1
|
Li X, Hu Z, Shi Q, Qiu W, Liu Y, Liu Y, Huang S, Liang L, Chen Z, He X. Elevated choline drives KLF5-dominated transcriptional reprogramming to facilitate liver cancer progression. Oncogene 2024; 43:3121-3136. [PMID: 39251845 DOI: 10.1038/s41388-024-03150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
An increase in the total choline-containing compound content is a common characteristic of cancer cells, and aberrant choline metabolism in cancer is closely associated with malignant progression. However, the potential role of choline-induced global transcriptional changes in cancer cells remains unclear. In this study, we reveal that an elevated choline content facilitates hepatocellular carcinoma (HCC) cell proliferation by reprogramming Krüppel-like factor 5 (KLF5)-dominated core transcriptional regulatory circuitry (CRC). Mechanistically, choline administration leads to elevated S-adenosylmethionine (SAM) levels, inducing the formation of H3K4me1 within the super-enhancer (SE) region of KLF5 and activating its transcription. KLF5, as a key transcription factor (TF) of CRC established by choline, further transactivates downstream genes to facilitate HCC cell cycle progression. Additionally, KLF5 can increase the expression of choline kinase-α (CHKA) and CTP:phosphocholine cytidylyltransferase (CCT) resulting in a positive feedback loop to promote HCC cell proliferation. Notably, the histone deacetylase inhibitor (HDACi) vorinostat (SAHA) significantly suppressed KLF5 expression and liver tumor growth in mice, leading to a prolonged lifespan. In conclusion, these findings highlight the epigenetic regulatory mechanism of the SE-driven key regulatory factor KLF5 conducted by choline metabolism in HCC and suggest a potential therapeutic strategy for HCC patients with high choline content.
Collapse
Affiliation(s)
- Xinrong Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenying Qiu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Linhui Liang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Ma L, Lv J, Zhang A. Depletion of S-adenosylmethionine induced by arsenic exposure is involved in liver injury of rat through perturbing histone H3K36 trimethylation dependent bile acid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122228. [PMID: 37481032 DOI: 10.1016/j.envpol.2023.122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Long-term exposure to arsenic, a common environmental pollutant, can induce various types of liver injury, but the mechanism and treatment measures remain unclear. This study constructed a rat model of arsenic-induced liver injury, with methyl group donor S-adenosylmethionine (SAM) supplementation and Rosa roxburghii Tratt juice intervention, to explore the epigenetic mechanism and intervention method of arsenic-induced liver injury from the perspective of hepatic bile acid metabolism. The results showed that arsenic exposure induced the accumulation of total bile acids (TBA) in the liver and serum of rats, and the abnormalities in liver function and liver histopathology. Arsenic reduced histone H3K36 trimethylation (H3K36me3) in the liver via consuming methyl group donor SAM. The reduction of H3K36me3 was involved in arsenic-induced bile acid accumulation by inhibiting the transcription of negative feedback regulators Fxr and Fgfr4 for hepatic bile acid synthesis. SAM supplementation reversed arsenic-induced bile acid accumulation and liver injury by reactivating H3k36me3-dependent transcription of Fxr and Fgfr4. Moreover, this study found that Rosa roxburghii Tratt juice could rescue arsenic-induced SAM consumption, recover H3K36me3-dependent negative feedback regulation of hepatic bile acid synthesis, and alleviate arsenic-induced bile acid accumulation and liver injury. In conclusion, arsenic exposure perturbed H3K36me3-dependent hepatic bile acid metabolism via depleting SAM, thereby inducing hepatic bile acid accumulation and liver injury, which was ameliorated by the supporting effect of Rosa roxburghii Tratt juice on SAM. This study contributes to understanding the mechanism of arsenic-induced liver injury from the perspective of SAM-dependent epigenetics, providing new insight into its prevention and treatment.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Jiaxin Lv
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
3
|
Choi SW, Friso S. Modulation of DNA methylation by one-carbon metabolism: a milestone for healthy aging. Nutr Res Pract 2023; 17:597-615. [PMID: 37529262 PMCID: PMC10375321 DOI: 10.4162/nrp.2023.17.4.597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 08/03/2023] Open
Abstract
Healthy aging can be defined as an extended lifespan and health span. Nutrition has been regarded as an important factor in healthy aging, because nutrients, bioactive food components, and diets have demonstrated beneficial effects on aging hallmarks such as oxidative stress, mitochondrial function, apoptosis and autophagy, genomic stability, and immune function. Nutrition also plays a role in epigenetic regulation of gene expression, and DNA methylation is the most extensively investigated epigenetic phenomenon in aging. Interestingly, age-associated DNA methylation can be modulated by one-carbon metabolism or inhibition of DNA methyltransferases. One-carbon metabolism ultimately controls the balance between the universal methyl donor S-adenosylmethionine and the methyltransferase inhibitor S-adenosylhomocysteine. Water-soluble B-vitamins such as folate, vitamin B6, and vitamin B12 serve as coenzymes for multiple steps in one-carbon metabolism, whereas methionine, choline, betaine, and serine act as methyl donors. Thus, these one-carbon nutrients can modify age-associated DNA methylation and subsequently alter the age-associated physiologic and pathologic processes. We cannot elude aging per se but we may at least change age-associated DNA methylation, which could mitigate age-associated diseases and disorders.
