1
|
Zhang H, Zhang X, Ma X, Wang X. Ursolic acid in colorectal cancer: mechanisms, current status, challenges, and future research directions. Pharmacol Rep 2025; 77:72-86. [PMID: 39617815 DOI: 10.1007/s43440-024-00684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/21/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, contributing to approximately 10% of all cancer cases and representing the second leading cause of cancer-related mortality worldwide. Ursolic acid (UA), a widely studied pentacyclic triterpenoid, has attracted substantial attention from researchers and clinicians due to its potential therapeutic effects against malignant tumors. Multiple studies have confirmed that UA inhibits tumor cell proliferation, induces differentiation and apoptosis, suppresses invasion, and impedes tumor angiogenesis via diverse mechanisms. However, research specifically addressing UA's anti-CRC effects remains limited, and systematic reviews of its underlying mechanisms in CRC are scarce. This study seeks to provide a comprehensive review of UA's mechanisms of action against CRC, offering valuable insights and references for researchers and clinicians.
Collapse
Affiliation(s)
- Huici Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province, China
| | - Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xijun Ma
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Xuan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Choudhary R, Kumar P, Shukla SK, Bhagat A, Anal JMH, Kour G, Ahmed Z. Synthesis and potential anti-inflammatory response of indole and amide derivatives of ursolic acid in LPS-induced RAW 264.7 cells and systemic inflammation mice model: Insights into iNOS, COX2 and NF-κB. Bioorg Chem 2025; 155:108091. [PMID: 39755101 DOI: 10.1016/j.bioorg.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Ursolic acid (3-hydroxy-urs-12-ene-28-oic acid, UA) is a pentacyclic triterpene present in numerous plants, fruits and herbs and exhibits various pharmacological effects. However, UA has limited clinical applicability since it is classified as BCS class IV molecule, characterized by low solubility, low oral bioavailability and low permeability. In the present study, UA was isolated from the biomass marc of Lavandula angustifolia and was structurally modified by an induction of indole ring at the C-3 position and amide group at the C-17 position with the aim to enhance its pharmacological potential. This modification resulted in the synthesis of a series of compounds which were investigated for their anti-inflammatory potential both in-vitro and in animal models in comparison to UA. In RAW 264.7 cells, UA and its derivatives were non-cytotoxic up to 10 µM. The derivative UA-1 exhibited a significantly lower IC50 (2.2 ± 0.4 µM) for NO inhibition compared to UA (17.5 ± 2.0 µM). Molecular docking showed strong interactions of UA-1 with TNF-α and NF-κB. UA-1 significantly reduced LPS-induced pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in RAW 264.7 macrophages with the inhibition levels of 74.2 ± 2.1 % for TNF-α, 55.9 ± 3.7 % for IL-6 and 59.7 ± 4.2 % for IL-1β at 5.0 µM, respectively and reactive oxygen species while upregulating anti-inflammatory cytokine, IL-10. It also downregulated iNOS, COX-2, p-NF-κB p65, and p-IκBα at both mRNA and protein levels. In LPS-induced systemic inflammation mice model, UA-1 significantly lowered NO, TNF-α, IL-6, IL-1β and serum biochemical parameters, reduced tissue damage, and exhibited improved aqueous solubility and moderate lipophilicity. Overall, UA-1 demonstrated superior anti-inflammatory potential, improved solubility, and better therapeutic potential compared to UA.
Collapse
Affiliation(s)
- Rupali Choudhary
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puneet Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanket K Shukla
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asha Bhagat
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jasha Momo H Anal
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Gurleen Kour
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Zabeer Ahmed
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Shannar A, Chou PJ, Peter R, Dave PD, Patel K, Pan Y, Xu J, Sarwar MS, Kong AN. Pharmacodynamics (PD), Pharmacokinetics (PK) and PK-PD Modeling of NRF2 Activating Dietary Phytochemicals in Cancer Prevention and in Health. CURRENT PHARMACOLOGY REPORTS 2024; 11:6. [PMID: 39649473 PMCID: PMC11618211 DOI: 10.1007/s40495-024-00388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Purpose of Review Dietary phytochemicals, bioactive compounds derived from plants, have gained increasing attention for their potential role in cancer prevention. Among these, NRF2 (nuclear factor erythroid 2-related factor 2) activating dietary phytochemicals such as curcumin, sulforaphane, ursolic acid, and cyanidin have demonstrated significant antioxidant and anti-inflammatory properties, making them promising agents in chemoprevention. This review examines the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of these dietary phytochemicals, with a focus on their NRF2-mediated effects in cancer prevention. Recent Findings Preclinical studies have highlighted the potential of these dietary phytochemicals to modulate oxidative stress and inflammation, key drivers of carcinogenesis. We explore the complexity of their PK/PD properties, influenced by factors such as bioavailability, metabolism, and drug interactions. While most of these phytochemicals follow two compartmental PK, their anti-oxidant and anti-inflammatory effects follow the indirect response (IDR) model. Furthermore, we discuss the application of physiologically based pharmacokinetic (PBPK) modeling to simulate the behavior of these compounds in humans, providing insights for clinical translation. Summary The integration of PK-PD analysis into the development of dietary phytochemical-based therapies offers a pathway to optimize dosing strategies, enhance therapeutic efficacy, and improve safety. This review underscores the importance of these compounds as part of cancer interception strategies, particularly in the early stages of cancer development, where they may offer a natural, less toxic alternative to conventional therapies. Graphical Abstract
Collapse
Affiliation(s)
- Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Parv Dushyant Dave
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Komal Patel
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yuxin Pan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jiawei Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| |
Collapse
|
4
|
Sharma R, Banerjee S, Sharma R. Role of Mandukparni (Centella asiatica Linn Urban) in neurological disorders: Evidence from ethnopharmacology and clinical studies to network enrichment analysis. Neurochem Int 2024; 180:105865. [PMID: 39307460 DOI: 10.1016/j.neuint.2024.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Centella asiatica Linn Urban (C. asiatica), aka Mandukparni, is one of the flagship herbs used in traditional medicines to effectively manage neurological problems. Although this plant has a wealth of comprehensive preclinical pharmacological profiles, further clinical research and execution of its molecular mode of action are still required. We searched electronic databases (Google Scholar, SciFinder, MEDLINE, Scopus, EMBASE, Science Direct, and PubMed) using relevant key words to retrieve information pertaining to C. asiatica till June 2023 and performed network pharmacology to understand the mechanism related to their neurobiological roles. This study extensively analyses its pharmacological properties, nutritional profile, ethnomedical uses, safety, and mechanistic role in treating neurological and neurodegenerative disorders. Additionally, a network pharmacology study was performed which suggests that its phytomolecules are involved in different neuroactive ligand-receptor pathways, glial cell differentiation, gliogenesis, and astrocyte differentiation. Hopefully, this report will lead to a paradigm shift in medical practice, research, and the creation of phytopharmaceuticals derived from C. asiatica that target the central nervous system.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Subhadip Banerjee
- Medicinal Plant Innovation Centre, School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
5
|
Li Y, Zhu X, Xiong W, Zhao Q, Zhou Y, Guo Y, Liu B, Li M, Chen Q, Jiang X, Qi Y, Ye Q, Deng G. Brain-targeted ursolic acid nanoparticles for anti-ferroptosis therapy in subarachnoid hemorrhage. J Nanobiotechnology 2024; 22:641. [PMID: 39425081 PMCID: PMC11490124 DOI: 10.1186/s12951-024-02866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a life -threatening cerebrovascular disease, where early brain injury (EBI) stands as a primary contributor to mortality and unfavorable patient outcomes. Neuronal ferroptosis emerges as a key pathological mechanism underlying EBI in SAH. Targeting ferroptosis for therapeutic intervention in SAH holds significant promise as a treatment strategy. METHODS SAH model was induced via intravascular puncture and quantitatively assessed the presence of neuronal ferroptosis in the early phase of SAH using FJC staining, Prussian blue staining, as well as malondialdehyde (MDA) and glutathione (GSH) measurements. Hyaluronic acid-coated ursolic acid nanoparticles (HA-PEG-UA NPs) were prepared using the solvent evaporation method. We investigated the in vivo distribution of HA-PEG-UA NPs in SAH model through IVIS and fluorescence observation, and examined their impact on short-term neurological function and cortical neurological injury. Finally, we assessed the effect of UA on the Nrf-2/SLC7A11/GPX4 axis via Western Blot analysis. RESULTS We successfully developed self-assembled UA NPs with hyaluronic acid to target the increased CD44 expression in the SAH-afflicted brain. The resulting HA-PEG-UA NPs facilitated delivery and enrichment of UA within the SAH-affected region. The targeted delivery of UA to the SAH region can effectively inhibit neuronal ferroptosis, improve neurological deficits, and prognosis in mice. Its mechanism of action is associated with the activation of the Nrf-2/SLC7A11/GPX4 signaling pathway. CONCLUSIONS Brain-targeted HA-PEG-UA NPs was successfully developed and hold the potential to enhance SAH prognosis by limiting neuronal ferroptosis via modulation of the Nrf-2/SLC7A11/GPX4 signal.
Collapse
Affiliation(s)
- Yong Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youdong Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China.
- Sydney Dental School, The University of Sydney, Camperdown, NSW, 2050, Sydney, Australia.
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Chauhan A, Pathak VM, Yadav M, Chauhan R, Babu N, Chowdhary M, Ranjan A, Mathkor DM, Haque S, Tuli HS, Ramniwas S, Yadav V. Role of ursolic acid in preventing gastrointestinal cancer: recent trends and future perspectives. Front Pharmacol 2024; 15:1405497. [PMID: 39114347 PMCID: PMC11303223 DOI: 10.3389/fphar.2024.1405497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Gastrointestinal malignancies are one of the major worldwide health concerns. In the present review, we have assessed the plausible therapeutic implication of Ursolic Acid (UA) against gastrointestinal cancer. By modulating several signaling pathways critical in cancer development, UA could offer anti-inflammatory, anti-proliferative, and anti-metastatic properties. However, being of low oral bioavailability and poor permeability, its clinical value is restricted. To deliver and protect the drug, liposomes and polymer micelles are two UA nanoformulations that can effectively increase medicine stability. The use of UA for treating cancers is safe and appropriate with low toxicity characteristics and a predictable pharmacokinetic profile. Although the bioavailability of UA is limited, its nanoformulations could emerge as an alternative to enhance its efficacy in treating GI cancers. Further optimization and validation in the clinical trials are necessary. The combination of molecular profiling with nanoparticle-based drug delivery technologies holds the potential for bringing UA to maximum efficacy, looking for good prospects with GI cancer treatment.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | | | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Dehradun, Uttarakhand, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
7
|
Dong J, Ye T, Dong Y, Hui J, Wang X. Ursolic acid attenuates oligospermia in busulfan-induced mice by promoting motor proteins. PeerJ 2024; 12:e17691. [PMID: 38978752 PMCID: PMC11229684 DOI: 10.7717/peerj.17691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
Background Oligospermia is one of the most common reasons for male infertility which is troubling numerous couples of child-bearing age. This investigation scrutinizes the implications and mechanistic underpinnings of ursolic acid's effect on busulfan-induced oligospermia in mouse models. Methods A singular intraperitoneal injection of busulfan at a dosage of 30 mg/kg induced oligospermia. Two weeks subsequent to this induction, mice were subjected to various dosages of ursolic acid (10, 30, and 50 mg/kg body weight, respectively) on a daily basis for four consecutive weeks. Following this treatment period, a meticulous analysis of epididymal sperm parameters, encompassing concentration and motility, was conducted using a computer-assisted sperm analysis system. The histopathology of the mice testes was performed utilizing hematoxylin and eosin staining, and the cytoskeleton regeneration of the testicular tissues was analyzed via immunofluorescent staining. Serum hormone levels, including testosterone, luteinizing hormone, and follicle-stimulating hormone, as well as reactive oxygen species levels (inclusive of reactive oxygen species and malondialdehyde), were gauged employing specific enzyme-linked immunosorbent assay kits. Differentially expressed genes of testicular mRNA between the oligospermia-induced group and the various ursolic acid treatment groups were identified through RNA sequencing analysis. Results The results revealed that a dosage of 50 mg/kg ursolic acid treatment could increase the concentration of epididymal sperm in oligospermia mice, promote the recovery of testicular morphology, regulate hormone levels and ameliorate oxidative damage. The mechanism research results indicated that ursolic acid increased the expression level of genes related to motor proteins in oligospermia mice.
