1
|
Dreyfuss JM, Djordjilović V, Pan H, Bussberg V, MacDonald AM, Narain NR, Kiebish MA, Blüher M, Tseng YH, Lynes MD. ScreenDMT reveals DiHOMEs are replicably inversely associated with BMI and stimulate adipocyte calcium influx. Commun Biol 2024; 7:996. [PMID: 39143411 PMCID: PMC11324735 DOI: 10.1038/s42003-024-06646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Activating brown adipose tissue (BAT) improves systemic metabolism, making it a promising target for metabolic syndrome. BAT is activated by 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), which we previously identified to be inversely associated with BMI and which directly improves metabolism in multiple tissues. Here we profile plasma lipidomics from 83 people and test which lipids' association with BMI replicates in a concordant direction using our novel tool ScreenDMT, whose power and validity we demonstrate via mathematical proofs and simulations. We find that the linoleic acid diols 12,13-diHOME and 9,10-diHOME are both replicably inversely associated with BMI and mechanistically activate calcium influx in mouse brown and white adipocytes in vitro, which implicates this signaling pathway and 9,10-diHOME as candidate therapeutic targets. ScreenDMT can be applied to test directional mediation, directional replication, and qualitative interactions, such as identifying biomarkers whose association is shared (replication) or opposite (qualitative interaction) across diverse populations.
Collapse
Affiliation(s)
- Jonathan M Dreyfuss
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Vera Djordjilović
- Department of Economics, Ca' Foscari University of Venice, Cannaregio 873, Venice, Italy
| | - Hui Pan
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Matthew D Lynes
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.
- Department of Medicine, MaineHealth, Portland, ME, USA.
- Roux Institute at Northeastern University, Portland, ME, USA.
| |
Collapse
|
2
|
Xiao C, Liu Y, Zhao W, Liang Y, Cui C, Yang S, Fang W, Miao L, Yuan Z, Lin Z, Zhai B, Zhao Z, Zhang L, Ma H, Jin H, Cao Y. The comparison of meat yield, quality, and flavor between small-tailed Han sheep and two crossbred sheep and the verification of related candidate genes. Front Nutr 2024; 11:1399390. [PMID: 39149545 PMCID: PMC11324605 DOI: 10.3389/fnut.2024.1399390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction In Northeast China, Dorper and Australian White rams are commonly crossbred with small-tailed Han (STH) ewes to improve the offspring's meat yield and quality. However, the differences in traits and the flavor between the crossbred sheep and STH sheep remain unclear. In addition, the candidate genes potentially influencing the meat quality in the three sheep breeds require further verification. Methods A total of 18 2-month-old healthy rams were raised over a period of 5 months, which included 6 STH, 6 Dorper and small-tailed Han crossbred (Do × STH), and 6 Australian white and small-tailed Han crossbred (Au × STH) offspring. The differences in slaughter, meat quality traits, fatty acid and amino acid composition in the muscular longissimus dorsi (MLD), and volatile compounds in the semitendinosus muscle were compared between the sheep breeds. The candidate genes related to intramuscular fat (IMF) content and fatty acids were validated. Results The results of this study revealed that the crossbred sheep had higher body weight, carcass weight, bone weight, net meat weight, and IMF content than the STH sheep (p < 0.05). The Do × STH offspring had a higher pH value (24 h), moisture content, and cooking percentage; they also had redder and brighter meat color. The content of myristate, palmitic, and margaric acids in the crossbred sheep was higher than that in the STH sheep (p < 0.05). The Do × STH offspring had the highest saturated fatty acid content (p < 0.05). The Au × STH offspring had the highest protein content (p < 0.05). The arachidonic acid and amino acid (Asp, Ala, Ile, Leu, Lys, Thr, and essential amino acid) contents were higher in the STH sheep than in the crossbred sheep (p < 0.05). The odor activity value (OAV) analysis showed that most of the aldehydes in the Au × STH offspring had higher values. The PDK4 gene expression was positively associated with the IMF content and was negatively correlated with the linoleic acid content in the Do × STH sheep (p < 0.05). The TMEM273 gene expression was positively associated with linoleic and arachidonic acid contents and was negatively correlated with oleic and palmitic acid contents in the Do × STH sheep (p < 0.05). Discussion The results showed the differences between the crossbred sheep and STH sheep and provided the candidate genes related to meat quality in sheep.
Collapse
Affiliation(s)
- Cheng Xiao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- Research Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Dummerstorf, Germany
- Institute of Agricultural and Environmental Sciences, Rostock University, Rostock, Germany
| | - Yu Liu
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wenjun Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
- College of Agriculture, YanBian University, Yanji, China
| | - Yingjia Liang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chao Cui
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Shaoying Yang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - WenWen Fang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lisheng Miao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhiyu Yuan
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zihan Lin
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Bo Zhai
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhongli Zhao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Lichun Zhang
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Huihai Ma
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Haiguo Jin
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yang Cao
- Institute of Animal and Veterinary Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
3
|
Meyer NMT, Pohrt A, Wernicke C, Pletsch-Borba L, Apostolopoulou K, Haberbosch L, Machann J, Pfeiffer AFH, Spranger J, Mai K. Improvement in Visceral Adipose Tissue and LDL Cholesterol by High PUFA Intake: 1-Year Results of the NutriAct Trial. Nutrients 2024; 16:1057. [PMID: 38613089 PMCID: PMC11013849 DOI: 10.3390/nu16071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
We assessed the effect of a dietary pattern rich in unsaturated fatty acids (UFA), protein and fibers, without emphasizing energy restriction, on visceral adipose tissue (VAT) and cardiometabolic risk profile. Within the 36-months randomized controlled NutriAct trial, we randomly assigned 502 participants (50-80 years) to an intervention or control group (IG, CG). The dietary pattern of the IG includes high intake of mono-/polyunsaturated fatty acids (MUFA/PUFA 15-20% E/10-15% E), predominantly plant protein (15-25% E) and fiber (≥30 g/day). The CG followed usual care with intake of 30% E fat, 55% E carbohydrates and 15% E protein. Here, we analyzed VAT in a subgroup of 300 participants via MRI at baseline and after 12 months, and performed further metabolic phenotyping. A small but comparable BMI reduction was seen in both groups (mean difference IG vs. CG: -0.216 kg/m2 [-0.477; 0.045], partial η2 = 0.009, p = 0.105). VAT significantly decreased in the IG but remained unchanged in the CG (mean difference IG vs. CG: -0.162 L [-0.314; -0.011], partial η2 = 0.015, p = 0.036). Change in VAT was mediated by an increase in PUFA intake (ß = -0.03, p = 0.005) and induced a decline in LDL cholesterol (ß = 0.11, p = 0.038). The NutriAct dietary pattern, particularly due to high PUFA content, effectively reduces VAT and cardiometabolic risk markers, independent of body weight loss.
Collapse
Affiliation(s)
- Nina Marie Tosca Meyer
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (N.M.T.M.)
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Anne Pohrt
- Institute of Biometry and Clinical Epidemiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Charlotte Wernicke
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (N.M.T.M.)
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Laura Pletsch-Borba
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (N.M.T.M.)
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- BIH Charité Junior Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Konstantina Apostolopoulou
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (N.M.T.M.)
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Linus Haberbosch
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (N.M.T.M.)
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- BIH Charité Junior Digital Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases (IDM), Helmholtz Center Munich, University of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Otfried-Müller-Straße 12/1, 72076 Tübingen, Germany
- German Center for Diabetes Research, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (N.M.T.M.)
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (N.M.T.M.)
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Human Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (N.M.T.M.)
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- German Center for Diabetes Research, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Human Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Potsdamer Str. 58, 10785 Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Hessische Str. 3-4, 10115 Berlin, Germany
| |
Collapse
|
4
|
Huang C, Yong Q, Lu Y, Wang L, Zheng Y, Zhao L, Li P, Peng C, Jia W, Liu F. Gentiopicroside improves non-alcoholic steatohepatitis by activating PPARα and suppressing HIF1. Front Pharmacol 2024; 15:1335814. [PMID: 38515850 PMCID: PMC10956515 DOI: 10.3389/fphar.2024.1335814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024] Open
Abstract
Gentiopicroside (GPS) is a highly water-soluble small-molecule drug and the main bioactive secoiridoid glycoside of Gentiana scabra that has been shown to have hepatoprotective effects against non-alcoholic steatohepatitis (NASH), a form of non-alcoholic fatty liver disease (NAFLD) that can progress to cirrhosis and hepatocellular carcinoma. However, the effects of GPS on NASH and the underlying mechanisms remain obscure. Firstly, a high-fat, high-cholesterol (HFHC) diet and a high-sugar solution containing d-fructose and d-glucose were used to establish a non-alcoholic steatohepatitis (NASH) mice model. Secondly, we confirmed GPS supplementation improve metabolic abnormalities and reduce inflammation in NASH mice induced by HFHC and high-sugar solution. Then we used metabolomics to investigate the mechanisms of GPS in NASH mice. Metabolomics analysis showed GPS may work through the Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway and glycine, serine, and threonine metabolism. Functional metabolites restored by GPS included serine, glycine, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Western blot and qRT-PCR analysis confirmed GPS improve NASH by regulating PPARα and Hypoxia-Inducible Factor-1α (HIF-1α) signaling pathways. In vitro, studies further demonstrated EPA and DHA enhance fatty acid oxidation through the PPARα pathway, while serine and glycine inhibit oxidative stress through the HIF-1α pathway in palmitic acid-stimulated HepG2 cells. Our results suggest GPS's anti-inflammatory and anti-steatosis effects in NASH progression are related to the suppression of HIF-1α through the restoration of L-serine and glycine and the activation of PPARα through increased EPA and DHA.