Collapse
Affiliation(s)
- Sang-Woon Choi
- Chaum Life Center, CHA University School of Medicine, Seoul 06062, Korea
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Simonetta Friso
- Unit of Internal Medicine B and ‘Epigenomics and Gene-Nutrient Interactions’ Laboratory, Department of Medicine, University of Verona School of Medicine, Policlinico “G.B. Rossi,” 37134 Verona, Italy
| |
Collapse
|
4
|
Sécula A, Bluy LE, Chapuis H, Bonnet A, Collin A, Gress L, Cornuez A, Martin X, Bodin L, Bonnefont CMD, Morisson M. Maternal dietary methionine restriction alters hepatic expression of one-carbon metabolism and epigenetic mechanism genes in the ducklings. BMC Genomics 2022; 23:823. [PMID: 36510146 PMCID: PMC9746021 DOI: 10.1186/s12864-022-09066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Embryonic and fetal development is very susceptible to the availability of nutrients that can interfere with the setting of epigenomes, thus modifying the main metabolic pathways and impacting the health and phenotypes of the future individual. We have previously reported that a 38% reduction of the methyl donor methionine in the diet of 30 female ducks reduced the body weight of their 180 mule ducklings compared to that of 190 ducklings from 30 control females. The maternal methionine-restricted diet also altered plasmatic parameters in 30 of their ducklings when compared to that of 30 ducklings from the control group. Thus, their plasma glucose and triglyceride concentrations were higher while their free fatty acid level and alanine transaminase activity were decreased. Moreover, the hepatic transcript level of 16 genes involved in pathways related to energy metabolism was significantly different between the two groups of ducklings. In the present work, we continued studying the liver of these newly hatched ducklings to explore the impact of the maternal dietary methionine restriction on the hepatic transcript level of 70 genes mostly involved in one-carbon metabolism and epigenetic mechanisms. RESULTS Among the 12 genes (SHMT1, GART, ATIC, FTCD, MSRA, CBS, CTH, AHCYL1, HSBP1, DNMT3, HDAC9 and EZH2) identified as differentially expressed between the two maternal diet groups (p-value < 0.05), 3 of them were involved in epigenetic mechanisms. Ten other studied genes (MTR, GLRX, MTHFR, AHCY, ADK, PRDM2, EEF1A1, ESR1, PLAGL1, and WNT11) tended to be differently expressed (0.05 < p-value < 0.10). Moreover, the maternal dietary methionine restriction altered the number and nature of correlations between expression levels of differential genes for one-carbon metabolism and epigenetic mechanisms, expression levels of differential genes for energy metabolism, and phenotypic traits of ducklings. CONCLUSION This avian model showed that the maternal dietary methionine restriction impacted both the mRNA abundance of 22 genes involved in one-carbon metabolism or epigenetic mechanisms and the mRNA abundance of 16 genes involved in energy metabolism in the liver of the newly hatched offspring, in line with the previously observed changes in their phenotypic traits.
Collapse
Affiliation(s)
- Aurélie Sécula
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Lisa E. Bluy
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Hervé Chapuis
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Agnès Bonnet
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Anne Collin
- grid.511104.0INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | - Laure Gress
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Alexis Cornuez
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d’Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Xavier Martin
- UEPFG INRA Bordeaux-Aquitaine (Unité Expérimentale Palmipèdes à Foie Gras), Domaine d’Artiguères 1076, route de Haut Mauco, F-40280 Benquet, France
| | - Loys Bodin
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Cécile M. D. Bonnefont
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | - Mireille Morisson
- grid.508721.9GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| |
Collapse
|
5
|
Lin JMG, Kourtis S, Ghose R, Pardo Lorente N, Kubicek S, Sdelci S. Metabolic modulation of transcription: The role of one-carbon metabolism. Cell Chem Biol 2022; 29:S2451-9456(22)00415-9. [PMID: 36513079 DOI: 10.1016/j.chembiol.2022.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
While it is well known that expression levels of metabolic enzymes regulate the metabolic state of the cell, there is mounting evidence that the converse is also true, that metabolite levels themselves can modulate gene expression via epigenetic modifications and transcriptional regulation. Here we focus on the one-carbon metabolic pathway, which provides the essential building blocks of many classes of biomolecules, including purine nucleotides, thymidylate, serine, and methionine. We review the epigenetic roles of one-carbon metabolic enzymes and their associated metabolites and introduce an interactive computational resource that places enzyme essentiality in the context of metabolic pathway topology. Therefore, we briefly discuss examples of metabolic condensates and higher-order complexes of metabolic enzymes downstream of one-carbon metabolism. We speculate that they may be required to the formation of transcriptional condensates and gene expression control. Finally, we discuss new ways to exploit metabolic pathway compartmentalization to selectively target these enzymes in cancer.
Collapse
Affiliation(s)
- Jung-Ming G Lin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Vienna 1090, Austria
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Natalia Pardo Lorente
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Vienna 1090, Austria
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain.
| |
Collapse
|
6
|
Serum Folate deficiency in HCV related Hepatocellular Carcinoma. Sci Rep 2022; 12:5025. [PMID: 35322130 PMCID: PMC8943167 DOI: 10.1038/s41598-022-09030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Nutritional and environmental factors had been reporting in the progression of hepatocellular carcinoma (HCC). In this study, we focused our intervention in the correlation between the folate status and the progression of HCC in patients with chronic virus C (HCV) infection. Nine-eight patients, HCV positive with HCC and one hundred of patients with HCV positive liver cirrhosis (LC) and one hundred patients with HCV positive chronic hepatitis (CHC) and one hundred control subjects were enrolled. The viremia for hepatitis C patients (HCV) was determined by HCV RNA with polymerase chain reaction. HCV was confirmed by HCV RNA or a positive anti-HCV test with chronic liver disease. The comparison of folate serum levels in HCC patients vs Liver Cirrhosis (LC) patients showed a significant decrease of 1.16 ng/ml P = 0.0006 (95% CI-1.925 to − 0.395), in HCC patients versus CHC a decrease of 1.40 ng/ml P < 0.0001 (95% CI-2.16 to − 0.63), in HCC vs controls a decrease of 3.80 ng/ml P < 0.0001 (95% CI-4.56 to − 3.03). The comparison of homocysteine Hcy serum levels showed a significant increase in HCC vs LC of 4 nmol/L (P < 0.0001, 95% CI 2.77 to 5.22) versus CHC of 9 nmol/L (P < 0.0001, 95% CI 7.78 to 10.22) and vs Controls 9.30 nmol/L (P < 0.0001, 95% CI 8.07 to 10.52). With progression of HCV infection from chronic hepatitis to cirrhosis, then to HCC development, serum folate levels are progressively decreasing together with a progressive increase in serum homocysteine levels reflecting its role in disease progress and carcinogenesis.