Collapse
Affiliation(s)
- Jin Dong
- Center for Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, JIangsu, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Yanli Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Jie Hui
- Lianyungang Higher Vocational Technical College of Traditional Chinese Medicine, Lianyungang, Jiangsu, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, JIangsu, China
| |
Collapse
|
8
|
Yenigün S, Başar Y, İpek Y, Behçet L, Özen T, Demirtaş İ. Determination of antioxidant, DNA protection, enzyme inhibition potential and molecular docking studies of a biomarker ursolic acid in Nepeta species. J Biomol Struct Dyn 2024; 42:5799-5816. [PMID: 37394807 DOI: 10.1080/07391102.2023.2229440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Ursolic acid (UA), which has many biological properties such as anti-cancer, anti-inflammatory and antioxidant, and regulates some pharmacological processes, has been isolated from the flowers, leaves, berries and fruits of many plant species. In this work, UA was purified from the methanol-chloroform crude extract of Nepeta species (N. aristata, N. baytopii, N. italica, N. trachonitica, N. stenantha) using a silica gel column with chloroform or ethyl acetate solvents via bioactivity-guided isolation. The most active sub-fractions were determined under bioactivities using antioxidant and DNA protection activities and enzyme inhibitions. UA was purified from these fractions and its structure was elucidated by NMR spectroscopy techniques. The highest amount of UA was found in N. stenantha (8.53 mg UA/g), while the lowest amount of UA was found in N. trachonitica (1.92 mg UA/g). The bioactivities of UA were evaluated with antioxidant and DNA protection activities, enzyme inhibitions, kinetics and interactions. The inhibition values (IC50) of α-amylase, α-glucosidase, urease, CA, tyrosinase, lipase, AChE, and BChE were determined between 5.08 and 181.96 µM. In contrast, Ki values of enzyme inhibition kinetics were observed between 0.04 and 0.20 mM. In addition, Ki values of these enzymes for enzyme-UA interactions were calculated as 0.38, 0.86, 0.45, 1.01, 0.23, 0.41, 0.01 and 2.24 µM, respectively. It is supported that UA can be widely used as a good antioxidant against oxidative damage, an effective DNA protector against genetic diseases, and a suitable inhibitor for metabolizing enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Semiha Yenigün
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Başar
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
| | - Yaşar İpek
- Faculty of Science, Department of Chemistry, Çankırı Karatekin University, Çankırı, Turkey
| | - Lütfi Behçet
- Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Bingöl University, Bingöl, Turkey
| | - Tevfik Özen
- Faculty of Science, Department of Chemistry, Ondokuz Mayıs University, Samsun, Turkey
| | - İbrahim Demirtaş
- Faculty of Arts and Sciences, Department of Biochemistry, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
9
|
Mi J, Wu X, Liang J. The advances in adjuvant therapy for tuberculosis with immunoregulatory compounds. Front Microbiol 2024; 15:1380848. [PMID: 38966394 PMCID: PMC11222340 DOI: 10.3389/fmicb.2024.1380848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Tuberculosis (TB) is a chronic bacterial disease, as well as a complex immune disease. The occurrence, development, and prognosis of TB are not only related to the pathogenicity of Mycobacterium tuberculosis (Mtb), but also related to the patient's own immune state. The research and development of immunotherapy drugs can effectively regulate the body's anti-TB immune responses, inhibit or eliminate Mtb, alleviate pathological damage, and facilitate rehabilitation. This paper reviews the research progress of immunotherapeutic compounds for TB, including immunoregulatory compounds and repurposing drugs, and points out the existing problems and future research directions, which lays the foundation for studying new agents for host-directed therapies of TB.
Collapse
Affiliation(s)
- Jie Mi
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Department of Tuberculosis, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Yoon YE, Jung YJ, Lee SJ. The Anticancer Activities of Natural Terpenoids That Inhibit Both Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2024; 25:4423. [PMID: 38674007 PMCID: PMC11050645 DOI: 10.3390/ijms25084423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of two major types of skin cancer, melanoma and non-melanoma skin cancer, has been increasing worldwide. Skin cancer incidence is estimated to rise continuously over the next 20 years due to ozone depletion and an increased life expectancy. Chemotherapeutic agents could affect healthy cells, and thus may be toxic to them and cause numerous side effects or drug resistance. Phytochemicals that are naturally occurring in fruits, plants, and herbs are known to possess various bioactive properties, including anticancer properties. Although the effects of phytochemicals are relatively milder than chemotherapeutic agents, the long-term intake of phytochemicals may be effective and safe in preventing tumor development in humans. Diverse phytochemicals have shown anti-tumorigenic activities for either melanoma or non-melanoma skin cancer. In this review, we focused on summarizing recent research findings of the natural and dietary terpenoids (eucalyptol, eugenol, geraniol, linalool, and ursolic acid) that have anticancer activities for both melanoma and non-melanoma skin cancers. These terpenoids may be helpful to protect skin collectively to prevent tumorigenesis of both melanoma and nonmelanoma skin cancers.
Collapse
Affiliation(s)
- Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea;
| | - Young Jae Jung
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea;
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
11
|
Kang M, Kang M, Kim TH, Jeong SU, Oh S. Pyromeconic acid-enriched Erigeron annuus water extract as a cosmetic ingredient for itch relief and anti-inflammatory activity. Sci Rep 2024; 14:4698. [PMID: 38409467 PMCID: PMC10897215 DOI: 10.1038/s41598-024-55365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Erigeron annuus (EA), traditionally used to treat disorders such as diabetes and enteritis, contains a variety of chemicals, including caffeic acid, flavonoids, and coumarins, providing antifungal and antioxidative benefits. However, the ingredients of each part of the EA vary widely, and there are few reports on the functionality of water extracts in skin inflammation and barrier protection. We assessed the therapeutic properties of the extract of EA without roots (EEA) and its primary ingredient, pyromeconic acid (PA), focusing on their antihistamine, anti-inflammatory, and antioxidative capabilities using HMC-1(human mast cells) and human keratinocytes (HaCaT cells). Our findings revealed that histamine secretion, which is closely related to itching, was notably reduced in HMC-1 cells following pretreatment with EEA (0.1% and 0.2%) and PA (corresponding concentration, 4.7 of 9.4 µg/mL). Similarly, they led to a marked decrease in the levels of pro-inflammatory cytokines, including IL-1β, IL-8, IL-6, and IFN-γ. Furthermore, EA and PA enhanced antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), reduced malondialdehyde (MDA) production, and showed reactive oxygen species (ROS) scavenging activity in HaCaT cells. Moreover, at the molecular level, elevated levels of the pro-inflammatory cytokines IL-1β, IL-6, TARC, and MDC induced by TNF-α/IFN-γ in HaCaT cells were mitigated by treatment with EEA and PA. We also revealed the protective effects of EEA and PA against SDS-induced skin barrier dysfunction in HaCaT cells by enhancing the expression of barrier-related proteins. Using NanoString technology, a comprehensive analysis of gene expression changes indicated significant modulation of autoimmune and inflammatory genes by EEA and PA. In summary, this study suggests that EEA and the corresponding concentration of PA as an active ingredient have functional cosmetic applications to alleviate itching and improve skin health.
Collapse
Affiliation(s)
- Minkyoung Kang
- Department of Food and Nutrition, Jeonju University, Jeonju, 55069, Korea
| | - Minji Kang
- Department of Food and Nutrition, Jeonju University, Jeonju, 55069, Korea
| | | | | | - Sangnam Oh
- Department of Food and Nutrition, Jeonju University, Jeonju, 55069, Korea.
| |
Collapse
|
12
|
Vishwakarma S, Srivastava SK, Khare NK, Chaubey S, Chaturvedi V, Trivedi P, Khan S, Khan F. Synthesis and Structural Activity Relationship Study of Ursolic Acid Derivatives as Antitubercular Agent. Med Chem 2024; 20:630-645. [PMID: 37946341 DOI: 10.2174/0115734064256660231027042758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The chemical transformation of ursolic acid (UA) into novel C-3 aryl ester derivatives and in vitro and silico assessment of their antitubercular potential. BACKGROUND UA is a natural pentacyclic triterpenoid with many pharmacological properties. Semisynthetic UA analogs have demonstrated enhanced anticancer, antimalarial, and antifilarial properties in our previous studies. METHODS The C-30 carboxylic group of previously isolated UA was protected, and various C-3 aryl ester derivatives were semi-synthesized. The agar dilution method was used to evaluate the in vitro antitubercular efficacy of Mycobacterium tuberculosis (Mtb) H37Ra. In silico docking studies of the active derivative were carried out against Mtb targets, catalase peroxidase (PDB: 1SJ2), dihydrofolate reductase (PDB: 4M2X), enoyl-ACP reductase (PDB: 4TRO), and cytochrome bc1 oxidase (PDB: 7E1V). RESULTS The derivative 3-O-(2-amino,3-methyl benzoic acid)-ethyl ursolate (UA-1H) was the most active among the eight derivatives (MIC1 2.5 μg/mL) against Mtb H37Ra. Also, UA-1H demonstrated significant binding affinity in the range of 10.8-11.4 kcal/mol against the antiTb target proteins, which was far better than the positive control Isoniazid, Ethambutol, and co-crystallized ligand (HEM). Moreover, the predicted hit UA-1H showed no inhibition of Cytochrome P450 2D6 (CYP2D6), suggesting its potential for favorable metabolism in Phase I clinical studies. CONCLUSION The ursolic acid derivative UA-1H possesses significant in vitro antitubercular potential with favorable in silico pharmacokinetics. Hence, further in vivo assessments are suggested for UA-1H for its possible development into a secure and efficient antitubercular drug.