Collapse
Affiliation(s)
- Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihui Lu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Wang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Peiwu Li
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Wang Y, Rehman A, Jafari SM, Shehzad Q, Yu L, Su Y, Wu G, Jin Q, Zhang H, Suleria HAR, Wang X. Micro/nano-encapsulation of marine dietary oils: A review on biomacromolecule-based delivery systems and their role in preventing cardiovascular diseases. Int J Biol Macromol 2024; 261:129820. [PMID: 38286385 DOI: 10.1016/j.ijbiomac.2024.129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Qayyum Shehzad
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yijia Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Duan S, Li H, Wang Z, Li J, Huang W, Fang Z, Li C, Zeng Z, Sun B, Liu Y. Tibetan tea consumption prevents obesity by modulating the cellular composition and metabolic reprogramming of white adipose tissue. Food Funct 2024; 15:208-222. [PMID: 38047533 DOI: 10.1039/d3fo03506a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Obesity, a global health concern, is linked with numerous metabolic and inflammatory disorders. Tibetan tea, a traditional Chinese beverage rich in theabrownin, is investigated in this study for its potential anti-obesity effects. Our work demonstrates that Tibetan tea consumption in C57BL/6J mice significantly mitigates obesity-related phenotypic changes without altering energy intake. Computational prediction revealed that Tibetan tea consumption reconstructs gene expression in white adipose tissue (WAT), promoting lipid catabolism and thereby increasing energy expenditure. We also note that Tibetan tea suppresses inflammation in WAT, reducing adipocyte hyperplasia and immune cell infiltration. Furthermore, Tibetan tea induces profound metabolic reprogramming, influencing amino acid metabolic pathways, specifically enhancing glutamine synthesis, which in turn suppresses pro-inflammatory chemokine production. These findings highlight Tibetan tea as a potential candidate in obesity prevention, providing a nuanced understanding of its capacity to modulate the cellular composition and metabolic landscape of WAT.
Collapse
Affiliation(s)
- Songqi Duan
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Ziqi Wang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Junqi Li
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Weimin Huang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| | - Baofa Sun
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China.
| |
Collapse
|
7
|
Grigorova N, Ivanova Z, Vachkova E, Petrova V, Penev T. DHA-Provoked Reduction in Adipogenesis and Glucose Uptake Could Be Mediated by Gps2 Upregulation in Immature 3T3-L1 Cells. Int J Mol Sci 2023; 24:13325. [PMID: 37686130 PMCID: PMC10487817 DOI: 10.3390/ijms241713325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The signaling pathway of fatty acids in the context of obesity is an extensively explored topic, yet their primary mechanism of action remains incompletely understood. This study aims to examine the effect of docosahexaenoic acid (DHA) on some crucial aspects of adipogenesis in differentiating 3T3-L1 cells, using palmitic acid-treated (PA), standard differentiated, and undifferentiated adipocytes as controls. Employing 60 µM DHA or PA, 3T3-L1 preadipocytes were treated from the onset of adipogenesis, with negative and positive controls included. After eight days, we performed microscopic observations, cell viability assays, the determination of adiponectin concentration, intracellular lipid accumulation, and gene expression analysis. Our findings demonstrated that DHA inhibits adipogenesis, lipolysis, and glucose uptake by suppressing peroxisome proliferator-activated receptor gamma (Pparg) and G-protein coupled receptor 120 (Gpr120) gene expression. Cell cytotoxicity was ruled out as a causative factor, and β-oxidation involvement was suspected. These results challenge the conventional belief that omega-3 fatty acids, acting as Pparg and Gpr120 agonists, promote adipogenesis and enhance insulin-dependent glucose cell flux. Moreover, we propose a novel hypothesis suggesting the key role of the co-repressor G protein pathway suppressor 2 in mediating this process. Additional investigations are required to elucidate the molecular mechanisms driving DHA's anti-adipogenic effect and its broader health implications.
Collapse
Affiliation(s)
- Natalia Grigorova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Valeria Petrova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Toncho Penev
- Department of Ecology and Animal Hygiene, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
8
|
Docosahexaenoic acid reverses PD-L1-mediated immune suppression by accelerating its ubiquitin-proteasome degradation. J Nutr Biochem 2023; 112:109186. [PMID: 36309154 DOI: 10.1016/j.jnutbio.2022.109186] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
PD-L1 interacts with its receptor PD-1 on T cells to negatively regulate T cell function, leading to cancer cell immune escape from the immune surveillance. Therefore, targeting PD-L1 is considered to be an attractive approach for cancer immunotherapy. In this study, we demonstrated for the first time that ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) reduced the expression of PD-L1 in cancer cells both in vitro and in vivo. Promotion of PD-L1 ubiquitin-proteasome degradation by DHA resulted in a decrease of PD-L1 expression, leading to reduction of PD-L1 and PD-1 interaction, and reversing PD-L1-mediated immune suppression, which in turn contributed to the inhibitory effect on tumor growth. Furtherly, DHA significantly reduced fatty acid synthase (FASN) expression in cancer cells, which inhibited the palmitoyltransferases DHHC5, promoting the CSN5-dependent PD-L1 degradation. Our present finding uncovered a novel mechanism involved in the anti-cancer activity of DHA, and implicated that DHA holds promising potential to be developed as a novel immune-enhancer for cancer treatment and prevention.
Collapse
|
9
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Docosahexaenoic Acid Counteracts the Hypoxic-Induced Inflammatory and Metabolic Alterations in 3T3-L1 Adipocytes. Nutrients 2022; 14:nu14214600. [PMID: 36364860 PMCID: PMC9659308 DOI: 10.3390/nu14214600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Hypoxia is caused by the excessive expansion of the white adipose tissue (AT) and is associated with obesity-related conditions such as insulin resistance, inflammation, and oxidative stress. Docosahexaenoic acid (DHA) is an omega-3 fatty acid reported to have beneficial health effects. However, the effects of DHA in AT against hypoxia-induced immune-metabolic perturbations in adipocytes exposed to low O2 tension are not well known. Consequently, this study aimed to evaluate the impact of DHA on markers of inflammation, metabolism, apoptosis, and oxidative stress in 3T3-L1 cell adipocytes exposed to low O2 tension (1% O2) induced hypoxia. Methods: The apoptosis and reactive oxygen species (ROS) rates were evaluated. Metabolic parameters such as lactate, FFA, glycerol release, glucose uptake, and ATP content were assessed by a fluorometer. The expression of HIF-1, GLUT1 and the secretion of adipocytokines such as leptin, adiponectin, and pro-inflammatory markers was evaluated. Results: DHA-treated hypoxic cells showed significantly decreased basal free fatty acid release, lactate production, and enhanced glucose consumption. In addition, DHA-treatment of hypoxic cells caused a significant reduction in the apoptosis rate and ROS production with decreased lipid peroxidation. Moreover, DHA-treatment of hypoxic cells caused a decreased secretion of pro-inflammatory markers (IL-6, MCP-1) and leptin and increased adiponectin secretion compared with hypoxic cells. Furthermore, DHA-treatment of hypoxic cells caused significant reductions in the expression of genes related to hypoxia (HIF-1, HIF-2), anaerobic metabolism (GLUT1 and Ldha), ATP production (ANT2), and fat metabolism (FASN and PPARY). Conclusion: This study suggests that DHA can exert potential anti-obesity effects by reducing the secretion of inflammatory adipokines, oxidative stress, lipolysis, and apoptosis.
Collapse
|
11
|
Zhang F, Zuo T, Wan Y, Xu Z, Cheung C, Li AY, Zhu W, Tang W, Chan PK, Chan FK, Ng SC. Multi-omic analyses identify mucosa bacteria and fecal metabolites associated with weight loss after fecal microbiota transplantation. Innovation (N Y) 2022; 3:100304. [PMID: 36091491 PMCID: PMC9460156 DOI: 10.1016/j.xinn.2022.100304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Fecal microbiota transplantation (FMT) has shown promising results in animal models of obesity, while results in human studies are inconsistent. We aimed to determine factors associated with weight loss after FMT in nine obese subjects using serial multi-omics analysis of the fecal and mucosal microbiome. The mucosal microbiome, fecal microbiome, and fecal metabolome showed individual clustering in each subject after FMT. The colonic microbiome in patients showed more marked variance after FMT compared with the duodenal microbiome, characterized by an increased relative abundance of Bacteroides. Subjects who lost weight after FMT sustained enrichment of Bifidobacterium bifidum and Alistipes onderdonkii in the duodenal, colonic mucosal, and fecal microbiome and increased levels of phosphopantothenate biosynthesis and fecal metabolite eicosapentaenoic acid (EPA), compared with those without weight loss. Fecal levels of amino acid metabolism-associated were positively correlated with the fecal abundance of B. bifidum, and fatty acid metabolism-associated metabolites showed positive correlations with A. onderdonkii. We report for the first time the individualized response of fecal and mucosa microbiome to FMT in obese subjects and highlight that FMT is less capable of shaping the small intestine microbiota. These findings contribute to personalized microbe-based therapies for obesity.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
| | - Tao Zuo
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
| | - Yating Wan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
| | - Chunpan Cheung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
| | - Amy Y. Li
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wenyi Zhu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
| | - Whitney Tang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
| | - Paul K.S. Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Francis K.L. Chan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Microbiota I-Center (MagIC), Hong Kong 999077, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Corresponding author
| |
Collapse
|
12
|
Pandita D, Pandita A. Omics Technology for the Promotion of Nutraceuticals and Functional Foods. Front Physiol 2022; 13:817247. [PMID: 35634143 PMCID: PMC9136416 DOI: 10.3389/fphys.2022.817247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of nutrition and environment on human health has been known for ages. Phytonutrients (7,000 flavonoids and phenolic compounds; 600 carotenoids) and pro-health nutrients—nutraceuticals positively add to human health and may prevent disorders such as cancer, diabetes, obesity, cardiovascular diseases, and dementia. Plant-derived bioactive metabolites have acquired an imperative function in human diet and nutrition. Natural phytochemicals affect genome expression (nutrigenomics and transcriptomics) and signaling pathways and act as epigenetic modulators of the epigenome (nutri epigenomics). Transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics are some of the main platforms of complete omics analyses, finding use in functional food and nutraceuticals. Now the recent advancement in the integrated omics approach, which is an amalgamation of multiple omics platforms, is practiced comprehensively to comprehend food functionality in food science.