Collapse
|
7
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Georgel PT, Georgel P. Where Epigenetics Meets Food Intake: Their Interaction in the Development/Severity of Gout and Therapeutic Perspectives. Front Immunol 2021; 12:752359. [PMID: 34603340 PMCID: PMC8484966 DOI: 10.3389/fimmu.2021.752359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Gout is the most frequent form of inflammatory arthritis in the world. Its prevalence is particularly elevated in specific geographical areas such as in the Oceania/Pacific region and is rising in the US, Europe, and Asia. Gout is a severe and painful disease, in which co-morbidities are responsible for a significant reduction in life expectancy. However, gout patients remain ostracized because the disease is still considered "self-inflicted", as a result of unhealthy lifestyle and excessive food and alcohol intake. While the etiology of gout flares is clearly associated with the presence of monosodium urate (MSU) crystal deposits, several major questions remain unanswered, such as the relationships between diet, hyperuricemia and gout flares or the mechanisms by which urate induces inflammation. Recent advances have identified gene variants associated with gout incidence. Nevertheless, genetic origins of gout combined to diet-related possible uric acid overproduction account for the symptoms in only a minor portion of patients. Hence, additional factors must be at play. Here, we review the impact of epigenetic mechanisms in which nutrients (such as ω-3 polyunsaturated fatty acids) and/or dietary-derived metabolites (like urate) trigger anti/pro-inflammatory responses that may participate in gout pathogenesis and severity. We propose that simple dietary regimens may be beneficial to complement therapeutic management or contribute to the prevention of flares in gout patients.
Collapse
Affiliation(s)
- Philippe T Georgel
- Department of Biological Sciences, Cell Differentiation and Development Center, Joan C. Edwards School of Medicine, Byrd Biotechnology Science Center, Marshall University, Huntington, WV, United States
| | - Philippe Georgel
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Unité de Recherche et d'Expertise Immunity and Inflammation, Institut Pasteur in New Caledonia, Pasteur Network, Nouméa, New Caledonia
| |
Collapse
|
9
|
Wang Q, Su B, Dong L, Jiang T, Tan Y, Lu X, Liu X, Lin X, Xu G. Liquid Chromatography-Mass Spectrometry-Based Nontargeted Metabolomics Predicts Prognosis of Hepatocellular Carcinoma after Curative Resection. J Proteome Res 2020; 19:3533-3541. [PMID: 32618195 DOI: 10.1021/acs.jproteome.0c00344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Assessment and prediction of prognostic risk in patients with hepatocellular carcinoma (HCC) would greatly benefit the optimal treatment selection. Here, we aimed to identify the critical metabolites associated with the outcomes and develop a risk score to assess the prognosis of HCC patients after curative resection. A total of 78 serum samples of HCC patients were analyzed by liquid chromatography-mass spectrometry to characterize the metabolic profiling. A novel network-based feature selection method (NFSM) was developed to define the critical metabolites with the most discriminant capacity to outcomes. The metabolites defined by NFSM was further reduced by Cox regression analysis to generate a prognostic metabolite panel-phenylalanine and choline. Furthermore, univariate and multivariate Cox regression analyses were applied to combine the metabolite panel with the presence of satellite nodes to generate a global prognostic index (GPI) score for overall survival assessment. Compared with the current clinical classification systems, including the Barcelona-clinic liver cancer stage, tumor-node-metastasis stage, and albumin-bilirubin grade, the GPI score presented comparable performance, according to the time-dependent receiver operating characteristic curves and was validated in an independent cohort, which suggested that metabolomics could serve as a helpful tool to stratify the HCC prognostic risk after operation.
Collapse
Affiliation(s)
- Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benzhe Su
- School of Computer Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Liwei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Tianyi Jiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Yexiong Tan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaohui Lin
- School of Computer Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Low Vitamin B12 and Lipid Metabolism: Evidence from Pre-Clinical and Clinical Studies. Nutrients 2020; 12:nu12071925. [PMID: 32610503 PMCID: PMC7400011 DOI: 10.3390/nu12071925] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a worldwide epidemic responsible for 5% of global mortality. The risks of developing other key metabolic disorders like diabetes, hypertension and cardiovascular diseases (CVDs) are increased by obesity, causing a great public health concern. A series of epidemiological studies and animal models have demonstrated a relationship between the importance of vitamin B12 (B12) and various components of metabolic syndrome. High prevalence of low B12 levels has been shown in European (27%) and South Indian (32%) patients with type 2 diabetes (T2D). A longitudinal prospective study in pregnant women has shown that low B12 status could independently predict the development of T2D five years after delivery. Likewise, children born to mothers with low B12 levels may have excess fat accumulation which in turn can result in higher insulin resistance and risk of T2D and/or CVD in adulthood. However, the independent role of B12 on lipid metabolism, a key risk factor for cardiometabolic disorders, has not been explored to a larger extent. In this review, we provide evidence from pre-clinical and clinical studies on the role of low B12 status on lipid metabolism and insights on the possible epigenetic mechanisms including DNA methylation, micro-RNA and histone modifications. Although, there are only a few association studies of B12 on epigenetic mechanisms, novel approaches to understand the functional changes caused by these epigenetic markers are warranted.