Collapse
Affiliation(s)
- Sadhna Vishwakarma
- Department of Medicinal Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Santosh K Srivastava
- Department of Medicinal Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Naveen K Khare
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Shiwa Chaubey
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Vinita Chaturvedi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Priyanka Trivedi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sana Khan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Feroz Khan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| |
Collapse
|
13
|
Myo H, Liana D, Phanumartwiwath A. Unlocking Therapeutic Potential: Comprehensive Extraction, Profiling, and Pharmacological Evaluation of Bioactive Compounds from Eclipta alba (L.) Hassk. for Dermatological Applications. PLANTS (BASEL, SWITZERLAND) 2023; 13:33. [PMID: 38202343 PMCID: PMC10781016 DOI: 10.3390/plants13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Herbal medicine has been studied as an alternate approach to modern medicine as it is more cost-effective and accessible via natural sources. Eclipta alba (E. alba, L.) Hassk. is a weed plant abundantly distributed throughout different regions of the world and contains abundant bioactive compounds used for various skin conditions. In this review, we aimed to gather information from the literature about the extraction, separation, and identification of these bioactive compounds and their potential in skin diseases. Relevant studies published before August 2023 were identified and selected from electronic databases, including Scopus, SciFinder, ScienceDirect, Google Scholar, and Wiley Library, using the following keywords: Eclipta alba, Eclipta prostrata, phytochemicals, extraction, separation, isolation, identification, characterization, pharmacological activity, and skin conditions. Up-to-date extraction, separation, and identification methods of bioactive compounds from E. alba and their skin-related pharmacological activities are discussed in this review. As there are limitations regarding extraction, separation, and identification methods, and in-depth mechanistic and human studies of the skin-related pharmacological activities of bioactive compounds, these gaps are areas for future research to expand our understanding and broaden the potential applications of this medicinal weed plant, including the development of cosmeceutical and skincare products, anti-inflammatory agents, and formulations for dermatological treatments.
Collapse
Affiliation(s)
| | | | - Anuchit Phanumartwiwath
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (H.M.); (D.L.)
| |
Collapse
|
14
|
Wang M, Gu C, Yang Y, Chen L, Chen K, Du J, Wu H, Li Y. Ursolic acid derivative UAOS-Na treats experimental autoimmune encephalomyelitis by immunoregulation and protecting myelin. Front Neurol 2023; 14:1269862. [PMID: 38107649 PMCID: PMC10723162 DOI: 10.3389/fneur.2023.1269862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Ursolic acid (UA) can be used in the MS treatment with anti-inflammatory and neuroprotective activities. However, UA is insoluble in water, which may affect its medication effectiveness. In our previous study, UAOS-Na, a water-soluble derivative of UA was obtained. In this study, we evaluated the pharmacological effects and explored its underlying mechanism of UAOS-Na on experimental autoimmune encephalomyelitis (EAE). Methods Firstly, the pharmacodynamics of UAOS-Na was investigated in EAE and Cuprizone-induced mice. And then the possible mechanisms were investigated by TMT proteomics and verified by in vitro and in vivo experiments. Results UAOS-Na (30 mg/kg/d) delayed the onset time of EAE from 11.78 days post immunization (dpi) to 14.33 dpi, reduced the incidence from 90.0% to 42.9%. UAOS-Na (60 mg/kg/d) reduced the serum levels of IFN-γ, IL-17A, TNF-α and IL-6, reduced the mononuclear cell infiltration of spinal cord, and inhibited the overexpression of key transcription factors T-bet and ROR-γt of EAE mouse spinal cord. In addition, UAOS-Na attenuated demyelination and astrogliosis in the CNS of EAE and cuprizone-induced mice. Mechanistically, proteomics showed that 96 differential expression proteins (DEPs) were enriched and 94 were upregulated in EAE mice compared with normal group. After UAOS-Na treatment, 16 DEPs were enriched and 15 were downregulated, and these DEPs were markedly enriched in antigen processing and presentation (APP) signaling pathway. Moreover, UAOS-Na downregulated the protein levels of Tapbp and H2-T23 in MHC-I antigen presentation pathway and reduced the proliferation of splenic CD8 T cells, thereby inhibiting the CNS infiltration of CD8 T cells. Conclusion Our findings demonstrated that UAOS-Na has both myelin protective and anti-inflammatory effects. And it could reduce the inflammation of MS by downregulating the expression of Tapbp and H2-T23 in the MHC-I antigen presentation pathway.
Collapse
Affiliation(s)
- Maolin Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifu Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Chen
- Nutrition Science, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai, China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Du
- Nutrition Science, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai, China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhao M, Wu F, Tang Z, Yang X, Liu Y, Wang F, Chen B. Anti-inflammatory and antioxidant activity of ursolic acid: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1256946. [PMID: 37841938 PMCID: PMC10568483 DOI: 10.3389/fphar.2023.1256946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: There is currently evidence suggesting that ursolic acid may exert a favorable influence on both anti-inflammatory and antioxidant impact. Nevertheless, the anti-inflammatory and antioxidant activities of ursolic acid have not been systematically evaluated. Consequently, this study aims to conduct a systematic review and meta-analysis regarding the impact of ursolic acid on markers of inflammatory and antioxidant activity in both animal models and in vitro systems. Methods: The search encompassed databases such as PubMed, Web of Science, Google Scholar, and ScienceDirect, up until May 2023. All eligible articles in English were included in the analysis. Standard mean difference (SMD) was pooled using a random-effects model, and the included studies underwent a thorough assessment for potential bias. Results: The final review comprised 31 articles. In disease-model related studies, animal experiments have consistently shown that ursolic acid significantly reduced the levels of inflammatory parameters IL-1β, IL-6 and TNF-α in mouse tissues. In vitro studies have similarly showed that ursolic acid significantly reduced the levels of inflammatory parameters IL-1β, IL-6, IL-8 and TNF-α. Our results showed that ursolic acid could significantly elevate SOD and GSH levels, while significantly reducing MDA levels in animal tissues. The results of in vitro studies shown that ursolic acid significantly increased the level of GSH and decreased the level of MDA. Discussion: Findings from both animal and in vitro studies suggest that ursolic acid decreases inflammatory cytokine levels, elevates antioxidant enzyme levels, and reduces oxidative stress levels (graphical abstract). This meta-analysis furnishes compelling evidence for the anti-inflammatory and antioxidant properties of ursolic acid.
Collapse
Affiliation(s)
- Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhaohong Tang
- Hebei Research Institute of Microbiology Co., Ltd., Baoding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Zhakipbekov K, Turgumbayeva A, Issayeva R, Kipchakbayeva A, Kadyrbayeva G, Tleubayeva M, Akhayeva T, Tastambek K, Sainova G, Serikbayeva E, Tolenova K, Makhatova B, Anarbayeva R, Shimirova Z, Tileuberdi Y. Antimicrobial and Other Biomedical Properties of Extracts from Plantago major, Plantaginaceae. Pharmaceuticals (Basel) 2023; 16:1092. [PMID: 37631007 PMCID: PMC10458736 DOI: 10.3390/ph16081092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Since ancient times, many scientists and doctors have used various herbs to treat diseases. Conventional drugs often have side effects, and pathogens are becoming resistant to these types of drugs. In such circumstances, the study of traditional medicinal plants is an effective and logical strategy for finding new herbal medicines. One such herb is Plantago major, a perennial plant in the Plantaginaceae family that is found throughout the world. The Plantago major plant has been used as a medicine for the treatment of various diseases. Studies have shown that plant extracts of Plantago major exhibit antimicrobial, antiviral, and anti-inflammatory effects, and have wound-healing properties. This review collects and presents the results of various studies of Plantago major plant extracts with antimicrobial, antiviral, antifungal, anti-inflammatory, and wound-healing properties, which demonstrate a wide range of therapeutic possibilities of Plantago major plant extracts and have a huge potential for use as a medicinal raw material.
Collapse
Affiliation(s)
- Kairat Zhakipbekov
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
| | - Aknur Turgumbayeva
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Raushan Issayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Aliya Kipchakbayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Gulnara Kadyrbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Meruyert Tleubayeva
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
| | - Tamila Akhayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Kuanysh Tastambek
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
- Department of Biotechnology, M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Gaukhar Sainova
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Elmira Serikbayeva
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
| | - Karakoz Tolenova
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (R.I.); (G.K.); (T.A.); (K.T.); (K.T.)
| | - Balzhan Makhatova
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (K.Z.); (M.T.); (E.S.); (B.M.)
| | - Rabiga Anarbayeva
- Department of Drug Technology, South Kazakhstan Medical Academy, Shymkent 160001, Kazakhstan; (R.A.); (Z.S.)
| | - Zhanar Shimirova
- Department of Drug Technology, South Kazakhstan Medical Academy, Shymkent 160001, Kazakhstan; (R.A.); (Z.S.)
| | - Yerbol Tileuberdi
- Institute of natural Sciences and Geography, Abai Kazakh National University, Almaty 050010, Kazakhstan;
| |
Collapse
|
17
|
Divyajanani S, Harithpriya K, Ganesan K, Ramkumar KM. Dietary Polyphenols Remodel DNA Methylation Patterns of NRF2 in Chronic Disease. Nutrients 2023; 15:3347. [PMID: 37571283 PMCID: PMC10420661 DOI: 10.3390/nu15153347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor crucial in regulating cellular homeostasis and apoptosis. The NRF2 gene has been implicated in various biological activities, including antioxidant, anti-inflammatory, and anticancer properties. NRF2 can be regulated genetically and epigenetically at the transcriptional, post-transcriptional, and translational levels. Although DNA methylation is one of the critical biological processes vital for gene expression, sometimes, anomalous methylation patterns result in the dysregulation of genes and consequent diseases and disorders. Several studies have reported promoter hypermethylation downregulated NRF2 expression and its downstream targets. In contrast to the unalterable nature of genetic patterns, epigenetic changes can be reversed, opening up new possibilities in developing therapies for various metabolic disorders and diseases. This review discusses the current state of the NRF2-mediated antioxidative and chemopreventive activities of several natural phytochemicals, including sulforaphane, resveratrol, curcumin, luteolin, corosolic acid, apigenin, and most other compounds that have been found to activate NRF2. This epigenetic reversal of hypermethylated NRF2 states provides new opportunities for research into dietary phytochemistry that affects the human epigenome and the possibility for cutting-edge approaches to target NRF2-mediated signaling to prevent chronic disorders.
Collapse
Affiliation(s)
- Srinivasaragavan Divyajanani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603210, Tamil Nadu, India; (S.D.); (K.H.)
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603210, Tamil Nadu, India; (S.D.); (K.H.)