Collapse
Affiliation(s)
- Deepu Pandita
- Government Department of School Education, Jammu, India
- *Correspondence: Deepu Pandita,
| | | |
Collapse
|
13
|
Xu XY, Zhao CN, Li BY, Tang GY, Shang A, Gan RY, Feng YB, Li HB. Effects and mechanisms of tea on obesity. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34704503 DOI: 10.1080/10408398.2021.1992748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity has become a global health concern. It increases the risk of several diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and certain cancers, which threatens human health and increases social economic burden. As one of the most consumed beverages, tea contains various phytochemicals with potent bioactive properties and health-promoting effects, such as antioxidant, immune-regulation, cardiovascular protection and anticancer. Tea and its components are also considered as potential candidates for anti-obesity. Epidemiological studies indicate that regular consumption of tea is beneficial for reducing body fat. In addition, the experimental studies demonstrate that the potential anti-obesity mechanisms of tea are mainly involved in increasing energy expenditure and lipid catabolism, decreasing nutrient digestion and absorption as well as lipid synthesis, and regulating adipocytes, neuroendocrine system and gut microbiota. Moreover, most of clinical studies illustrate that the intake of green tea could reduce body weight and alleviate the obesity. In this review, we focus on the effect of tea and its components on obesity from epidemiological, experimental, and clinical studies, and discuss their potential mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Cai-Ning Zhao
- Li Ka Shing Faculty of Medicine, Department of Clinical Oncology, The University of Hong Kong, China Hong Kong
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Yi Tang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Yi-Bin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Ji Y, Luo K, Zhang JM, Ni P, Xiong W, Luo X, Xu G, Liu H, Zeng Z. Obese rats intervened with Rhizoma coptidis revealed differential gene expression and microbiota by serum metabolomics. BMC Complement Med Ther 2021; 21:208. [PMID: 34380455 PMCID: PMC8359625 DOI: 10.1186/s12906-021-03382-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/22/2021] [Indexed: 12/04/2022] Open
Abstract
Background Integrating systems biology is an approach for investigating metabolic diseases in humans. However, few studies use this approach to investigate the mechanism by which Rhizoma coptidis (RC) reduces the effect of lipids and glucose on high-fat induced obesity in rats. Methods Twenty-four specific pathogen-free (SPF) male Sprague–Dawley rats (80 ± 10 g) were used in this study. Serum metabolomics were detected by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. Liver tissue and cecum feces were used for RNA-Seq technology and 16S rRNA gene sequencing, respectively. Results We identified nine potential biomarkers, which are differential metabolites in the Control, Model and RC groups, including linoleic acid, eicosapentaenoic acid, arachidonic acid, stearic acid, and L-Alloisoleucine (p < 0.01). The liver tissue gene expression profile indicated the circadian rhythm pathway was significantly affected by RC (Q ≤ 0.05). A total of 149 and 39 operational taxonomic units (OTUs), which were highly associated with biochemical indicators and potential biomarkers in the cecum samples (FDR ≤ 0.05), respectively, were identified. Conclusion This work provides information to better understand the mechanism of the effect of RC intervention on hyperlipidemia and hypoglycemic effects in obese rats. The present study demonstrates that integrating systems biology may be a powerful tool to reveal the complexity of metabolic diseases in rats intervened by traditional Chinese medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03382-3.
Collapse
Affiliation(s)
- Yanhua Ji
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.,Laboratory Animal Science and Technology Center, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Kexin Luo
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Jiri Mutu Zhang
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Peng Ni
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Wangping Xiong
- School of Computer, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Xiaoquan Luo
- Laboratory Animal Science and Technology Center, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Guoliang Xu
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.,Jiangxi Key Lab of Pharmacology of TCM, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Hongning Liu
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Zhijun Zeng
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.
| |
Collapse
|
15
|
Han KJ, Lee NK, Yu HS, Park H, Paik HD. Anti-adipogenic Effects of the Probiotic Lactiplantibacillus plantarum KU15117 on 3T3-L1 Adipocytes. Probiotics Antimicrob Proteins 2021; 14:501-509. [PMID: 34264486 DOI: 10.1007/s12602-021-09818-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the probiotic properties and anti-obesity effects of bacterial strains isolated from homemade kimchi. Lactiplantibacillus plantarum KU15117 was isolated using lactobacilli selective medium. L. plantarum KU15117 did not produce β-glucuronidase and showed high tolerance to artificial gastric juice and bile salt, acceptable resistance to antibiotics, and high adhesion ability to HT-29 cells. The anti-adipogenic activity of L. plantarum KU15117 at 109 CFU/well was confirmed by the reduction of oil red O staining and intracellular triglyceride level. Additionally, the expression levels of fatty acid synthase, CCAAT/enhance-binding protein-α, and peroxisome proliferator-activated receptor-γ, which are associated with the early stage of adipocyte differentiation, were significantly lower in the probiotic-treated group than in the control group. These results suggest that L. plantarum KU15117 has probiotic properties and anti-obesity effects and could be used as a prophylactic probiotics.
Collapse
Affiliation(s)
- Kyoung Jun Han
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hoon Park
- Department of Food Science, Sun Moon University, Asan, 31460, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
16
|
The potential nutrition-, physical- and health-related benefits of cow's milk for primary-school-aged children. Nutr Res Rev 2021; 35:50-69. [PMID: 33902780 DOI: 10.1017/s095442242100007x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cow's milk is a naturally nutrient-dense foodstuff. A significant source of many essential nutrients, its inclusion as a component of a healthy balanced diet has been long recommended. Beyond milk's nutritional value, an increasing body of evidence illustrates cow's milk may confer numerous benefits related to health. Evidence from adult populations suggests that cow's milk may have a role in overall dietary quality, appetite control, hydration and cognitive function. Although evidence is limited compared with the adult literature, these benefits may be echoed in recent paediatric studies. This article, therefore, reviews the scientific literature to provide an evidence-based evaluation of the associated health benefits of cow's milk consumption in primary-school-aged children (4-11 years). We focus on seven key areas related to nutrition and health comprising nutritional status, hydration, dental and bone health, physical stature, cognitive function, and appetite control. The evidence consistently demonstrates cow's milk (plain and flavoured) improves nutritional status in primary-school-aged children. With some confidence, cow's milk also appears beneficial for hydration, dental and bone health and beneficial to neutral concerning physical stature and appetite. Due to conflicting studies, reaching a conclusion has proven difficult concerning cow's milk and cognitive function; therefore, a level of caution should be exercised when interpreting these results. All areas, however, would benefit from further robust investigation, especially in free-living school settings, to verify conclusions. Nonetheless, when the nutritional-, physical- and health-related impact of cow's milk avoidance is considered, the evidence highlights the importance of increasing cow's milk consumption.
Collapse
|
17
|
Mazumder T, Mamun IP, Zaman MS, Islam AKMK, Chowdhury S, Reza MS, Hussain MS. Comparative lipid and uric acid suppressing properties of four common herbs in high fat-induced obese mice with their total phenolic and flavonoid index. Biochem Biophys Rep 2021; 26:100990. [PMID: 33869811 PMCID: PMC8044636 DOI: 10.1016/j.bbrep.2021.100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Our present study was designed to investigate the comparative anti-obesity efficacy of ethanolic extract of Azadirachta indica A. Juss., Trigonella foenum-graecum L., Allium sativum L. and Zingiber officinale Roscoe in high fat-induced mice with their total phenolic and flavonoid profile. Total phenolic and flavonoid content were determined by Folin–Ciocalteu's and Aluminium chloride UV method respectively. In our study, 55 healthy mice were separated into 11 groups to take their respective treatments. Lipid and uric acid profile were estimated by using the enzymatic colourimetric method. Ethanolic extract of A. indica contained the highest phenolic and flavonoid content. A. indica normal and high fat diet group showed reduced weight gaining tendency than other extract groups. A. indica at a dose of 400 mg/kg body weight significantly (p < 0.001) reduced serum cholesterol (SC), triglyceride (TG), and uric acid (UA) level than other three extracts when compared with the control group. Thus, a considerable correlation was found between serum uric acid reducing potentials of the present experimental extracts with a lipid-lowering profile. Pathological examination revealed that the average weight of liver and kidney were significantly decreased in A. indica normal. Results obtained from the present study it can be concluded that ethanolic extract of A. indica possesses better lipid-lowering efficacy than the other three herbs. Ethanolic extract of A. indica contained the highest phenolic and flavonoid content. A. indica significant reduced the serum TC, TG, and UA level than other three extracts when compared with the control group. The average weight of liver and kidney were significantly decreased in A. indica. A. indica possesses better lipid-lowering efficacy than the other three herbs.