Collapse
|
11
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Exogenous Liposomal Ceramide-C6 Ameliorates Lipidomic Profile, Energy Homeostasis, and Anti-Oxidant Systems in NASH. Cells 2020; 9:cells9051237. [PMID: 32429478 PMCID: PMC7290333 DOI: 10.3390/cells9051237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of NASH have been associated with elevated levels of long chain ceramides and pro-apoptotic sphingolipid metabolites, implicated in regulating fatty acid oxidation and inflammation. Importantly, inhibition of de novo ceramide biosynthesis or knock-down of ceramide synthases reverse some of the pathology of NASH. In contrast, cell permeable, short chain ceramides have shown anti-inflammatory actions in multiple models of inflammatory disease. Here, we investigated non-apoptotic doses of a liposome containing short chain C6-Ceramide (Lip-C6) administered to human hepatic stellate cells (hHSC), a key effector of hepatic fibrogenesis, and an animal model characterized by inflammation and elevated liver fat content. On the basis of the results from unbiased liver transcriptomic studies from non-alcoholic fatty liver disease patients, we chose to focus on adenosine monophosphate activated kinase (AMPK) and nuclear factor-erythroid 2-related factor (Nrf2) signaling pathways, which showed an abnormal profile. Lip-C6 administration inhibited hHSC proliferation while improving anti-oxidant protection and energy homeostasis, as indicated by upregulation of Nrf2, activation of AMPK and an increase in ATP. To confirm these in vitro data, we investigated the effect of a single tail-vein injection of Lip-C6 in the methionine-choline deficient (MCD) diet mouse model. Lip-C6, but not control liposomes, upregulated phospho-AMPK, without inducing liver toxicity, apoptosis, or exacerbating inflammatory signaling pathways. Alluding to mechanism, mass spectrometry lipidomics showed that Lip-C6-treatment reversed the imbalance in hepatic phosphatidylcholines and diacylglycerides species induced by the MCD-fed diet. These results reveal that short-term Lip-C6 administration reverses energy/metabolic depletion and increases protective anti-oxidant signaling pathways, possibly by restoring homeostatic lipid function in a model of liver inflammation with fat accumulation.
Collapse
|
13
|
Antwi SO, Petrick JL, Campbell PT, Norez DA, Stevens VL, Liao LM, Roberts LR, Patel T, McGlynn KA. One-carbon metabolism-related micronutrients intake and risk for hepatocellular carcinoma: A prospective cohort study. Int J Cancer 2020; 147:2075-2090. [PMID: 32285447 DOI: 10.1002/ijc.33007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
Deficient intake of micronutrients involved in one-carbon metabolism (eg, choline, methionine, vitamin B12 and folic acid) leads to hepatocellular carcinoma (HCC) development in rodents, but is under-investigated in humans. We investigated the association between one-carbon metabolism-related micronutrient intake and HCC risk in a prospective cohort of 494 860 participants with 16 years of follow-up in the NIH-AARP study. Dietary intakes and supplement use were ascertained at baseline using a food-frequency questionnaire. Total intake (diet plus supplements) of the following one-carbon metabolism-related micronutrients were calculated: folate, methionine and vitamins B2 (riboflavin), B3 (niacin), B6 and B12 . These micronutrients were examined both individually and simultaneously, with adjustment for covariates. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). Over the 16-year follow-up period, 647 incident HCC cases were diagnosed. When examined individually, higher total vitamin B3 intake was associated with a lower HCC risk (HRQ5 vs Q1 = 0.60; 95% CI = 0.42-0.85; Ptrend = .008), and the association remained significant when all six micronutrients were examined simultaneously (HRQ5 vs Q1 = 0.32; 95% CI = 0.18-0.55; Ptrend < .0001). Among participants with >3 years of follow-up, higher total vitamin B3 intake was again associated with lower risk (HRQ5 vs Q1 = 0.37; 95% CI = 0.20-0.68; Ptrend = .001), whereas higher total vitamin B6 intake was associated with higher risk (HRQ5 vs Q1 = 2.04; 95% CI = 1.02-4.07; Ptrend = .04). Restricted cubic spline analyses showed a dose-response inverse association between total vitamin B3 intake and HCC risk, and dose-response positive association between total vitamin B6 intake and HCC risk. The study suggests that higher vitamin B3 intake is associated with lower HCC risk, whereas higher vitamin B6 intake is associated with increased risk.
Collapse
Affiliation(s)
- Samuel O Antwi
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica L Petrick
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, USA
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, USA
| | - Daniel A Norez
- Health Science Center, University of Florida, Jacksonville, Florida, USA
| | - Victoria L Stevens
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, The National Cancer Institute, Bethesda, Maryland, USA
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, The National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Eudy BJ, McDermott CE, Fernandez G, Mathews CE, Lai J, da Silva RP. Disruption of hepatic one-carbon metabolism impairs mitochondrial function and enhances macrophage activity in methionine-choline-deficient mice. J Nutr Biochem 2020; 81:108381. [PMID: 32422424 DOI: 10.1016/j.jnutbio.2020.108381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/24/2020] [Accepted: 03/13/2020] [Indexed: 02/05/2023]
Abstract
One-carbon metabolism is a collection of metabolic cycles that supports methylation and provides one-carbon bound folates for the de novo synthesis of purine and thymidine nucleotides. The methylation of phosphatidylethanolamine to form choline has been extensively studied in the context of fatty liver disease. However, the role of one-carbon metabolism in supporting nucleotide synthesis during liver damage has not been addressed. The objective of this study is to determine how the disruption of one-carbon metabolism influences nucleotide metabolism in the liver after dietary methionine and choline restriction. Mice (n=8) were fed a methionine-choline-deficient or control diet for 3 weeks. We treated mice with the compound alloxazine (0.5 mg/kg), a known adenosine receptor antagonist, every second day during the final week of feeding to probe the function of adenosine signaling during liver damage. We found that concentrations of several hepatic nucleotides were significantly lower in methionine- and choline-deficient mice vs. controls (adenine: 13.9±0.7 vs. 10.1±0.6, guanine: 1.8±0.1 vs. 1.4±0.1, thymidine: 0.0122±0.0027 vs. 0.0059±0.0027 nmol/mg dry tissue). Treatment of alloxazine caused a specific decrease in thymidine nucleotides, decrease in mitochondrial content in the liver and exacerbation of steatohepatitis as shown by the increased hepatic lipid content and altered macrophage morphology. This study demonstrates a role for one-carbon metabolism in supporting de novo nucleotide synthesis and mitochondrial function during liver damage.