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, 3 Sassoon Road, Hong Kong, China;
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603210, Tamil Nadu, India; (S.D.); (K.H.)
| |
Collapse
|
18
|
Shaik Mohamed Sayed UF, Moshawih S, Goh HP, Kifli N, Gupta G, Singh SK, Chellappan DK, Dua K, Hermansyah A, Ser HL, Ming LC, Goh BH. Natural products as novel anti-obesity agents: insights into mechanisms of action and potential for therapeutic management. Front Pharmacol 2023; 14:1182937. [PMID: 37408757 PMCID: PMC10318930 DOI: 10.3389/fphar.2023.1182937] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Obesity affects more than 10% of the adult population globally. Despite the introduction of diverse medications aimed at combating fat accumulation and obesity, a significant number of these pharmaceutical interventions are linked to substantial occurrences of severe adverse events, occasionally leading to their withdrawal from the market. Natural products serve as attractive sources for anti-obesity agents as many of them can alter the host metabolic processes and maintain glucose homeostasis via metabolic and thermogenic stimulation, appetite regulation, pancreatic lipase and amylase inhibition, insulin sensitivity enhancing, adipogenesis inhibition and adipocyte apoptosis induction. In this review, we shed light on the biological processes that control energy balance and thermogenesis as well as metabolic pathways in white adipose tissue browning, we also highlight the anti-obesity potential of natural products with their mechanism of action. Based on previous findings, the crucial proteins and molecular pathways involved in adipose tissue browning and lipolysis induction are uncoupling protein-1, PR domain containing 16, and peroxisome proliferator-activated receptor-γ in addition to Sirtuin-1 and AMP-activated protein kinase pathway. Given that some phytochemicals can also lower proinflammatory substances like TNF-α, IL-6, and IL-1 secreted from adipose tissue and change the production of adipokines like leptin and adiponectin, which are important regulators of body weight, natural products represent a treasure trove for anti-obesity agents. In conclusion, conducting comprehensive research on natural products holds the potential to accelerate the development of an improved obesity management strategy characterized by heightened efficacy and reduced incidence of side effects.
Collapse
Affiliation(s)
| | - Said Moshawih
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Hui Poh Goh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Nurolaini Kifli
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
| | - Hooi Leng Ser
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Chen C, Ai Q, Shi A, Wang N, Wang L, Wei Y. Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutr Neurosci 2023; 26:414-428. [PMID: 35311613 DOI: 10.1080/1028415x.2022.2051957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain disorders such as neurodegenerative diseases and neuropsychiatric diseases have become serious threatens to human health and quality of life. Oleanolic acid (OA) and ursolic acid (UA) are pentacyclic triterpenoid isomers widely distributed in various plant foods and Chinese herbal medicines. Accumulating evidence indicates that OA and UA exhibit neuroprotective effects on multiple brain disorders. Therefore, this paper reviews researches of OA and UA on neurodegenerative diseases, neuropsychiatric diseases and other brain disorders including ischemic stroke, epilepsy, etc, as well as the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, People's Republic of China
| | - Axi Shi
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Nan Wang
- Department of General medicine, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Lina Wang
- Department of Pediatric surgery, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuhui Wei
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
20
|
Li Y, Zhao L, Zhao Q, Zhou Y, Zhou L, Song P, Liu B, Chen Q, Deng G. Ursolic acid nanoparticles for glioblastoma therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102684. [PMID: 37100267 DOI: 10.1016/j.nano.2023.102684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and fatal primary tumor in the central nervous system (CNS). The effect of chemotherapy of GBM is limited due to the existence of blood-brain barrier (BBB). The aim of this study is to develop self-assembled nanoparticles (NPs) of ursolic acid (UA) for GBM treatment. METHODS UA NPs were synthesized by solvent volatilization method. Western blot analysis fluorescent staining and flow cytometry were launched to explore the anti-glioblastoma mechanism of UA NPs. The antitumor effects of UA NPs were further confirmed in vivo using intracranial xenograft models. RESULTS UA were successfully prepared. In vitro, UA NPs could significantly increase the protein levels of cleaved-caspase 3 and LC3-II to strongly eliminate glioblastoma cells through autophagy and apoptosis. In the intracranial xenograft models, UA NPs could further effectively enter the BBB, and greatly improve the survival time of the mice. CONCLUSIONS We successfully synthesized UA NPs which could effectively enter the BBB and show strong anti-tumor effect which may have great potential in the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Linyao Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Youdong Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Long Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Ping Song
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
21
|
Tao W, Ouyang Z, Liao Z, Li L, Zhang Y, Gao J, Ma L, Yu S. Ursolic Acid Alleviates Cancer Cachexia and Prevents Muscle Wasting via Activating SIRT1. Cancers (Basel) 2023; 15:cancers15082378. [PMID: 37190306 DOI: 10.3390/cancers15082378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Skeletal muscle wasting is the most remarkable phenotypic feature of cancer cachexia that increases the risk of morbidity and mortality. However, there are currently no effective drugs against cancer cachexia. Ursolic acid (UA) is a lipophilic pentacyclic triterpene that has been reported to alleviate muscle atrophy and reduce muscle decomposition in some disease models. This study aimed to explore the role and mechanisms of UA treatment in cancer cachexia. We found that UA attenuated Lewis lung carcinoma (LLC)-conditioned medium-induced C2C12 myotube atrophy and muscle wasting of LLC tumor-bearing mice. Moreover, UA dose-dependently activated SIRT1 and downregulated MuRF1 and Atrogin-1. Molecular docking results revealed a good binding effect on UA and SIRT1 protein. UA rescued vital features wasting without impacting tumor growth, suppressed the elevated spleen weight, and downregulated serum concentrations of inflammatory cytokines in vivo. The above phenomena can be attenuated by Ex-527, an inhibitor of SIRT1. Furthermore, UA remained protective against cancer cachexia in the advanced stage of tumor growth. The results revealed that UA exerts an anti-cachexia effect via activating SIRT1, thereby downregulating the phosphorylation levels of NF-κB and STAT3. UA might be a potential drug against cancer cachexia.
Collapse
Affiliation(s)
- Weili Tao
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ze Ouyang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Li
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ma
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiying Yu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
22
|
Du YX, Mamun AA, Lyu AP, Zhang HJ. Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. Int J Mol Sci 2023; 24:7310. [PMID: 37108476 PMCID: PMC10138367 DOI: 10.3390/ijms24087310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which misfolded proteins or damaged organelles are delivered in a double-membrane vacuolar vesicle and finally degraded by lysosomes. The risk of colorectal cancer (CRC) is high, and there is growing evidence that autophagy plays a critical role in regulating the initiation and metastasis of CRC; however, whether autophagy promotes or suppresses tumor progression is still controversial. Many natural compounds have been reported to exert anticancer effects or enhance current clinical therapies by modulating autophagy. Here, we discuss recent advancements in the molecular mechanisms of autophagy in regulating CRC. We also highlight the research on natural compounds that are particularly promising autophagy modulators for CRC treatment with clinical evidence. Overall, this review illustrates the importance of autophagy in CRC and provides perspectives for these natural autophagy regulators as new therapeutic candidates for CRC drug development.
Collapse
Affiliation(s)
| | | | - Ai-Ping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| |
Collapse
|
23
|
Zhao P, Guan M, Tang W, Walayat N, Ding Y, Liu J. Structural diversity, fermentation production, bioactivities and applications of triterpenoids from several common medicinal fungi: Recent advances and future perspectives. Fitoterapia 2023; 166:105470. [PMID: 36914012 DOI: 10.1016/j.fitote.2023.105470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
Medicinal fungi are beneficial to human health and it reduces the risk of chronic diseases. Triterpenoids are polycyclic compounds derived from the straight-chain hydrocarbon squalene, which are widely distributed in medicinal fungi. Triterpenoids from medicinal fungal sources possess diverse bioactive activities such as anti-cancer, immunomodulatory, anti-inflammatory, anti-obesity. This review article describes the structure, fermentation production, biological activities, and application of triterpenoids from the medicinal fungi including Ganoderma lucidum, Poria cocos, Antrodia camphorata, Inonotus obliquus, Phellinus linteus, Pleurotus ostreatus, and Laetiporus sulphureus. Besides, the research perspectives of triterpenoids from medicinal fungi are also proposed. This paper provides useful guidance and reference for further research on medicinal fungi triterpenoids.
Collapse
Affiliation(s)
- Peicheng Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meizhu Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
24
|
Šedbarė R, Jakštāne G, Janulis V. Phytochemical Composition of the Fruit of Large Cranberry ( Vaccinium macrocarpon Aiton) Cultivars Grown in the Collection of the National Botanic Garden of Latvia. PLANTS (BASEL, SWITZERLAND) 2023; 12:771. [PMID: 36840117 PMCID: PMC9964011 DOI: 10.3390/plants12040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, we conducted a qualitative and quantitative analysis of anthocyanins, proanthocyanidins, flavonols and triterpenoids in samples of introduced and bred large cranberry fruits from the collection of the National Botanic Garden of Latvia. The highest total anthocyanin levels (8638-9316 µg/g) were detected in the fruit samples of the cranberry cultivars 'Black Veil', 'Franclin' and 'Early Black'. The highest total proanthocyanidin levels (2775-3389 µg/g) were found in cranberries of cultivars 'Kalnciema Agrā', 'Kalnciema Tumšā', 'Searles', 'Howes', and 'Kalnciema Ražīgā'. The highest levels of flavonol compounds (1373-1402 µg/g) were detected in cranberries of cultivars 'Howes', 'Black Veil' and 'Salaspils Melnās'. The highest levels of triterpenoids (5292-5792 µg/g) were determined in cranberries of cultivars 'Kalnciema Agrā', 'Septembra', 'Džbrūklene' and 'Early Black'. The results of our study allow for the estimation of differences in the content of secondary metabolites in the fruit samples of the studied cranberry cultivars and for the selection of promising cultivars for further introduction and cultivation in the climatic conditions of the Baltic countries. These results are also important for the selection of the most promising cranberry cultivars for the preparation of cranberry raw material, and the high-quality composition of plant material ensures the effectiveness of cranberry supplements and other cranberry preparations.
Collapse
Affiliation(s)
- Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| | - Ginta Jakštāne
- Department of Food, Aromatic and Medicinal Plants, National Botanic Garden, 2169 Salaspils, Latvia
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50166 Kaunas, Lithuania
| |
Collapse
|
25
|
Qasaymeh RM, Rotondo D, Seidel V. Phytochemical study and immunomodulatory activity of Fraxinus excelsior L. J Pharm Pharmacol 2023; 75:117-128. [PMID: 36332078 DOI: 10.1093/jpp/rgac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Fraxinus excelsior L. (FE) is traditionally used to treat inflammatory and pain disorders. This study aimed to identify the constituents of FE leaves and evaluate the effects of its n-hexane (FEH), ethyl acetate (FEE), methanol (FEM) extracts and constituents on the viability of THP-1 cells and their ability to release pro-inflammatory cytokines. METHODS THP-1 cell viability was assessed using an MTT assay. The immunomodulatory activity was evaluated by measuring tumour necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12) released by lipopolysaccharide-stimulated THP-1 cells using enzyme-linked immunosorbent assays. KEY FINDINGS Triterpenes, tyrosol esters, alkanes, phytyl and steryl esters, pinocembrin and bis(2-ethylhexyl)phthalate were isolated from FE. The tyrosol esters showed no significant effect on THP-1 cell viability. FEH, FEE, FEM, and pinocembrin, ursolic acid, oleanolic acid had IC50 values of 56.9, 39.9, 124.7 µg/ml and 178.6, 61.5 and 199.8 µM, respectively. FE extracts, ursolic acid, oleanolic acid and pinocembrin significantly reduced TNF-α/IL-12 levels. The tyrosol esters did not significantly affect TNF-α/IL-12 production. CONCLUSIONS FE was able to reduce pro-inflammatory cytokine production indicating a mechanistic focus in its use for inflammation and pain. Further investigations are warranted to unravel the mode of action of the tested constituents and discover other potentially active compounds in FE extracts.