Collapse
Affiliation(s)
- Tanoy Mazumder
- Faculty of Science, Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Imran Parvez Mamun
- Faculty of Science, Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Md Safayat Zaman
- Faculty of Science, Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - A K M Khairul Islam
- Faculty of Science, Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Shahjala Chowdhury
- Faculty of Science, Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Md Sharif Reza
- Faculty of Science, Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Md Saddam Hussain
- Faculty of Science, Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| |
Collapse
|
18
|
Maurer SF, Dieckmann S, Lund J, Fromme T, Hess AL, Colson C, Kjølbaek L, Astrup A, Gillum MP, Larsen LH, Liebisch G, Amri EZ, Klingenspor M. No Effect of Dietary Fish Oil Supplementation on the Recruitment of Brown and Brite Adipocytes in Mice or Humans under Thermoneutral Conditions. Mol Nutr Food Res 2021; 65:e2000681. [PMID: 33274552 DOI: 10.1002/mnfr.202000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Indexed: 01/06/2023]
Abstract
SCOPE Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a β3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Anne Lundby Hess
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Cécilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, 93053, Germany
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
19
|
Identification of Polyunsaturated Fatty Acids Synthesis Pathways in the Toxic Dinophyte Alexandrium minutum Using 13C-Labelling. Biomolecules 2020; 10:biom10101428. [PMID: 33050104 PMCID: PMC7600785 DOI: 10.3390/biom10101428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
The synthetic pathways responsible for the production of the polyunsaturated fatty acids 22:6n-3 and 20:5n-3 were studied in the Dinophyte Alexandrium minutum. The purpose of this work was to follow the progressive incorporation of an isotopic label (13CO2) into 11 fatty acids to better understand the fatty acid synthesis pathways in A. minutum. The Dinophyte growth was monitored for 54 h using high-frequency sampling. A. minutum presented a growth in two phases. A lag phase was observed during the first 30 h of development and had been associated with the probable temporary encystment of Dinophyte cells. An exponential growth phase was then observed after t30. A. minutum rapidly incorporated 13C into 22:6n-3, which ended up being the most 13C-enriched polyunsaturated fatty acid (PUFA) in this experiment, with a higher 13C atomic enrichment than 18:4n-3, 18:5n-3, 20:5n-3, and 22:5n-3. Overall, the 13C atomic enrichment (AE) was inversely proportional to number of carbons in n-3 PUFA. C18 PUFAs, 18:4n-3, and 18:5n-3, were indeed among the least 13C-enriched FAs during this experiment. They were assumed to be produced by the n-3 PUFA pathway. However, they could not be further elongated or desaturated to produce n-3 C20-C22 PUFA, because the AEs of the n-3 C18 PUFAs were lower than those of the n-3 C20-C22 PUFAs. Thus, the especially high atomic enrichment of 22:6n-3 (55.8% and 54.9% in neutral lipids (NLs) and polar lipids (PLs), respectively) led us to hypothesize that this major PUFA was synthesized by an O2-independent Polyketide Synthase (PKS) pathway. Another parallel PKS, independent of the one leading to 22:6n-3, was also supposed to produce 20:5n-3. The inverse order of the 13C atomic enrichment for n-3 PUFAs was also suspected to be related to the possible β-oxidation of long-chain n-3 PUFAs occurring during A. minutum encystment.
Collapse
|
20
|
Rochefort G, Provencher V, Castonguay-Paradis S, Perron J, Lacroix S, Martin C, Flamand N, Di Marzo V, Veilleux A. Intuitive eating is associated with elevated levels of circulating omega-3-polyunsaturated fatty acid-derived endocannabinoidome mediators. Appetite 2020; 156:104973. [PMID: 32971226 DOI: 10.1016/j.appet.2020.104973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
The regulation of food intake and eating behaviours involves interactions between different systems. The endocannabinoidome, comprising several fatty acid-derived mediators, plays a central role in the regulation of food intake. Alterations of this system have been suggested to intervene in the aetiology of eating disorders. This study aimed to examine the associations between non-pathological eating behaviours and circulating endocannabinoidome mediators in a heterogeneous human population. Plasma 2-monoacyl-glycerol and N-acyl-ethanolamine congeners were measured by LC-MS/MS in a sample of 190 men and women. Eating behaviours were assessed using the Three-Factor Eating Questionnaire (TFEQ) and the Intuitive Eating Scale-2 (IES-2). Following adjustment for body mass index and age, plasma levels of omega-3 polyunsaturated fatty acid-derived 2-monoacyl-glycerols, 2-eicosapentaenoyl-glycerol (2-EPG) and 2-docosapentaenoyl-glycerol (2-DPG), were associated with higher intuitive eating scores (0.15 ≤ rho ≤ 0.20; p < 0.05). These associations were independent of the dietary intake of the fatty acid precursors of these 2-monoacyl-glycerols. However, almost no association was found between plasma levels of N-acyl-ethanolamine congeners and the TFEQ or the IES-2 scores. The results of the present study suggest the association of 2-monoacyl-glycerols, especially 2-EPG and 2-DPG, in the regulation of intuitive eating and the potential implication therein of bioactive lipids.
Collapse
Affiliation(s)
- Gabrielle Rochefort
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Véronique Provencher
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada
| | - Sophie Castonguay-Paradis
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Julie Perron
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Sébastien Lacroix
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Cyril Martin
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Nicolas Flamand
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, G1V 4G5, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Département de Médecine, Faculté de Médecine, Université Laval, 1050 Avenue de La Médecine, Québec, G1V 0A6, QC, Canada; Joint International Unit on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada
| | - Alain Veilleux
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition et Les Aliments Fonctionnels (INAF), 2440 Boulevard Hochelaga, Québec, G1V 0A6, QC, Canada; École de Nutrition, Faculté des Sciences de L'agriculture et de L'alimentation (FSAA), Université Laval, 2425 Rue de L'Agriculture, Québec, G1V 0A6, QC, Canada; Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Mediators Axis in Metabolic Health (CERC-MEND), Canada.
| |
Collapse
|
21
|
Pradhan S, Panchali T, Paul B, Khatun A, Rao Jarapala S, Mondal KC, Ghosh K, Chakrabarti S. Anti-obesity potentiality of Tapra fish (Opisthopterus tardoore) oil. J Food Biochem 2020; 44:e13448. [PMID: 32881000 DOI: 10.1111/jfbc.13448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
In this present investigation, we have extracted and characterized the Tapra fish oil as well as applied it to evaluate anti-obesity potentiality. The Tapra fish oil had 1.14 ± 0.10 mg KOH/g of acid value, 129.8 ± 5.09 mg KOH/g of saponification number, 2.67 ± 0.67 mEq/kg of peroxide value, 121.9 ± 2.14 mg of iodine value, and 17.67 ± 1.45 totox value. Gas Chromatography-Mass Spectrometric analysis clearly revealed the presence of nine different fatty acids. When the fish oil was applied to high-fat diet-induced obese mice, it showed significant reduction of body weight, Body Mass Index, and serum lipid profiles compared to the high-fat diet-induced obese mice. The levels of leptin and TNF-α were moderately reduced in fish oil treated high-fat diet-induced obese mice than control obese mice. In conclusion, the Tapra fish oil was enriched with essential fatty acids and it could be used as an antiobese food supplement. PRACTICAL APPLICATIONS: Considering the adverse effects of drugs used for the treatment of obesity, there is always a need to find out the alternatives. While the anti-obesity potentialities of different sea fish oil have been documented, the same for the Tapra fish (Opisthopterus tardoore) oil has not been studied at all. The extracted Tapra fish oil was found good in quality. Administration of fish oil in the mice exhibited anti-obesity effect in terms of lowering body weight, Body Mass Index, and serum lipid profiles, leptin, and TNF-α in mice model. These findings are fostering new therapeutic approaches to obesity treatment.
Collapse
Affiliation(s)
- Shrabani Pradhan
- Department of Biological Sciences, Midnapore City College, Midnapore, India
| | - Titli Panchali
- Department of Biological Sciences, Midnapore City College, Midnapore, India
| | - Bani Paul
- Department of Biological Sciences, Midnapore City College, Midnapore, India
| | - Amina Khatun
- Department of Biological Sciences, Midnapore City College, Midnapore, India
| | - Sreenivasa Rao Jarapala
- Food Chemistry and Nutrient Analysis, National Institute of Nutrition (ICMR), Hyderabad, India
| | | | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, India
| | | |
Collapse
|
22
|
Delgadillo-Puga C, Noriega LG, Morales-Romero AM, Nieto-Camacho A, Granados-Portillo O, Rodríguez-López LA, Alemán G, Furuzawa-Carballeda J, Tovar AR, Cisneros-Zevallos L, Torre-Villalvazo I. Goat's Milk Intake Prevents Obesity, Hepatic Steatosis and Insulin Resistance in Mice Fed A High-Fat Diet by Reducing Inflammatory Markers and Increasing Energy Expenditure and Mitochondrial Content in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21155530. [PMID: 32752280 PMCID: PMC7432599 DOI: 10.3390/ijms21155530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
Goat's milk is a rich source of bioactive compounds (peptides, conjugated linoleic acid, short chain fatty acids, monounsaturated and polyunsaturated fatty acids, polyphenols such as phytoestrogens and minerals among others) that exert important health benefits. However, goat's milk composition depends on the type of food provided to the animal and thus, the abundance of bioactive compounds in milk depends on the dietary sources of the goat feed. The metabolic impact of goat milk rich in bioactive compounds during metabolic challenges such as a high-fat (HF) diet has not been explored. Thus, we evaluated the effect of milk from goats fed a conventional diet, a conventional diet supplemented with 30% Acacia farnesiana (AF) pods or grazing on metabolic alterations in mice fed a HF diet. Interestingly, the incorporation of goat's milk in the diet decreased body weight and body fat mass, improved glucose tolerance, prevented adipose tissue hypertrophy and hepatic steatosis in mice fed a HF diet. These effects were associated with an increase in energy expenditure, augmented oxidative fibers in skeletal muscle, and reduced inflammatory markers. Consequently, goat's milk can be considered a non-pharmacologic strategy to improve the metabolic alterations induced by a HF diet. Using the body surface area normalization method gave a conversion equivalent daily human intake dose of 1.4 to 2.8 glasses (250 mL per glass/day) of fresh goat milk for an adult of 60 kg, which can be used as reference for future clinical studies.
Collapse
Affiliation(s)
- Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico
- Correspondence: (C.D.-P.); (I.T.-V.); Tel.: +52-55-54870900 (C.D.-P. & I.T.-V.)
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Aurora M. Morales-Romero
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico;
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico;
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Leonardo A. Rodríguez-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Gabriela Alemán
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Janette Furuzawa-Carballeda
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico;
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA;
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de Mexico 14080, Mexico; (L.G.N.); (O.G.-P.); (L.A.R.-L.); (G.A.); (A.R.T.)