Collapse
Affiliation(s)
- Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| | - Caitlin E McDermott
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| | - Gabriel Fernandez
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL.
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL.
| | - Jinping Lai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL; Department of Pathology and Laboratory Medicine, Kaiser Permanente, Sacramento, CA.
| | - Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| |
Collapse
|
15
|
Rizzo G, Laganà AS. The Link between Homocysteine and Omega-3 Polyunsaturated Fatty Acid: Critical Appraisal and Future Directions. Biomolecules 2020; 10:biom10020219. [PMID: 32024302 PMCID: PMC7072208 DOI: 10.3390/biom10020219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids and B vitamins are linked to metabolic and degenerative disorders, such as cardiovascular disease and cognitive decline. In the last two decades, the interplay between B vitamins and omega-3 polyunsaturated fatty acids gained increasing attention. Expression control on enzymes involved in the pathway of homocysteine by polyunsaturated fatty acids has been proposed. The methylation process seems crucial for the metabolism of polyunsaturated fatty acids and their distribution within the body. This review summarizes the available data in humans about the link between homocysteine and omega-3 polyunsaturated fatty acids, with a special focus on the meta-analyses of randomized clinical trials. Even if the paucity of available information about the topic does not allow for definitive conclusions, a synergic action between polyunsaturated fatty acids and B vitamins may play a key role in regulating several metabolic pathways. This element could explain a stronger action on homocysteine levels when omega-3 polyunsaturated fatty acids and B vitamins are supplemented simultaneously. To date, a robust rationale of intervention to prevent metabolic diseases is lacking and could be beneficial for individual health and healthcare policy.
Collapse
Affiliation(s)
- Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
- Correspondence: ; Tel.: +39-3208-976-687
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
16
|
Caiati C, Pollice P, Favale S, Lepera ME. The Herbicide Glyphosate and Its Apparently Controversial Effect on Human Health: An Updated Clinical Perspective. Endocr Metab Immune Disord Drug Targets 2020; 20:489-505. [PMID: 31613732 DOI: 10.2174/1871530319666191015191614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Glyphosate (G) is the most common weed-killer in the world. Every year tons and tons of G are applied on crop fields. G was first introduced in the mid 1970s and since then its usage has gradually increased to reach a peak since 2005. Now G usage is approximately 100 -fold what it was in 1970. Its impact on human health was considered benign at the beginning. But over the years, evidence of a pervasive negative effect of this pesticide on humans has been mounting. Nonetheless, G usage is allowed by government health control agencies (both in the United States and Europe), that rely upon the evidence produced by the G producer. However, the IARC (International Agency for Research on Cancer) in 2015 has stated that G is probable carcinogenic (class 2A), the second highest class in terms of risk. OBJECTIVE In this review, we explore the effect of G on human health, focusing in particular on more recent knowledge. RESULTS We have attempted to untangle the controversy about the dangers of the product for human beings in view of a very recent development, when the so -called Monsanto Papers, consisting of Emails and memos from Monsanto came to light, revealing a coordinated strategy to manipulate the debate about the safety of glyphosate to the company's advantage. CONCLUSION The story of G is a recurrent one (see the tobacco story), that seriously jeopardizes the credibility of the scientific study in the modern era.
Collapse
Affiliation(s)
- Carlo Caiati
- Department of Emergency and Organ Transplantation, Unit of Cardiovascular Diseases, University of Bari, Bari, Italy
| | - Paolo Pollice
- Department of Emergency and Organ Transplantation, Unit of Cardiovascular Diseases, University of Bari, Bari, Italy
| | - Stefano Favale
- Department of Emergency and Organ Transplantation, Unit of Cardiovascular Diseases, University of Bari, Bari, Italy
| | - Mario Erminio Lepera
- Department of Emergency and Organ Transplantation, Unit of Cardiovascular Diseases, University of Bari, Bari, Italy
| |
Collapse
|
17
|
Li J, Chen N, Gong X. Prognostic implications of aberrantly expressed methylation‑driven genes in hepatocellular carcinoma: A study based on The Cancer Genome Atlas. Mol Med Rep 2019; 20:5304-5314. [PMID: 31661127 DOI: 10.3892/mmr.2019.10771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/30/2019] [Indexed: 11/06/2022] Open
Abstract
RNA‑Sequencing and methylation data for hepatocellular carcinoma (HCC) were downloaded from The Cancer Genome Atlas (TCGA). The aberrantly expressed methylation‑driven genes in HCC and normal tissues were identified using the Limma package and the MethylMix algorithm. The Database for Annotation, Visualization and Integrated Discovery and ConsensusPathDB were used for Gene Ontology (GO) enrichment and pathway analysis. Univariate and multivariate Cox regression analyses were used to construct a prognostic risk model of HCC. Survival curve and receiver operating characteristic (ROC) curves were applied to evaluate the clinical utility of the risk model. A total of 238 methylation‑driven genes were successfully identified from cancer and normal tissues. GO enrichment analysis indicated that these genes functioned in the extracellular space, interfering with lipid metabolism in hepatocytes and regulating adaptive immune responses. In total, 14 relevant pathways were identified. The following prognostic risk model was generated: Risk score=CALML3 (degree of methylation) x (‑4.860) + CCNI2 x (2.071) + TNFRSF12A x (‑3.369) + IFITM1 x (1.203) + ENPP7P13 x (‑1.366) + DDT x (2.139) + RASAL2‑AS1 x (‑1.384) + ANKRD22 x (‑3.215). The median risk score (0.970) derived from this model was set as cutoff value for assigning patients to high‑ or low‑risk group. The 5‑year survival rate was 35.8% [95% confidence interval (CI)=27.1‑47.4%] in the high‑risk group and 61.7% (95% CI=51.4‑74.2%) in the low‑risk group (P<0.0001). The ROC curve showed an area under the curve of 0.742, indicating that this model is appropriate for predicting the survival rate of patients. Furthermore, the methylation and expression levels of two key genes, tumor necrosis factor superfamily member 12A and D‑dopachrome decarboxylase, were significantly associated with prognosis and were correlated with cg00510447, cg26808293, cg11060661 and cg16132339 methylation. In conclusion, a prognostic risk model for HCC is proposed based on the bioinformatic analysis of methylation‑driven genes. The findings of the present study may improve understanding of the pathogenesis and prognosis of HCC.