Collapse
Affiliation(s)
- Rana Mohammad Qasaymeh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Dino Rotondo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
26
|
Design and Characterization of Lipid-Surfactant-Based Systems for Enhancing Topical Anti-Inflammatory Activity of Ursolic Acid. Pharmaceutics 2023; 15:pharmaceutics15020366. [PMID: 36839688 PMCID: PMC9960079 DOI: 10.3390/pharmaceutics15020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Skin inflammation is a symptom of many skin diseases, such as eczema, psoriasis, and dermatitis, which cause rashes, redness, heat, or blistering. The use of natural products with anti-inflammatory properties has gained importance in treating these symptoms. Ursolic acid (UA), a promising natural compound that is used to treat skin diseases, exhibits low aqueous solubility, resulting in poor absorption and low bioavailability. Designing topical formulations focuses on providing adequate delivery via application to the skin surface. The aim of this study was to formulate and characterize lipid-surfactant-based systems for the delivery of UA. Microemulsions and liquid crystalline systems (LCs) were characterized by polarized light microscopy (PLM), rheology techniques, and textural and bioadhesive assays. PLM supported the self-assembly of these systems and elucidated their formation. Rheologic examination revealed pseudoplastic and thixotropic behavior appropriate, and assays confirmed the ability of these formulations to adhere to the skin. In vivo studies were performed, and inflammation induced by croton oil was assessed for response to microemulsions and LCs. UA anti-inflammatory activities of ~60% and 50% were demonstrated by two microemulsions and 40% and 35% by two LCs, respectively. These data support the continued development of colloidal systems to deliver UA to ameliorate skin inflammation.
Collapse
|
27
|
Ma Y, Ding Q, Qian Q, Feng L, Zhu Q, Si C, Dou X, Li S. AMPK-Regulated Autophagy Contributes to Ursolic Acid Supplementation-Alleviated Hepatic Steatosis and Liver Injury in Chronic Alcohol-Fed Mice. ACS OMEGA 2023; 8:907-914. [PMID: 36643445 PMCID: PMC9835778 DOI: 10.1021/acsomega.2c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Alcoholic liver disease (ALD) is a chronic liver disease caused by long-term heavy consumption of alcohol. The pathogenesis of ALD is complex, and there is no effective clinical treatment at present. Ursolic acid (UA), a general triterpenoid with multiple biological roles, is widely distributed in plants. This study aims to explore the therapeutic effect and potential mechanisms of UA that protect against liver injury and hepatic steatosis in an ALD mouse model. In this study, we analyzed the lipid accumulation and the effect of UA treatment in a mouse model of ALD; AML12 and HepG2 cells were used to study the biological effect and potential mechanisms of UA on ethanol-induced hepatotoxicity. The morphologic and histological detections showed that UA significantly reduced alcohol-induced liver injury and hepatic steatosis. In addition, UA dramatically ameliorated alcohol-induced metabolic disorders, oxidative stress, and inflammation. Furthermore, UA treatment activated autophagy via the AMPK-ACC pathway to protect hepatocytes from lipotoxicity. Thus, these findings demonstrate that UA treatment alleviates alcoholic-induced liver injury by activating autophagy through the AMPK-ACC pathway. Therefore, UA may represent a promising candidate for the treatment of ALD.
Collapse
Affiliation(s)
- Yue Ma
- Zhejiang
Provincial Laboratory of Experimental Animal’s & Nonclinical
Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Qinchao Ding
- School
of Public Health, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
- Institute
of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Qianyu Qian
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Luyan Feng
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Qin Zhu
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Caijuan Si
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| | - Xiaobing Dou
- School
of Life Science, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
| | - Songtao Li
- School
of Public Health, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang 310053, PR China
- Department
of Clinical Nutrition, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China
| |
Collapse
|
28
|
Li BY, Qin JC, Shen YF, Yang F, Wang T, Ling F, Wang GX. A therapeutic agent of ursolic acid demonstrates potential application in aquaculture. Virus Res 2023; 323:198965. [PMID: 36272540 PMCID: PMC10194260 DOI: 10.1016/j.virusres.2022.198965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022]
Abstract
Micropterus salmoides rhabdovirus (MSRV) has a high mortality rate and causes huge economic losses to the aquaculture industry. In this study, we identified that ursolic acid (UA) had antiviral efficacy against MSRV in vitro and in vivo. The results showed that UA inhibited MSRV replication in grass carp ovary (GCO) cells with a half-maximal inhibitory concentration (IC50) of 5.55 μM, reduced viral titers and decreased cytopathic effects (CPE). Mechanistically, UA does not directly damage viral particles. On the other hand, UA inhibits MSRV replication by altering viral binding and release. Furthermore, pre- and post-treatment assays revealed that UA had preventive and therapeutic effects. For in vivo studies, UA could enhance the survival rate of MSRV-infected largemouth bass. Similarly, UA reduced the viral load of MSRV in the heart, spleen and brain at 3, 5 and 7 d post-infection. In conclusion, UA is an effective inhibitor of rhabdovirus in aquaculture.
Collapse
Affiliation(s)
- Bo-Yang Li
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jia-Cheng Qin
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Yu-Feng Shen
- Changzhou Agricultural Comprehensive Technology Extension Center, Middle Changjiang Road 289-1nd, Changzhou, Jiangsu 213002, China
| | - Fei Yang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Wang S, Lu L, Song T, Xu X, Yu J, Liu T. Optimization of Cordyceps sinensis fermentation Marsdenia tenacissima process and the differences of metabolites before and after fermentation. Heliyon 2022; 8:e12586. [PMID: 36636205 PMCID: PMC9830164 DOI: 10.1016/j.heliyon.2022.e12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
In this paper, we explored the interaction of factors which influenced the Cordyceps sinensis fermentation Marsdenia tenacissima (Roxb.) Wight et Arn, a Dai (a national minority of China) medicine, and the optimal fermentation conditions. The differences of C. sinensis metabolites in normal state (CN) and products of two-way liquid fermentation of C. sinensis and Marsdenia tenacissima (CM) and Marsdenia tenacissima (MT). The interactive effect of factors was analyzed and the best conditions are obtained through the box-behnken design (BBD) in response surface methodology (RSM). All metabolites were determined by ultra high performance liquid chromatography quadrupole time of flight mass spectrometer (UHPLC-Q-TOF-MS), analyzed and identified by metabonomics technology. Results showed that the optimum fermentation conditions were the concentration of raw medicinal materials is 160 g/L, the fermentation time is 6 days, the inoculation volume is 9.5%, the rotating speed is 170 rpm. 197 metabolites were identified in both positive ion and negative ion. 119 metabolites were significantly different between CN and CM. 43 metabolites were significantly different between CM and MT. Differential metabolic pathways were enriched. In conclusion, this paper optimizes the bidirectional fermentation process of M. tenacissima and C. sinensis through response surface methodology, and analyzes the changes of components from the level of metabonomics, so as to provide reference for exploring medicinal fungi fermentation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Lin Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Xinxin Xu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China,Corresponding author.
| |
Collapse
|
30
|
Wang L, Wang C, Sarwar MS, Chou P, Wang Y, Su X, Kong AN. PTEN-knockout regulates metabolic rewiring and epigenetic reprogramming in prostate cancer and chemoprevention by triterpenoid ursolic acid. FASEB J 2022; 36:e22626. [PMID: 36305462 PMCID: PMC9703918 DOI: 10.1096/fj.202201195r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 07/23/2023]
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is one of the most frequently mutated/deleted tumor suppressor genes in many human cancers. Ursolic acid (UA) is a natural triterpenoid possessing antioxidant, anti-inflammatory, and anticancer effects. However, how PTEN impacts metabolic rewiring and how UA modifies PTEN-driven metabolic and epigenetic reprogramming in prostate cancer (PCa) remains unknown. In the current study, we found that UA protects against PTEN knockout (KO)-induced tumorigenesis at different stages of PCa. Epigenomic CpG methyl-seq revealed UA attenuated PTEN KO-induced differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq showed UA abrogated PTEN KO-induced differentially expressed genes (DEGs) of PCa-related oncogenes' Has3, Cfh, and Msx1 overexpression, indicating UA plays a crucial role in PTEN KO-mediated gene regulation and its potential consequences on cancer interception. Association analysis of DEGs and DMRs identified that the mRNA expression of tumor suppressor gene BDH2, and oncogenes Ephas, Isg15, and Nos2 were correlated with the promoter CpG methylation status in the early-stage comparison groups indicating UA could regulate the oncogenes or tumor suppressor genes by modulating their promoter methylation at an early stage of prostate tumorigenesis. The metabolomic study showed UA attenuated PTEN KO-regulated cancer-associated metabolisms like purine metabolism/metabolites correlating with RNAseq findings, glycolysis/gluconeogenesis metabolism, as well as epigenetic-related metabolites pyruvate and lactate indicating UA plays a critical role in PTEN KO-mediated metabolic and epigenetic reprogramming and its consequences on cancer development. In this context, UA impacts metabolic rewiring causing epigenetic and transcriptomic reprogramming potentially contributing to the overall protection against prostate-specific PTEN KO-mediated PCa.
Collapse
Affiliation(s)
- Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chao Wang
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
31
|
Multitargeted Molecular Docking and Dynamic Simulation Studies of Bioactive Compounds from Rosmarinus officinalis against Alzheimer’s Disease. Molecules 2022; 27:molecules27217241. [DOI: 10.3390/molecules27217241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) has been associated with the hallmark features of cholinergic dysfunction, amyloid beta (Aβ) aggregation and impaired synaptic transmission, which makes the associated proteins, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE I), acetylcholine esterase (AChE) and synapsin I, II and III, major targets for therapeutic intervention. The present study investigated the therapeutic potential of three major phytochemicals of Rosmarinus officinalis, ursolic acid (UA), rosmarinic acid (RA) and carnosic acid (CA), based on their binding affinity with AD-associated proteins. Detailed docking studies were conducted using AutoDock vina followed by molecular dynamic (MD) simulations using Amber 20. The docking analysis of the selected molecules showed the binding energies of their interaction with the target proteins, while MD simulations comprising root mean square deviation (RMSD), root mean square fluctuation (RMSF) and molecular mechanics/generalized born surface area (MM/GBSA) binding free energy calculations were carried out to check the stability of bound complexes. The drug likeness and the pharmacokinetic properties of the selected molecules were also checked through the Lipinski filter and ADMETSAR analysis. All these bioactive compounds demonstrated strong binding affinity with AChE, BACE1 and synapsin I, II and III. The results showed UA and RA to be potential inhibitors of AChE and BACE1, exhibiting binding energies comparable to those of donepezil, used as a positive control. The drug likeness and pharmacokinetic properties of these compounds also demonstrated drug-like characteristics, indicating the need for further in vitro and in vivo investigations to ascertain their therapeutic potential for AD.