- Correspondence: (C.D.-P.); (I.T.-V.); Tel.: +52-55-54870900 (C.D.-P. & I.T.-V.)
| |
Collapse
|
23
|
Rosiglitazone-induced changes in the oxidative stress metabolism and fatty acid composition in relation with trace element status in the primary adipocytes. J Med Biochem 2019; 39:267-275. [PMID: 33746608 PMCID: PMC7955996 DOI: 10.2478/jomb-2019-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic syndrome, obesity and type 2 diabetes are metabolic disorders characterized by the insulin resistance and the impairment in the insulin secretion. Since impairment in the oxidative stress and adipocyte metabolism contribute to the formation of obesity and diabetes, targeting adipose tissue can be considered as an effective approach to fight against them. Rosiglitazone is used for treatment for patients with type 2 diabetes via inducing lipogenesis and transdifferentiation of white adipose tissue into brown adipose tissue. Since the development of such therapeutics is required to control the formation and function of brown fat cells, we aimed to reveal possible molecular mechanisms behind rosiglitazone induced biochemical changes in the adipose tissue. Methods Cells were expanded in the adipocyte culture medium supplemented with 5 µg/mL insulin following 2 days' induction. After those cells were treated with rosiglitazone 0, 0.13 mol/L and 10 µmol/L rosiglitazone for 48 hours and at 8th day, cells were collected and stored at -80 °C. Then the cells were used to evaluate antioxidant enzyme activities, mineral and trace element levels and fatty acid composition. Results Glucose-6-phosphate dehydrogenase and glutathione reductase significantly reduced in rosiglitazone-treated groups compared to the control. Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Cs, Ba and Pb were determined in the cell lysates via ICP-MS. Also, relative FAME content decreased in the rosiglitazone-treated groups compared to the control. Conclusions Rosiglitazone treatment at low doses showed promising results which may promote brown adipose tissue formation.
Collapse
|
24
|
Shin BC, Ghosh S, Dai Y, Byun SY, Calkins KL, Devaskar SU. Early life high-fat diet exposure maintains glucose tolerance and insulin sensitivity with a fatty liver and small brain size in the adult offspring. Nutr Res 2019; 69:67-81. [PMID: 31639589 PMCID: PMC6934265 DOI: 10.1016/j.nutres.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Diet during pregnancy has long lasting consequences on the offspring, warranting a study on the impact of early exposure to a high fat diet on the adult offspring. We hypothesized that a prenatal n-6 enriched diet will have adverse metabolic outcomes on the adult offspring that may be reversed with a postnatal n-3 enriched diet. To test this hypothesis, we examined the adult offspring from three groups: (1) n-6 group: during gestation and lactation, dams consumed an n-6 polyunsaturated fatty acid enriched diet, (2) n-3 group: gestational n-6 diet was followed by an n-3 enriched diet during lactation, and (3) a control (CD) group that received standard diet throughout gestation and lactation. Offspring from all groups weaned to a control diet ad libitum. Beginning at postnatal day 2 (P < .03) and persisting at 360 days in males (P < .04), an increase in hypothalamic AgRP expression occurred in the n-6 and n-3 groups, with an increase in food intake (P = .01), and the n-3 group displaying lower body (P < .03) and brain (P < .05) weights. At 360 days, the n-6 and n-3 groups remained glucose tolerant and insulin sensitive, with increased phosphorylated-AMP-activated protein kinase (P < .05). n-6 group developed hepatic steatosis with reduced hepatic reflected as higher plasma microRNA-122 (P < .04) that targets pAMPK. We conclude that early life exposure to n-6 and n-3 led to hypothalamic AgRP-related higher food intake, with n-6 culminating in a fatty liver partially mitigated by postnatal n-3. While both diets preserved glucose tolerance and insulin sensitivity, postnatal n-3 displayed detrimental effects on the brain.
Collapse
Affiliation(s)
- Bo-Chul Shin
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Shubhamoy Ghosh
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Yun Dai
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Shin Yun Byun
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Kara L Calkins
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752
| | - Sherin U Devaskar
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752.
| |
Collapse
|
25
|
Linderborg KM, Kulkarni A, Zhao A, Zhang J, Kallio H, Magnusson JD, Haraldsson GG, Zhang Y, Yang B. Bioavailability of docosahexaenoic acid 22:6(n-3) from enantiopure triacylglycerols and their regioisomeric counterpart in rats. Food Chem 2019; 283:381-389. [PMID: 30722887 DOI: 10.1016/j.foodchem.2018.12.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 01/14/2023]
Abstract
Lack of synthetic enantiospecific triacylglycerols (TAGs) has hindered our understanding of the impact of TAG structure on the absorption and metabolic fate of fatty acids (FAs). In a five-day feeding trial with mildly (n-3) deficient rats, the bioavailability of docosahexaenoic acid [22:6(n-3), DHA] and stearic acid (18:0) from the two different enantiomers of TAG: sn-22:6(n-3)-18:0-18:0 and sn-18:0-18:0-22:6(n-3), and their regioisomeric TAG: sn-18:0-22:6(n-3)-18:0 was compared. Less secretion of fecal DHA was detected from the sn-2 position compared with the sn-1 and sn-3 positions, but no difference was found in DHA content of the fasting plasma or in the weight of the body or organs. 18:0 was lost to feces mainly as cleaved from the primary positions but also as glycerol-bound. The 5-day intervention in rats was long enough to modify the fatty acid profile of plasma phospholipids.
Collapse
Affiliation(s)
- Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Amruta Kulkarni
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Ai Zhao
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jian Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | | | | | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China.
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland.
| |
Collapse
|
26
|
Senarath S, Beppu F, Yoshinaga K, Nagai T, Yoshida A, Gotoh N. Comparison of the Effects of Long-chain Monounsaturated Fatty Acid Positional Isomers on Lipid Metabolism in 3T3-L1 Cells. J Oleo Sci 2019; 68:379-387. [PMID: 30867386 DOI: 10.5650/jos.ess18223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long chain monounsaturated fatty acids (LC-MUFAs) have shown beneficial health effects in previous studies. They occur as mixtures of positional isomers (PIs) in food. The functionalities of LC-MUFA PIs have not been studied extensively. Common LC-MUFA PIs, namely cis-octadecenoic acid (c-18:1), cis-eicosenoic acid (c-20:1), and cis-docosenoic acid (c-22:1), were screened based on their effects on lipid accumulation. We selected nine fatty acids (FAs) to assess their effects on cellular lipid metabolism using 3T3-L1 preadipocytes. Lipid accumulation was found to be higher in cells treated with LC-MUFAs than in the non-treated cells. When comparing the influence of chain length of LC-MUFAs, TG levels tended to be higher in cells treated with c-22:1 group than that of the c18:1 and c-20:1 groups. Among the c-22:1 group, c9-22:1 treatment showed higher lipid accumulation, and was accompanied with elevated expression of transcription factors related to adipogenesis and lipogenesis, such as PPARγ and C/EBPα, and SREBP-1, respectively. In contrast, the effects of c-20:1 FAs were less pronounced than those of c-18:1 and c-22:1. Levels of accumulated lipid in cells treated with c15-20:1 were the same as in non-treated control. PPARγ, C/EBPα, and SREBP-1 were expressed at lower levels with c15-20:1 FA. Furthermore, mRNA levels of SCD-1 and FAS were lowered more by c15- and c11-20:1 than by other MUFAs. These results revealed that differences in the effects of LC-MUFAs on lipid metabolism depend on their chain lengths and on the position of the double bond.
Collapse
Affiliation(s)
- Samanthika Senarath
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology.,Department of Food Science and Technology, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka
| | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | | | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
27
|
Correlation between Fatty Acid Profile and Anti-Inflammatory Activity in Common Australian Seafood by-Products. Mar Drugs 2019; 17:md17030155. [PMID: 30845724 PMCID: PMC6471488 DOI: 10.3390/md17030155] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/22/2019] [Accepted: 03/02/2019] [Indexed: 12/26/2022] Open
Abstract
Marine organisms are a rich source of biologically active lipids with anti-inflammatory activities. These lipids may be enriched in visceral organs that are waste products from common seafood. Gas chromatography-mass spectrometry and fatty acid methyl ester (FAME) analyses were performed to compare the fatty acid compositions of lipid extracts from some common seafood organisms, including octopus (Octopus tetricus), squid (Sepioteuthis australis), Australian sardine (Sardinops sagax), salmon (Salmo salar) and school prawns (Penaeus plebejus). The lipid extracts were tested for anti-inflammatory activity by assessing their inhibition of nitric oxide (NO) and tumor necrosis factor alpha (TNFα) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse cells. The lipid extract from both the flesh and waste tissue all contained high amounts of polyunsaturated fatty acids (PUFAs) and significantly inhibited NO and TNFα production. Lipid extracts from the cephalopod mollusks S. australis and O. tetricus demonstrated the highest total PUFA content, the highest level of omega 3 (ω-3) PUFAs, and the highest anti-inflammatory activity. However, multivariate analysis indicates the complex mixture of saturated, monounsaturated, and polyunsaturated fatty acids may all influence the anti-inflammatory activity of marine lipid extracts. This study confirms that discarded parts of commonly consumed seafood species provide promising sources for the development of new potential anti-inflammatory nutraceuticals.