Collapse
Affiliation(s)
- Jinzhong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510000, P.R. China
| | - Ning Chen
- Department of General Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
18
|
Serum folate concentrations at diagnosis are associated with hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort study. Br J Nutr 2019; 121:1376-1388. [DOI: 10.1017/s0007114519000734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractExisting data on folate status and hepatocellular carcinoma (HCC) prognosis are scarce. We prospectively examined whether serum folate concentrations at diagnosis were associated with liver cancer-specific survival (LCSS) and overall survival (OS) among 982 patients with newly diagnosed, previously untreated HCC, who were enrolled in the Guangdong Liver Cancer Cohort (GLCC) study between September 2013 and February 2017. Serum folate concentrations were measured using chemiluminescent microparticle immunoassay. Cox proportional hazards models were performed to estimate hazard ratios (HR) and 95 % CI by sex-specific quartile of serum folate. Compared with patients in the third quartile of serum folate, patients in the lowest quartile had significantly inferior LCSS (HR = 1·48; 95 % CI 1·05, 2·09) and OS (HR = 1·43; 95 % CI 1·03, 1·99) after adjustment for non-clinical and clinical prognostic factors. The associations were not significantly modified by sex, age at diagnosis, alcohol drinking status and Barcelona Clinic Liver Cancer (BCLC) stage. However, there were statistically significant interactions on both multiplicative and additive scale between serum folate and C-reactive protein (CRP) levels or smoking status and the associations of lower serum folate with worse LCSS and OS were only evident among patients with CRP > 3·0 mg/l or current smokers. An inverse association with LCSS were also observed among patients with liver damage score ≥3. These results suggest that lower serum folate concentrations at diagnosis are independently associated with worse HCC survival, most prominently among patients with systemic inflammation and current smokers. A future trial of folate supplementation seems to be promising in HCC patients with lower folate status.
Collapse
|
19
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A. Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signalling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol 2019; 109:23-32. [DOI: 10.1016/j.biocel.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
|
21
|
One-Carbon Metabolism Links Nutrition Intake to Embryonic Development via Epigenetic Mechanisms. Stem Cells Int 2019; 2019:3894101. [PMID: 30956668 PMCID: PMC6431457 DOI: 10.1155/2019/3894101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Beyond energy production, nutrient metabolism plays a crucial role in stem cell lineage determination. Changes in metabolism based on nutrient availability and dietary habits impact stem cell identity. Evidence suggests a strong link between metabolism and epigenetic mechanisms occurring during embryonic development and later life of offspring. Metabolism regulates epigenetic mechanisms such as modifications of DNA, histones, and microRNAs. In turn, these epigenetic mechanisms regulate metabolic pathways to modify the metabolome. One-carbon metabolism (OCM) is a crucial metabolic process involving transfer of the methyl groups leading to regulation of multiple cellular activities. OCM cycles and its related micronutrients are ubiquitously present in stem cells and feed into the epigenetic mechanisms. In this review, we briefly introduce the OCM process and involved micronutrients and discuss OCM-associated epigenetic modifications, including DNA methylation, histone modification, and microRNAs. We further consider the underlying OCM-mediated link between nutrition and epigenetic modifications in embryonic development.
Collapse
|
22
|
Saussenthaler S, Ouni M, Baumeier C, Schwerbel K, Gottmann P, Christmann S, Laeger T, Schürmann A. Epigenetic regulation of hepatic Dpp4 expression in response to dietary protein. J Nutr Biochem 2019; 63:109-116. [DOI: 10.1016/j.jnutbio.2018.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 01/09/2023]
|
23
|
Molecular Mechanisms Underlying the Link between Diet and DNA Methylation. Int J Mol Sci 2018; 19:ijms19124055. [PMID: 30558203 PMCID: PMC6320837 DOI: 10.3390/ijms19124055] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a vital modification process in the control of genetic information, which contributes to the epigenetics by regulating gene expression without changing the DNA sequence. Abnormal DNA methylation—both hypomethylation and hypermethylation—has been associated with improper gene expression, leading to several disorders. Two types of risk factors can alter the epigenetic regulation of methylation pathways: genetic factors and modifiable factors. Nutrition is one of the strongest modifiable factors, which plays a direct role in DNA methylation pathways. Large numbers of studies have investigated the effects of nutrition on DNA methylation pathways, but relatively few have focused on the biochemical mechanisms. Understanding the biological mechanisms is essential for clarifying how nutrients function in epigenetics. It is believed that nutrition affects the epigenetic regulations of DNA methylation in several possible epigenetic pathways: mainly, by altering the substrates and cofactors that are necessary for proper DNA methylation; additionally, by changing the activity of enzymes regulating the one-carbon cycle; and, lastly, through there being an epigenetic role in several possible mechanisms related to DNA demethylation activity. The aim of this article is to review the potential underlying biochemical mechanisms that are related to diet modifications in DNA methylation and demethylation.