Collapse
|
32
|
Chen L, Liu M, Yang H, Ren S, Sun Q, Zhao H, Ming T, Tang S, Tao Q, Zeng S, Meng X, Xu H. Ursolic acid inhibits the activation of smoothened-independent non-canonical hedgehog pathway in colorectal cancer by suppressing AKT signaling cascade. Phytother Res 2022; 36:3555-3570. [PMID: 35708264 DOI: 10.1002/ptr.7523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
It is being brought to light that smoothened (SMO)-independent non-canonical Hedgehog signaling is associated with the pathogenesis of various cancers. Ursolic acid (UA), a pentacyclic triterpenoid present in many medicinal herbs, manifests potent effectiveness against multiple malignancies including colorectal cancer (CRC). In our previous study, UA was found to protect against CRC in vitro by suppression of canonical Hedgehog signaling cascade. Here, the influence of UA on SMO-independent non-canonical Hedgehog signaling in CRC was investigated in the present study, which demonstrated that UA hampered the proliferation and migration, induced the apoptosis of HCT-116hSMO- cells with SMO gene knockdown, accompanied by the augmented expression of the suppressor of fused (SUFU), and lessened levels of MYC (c-Myc), glioma-associated oncogene (GLI1) and Sonic Hedgehog (SHH), and lowered phosphorylation of protein kinase B (PKB, AKT), suggesting that UA diminished non-canonical Hedgehog signal transduction in CRC. In HCT-116hSMO- xenograft tumor, UA ameliorated the symptoms, impeded the growth and caused the apoptosis of CRC, with heightened SUFU expression, and abated levels of MYC, GLI1, and SHH, and mitigated phosphorylation of AKT, indicating that UA down-regulated non-canonical Hedgehog signaling cascade in CRC. Taken together, UA may alleviate CRC by suppressing AKT signaling-dependent activation of SMO-independent non-canonical Hedgehog pathway.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Synthesis of ring-A serjanic acid derivatives and their cytotoxic evaluation through the brine shrimp lethality assay (BSLA). ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sixteen serjanic acid derivatives were synthesized by modification of the A-ring of the triterpenoid skeleta. Fischer indolization of intermediate 2 with the requisite aromatic hydrazines afforded the indolo-triterpenes 8–13. Also, reaction of 2 with hydroxylamine hydrochloride in pyridine provided the desired C-3 oxime 14, while pyrazine 15 was obtained by condensation of 2 in the presence of ethylenediamine and sulphur in morpholine. Finally, the Claisen-Schmidt condensation of intermediate 2 with corresponding substituted benzaldehydes 16–23, afforded benzylidine ketones 24–31. All compounds were elucidated on the basis of NMR and HR-MS spectroscopic data and evaluated for their in-vitro cytotoxicity to the Brine Shrimp Lethality Assay (BSLA). As a result, the compounds exhibited medium to good cytotoxic potential and this activity was as high as eight times that of serjanic acid (1) on the tested zoophytes.
Collapse
|
34
|
The immunoregulatory effects of natural products on psoriasis via its action on Th17 cells versus regulatory T cells balance. Int Immunopharmacol 2022; 110:109032. [PMID: 35810491 DOI: 10.1016/j.intimp.2022.109032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 01/08/2023]
Abstract
Psoriasis is an incurable, chronic inflammatory disease, which brings a substantial burden on individuals and society. Currently, the treatment of psoriasis has entered the era of biologics, but its highly targeting of inflammatory mediators may enable the immune response to circumvent the blockade, leading to disease recurrence, or other clinical and immunological characteristics. Therefore, the discovery of new therapies that have the ability of multidirectional regulation on immunity and maintain the dynamic balance of immunity in psoriasis, may be the key to the treatment of the disease. Natural products extracted from herbal medicines have synergistic effects to alleviate psoriasis and its comorbidities because of their structural diversity and multiple active mechanisms. To date, the characteristics of natural products regulating T helper 17 (Th17) cells/regulatory T (Treg) cells balance in the treatment of psoriasis have attracted more and more attention from basic and clinical studies. In this review, we systematically introduced the natural products regulating the balance of Th17/Treg and their specific mechanism of action, finding Datura metel L, Grape seed proanthocyanidin extract (GSPE), Thymol, Kaempferol, Aloperine, Abietic acid (AA), Isogarcinol, Luteolin reduced the frequency and function of Th17 cells and simultaneously increased that of Treg cells. It is expected that our work can provide a reference for clinicians in drug use.
Collapse
|
35
|
Bioactive Natural Products against Systemic Arterial Hypertension: A Past 20-Year Systematic and Prospective Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8499625. [PMID: 35769156 PMCID: PMC9236778 DOI: 10.1155/2022/8499625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Background. Systemic arterial hypertension is one of the most common cardiovascular risks, corresponding to 45% of deaths involving CVDs. The use of natural products, such as medicinal plants, belongs to a millennial part of human therapeutics history and has been employed as an alternative anti-hypertensive treatment. Objective. The present review aims to prospect some natural products already experimentally assayed against arterial hypertension through scientific virtual libraries and patent documents over the past 20 years. Search strategy. This is a systematic review of the adoption of the PRISMA protocol and a survey of the scientific literature that synthesizes the results from published articles between 2001 and 2020 concerning the use of medicinal plants in the management of hypertension, including which parts of the plant or organism are used, as well as the mechanisms of action underlying the anti-hypertensive effect. Furthermore, a technological prospection was also carried out in patent offices from different countries in order to check technologies based on natural products claimed for the treatment or prevention of hypertension. Inclusion criteria. Scientific articles where a natural product had been experimentally assayed for anti-hypertensive activity (part of plants, plant extracts, and products derived from other organisms) were included. Data extraction and analysis. The selected abstracts of the articles and patent documents were submitted to a rigorous reading process. Those articles and patents that were not related to anti-hypertensive effects and claimed potential applications were excluded from the search. Results. Eighty specimens of biological species that showed anti-hypertensive activity were recovered, with 01 representative from the kingdom Fungi and 02 from the kingdom Protista, with emphasis on the families Asteraceae and Lamiaceae, with 6 representatives each. Leaves and aerial parts were the most used parts of the plants for the extraction of anti-hypertensive products, with maceration being the most used extraction method. Regarding phytochemical analyses, the most described classes of biomolecules in the reviewed works were alkaloids, terpenes, coumarins, flavonoids, and peptides, with the reduction of oxidative stress and the release of NO among the mechanisms of action most involved in this process. Regarding the number of patent filings, China was the country that stood out as the main one, with 813 registrations. Conclusion. The anti-hypertensive activity of natural products is still little explored in Western countries. Besides, China and India have shown more results in this area than other countries, confirming the strong influence of traditional medicine in these countries.
Collapse
|
36
|
Synthesis of 8-Aminoquinoline Amides of Ursonic and Oleanonic Acid. MOLBANK 2022. [DOI: 10.3390/m1361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
8-Aminoquinoline amides of 3-oxo-olean-12-en-28-oic acid and 3-oxo-urs-12-en-28-oic acid were obtained and characterized by 1H, 13C-NMR and single crystal X-ray analysis. The used triterpenoic acids are oxidized forms of naturally occurring oleanolic acid and ursolic acids. Such types of derivatives are known for their anticancer and antiviral activities. On the other hand, 8-aminoquinoline amides are frequently used for transition metal complexation that is applicable for both C-H activation processes and biological activity studies.
Collapse
|
37
|
Butkevičiūtė A, Janulis V, Kviklys D. Triterpene Content in Flesh and Peel of Apples Grown on Different Rootstocks. PLANTS (BASEL, SWITZERLAND) 2022; 11:1247. [PMID: 35567248 PMCID: PMC9100339 DOI: 10.3390/plants11091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Advancements in rootstock breeding and selection have revolutionized the manner in which apples are grown throughout the world. Fruit tree breeding has typically focused on key horticultural characteristics. Even though agents with health benefits have been investigated more frequently during the recent years, information about the effect of different cultivation factors, such as the rootstock, on triterpene concentration is still lacking. The present study aimed to evaluate triterpene profiles and the quantitative composition of different parts of apple fruit that was grown on 17 various origin and vigor rootstocks. HPLC analyses of triterpenes in apple samples were performed. The highest total content of triterpenes (7.72 ± 0.39 mg/g) was found in peel samples of apples grown on the dwarf rootstock 62-396-B10®. Depending on the rootstock, apple peel samples accumulated 3.52 to 4.74 times more triterpene compounds than apple flesh samples. Ursolic acid was the predominant triterpene compound in apple peel and flesh samples. The highest content of ursolic acid (5.84 ± 0.29 mg/g) was found in peel samples of apples grown on the dwarf rootstock 62-396-B10®. Meanwhile, the lowest amount of ursolic acid (3.25 ± 0.16 mg/g) was found in apple peel samples grown on the dwarf rootstock Cepiland-Pajam®2. A proper match of a cultivar and a rootstock can program a fruit tree to grow larger amounts of higher quality, antioxidant-rich, and high-nutrition-value fruit.
Collapse
Affiliation(s)
- Aurita Butkevičiūtė
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, 50162 Kaunas, Lithuania;
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, 50162 Kaunas, Lithuania;
| | - Darius Kviklys
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno St. 30, 54333 Babtai, Lithuania;
- Department of Horticulture, Norwegian Institute of Bioeconomy Research—NIBIO Ullensvang, Ullensvangvegen 1005, 5781 Lofthus, Norway
| |
Collapse
|
38
|
Abdelgawad SM, Hassab MAE, Abourehab MAS, Elkaeed EB, Eldehna WM. Olive Leaves as a Potential Phytotherapy in the Treatment of COVID-19 Disease; A Mini-Review. Front Pharmacol 2022; 13:879118. [PMID: 35496299 PMCID: PMC9045134 DOI: 10.3389/fphar.2022.879118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
Beginning from December 2019, widespread COVID-19 has caused huge financial misfortunes and exceptional wellbeing emergencies across the globe. Discovering an effective and safe drug candidate for the treatment of COVID-19 and its associated symptoms became an urgent global demand, especially due to restricted information that has been discharged with respect to vaccine efficacy and safety in humans. Reviewing the recent research, olive leaves were selected as a potential co-therapy supplement for the treatment and improvement of clinical manifestations in COVID-19 patients. Olive leaves were reported to be rich in phenolic compounds such as oleuropein, hydroxytyrosol, verbascoside, apigenin-7-O-glucoside, and luteolin-7-O-glucoside and also triterpenoids such as maslinic, ursolic, and oleanolic acids that have been reported as anti-SARS-CoV-2 metabolites in recent computational and in vitro studies. In addition, olive leaf extract was previously reported in several in vivo studies for its anti-inflammatory, analgesic, antipyretic, immunomodulatory, and antithrombotic activities which are of great benefit in the control of associated inflammatory cytokine storm and disseminated intravascular coagulation in COVID-19 patients. In conclusion, the described biological activities of olive leaves alongside their biosafety, availability, and low price make them a potential candidate drug or supplement to control COVID-19 infection and are recommended for clinical investigation.