Collapse
|
28
|
Pahlavani M, Wijayatunga NN, Kalupahana NS, Ramalingam L, Gunaratne PH, Coarfa C, Rajapakshe K, Kottapalli P, Moustaid-Moussa N. Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1523-1531. [PMID: 30261280 PMCID: PMC6298436 DOI: 10.1016/j.bbalip.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Brown adipose tissue (BAT) dissipates chemical energy as heat via thermogenesis and protects against obesity by increasing energy expenditure. However, regulation of BAT by dietary factors remains largely unexplored at the mechanistic level. We investigated the effect of eicosapentaenoic acid (EPA) on BAT metabolism. Male C57BL/6J (B6) mice were fed either a high-fat diet (HF, 45% kcal fat) or HF diet supplemented with EPA (HF-EPA, 6.75% kcal EPA) for 11 weeks. RNA sequencing (RNA-Seq) and microRNA (miRNA) profiling were performed on RNA from BAT using Illumina HiSeq and Illumina Genome Analyzer NextSeq, respectively. We conducted pathway analyses using ingenuity pathway analysis software (IPA®) and validated some genes and miRNAs using qPCR. We identified 479 genes that were differentially expressed (2-fold change, n = 3, P ≤ 0.05) in BAT from HF compared to HF-EPA. Genes negatively correlated with thermogenesis such as hypoxia inducible factor 1 alpha subunit inhibitor (Hif1an), were downregulated by EPA. Pathways related to thermogenesis such as peroxisome proliferator-activated receptor (PPAR) were upregulated by EPA while pathways associated with obesity and inflammation such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were downregulated by EPA. MiRNA profiling identified nine and six miRNAs that were upregulated and downregulated by EPA, respectively (log2 fold change > 1.25, n = 3, P ≤ 0.05). Key regulatory miRNAs which were involved in thermogenesis, such as miR-455-3p and miR-129-5p were validated using qPCR. In conclusion, the depth of transcriptomic and miRNA profiling revealed novel mRNA-miRNA interaction networks in BAT which are involved in thermogenesis, and regulated by EPA.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Nadeeja N Wijayatunga
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States
| | - Nishan S Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, United States
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Houston, TX, United States
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Houston, TX, United States
| | - Pratibha Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, United States; Obesity Research Cluster, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
29
|
Curtasu MV, Knudsen KEB, Callesen H, Purup S, Stagsted J, Hedemann MS. Obesity Development in a Miniature Yucatan Pig Model: A Multi-compartmental Metabolomics Study on Cloned and Normal Pigs Fed Restricted or Ad Libitum High-Energy Diets. J Proteome Res 2018; 18:30-47. [PMID: 30365323 DOI: 10.1021/acs.jproteome.8b00264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Miniature-pig models for human metabolic disorders such as obesity and metabolic syndrome are gaining popularity. However, in-depth knowledge on the phenotypic and metabolic effects of metabolic dysregulation is lacking, and ad libitum feeding is not well-characterized in these pig breeds. Therefore, an investigation was performed into the metabolome of Yucatan minipigs fed ad libitum or restricted diets. Furthermore, we used cloned and conventional minipigs to assess if cloning reflects a presumably lowered variation between subjects. For 5 months, 17 female Yucatan minipigs were fed either ad libitum or restricted Western-style diets. Serum, urine, and liver tissues were collected and analyzed by non-targeted liquid chromatography-mass spectrometry metabolomics and by biochemical analyses. Several metabolic pathways were deregulated as a result of obesity and increased energy-dense feed intake, particularly the hepatic glutathione pathway and the pantothenic acid and tryptophan metabolic pathways in serum and urine. Although cloned minipigs were phenotypically similar to wild-type minipigs, the metabolomics analysis of serum and liver tissues showed several altered pathways, such as amino acid and purine metabolism. These changes, as an effect of cloning, could limit the use of cloned models in dietary intervention studies and provides no evidence of decreased variability between subjects.
Collapse
Affiliation(s)
- Mihai V Curtasu
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| | - Knud Erik B Knudsen
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| | - Henrik Callesen
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| | - Stig Purup
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| | - Jan Stagsted
- Diet4Life , Agro Food Park 13 , DK-8200 Aarhus N , Denmark
| | - Mette S Hedemann
- Department of Animal Science , Aarhus University , Blichers Alle 20 , DK-8830 Tjele , Denmark
| |
Collapse
|
30
|
Abstract
Numerous studies have shown that feeding rodents n-3 polyunsaturated fatty acids attenuates adiposity. Moreover, meta-analyses of human dietary intervention studies indicate that fish oil (eicosapentaenoic and docosahexaenoic acid) supplementation might reduce waist circumference. A recent line of research suggests that browning of white adipose depots and activation of uncoupled respiration in brown fat contributes to these effects. This mini-review summarizes the observations in rodents, highlights several mechanisms that might explain these observations and discusses the translational potential. Given the available in vivo evidence and the ability of human adipocytes to aquire a beige phenotype in response to eicosapentaenoic acid incubation, future studies should test the hypothesis that fish oil activates thermogenic brown and beige adipose tissue in humans.
Collapse
Affiliation(s)
- Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
31
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
32
|
Oh SL, Lee SR, Kim JS. Effects of conjugated linoleic acid/n-3 and resistance training on muscle quality and expression of atrophy-related ubiquitin ligases in middle-aged mice with high-fat diet-induced obesity. J Exerc Nutrition Biochem 2017; 21:11-18. [PMID: 29036761 PMCID: PMC5643205 DOI: 10.20463/jenb.2017.0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the effects of conjugated linoleic acid (CLA)/n-3 supplements and resistance exercise training (RT) for 20 weeks on muscle quality and genes related to protein synthesis/degradation in middle-aged mice with high-fat diet (HFD)-induced obesity. METHODS Nine-month-old C57BL/6 male mice were randomly assigned to five groups: 1) normal diet (C), 2) high-fat diet (H), 3) H+RT (HRT), 4) H+CLA/n-3 (H-CN), and 5) H+RT+CLA/n-3 (H-RTCN). HFD groups were given a diet containing 60% fat for 20 weeks, and exercised groups underwent progressive RT using weighted ladder climbing. The CLA/n-3 mixed diet contained 1% CLA and 1% n-3. Grip strength was assessed, and triceps were removed. RT-PCR was used to analyze transcript levels. RESULTS Grip strength of the H group was significantly lower than that of the C group; however, those in the H-CN, H-RT, and H-RTN groups were significantly greater than that in the H group. However, the muscle quality was significantly greater only in the H-RT group compared with the H and H-CN groups. Akt expression decreased in the H-CN, H-RT, and H-RTCN groups compared with those in the C and H groups, whereas mammalian target of rapamycin expression increased in the H, H-CN, H-RT, and H-RTCN groups compared with that in the C group. However, atrogin1 was significantly downregulated in the H-RTCN group compared with that in the H and H-CN groups, and MuRF1 expression was also decreased in the H-RT and H-RTCN groups. Interestingly, atrogin1 and MuRF1 were downregulated in the H-RTCN group compared with that in the H-CN group. CONCLUSION HFD-mediated gene expression involved in protein degradation was attenuated following 20-week RT with CLA/n-3. Furthermore, RT with or without CLA/n-3 improved grip strength and muscle quality in middle-aged mice during HFD. Therefore, RT with CLA/n-3 during HFD may improve muscle strength and quality by suppressing protein degradation.
Collapse
Affiliation(s)
- Seung-Lyul Oh
- Aging & Mobility Biophysics Lab, Dept. of Rehabilitation Medicine, Seoul National University Bundang Hospital, Sungnam, Republic of Korea
| | - Sang-Rok Lee
- Department of Kinesiology and Dance, New Mexico State University, NM United States, USA
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Science, Florida State University, FL United States, USA
| |
Collapse
|
33
|
Khaire A, Rathod R, Kale A, Joshi S. Vitamin B 12 Deficiency Across Three Generations Adversely Influences Long-chain Polyunsaturated Fatty Acid Status and Cardiometabolic Markers in Rats. Arch Med Res 2017; 47:427-435. [PMID: 27986122 DOI: 10.1016/j.arcmed.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Vitamin B12 and omega-3 fatty acid deficiency is prevalent in the vegetarian population and is associated with adverse pregnancy outcomes and cardiometabolic risk. The present study investigates the long-term effects of vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids on cardiometabolic profile and long-chain polyunsaturated fatty acid levels (LCPUFA) in the F3 generation offspring. METHODS Three generations of rats were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient + omega-3 fatty acid supplemented; vitamin B12 + omega-3 fatty acid supplemented. Animals were sacrificed at 3 months of age. RESULTS Vitamin B12 deficiency lowered (p <0.01 for both) plasma eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), liver DHA (p <0.05), plasma/liver omega-3 fatty acids (p <0.05 for both), increased triglycerides (p <0.05) and systolic BP (p <0.01) and lowered cholesterol levels (p <0.05) as compared to control. Vitamin B12 deficiency in the presence of omega-3 fatty acids improved plasma/liver EPA, DHA and omega-3 fatty acid profile and maintained cholesterol, triglyceride and BP levels. Vitamin B12 supplementation lowered liver DHA (p <0.05) and cholesterol (p <0.01), whereas BP was similar to control. Combined supplementation of vitamin B12 and omega-3 fatty acids improved omega-3 fatty acid profile, lowered cholesterol/triglyceride levels and maintained the BP similar to that of control. CONCLUSION Vitamin B12 deficiency across three generations adversely affects LCPUFA and cardiometabolic profile in the adult offspring. This study provides clues for a combined supplementation of vitamin B12 and omega-3 fatty acids to reduce the risk for noncommunicable diseases.
Collapse
Affiliation(s)
- Amrita Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Richa Rathod
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India.
| |
Collapse
|
34
|
Evaluation of chemopreventive effects in colitis-associated colon tumourigenesis and oral toxicity of the lipophilic epigallocatechin gallate-docosahexaenoic acid. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Antiobesity Effects of Unripe Rubus coreanus Miquel and Its Constituents: An In Vitro and In Vivo Characterization of the Underlying Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4357656. [PMID: 26904142 PMCID: PMC4745304 DOI: 10.1155/2016/4357656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/07/2015] [Accepted: 12/27/2015] [Indexed: 01/04/2023]
Abstract
Background. The objective of the present study was to perform a bioguided fractionation of unripe Rubus coreanus Miquel (uRC) and evaluate the lipid accumulation system involvement in its antiobesity activity as well as study the uRC mechanism of action. Results. After the fractionation, the BuOH fraction of uRC (uRCB) was the most active fraction, suppressing the differentiation of 3T3-L1 adipocytes in a dose-dependent manner. Moreover, after an oral administration for 8 weeks in HFD-induced obese mice, uRCB (10 and 50 mg/kg/day) produced a significant decrease in body weight, food efficiency ratio, adipose tissue weight and LDL-cholesterol, serum glucose, TC, and TG levels. Similarly, uRCB significantly suppressed the elevated mRNA levels of PPARγ in the adipose tissue in vivo. Next, we investigated the antiobesity effects of ellagic acid, erycibelline, 5-hydroxy-2-pyridinemethanol, m-hydroxyphenylglycine, and 4-hydroxycoumarin isolated from uRCB. Without affecting cell viability, five bioactive compounds decreased the lipid accumulation in the 3T3-L1 cells and the mRNA expression levels of key adipogenic genes such as PPARγ, C/EBPα, SREBP-1c, ACC, and FAS. Conclusion. These results suggest that uRC and its five bioactive compounds may be a useful therapeutic agent for body weight control by downregulating adipogenesis and lipogenesis.
