2 and CYP2D6 expression. KEY FINDINGS These products have relevant cytotoxicity at a 10 μM concentration and it was also demonstrated for the first time that H. perforatum can lead to a significant CYP1A2 and CYP2D6 induction in all cell lines. Moreover, hypericin seems to induce CYP1A2 in HepG2 cells and to inhibit its expression in HepaRG cells while hyperforin induced CYP1A2 in HepG2 and in WRL-68 cells. Additionally, hypericin and hyperforin induce CYP2D6 in HepG2 cells but inhibits its expression in HepaRG and in WRL-68 cells. SIGNIFICANCE This study not only evidenced that H. perforatum extract and two of its bioactive components can have toxic effects in hepatic cell lines but also emphasized the potential risk of the consumption of H. perforatum with CYP1A2- and CYP2D6-metabolized drugs.
Collapse
Affiliation(s)
- Sara M Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Martinho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ivo Moreno
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Centre for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal
| | - Luiza Breitenfeld Granadeiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CNC - Centre for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal
| | - Ana Paula Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fernanda Domingues
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Eugenia Gallardo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
50
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|