Collapse
|
24
|
Liu ZY, Tan XY, Li QJ, Liao GC, Fang AP, Zhang DM, Chen PY, Wang XY, Luo Y, Long JA, Zhong RH, Zhu HL. Trimethylamine N-oxide, a gut microbiota-dependent metabolite of choline, is positively associated with the risk of primary liver cancer: a case-control study. Nutr Metab (Lond) 2018; 15:81. [PMID: 30479648 PMCID: PMC6245753 DOI: 10.1186/s12986-018-0319-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/07/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Evidence has suggested a potential link exists between trimethylamine-N-oxide (TMAO), a choline-derived metabolite produced by gut microbiota, and some cancers, but little is known for primary liver cancer (PLC). METHODS A case-control study was designed including 671 newly diagnosed PLC patients and 671 control subjects frequency-matched by age (±5 years) and sex, in Guangdong province, China. High-performance liquid chromatography with online electrospray ionization tandem mass spectrometry (HPLC-MS/MS) was used to measure serum TMAO and choline. The associations between these biomarkers and PLC risk were evaluated using logistic regression models. RESULTS Serum TMAO concentrations were greater in the PLC group than the control group (P = 0.002). Logistic regression analysis showed that the sex- and age-adjusted odds ratio (OR) and (95% confidence interval [CI]) was 3.43 (2.42-4.86) when comparing the top and bottom quartiles (Q4 vs Q1). After further adjusting for more selected confounders, the OR (95% CI) remained significant but was attenuated to 2.85 (1.59-5.11) (Q4 vs Q1). The multivariable-adjusted ORs (95% CIs) across quartiles of choline were 0.35-0.15 (P -trend < 0.001). CONCLUSION Higher serum levels of TMAO were associated with increased PLC risk. The association was stronger in those with lower serum levels of choline. Additional large prospective studies are required to confirm these findings. TRIAL REGISTRATION This study was registered at clinicaltrials.gov as NCT 03297255.
Collapse
Affiliation(s)
- Zhao-Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Xu-Ying Tan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Qi-Jiong Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 People’s Republic of China
| | - Gong-Cheng Liao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Ai-Ping Fang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Dao-Ming Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Pei-Yan Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Xiao-Yan Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Yun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Jing-An Long
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Rong-Huan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
25
|
Soave I, Occhiali T, Wenger JM, Pluchino N, Caserta D, Marci R. Endometriosis and food habits: Can diet make the difference? JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2018. [DOI: 10.1177/2284026518773212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endometriosis is a chronic, inflammatory, estrogenic-dependent disease characterized by the presence of endometrial glands outside the uterine cavity, affecting approximately 2%–10% of women in reproductive age and 30%–50% of women in general. Despite the high prevalence of the disease, not much is known about etiology, possible risk factors, and an adequate and satisfactory therapy. In the past years, many studies have focused on food intake (nutrients and food groups) and on its possible correlation with endometriosis, demonstrating how diet could be identified as a possible risk factor. Comprehensive searches in the largest medical information databases (Medline-PubMed, Embase, Lilacs, and Cochrane Library) were conducted using the Medical Subject Heading terms “diet,” “food,” “nutrition,” “fatty acids,” vitamins,” “fruit,” “vegetables,” “coffee,” “caffeine,” “fish,” “soy food,” “dairy products,” “tea,” “curcumin” combined with “endometriosis.” Purpose of this review is to revise the literature, in order to determine potential modifiable risk factors of the disease.
Collapse
Affiliation(s)
- Ilaria Soave
- Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome “Sapienza,” Rome, Italy
| | | | - Jean-Marie Wenger
- Department of Obstetrics and Gynecology, University Hospital of Geneva, Geneva, Switzerland
| | - Nicola Pluchino
- Department of Obstetrics and Gynecology, University Hospital of Geneva, Geneva, Switzerland
| | - Donatella Caserta
- Department of Medical and Surgical Sciences and Translational Medicine, Sant’Andrea Hospital, Faculty of Medicine and Psychology, University of Rome “Sapienza,” Rome, Italy
| | - Roberto Marci
- Department of Obstetrics and Gynecology, University Hospital of Geneva, Geneva, Switzerland
- Department of Morphology, Surgery and Experimental Medicine, Section of Gynecology and Obstetrics, University of Ferrara, Ferrara, Italy
- WHO/RHR, Department of Reproductive Health and Research, Geneva, Switzerland
| |
Collapse
|
26
|
Najar RA, Wani NA, Bhat JA, Dar NJ, Rahat B, Gupta AP, Kaur J, Kaur J, Hamid A. Modulation of dietary folate with age confers selective hepatocellular epigenetic imprints through DNA methylation. J Nutr Biochem 2018; 53:121-132. [PMID: 29220669 DOI: 10.1016/j.jnutbio.2017.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023]
Abstract
The present study has been designed to determine the effect of folate modulation (deficiency/supplementation) with aging on the promoter methylation of tumor suppressor and proto-oncogenes to understand the underlying mechanism of epigenetic alterations. Folate deficiency was induced for 3 and 5 months in weanling, young and adult groups, and after 3 months of folate deficiency, they were repleted with physiological folate (2 mg/kg diet) and folate oversupplementation (8 mg/kg diet) for another 2 months. The methylation facet in the present study revealed that the combined effect of folate deficiency and aging decreased the methylation index. Folate deficiency with age resulted in the up-regulation of proto-oncogenes (C-MYC and C-JUN) and cell cycle regulator gene Cyclin E as a result of promoter hypomethylation. However, in case of tumor suppressor genes (p53, p15ink4b and p16ink4a), the expression levels were found to be decreased at transcriptional level due to promoter hypermethylation. Upon repletion with physiological folate and folate oversupplementation, we found down-regulation of proto-oncogenes and up-regulation of tumor suppressor genes as a result of promoter hypermethylation and hypomethylation, respectively. Deregulation of these important genes due to folate deficiency may contribute toward the pathogenesis at cellular level.