Collapse
|
36
|
Sarcoplasmic Reticulum Phospholipid Fatty Acid Composition and Sarcolipin Content in Rat Skeletal Muscle. J Membr Biol 2015; 248:1089-96. [PMID: 26193810 DOI: 10.1007/s00232-015-9822-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
In a previous study, we reported lower sarcoplasmic reticulum (SR) Ca(2+) pump ionophore ratios in rat soleus compared to red and white gastrocnemius (RG, WG) muscles which may be indicative of greater SR Ca(2+) permeability in soleus. Here we assessed the lipid composition of the SR membranes obtained from these muscles to determine if SR docosahexaenoic acid (DHA) content and fatty acid unsaturation could help to explain the previously observed differences in SR Ca(2+) permeability. Since we have shown previously that sarcolipin may also influence SR Ca(2+) permeability, we also examined the levels of sarcolipin in rat muscle. We found that SR membrane DHA content was significantly higher in soleus (5.3 ± 0.2 %) compared to RG (4.2 ± 0.2 %) and WG (3.3 ± 0.2 %). Likewise, total SR membrane unsaturation and unsaturation index (UI) were significantly higher in soleus (% unsaturation: 59.1 ± 2.4; UI: 362.9 ± 0.8) compared to RG (% unsaturation: 55.3 ± 1.0; UI: 320.9 ± 2.5) and WG (% unsaturation: 52.6 ± 1.1; UI: 310. ± 2.2). Sarcolipin protein was 17-fold more abundant in rat soleus compared to RG and was not detected in WG; however, comparisons between soleus, RG, and WG in sarcolipin-null mice revealed that, in the absence of sarcolipin, ionophore ratios are still lowest in soleus and highest in WG. Overall, our results suggest that SR membrane DHA content and unsaturation, and, in part, sarcolipin expression may contribute to SR Ca(2+) permeability and, in turn, may have implications in muscle-based metabolism and diet-induced obesity.
Collapse
|
37
|
De Rosa MC, Caputo M, Zirpoli H, Rescigno T, Tarallo R, Giurato G, Weisz A, Torino G, Tecce MF. Identification of Genes Selectively Regulated in Human Hepatoma Cells by Treatment With Dyslipidemic Sera and PUFAs. J Cell Physiol 2015; 230:2059-66. [DOI: 10.1002/jcp.24932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Affiliation(s)
| | - Mariella Caputo
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Hylde Zirpoli
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Tania Rescigno
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics; Department of Medicine and Surgery; University of Salerno; Italy
| | - Gaetano Torino
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| | - Mario Felice Tecce
- Laboratory of Molecular Nutrition; Department of Pharmacy; University of Salerno; Italy
| |
Collapse
|
38
|
The role of dietary coconut for the prevention and treatment of Alzheimer's disease: potential mechanisms of action. Br J Nutr 2015; 114:1-14. [PMID: 25997382 DOI: 10.1017/s0007114515001452] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coconut, Cocos nucifera L., is a tree that is cultivated to provide a large number of products, although it is mainly grown for its nutritional and medicinal values. Coconut oil, derived from the coconut fruit, has been recognised historically as containing high levels of saturated fat; however, closer scrutiny suggests that coconut should be regarded more favourably. Unlike most other dietary fats that are high in long-chain fatty acids, coconut oil comprises medium-chain fatty acids (MCFA). MCFA are unique in that they are easily absorbed and metabolised by the liver, and can be converted to ketones. Ketone bodies are an important alternative energy source in the brain, and may be beneficial to people developing or already with memory impairment, as in Alzheimer's disease (AD). Coconut is classified as a highly nutritious 'functional food'. It is rich in dietary fibre, vitamins and minerals; however, notably, evidence is mounting to support the concept that coconut may be beneficial in the treatment of obesity, dyslipidaemia, elevated LDL, insulin resistance and hypertension - these are the risk factors for CVD and type 2 diabetes, and also for AD. In addition, phenolic compounds and hormones (cytokinins) found in coconut may assist in preventing the aggregation of amyloid-β peptide, potentially inhibiting a key step in the pathogenesis of AD. The purpose of the present review was to explore the literature related to coconut, outlining the known mechanistic physiology, and to discuss the potential role of coconut supplementation as a therapeutic option in the prevention and management of AD.
Collapse
|
39
|
Hamed I, Özogul F, Özogul Y, Regenstein JM. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12136] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Imen Hamed
- Biotechnology Centre; Cukurova Univ; Adana Turkey
| | - Fatih Özogul
- Dept. of Seafood Processing Technology, Faculty of Fisheries; Cukurova Univ; Adana Turkey
| | - Yesim Özogul
- Dept. of Seafood Processing Technology, Faculty of Fisheries; Cukurova Univ; Adana Turkey
| | | |
Collapse
|
40
|
Fajardo VA, Bombardier E, Irvine T, Metherel AH, Stark KD, Duhamel T, Rush JWE, Green HJ, Tupling AR. Dietary docosahexaenoic acid supplementation reduces SERCA Ca2+ transport efficiency in rat skeletal muscle. Chem Phys Lipids 2015; 187:56-61. [PMID: 25772907 DOI: 10.1016/j.chemphyslip.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 03/11/2015] [Indexed: 01/08/2023]
Abstract
Docosahexaenoic acid (DHA) can reduce the efficiency and increase the energy consumption of Na(+)/K(+)-ATPase pump and mitochondrial electron transport chain by promoting Na(+) and H(+) membrane permeability, respectively. In skeletal muscle, the sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) pumps are major contributors to resting metabolic rate. Whether DHA can affect SERCA efficiency remains unknown. Here, we examined the hypothesis that dietary supplementation with DHA would reduce Ca(2+) transport efficiency of the SERCA pumps in skeletal muscle. Total lipids were extracted from enriched sarcoplasmic reticulum (SR) membranes that were isolated from red vastus lateralis skeletal muscles of rats that were either fed a standard chow diet supplemented with soybean oil or supplemented with DHA for 8 weeks. The fatty acid composition of total SR membrane lipids and the major phospholipid species were determined using electrospray ionization mass spectrometry (ESI-MS). After 8 weeks of DHA supplementation, total SR DHA content was significantly elevated (control, 4.1 ± 1.0% vs. DHA, 9.9 ± 1.7%; weight percent of total fatty acids) while total arachidonic acid was reduced (control, 13.5 ± 0.4% vs. DHA-fed, 9.4 ± 0.2). Similar changes in these fatty acids were observed in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, altogether indicating successful incorporation of DHA into the SR membranes post-diet. As hypothesized, DHA supplementation reduced SERCA Ca(2+) transport efficiency (control, 0.018 ± 0.0002 vs. DHA-fed, 0.014 ± 0.0009) possibly through enhanced SR Ca(2+) permeability (ionophore ratio: control, 2.8 ± 0.2 vs. DHA-fed, 2.2 ± 0.3). Collectively, our results suggest that DHA may promote skeletal muscle-based metabolism and thermogenesis through its influence on SERCA.
Collapse
Affiliation(s)
- Val Andrew Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Thomas Irvine
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Adam H Metherel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Todd Duhamel
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2 Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg MB R2H 2A6, Canada
| | - James W E Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
41
|
Kondo S, Kamei A, Xiao JZ, Iwatsuki K, Abe K. Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis. Benef Microbes 2014; 4:247-51. [PMID: 23666099 DOI: 10.3920/bm2012.0019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We previously reported that supplementation with Bifidobacterium breve B-3 reduced body weight gain and accumulation of visceral fat in a dose-dependent manner, and improved serum levels of total cholesterol, glucose and insulin in a mouse model of diet-induced obesity. In this study, we investigated the expression of genes in the liver using DNA microarray analysis and q-PCR to reveal the mechanism of these anti-obesity effects in this mouse model. Administration of B. breve B-3 led to regulated gene expression of pathways involved in lipid metabolism and response to stress. The results indicate that these regulations in the liver are related to the anti-metabolic syndrome effects of B. breve B-3.
Collapse
Affiliation(s)
- S Kondo
- Food Science and Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, 252-8583 Kanagawa, Japan
| | | | | | | | | |
Collapse
|
42
|
van Baak MA. Nutrition as a link between obesity and cardiovascular disease: how can we stop the obesity epidemic? Thromb Haemost 2013; 110:689-96. [PMID: 23945609 DOI: 10.1160/th13-01-0045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/11/2013] [Indexed: 01/03/2023]
Abstract
Overweight and obesity are associated with excess cardiovascular risk. To reduce cardiovascular risk at the population level, the prevention of overweight and obesity is key. This requires adoption of a healthy lifestyle, including less inactivity and more moderate-to-vigorous physical activity, and a healthy diet. Diet composition may facilitate weight gain prevention and weight loss. Effects of dietary fats, carbohydrates and proteins will be discussed in this context. Current evidence indicates that moderation of the intake of (saturated) fat, a moderate increase in protein content of the diet, a replacement of refined grain/high glucose index (GI) by whole-grain/low GI carbohydrates and limitation of the consumption of calorically-sweetened beverages are likely to facilitate weight control.