Collapse
Affiliation(s)
- Shimaa M Abdelgawad
- Pharmacognosy Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
39
|
Wei T, Wu L, Ji X, Gao Y, Xiao G. Ursolic Acid Protects Sodium Dodecyl Sulfate-Induced Drosophila Ulcerative Colitis Model by Inhibiting the JNK Signaling. Antioxidants (Basel) 2022; 11:antiox11020426. [PMID: 35204308 PMCID: PMC8869732 DOI: 10.3390/antiox11020426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Ursolic acid (UA) is a bioactive molecule widely distributed in various fruits and vegetables, which was reported to play a therapeutic role in ulcerative colitis (UC) induced by toxic chemicals. However, the underlying mechanism has not been well clarified in vivo. Here, using a Drosophila UC model induced by sodium dodecyl sulfate (SDS), we investigated the defensive effect of UA on intestinal damage. The results showed that UA could significantly protect Drosophila from the damage caused by SDS exposure. Further, UA alleviated the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) induced by SDS and upregulated the activities of total superoxide dismutase (T-SOD) and catalase (CAT). Moreover, the proliferation and differentiation of intestine stem cells (ISCs) as well as the excessive activation of the c-Jun N-terminal kinase (JNK)-dependent JAK/STAT signaling pathway induced by SDS were restored by UA. In conclusion, UA prevents intestine injury from toxic compounds by reducing the JNK/JAK/STAT signaling pathway. UA may provide a theoretical basis for functional food or natural medicine development.
Collapse
Affiliation(s)
- Tian Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lei Wu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
| | - Xiaowen Ji
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
| | - Yan Gao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
| | - Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.W.); (L.W.); (X.J.); (Y.G.)
- Correspondence: ; Tel.: +86-177-3022-7689
| |
Collapse
|
40
|
Ali J, Riaz N, Mannan A, Tabassum S, Zia M. Antioxidative-, Antimicrobial-, Enzyme Inhibition-, and Cytotoxicity-Based Fractionation and Isolation of Active Components from Monotheca buxifolia (Falc.) A. DC. Stem Extracts. ACS OMEGA 2022; 7:3407-3423. [PMID: 35128250 PMCID: PMC8811920 DOI: 10.1021/acsomega.1c05647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The current study elaborates the pharmacological potential of the methanolic extract and its fractions of the stems of Monotheca buxifolia based on thin-layer chromatography and column chromatography analyses, exploiting biological and phytochemical assays. The results suggest that bioassay-guided isolation and fractionation led to the accumulation of biologically active components in the most active fractions that resulted in the isolation of different compounds. Structural elucidation of the purified compounds was accomplished using spectroscopic one-dimensional (1H, 13C) and two-dimensional NMR (heteronuclear multiple quantum coherence, heteronuclear multiple bond coherence, and correlation spectroscopy) and spectrometric (electron ionization mass spectrometry and high-resolution electron ionization mass spectrometry) techniques. The n-hexane, CHCl3, and EtAOc fractions led to the isolation of lupeol from different fractions. 1-Triacontanol was also isolated from the n-hexane fraction, while benzoic acid, methyl benzoate, ursolic acid, and 3-hydroxybenzoic acid were obtained from the EtOAc fraction. The compounds depicted good-to-moderate total antioxidative potential and total reducing power activity and significant free-radical scavenging activity. All the compounds showed significant urease and lipase inhibitory activity with poor-to-moderate amylase inhibition. Significant zone of inhibition was observed against different bacterial strains by the isolated compounds. This work therefore states that bioassay-guided isolation plays a vital role in the isolation of biologically active constituents that can be exploited for drug development.
Collapse
Affiliation(s)
- Joham
Sarfraz Ali
- Department
of Biotechnology, Quaid-i-Azam University
Islamabad, Islamabad 45320, Pakistan
| | - Naheed Riaz
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Mannan
- Department
of Pharmacy, COMSATS University, Abbottabad
Campus, Abbottabad 22060, Pakistan
| | - Saira Tabassum
- Department
of Biotechnology, Quaid-i-Azam University
Islamabad, Islamabad 45320, Pakistan
| | - Muhammad Zia
- Department
of Biotechnology, Quaid-i-Azam University
Islamabad, Islamabad 45320, Pakistan
| |
Collapse
|
41
|
Casciaro B, Ghirga F, Cappiello F, Vergine V, Loffredo MR, Cammarone S, Puglisi E, Tortora C, Quaglio D, Mori M, Botta B, Mangoni ML. The Triprenylated Anthranoid Ferruginin A, a Promising Scaffold for the Development of Novel Antibiotics against Gram-Positive Bacteria. Antibiotics (Basel) 2022; 11:84. [PMID: 35052961 PMCID: PMC8773144 DOI: 10.3390/antibiotics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
In today's post-antibiotic era, the search for new antimicrobial compounds is of major importance and nature represents one of the primary sources of bioactive molecules. In this work, through a cheminformatics approach, we clustered an in-house library of natural products and their derivatives based on a combination of fingerprints and substructure search. We identified the prenylated emodine-type anthranoid ferruginin A as a novel antimicrobial compound. We tested its ability to inhibit and kill a panel of Gram-positive and Gram-negative bacteria, and compared its activity with that of two analogues, vismione B and ferruanthrone. Furthermore, the capability of these three anthranoids to disrupt staphylococcal biofilm was investigated, as well as their effect on the viability of human keratinocytes. Ferruginin A showed a potent activity against both the planktonic and biofilm forms of Gram-positive bacteria (i.e., Staphylococcus aureus and S. epidermidis) and had the best therapeutic index compared to vismione B and ferruanthrone. In conclusion, ferruginin A represents a promising scaffold for the further development of valuable antimicrobial agents.
Collapse
Affiliation(s)
- Bruno Casciaro
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Floriana Cappiello
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| | - Valeria Vergine
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Maria Rosa Loffredo
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| | - Silvia Cammarone
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Elena Puglisi
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, “Department of Excellence 2018–2022”, University of Siena, 53100 Siena, Italy;
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, 00185 Rome, Italy; (F.G.); (V.V.); (S.C.); (C.T.); (B.B.)
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (B.C.); (F.C.); (M.R.L.); (E.P.)
| |
Collapse
|
42
|
Chand J, Panda SR, Jain S, Murty USN, Das AM, Kumar GJ, Naidu VGM. Phytochemistry and polypharmacology of cleome species: A comprehensive Ethnopharmacological review of the medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114600. [PMID: 34487845 DOI: 10.1016/j.jep.2021.114600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cleome species in particular (C. gynandra Linn, C. viscosa Linn, C. rutidosperma DC, C. felina Linn.), commonly known as spider flowers, belong to the genus of flowering plants in Cleomaceae family. Found primarily in the African countries (Kenya, Tanzania, Egypt, South Africa, and Nigeria), Asian countries (India and Afghanistan), European countries (Italy), and also in other countries like Brazil and Austria. These plants are commonly cultivated as a vegetable crop for their nutritional benefits, and the leaves are widely consumed for their health-promoting effects. The different parts of the plants, such as leaves, seeds, flowers, and roots, are used to treat acute and chronic inflammatory disorders, hepatotoxicity, malaria, fungal diseases, and cancer. AIM OF THE STUDY Detailed investigations in underlining the molecular mechanisms and their wide variety of effects in treating various diseases remain ambiguous. The review focuses on an in-depth discussion of studies targeting phytochemistry and polypharmacology. Thus, the review aims to recapitulate the therapeutic potential of the components of Cleome involved in the treatment of a wide variety of ailments from ancient times were collected and presented along with strategies aiming for future studies. MATERIALS AND METHODS The information provided is collected from several scientific databases (PubMed, Elsevier, ScienceDirect) and traditional medicine books, and other professional websites. RESULTS AND CONCLUSION Investigations and current evidence revealed that the different chemical constituents present in cleome species possess various health-promoting effects along with the aerial parts showing promising traditional uses in traditional healing and culinary. An explorative survey in the current review highlights the traditional healing effects along with a broad scope of studies that can be performed in the future.
Collapse
Affiliation(s)
- Jagdish Chand
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, 844102, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - U S N Murty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Archana Moni Das
- Chemical Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India; Center for GMP Extraction Facility, NIPER, Guwahati, India.
| |
Collapse
|
43
|
Lobo PCB, Pimentel GD. Ursolic acid does not change the cytokine levels following resistance training in healthy men: A pilot balanced, double-blind and placebo-controlled clinical trial. Biomed Pharmacother 2022; 145:112289. [PMID: 34799219 DOI: 10.1016/j.biopha.2021.112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/02/2022] Open
Abstract
Ursolic acid (UA) is a natural compound that shows anti-inflammatory actions. However, no human studies have investigated the cytokine profile during the RT and UA consumption. The purpose of this study was to verify if UA is able to potentiate the anti-inflammatory activity after RT, reflecting in the reduction of blood inflammatory markers in healthy men. Twenty-seven participants were allocated to two groups: control (CON) (n = 13) and UA (n = 14). For 8weeks, each group performed RT and consumed capsules containing a placebo (400 mg/day) or UA (400 mg/day). Serum cytokine concentrations were evaluated before and after the training period. There was no difference in the serum cytokine concentrations of TNF-α, IL-10 and IL-6 (p > 0.05). In conclusion, UA supplementation for 8weeks was not able to change the blood TNF-α, IL-10, and IL-6 concentrations in healthy men undergoing RT. However, further studies are warranted to investigate other inflammatory markers.
Collapse
|
44
|
Li S, Wu R, Wang L, Dina Kuo HC, Sargsyan D, Zheng X, Wang Y, Su X, Kong AN. Triterpenoid ursolic acid drives metabolic rewiring and epigenetic reprogramming in treatment/prevention of human prostate cancer. Mol Carcinog 2022; 61:111-121. [PMID: 34727410 PMCID: PMC8665082 DOI: 10.1002/mc.23365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.
Collapse
Affiliation(s)
- Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- International Center for Aging and Cancer, Hainan Medical University, Haikou, Hainan, China
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
45
|
Wu X, Li H, Wan Z, Wang R, Liu J, Liu Q, Zhao H, Wang Z, Zhang H, Guo H, Qi C, Jiao X, Li X. The combination of ursolic acid and empagliflozin relieves diabetic nephropathy by reducing inflammation, oxidative stress and renal fibrosis. Biomed Pharmacother 2021; 144:112267. [PMID: 34624679 DOI: 10.1016/j.biopha.2021.112267] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Studies have shown that ursolic acid (UA) and empagliflozin (EM) exert therapeutic effects in the treatment of diabetic nephropathy (DN), but both drugs have disadvantages. This study explores the effect of combining these drugs compared to that of either monotherapy. A diabetic rat model was established by feeding a high-fat diet (HFD) with high-sugar content and administering a low dose of streptozotocin (STZ) via intraperitoneal injection. UA (50 mg/kg/day, po), EM (10 mg/kg/day, po) or both were administered for 8 weeks. The development of DN was determined by observing increases in urine protein, serum creatinine, urea nitrogen, and uric acid and abnormal changes in kidney morphology. UA and EM either alone or in combination can alleviate the increases in blood glucose, glycosylated haemoglobin, blood lipid levels, inflammatory factors (TNF-α, IL-1β, IL-6), oxidation factors (SOD, MDA, GSH, CAT, NO), renal fibrosis and pro-fibrosis factors (FN, E-cad, MMP-9, TIMP-1, SMA-α, TGF-β1, SMAD, MAPK). The treatments could also ameliorate DN by preventing the abnormal proliferation of glomerular mesangial cells under high-glucose conditions, aberrant apoptosis and excessive production of reactive oxygen species (ROS). In addition, UA reduces the increase in LDL-L, reverses abnormal bladder morphology and mitigates the increase in colony count caused by EM, and the combination treatment can overcome the disadvantages of the slow hypoglycaemic effect of UA. In short, UA combined with empagliflozin is more effective than either monotherapy in the treatment of DN and can cancel the adverse effects of each other. The protective effect of this regimen on the kidney may be related to reducing inflammation, oxidative stress and renal fibrosis.
Collapse
Affiliation(s)
- Xiaohan Wu
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China; Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan City, Hubei Province, China
| | - He Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Zhijie Wan
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Ran Wang
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Jing Liu
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Qingfeng Liu
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Haiyun Zhao
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Zhehuan Wang
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Huiru Zhang
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Hui Guo
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Caihong Qi
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Xiangyue Jiao
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China
| | - Xiaotian Li
- Zhengzhou University, No. 100, Science Avenue, Zhengzhou City, Henan Province, China.
| |
Collapse
|
46
|
Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives. Polymers (Basel) 2021; 13:polym13224036. [PMID: 34833334 PMCID: PMC8617804 DOI: 10.3390/polym13224036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The excellent therapeutic potential of a variety of phytochemicals in different diseases has been proven by extensive studies throughout history. However, most phytochemicals are characterized by a high molecular weight, poor aqueous solubility, limited gastrointestinal permeability, extensive pre-systemic metabolism, and poor stability in the harsh gastrointestinal milieu. Therefore, loading of these phytochemicals in biodegradable and biocompatible nanoparticles (NPs) might be an effective approach to improve their bioactivity. Different nanocarrier systems have been developed in recent decades to deliver phytochemicals. Among them, NPs based on chitosan (CS) (CS-NPs), a mucoadhesive, non-toxic, and biodegradable polysaccharide, are considered the best nanoplatform for the oral delivery of phytochemicals. This review highlights the oral delivery of natural products, i.e., phytochemicals, encapsulated in NPs prepared from a natural polymer, i.e., CS, for improved bioavailability and bioactivity. The unique properties of CS for oral delivery such as its mucoadhesiveness, non-toxicity, excellent stability in the harsh environment of the GIT, good solubility in slightly acidic and alkaline conditions, and ability to enhance intestinal permeability are discussed first, and then the outcomes of various phytochemical-loaded CS-NPs after oral administration are discussed in detail. Furthermore, different challenges associated with the oral delivery of phytochemicals with CS-NPs and future directions are also discussed.
Collapse
|
47
|
Wang TZ, Zuo GW, Yao L, Yuan CL, Li HF, Lai Y, Chen ZW, Zhang J, Jin YQ, Yamahara J, Wang JW. Ursolic acid ameliorates adipose tissue insulin resistance in aged rats via activating the Akt-glucose transporter 4 signaling pathway and inhibiting inflammation. Exp Ther Med 2021; 22:1466. [PMID: 34737806 DOI: 10.3892/etm.2021.10901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/07/2021] [Indexed: 11/06/2022] Open
Abstract
Ageing often results in insulin resistance (IR) and chronic inflammation, and adipose is one of the tissues in which inflammation and IR occur earliest during this process. The present study investigated the effect and underlying mechanisms of ursolic acid (UA) on adipose IR and inflammation in ageing rats. Specific pathogen-free male Sprague-Dawley rats were randomly divided into 4 groups: i) Young normal (young); ii) untreated ageing (aged); and groups supplemented with UA either iii) low-UA 10 mg/kg (UA-L) or iv) high-50 mg/kg (UA-H). Animals in the UA-treated groups received 10 or 50 mg/kg UA (suspended in 5% Gum Arabic solution). The rats in the corresponding aged group and young groups received vehicle (5% Gum Arabic) alone. All rats were intragastrically treated once daily by oral gavage for 7 weeks. The day before the experiment terminated, overnight fasting blood (~700 µl) was collected and plasma was prepared to measure biochemical indicators; western blotting was performed to analyze the expression of insulin signaling proteins [(insulin receptor substrate 1 (IRS-1), phosphorylated (p)-IRS-1, PI3K, glucose transporter 4 (GLUT4), Akt and p-Akt)] and inflammatory factors (NF-κB, IL-6 and IL-1β) in the epididymis white adipose tissue (eWAT). The results revealed that treatment with UA-H decreased eWAT weight, the ratio of eWAT weight/body weight, fasted insulin and triglyceride levels, the homeostasis model assessment of insulin resistance and adipose tissue insulin resistance index in ageing rats, indicating the amelioration of systemic and adipose tissue IR, compared with the aged group. Mechanistically, UA-H administration upregulated p-protein kinase B, the ratio of p-Akt to protein kinase B and total and cellular membrane GLUT4 protein levels in eWAT of ageing rats. Conversely, UA inhibited the increase in NF-κB expression and proinflammatory cytokines IL-6 and IL-1β. However, these alterations were not observed in the rats of the aged group. Taken together, the findings of the present study indicated that UA may ameliorate adipose IR, which is associated with activation of the Akt-GLUT4 signaling pathway and inhibition of inflammation in ageing rats. These data provide a basis for the development of effective and safe drugs or functional substances, such as UA, for the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tong-Zhuang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guo-Wei Zuo
- Laboratory of Medical Tests, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ling Yao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chun-Lin Yuan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hai-Fei Li
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Lai
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhi-Wei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jun Zhang
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Qian Jin
- Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | | | - Jian-Wei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
48
|
Shirai T, Uemichi K, Kubota K, Yamauchi Y, Takemasa T. Maslinic Acid Promotes Hypertrophy Induced by Functional Overload in Mouse Skeletal Muscle. J Nutr Sci Vitaminol (Tokyo) 2021; 67:317-322. [PMID: 34719617 DOI: 10.3177/jnsv.67.317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nutritional supplements are sometimes important for athletes to improve their sports performance and maintain their condition. Maslinic acid (MA) is a type of compound with a pentacyclic triterpene structure extracted from olives, and has a strong anti-inflammatory effect and improves metabolic function. This study aimed to investigate the effects of MA on muscle hypertrophy by functional overload using an animal model. Mice plantaris muscles were overloaded by synergist ablation surgery with/without MA and they were sampled at 4, 7, and 14 d after the operation. We demonstrated that MA significantly increased plantaris' cross-sectional area and activated the mechanistic target of rapamycin (mTOR) signaling compared with the non-supplemented group (main effect of MA, p<0.05). In addition, MA also significantly reduced catabolic proteins compared with the non-supplemented group. MA supplementation increased muscle fiber size and promoted muscle hypertrophy via mTOR signaling. Our results indicate that MA supplementation may be useful for promoting hypertrophy of skeletal muscle.
Collapse
Affiliation(s)
- Takanaga Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba.,Reserch Fellow in Japan Society for Promotion Science
| | - Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Kakeru Kubota
- School of Physical Education, Health and Sport Sciences, University of Tsukuba
| | - Yuki Yamauchi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba
| |
Collapse
|
49
|
Liu Y, Huang Y, Fan C, Chi Z, Bai M, Sun L, Yang L, Yu C, Song Z, Yang X, Yi J, Wang S, Liu L, Wang G, Zheng L. Ursolic Acid Targets Glucosyltransferase and Inhibits Its Activity to Prevent Streptococcus mutans Biofilm Formation. Front Microbiol 2021; 12:743305. [PMID: 34646258 PMCID: PMC8503646 DOI: 10.3389/fmicb.2021.743305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans (S. mutans), the prime pathogen of dental caries, can secrete glucosyltransferases (GTFs) to synthesize extracellular polysaccharides (EPSs), which are the virulence determinants of cariogenic biofilms. Ursolic acid, a type of pentacyclic triterpene natural compound, has shown potential antibiofilm effects on S. mutans. To investigate the mechanisms of ursolic acid-mediated inhibition of S. mutans biofilm formation, we first demonstrated that ursolic acid could decrease the viability and structural integrity of biofilms, as evidenced by XTT, crystal violet, and live/dead staining assays. Then, we further revealed that ursolic acid could compete with the inherent substrate to occupy the catalytic center of GTFs to inhibit EPS formation, and this was confirmed by GTF activity assays, computer simulations, site-directed mutagenesis, and capillary electrophoresis (CE). In conclusion, ursolic acid can decrease bacterial viability and prevent S. mutans biofilm formation by binding and inhibiting the activity of GTFs.
Collapse
Affiliation(s)
- Yucui Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanxin Huang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Cong Fan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Zhongmei Chi
- Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Luguo Sun
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Li Yang
- Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaoguang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
50
|
Rathor R, Suryakumar G, Singh SN. Diet and redox state in maintaining skeletal muscle health and performance at high altitude. Free Radic Biol Med 2021; 174:305-320. [PMID: 34352371 DOI: 10.1016/j.freeradbiomed.2021.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
High altitude exposure leads to compromised physical performance with considerable weight loss. The major stressor at high altitude is hypobaric hypoxia which leads to disturbance in redox homeostasis. Oxidative stress is a well-known trigger for many high altitude illnesses and regulates several key signaling pathways under stressful conditions. Altered redox homeostasis is considered the prime culprit of high altitude linked skeletal muscle atrophy. Hypobaric hypoxia disturbs redox homeostasis through increased RONS production and compromised antioxidant system. Increased RONS disturbs the cellular homeostasis via multiple ways such as inflammation generation, altered protein anabolic pathways, redox remodeling of RyR1 that contributed to dysregulated calcium homeostasis, enhanced protein degradation pathways via activation calcium-regulated protein, calpain, and apoptosis. Ultimately, all the cellular signaling pathways aggregately result in skeletal muscle atrophy. Dietary supplementation of phytochemicals could become a safe and effective intervention to ameliorate skeletal muscle atrophy and enhance the physical performance of the personnel who are staying at high altitude regions. The present evidence-based review explores few dietary supplementations which regulate several signaling mechanisms and ameliorate hypobaric hypoxia induced muscle atrophy and enhances physical performance. However, a clinical research trial is required to establish proof-of-concept.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India.
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Som Nath Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| |
Collapse
|