Collapse
Affiliation(s)
- Marleen A van Baak
- Marleen A. van Baak, Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands, Tel.: +31 43 3881630, E-mail:
| |
Collapse
|
43
|
Kim Y, Kelly OJ, Ilich JZ. Synergism of α-linolenic acid, conjugated linoleic acid and calcium in decreasing adipocyte and increasing osteoblast cell growth. Lipids 2013; 48:787-802. [PMID: 23757205 DOI: 10.1007/s11745-013-3803-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/07/2013] [Indexed: 11/30/2022]
Abstract
Whole fat milk and dairy products (although providing more energy compared to low- or non-fat products), are good sources of α-linolenic acid (ALA), conjugated linoleic acid (CLA) and calcium, which may be favorable in modulating bone and adipose tissue metabolism. We examined individual and/or synergistic effects of ALA, CLA and calcium (at levels similar to those in whole milk/dairy products) in regulating bone and adipose cell growth. ST2 stromal, MC3T3-L1 adipocyte-like and MC3T3-E1 osteoblast-like cells were treated with: (a) linoleic acid (LNA):ALA ratios = 1-5:1; (b) individual/combined 80-90 % c9, t11 (9,11) and 5-10 % t10, c12 (10,12) CLA isomers; (c) 0.5-3.0 mM calcium; (d) combinations of (a), (b), (c); and (e) control. Local mediators, including eicosanoids and growth factors, were measured. (a) The optimal effect was found at the 4:1 LNA:ALA ratio where insulin-like growth factor-1 (IGF-1) and IGF binding protein-3 (IGFBP-3) production was the lowest in MC3T3-L1 cells. (b) All CLA isomer blends decreased MC3T3-L1 and increased MC3T3-E1 cell differentiation. (c) 1.5-2.5 mM calcium increased ST2 and MC3T3-E1, and decreased MC3T3-L1 cell proliferation. (d) Combination of 4:1 LNA:ALA + 90:10 % CLA + 2.0 mM calcium lowered MC3T3-L1 and increased MC3T3-E1 cell differentiation. Overall, the optimal LNA:ALA ratio to enhance osteoblastogenesis and inhibit adipogenesis was 4:1. This effect was enhanced by 90:10 % CLA + 2.0 mM calcium, indicating possible synergism of these dietary factors in promoting osteoblast and inhibiting adipocyte differentiation in cell cultures.
Collapse
Affiliation(s)
- Youjin Kim
- Bayer CropScience Ltd., Gangnam-gu, Seoul 135-979, South Korea
| | | | | |
Collapse
|
44
|
Lee MS, Kim IH, Kim Y. Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C(2)C(12) muscle cells. Nutrients 2013; 5:1660-71. [PMID: 23698161 PMCID: PMC3708343 DOI: 10.3390/nu5051660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022] Open
Abstract
Uncoupling protein 3 (UCP3) is a mitochondrial membrane transporter that is expressed mainly in skeletal muscle where it plays an important role in energy expenditure and fat oxidation. In this study, we investigated the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on UCP3 gene expression in C2C12 muscle cells. EPA and DHA up-regulated UCP3 mRNA level in a dose-dependent manner and similarly increased UCP3 promoter activity in C2C12 muscle cells. To determine whether AMP-activated protein kinase (AMPK) signaling may also directly regulate UCP3 expression, 5′-amino-4-imidazolecarboxamide-ribonucleoside (AICAR), an AMP analog that activates AMPK, was treated in C2C12 muscle cells. AICAR showed additive effects with EPA or DHA on the UCP3 promoter activation. These results indicate that EPA and DHA directly regulate the gene expression of UCP3, potentially through AMPK-mediated pathway in C2C12 muscle cells.
Collapse
Affiliation(s)
- Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea; E-Mail:
| | - In-Hwan Kim
- Department of Food and Nutrition, College of Health Sciences, Korea University, Seoul 136-703, Korea; E-Mail:
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-2-3277-3101; Fax: +82-2-3277-4425
| |
Collapse
|
45
|
Ho JN, Choi JW, Lim WC, Kim MK, Lee IY, Cho HY. Kefir inhibits 3T3-L1 adipocyte differentiation through down-regulation of adipogenic transcription factor expression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:485-490. [PMID: 22821258 DOI: 10.1002/jsfa.5792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 05/30/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Kefir, a traditional fermented milk composed of microbial symbionts, is reported to have various health benefits such as anti-tumour, anti-inflammatory, anti-neoplastic and pro-digestive effects. In this study, to elucidate the effects of kefir on adipocyte differentiation and lipid accumulation, three fractions were prepared from kefir culture broth. The inhibitory effects of kefir liquid culture broth fraction (Fr-1), soluble fraction (Fr-2) and insoluble fraction (Fr-3), prepared by sonication of kefir solid culture broth, on adipocyte differentiation in 3T3-L1 preadipocytes were examined. RESULTS Fr-3 (0.1 mg mL(-1)) significantly decreased lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity by 60 and 68% respectively without affecting cell viability. In addition, Fr-3 treatment down-regulated the mRNA expression of adipogenic transcription factors including C/EBPα (32%), PPARγ (46%) and SREBP-1c (34%) during adipocyte differentiation compared with untreated control cells. The mRNA expression of adipocyte-specific genes (aP2, FAS and ACC) was also clearly decreased. CONCLUSION The results suggest that the insoluble fraction of kefir (Fr-3) mediates anti-adipogenic effects through the inhibition of adipocyte differentiation, partly via suppression of the C/EBPα-, SREBP-1c- and PPARγ-dependent pathways.
Collapse
Affiliation(s)
- Jin-Nyoung Ho
- Department of Medical Nutrition, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Genome sequence of the psychrophilic deep-sea bacterium Moritella marina MP-1 (ATCC 15381). J Bacteriol 2013; 194:6296-7. [PMID: 23105048 DOI: 10.1128/jb.01382-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moritella marina MP-1 is a bacterial species known for its production of docosahexaenoic acid. We present the draft genome sequence of the type strain Moritella marina MP-1 (ATCC 15381), having 4,636,778 bp with a G+C content of 40.5% and consisting of 83 contigs.
Collapse
|
47
|
Honma T, Kitano Y, Kijima R, Jibu Y, Kawakami Y, Tsuduki T, Nakagawa K, Miyazawa T. Comparison of the Health Benefits of Different Eras of Japanese Foods : Lipid and Carbohydrate Metabolism Focused Research. J JPN SOC FOOD SCI 2013. [DOI: 10.3136/nskkk.60.541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Trigueros L, Peña S, Ugidos AV, Sayas-Barberá E, Pérez-Álvarez JA, Sendra E. Food ingredients as anti-obesity agents: a review. Crit Rev Food Sci Nutr 2013; 53:929-42. [PMID: 23768185 DOI: 10.1080/10408398.2011.574215] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overweight and obesity have a major impact on global health; their prevalence has rapidly increased in all industrialized countries in the past few decades and diabetes and hypertension are their direct consequences. Pharmacotherapy provides reinforcement for obesity treatment, but should be an adjunctive support to diet, exercise, and lifestyle modification. At present, only orlistat and sibutramine have been approved by the US Food and Drug Administration for long-term use, but sibutramine was withdrawn for sale by the European Medicines Agency. The development of functional foods for the prevention and/or treatment of obesity suppose an opportunity for the food market and involve the knowledge of the mechanisms of appetite and energy expenditure as well as the metabolic sensation of satiety. Strategies for weight control management affect gut hormones as potential targets for the appetite metabolic regulation, stimulation of energy expenditure (thermogenesis), and modifications in the metabolic activity of the gut microbiota. Functional foods for obesity may also include bioactive fatty acids, phenolic compounds, soybean, plant sterols, dietary calcium, and dietary fiber. This review intends to offer an overview of the present situation of the anti-obesity agents currently used in dietary therapy as well as some functional food ingredients with potentially anti-obesity effects.
Collapse
Affiliation(s)
- L Trigueros
- IPOA Research Group UMH-1 and REVIV_ Generalitat Valenciana, Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández, Ctra. de Beniel km 3.2, 03312, Orihuela, Alicante, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Ho JN, Park SJ, Choue R, Lee J. Standardized Ethanol Extract of Curcuma longa
L. Fermented by Aspergillus oryzae
Promotes Lipolysis via Activation of cAMP-Dependent PKA in 3T3-L1 Adipocytes. J Food Biochem 2012. [DOI: 10.1111/jfbc.12011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jin-Nyoung Ho
- Department of Medical Nutrition; Kyung Hee University; Yongin 446-701 Korea
| | - Soo-Jeung Park
- Department of Medical Nutrition; Kyung Hee University; Yongin 446-701 Korea
| | - Ryowon Choue
- Department of Medical Nutrition; Kyung Hee University; Yongin 446-701 Korea
- Research Institute of Medical Nutrition; Kyung Hee University; Seoul Korea
| | - Jeongmin Lee
- Department of Medical Nutrition; Kyung Hee University; Yongin 446-701 Korea
- Research Institute of Medical Nutrition; Kyung Hee University; Seoul Korea
| |
Collapse
|
50
|
Growth condition optimization for docosahexaenoic acid (DHA) production by Moritella marina MP-1. Appl Microbiol Biotechnol 2012; 97:2859-66. [PMID: 23111600 DOI: 10.1007/s00253-012-4529-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
The marine organism Moritella marina MP-1 produces the polyunsaturated fatty acid docosahexaenoic acid (DHA). While the basic metabolic pathway for DHA production in this organism has been identified, the impact of growth conditions on DHA production is largely unknown. This study examines the effect of supplemental carbon, nitrogen and salts, growth temperature and media composition and pH on DHA and biomass production and the fatty acid profile. The addition of supplemental nitrogen significantly increased the overall DHA titer via an increase in biomass production. Supplemental glucose or glycerol increased biomass production, but decreased the amount of DHA per biomass, resulting in no net change in the DHA titer. Acidification of the baseline media pH to 6.0 increased DHA per biomass. Changes in growth temperature or provision of supplemental sodium or magnesium chloride did not increase DHA titer. This organism was also shown to grow on defined minimal media. For both media types, glycerol enabled more DHA production per biomass than glucose. Combination of these growth findings into marine broth supplemented with glycerol, yeast extract, and tryptone at pH 6.0 resulted in a final titer of 82±5 mg/L, a nearly eightfold increase relative to the titer of 11±1 mg/L seen in the unsupplemented marine broth. The relative distribution of other fatty acids was relatively robust to growth condition, but the presence of glycerol resulted in a significant increase in myristic acid (C14:0) and decrease in palmitic acid (C16:0). In summary, DHA production by M. marina MP-1 can be increased more than fivefold by changing the growth media. Metabolic engineering of this organism to increase the amount of DHA produced per biomass could result in additional increases in titer.
Collapse
|