Collapse
Affiliation(s)
- Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Javeed Ahmad Bhat
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Nawab John Dar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ajai Prakash Gupta
- Quality Control and Quality Assurance Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160016, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| |
Collapse
|
27
|
Aissa AF, Amaral CLD, Venancio VP, Machado CDS, Hernandes LC, Santos PWDS, Curi R, Bianchi MDLP, Antunes LMG. Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1116-1128. [PMID: 28880739 DOI: 10.1080/15287394.2017.1357366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.
Collapse
Affiliation(s)
- Alexandre Ferro Aissa
- a Department of Genetics, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Catia Lira do Amaral
- b Campus Henrique Santillo , Universidade Estadual de Goiás , Anápolis , GO , Brazil
| | - Vinicius Paula Venancio
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Carla da Silva Machado
- a Department of Genetics, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Lívia Cristina Hernandes
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Patrick Wellington da Silva Santos
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Rui Curi
- d Department of Physiology and Biophysics , Institute of Biomedical Sciences, University of São Paulo , São Paulo , SP , Brazil
| | - Maria de Lourdes Pires Bianchi
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Lusânia Maria Greggi Antunes
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| |
Collapse
|
28
|
Folate and microRNA: Bidirectional interactions. Clin Chim Acta 2017; 474:60-66. [PMID: 28882489 DOI: 10.1016/j.cca.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022]
Abstract
Low folate status is linked to increased risk of a number of conditions, including developmental disorders, some cancers, neurodegenerative and cardiovascular diseases. Some of the mechanisms of these associations are known, but much remains to be elucidated. Aberrant microRNA (miRNA) profiles are also signatures of these conditions, and as such, the association between folate status and miRNA are now being investigated. Potential associations are bidirectional, with miRNA linked to regulation of folate-mediated pathways, and folate linked to modulation of miRNA expression. miRNA are short non-coding RNA, involved in post-transcriptional regulation of gene expression via complementary binding to mRNA. Evidence is emerging that links folate levels to the regulation of miRNA levels, and miRNA to the regulation of the expression of enzymes involved in folate mediated one carbon metabolism. One carbon metabolism is the source of methyl groups for methylation reactions, including DNA methylation and is important in DNA synthesis and repair. miRNA may be modulated by DNA methylation and other epigenetic mechanisms directly, or indirectly via modulation of upstream signalling pathways. As such, there may be bi-directional associations between folate status and miRNA profiles. miRNA may also act as biomarkers for diagnosis or prognosis of conditions associated with folate status.
Collapse
|
29
|
Yeh CC, Goyal A, Shen J, Wu HC, Strauss JA, Wang Q, Gurvich I, Safyan RA, Manji GA, Gamble MV, Siegel AB, Santella RM. Global Level of Plasma DNA Methylation is Associated with Overall Survival in Patients with Hepatocellular Carcinoma. Ann Surg Oncol 2017; 24:3788-3795. [PMID: 28593503 DOI: 10.1245/s10434-017-5913-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The impact of folate deficiency on global DNA methylation is uncertain. It also is unclear whether global DNA methylation is associated with outcome in HCC. LINE-1 methylation levels, as a surrogate marker of global methylation, may be influenced by folate deficiency. However, the interaction between LINE-1 methylation and folate level on overall survival (OS) in hepatocellular carcinoma (HCC) patients is unknown. We evaluated whether LINE-1 hypomethylation and folate deficiency are associated with HCC prognosis. METHODS We prospectively recruited 172 HCC patients between 2008 and 2012. LINE-1 methylation levels in plasma and white blood cells (WBC) were measured by pyrosequencing, and plasma folate levels by a radioprotein-binding assay. RESULTS Patients with plasma LINE-1 methylation <70.0% (hypomethylation) had significantly worse OS compared with those with ≥70.0% methylation (hypermethylation) [hazard ratio (HR) = 1.77; 95% confidence interval (CI) 1.12-2.79; P = 0.015]. HCC patients with lower plasma folate levels also had worse survival (<27.7 vs. ≥27.7 nmol/L; HR = 1.96; 95% CI, 1.24-3.09; P = 0.004). Furthermore, survival was poor in patients in whom both plasma LINE-1 methylation and folate levels were low compared with those patients in whom both levels were high (HR = 3.36; 95%CI, 1.77-6.40; P < 0.001). This interaction neared statistical significance (P = 0.057). No significant association was found between WBC LINE-1 methylation levels and survival. CONCLUSIONS These findings suggest that both lower plasma levels of LINE-1 methylation and folate are associated with worse survival in HCC patients.
Collapse
Affiliation(s)
- Chih-Ching Yeh
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA.,School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Abhishek Goyal
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.,Internal Medicine Resident at Westchester Medical Center, Valhalla, NY, USA
| | - Jing Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Joshua A Strauss
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.,Advanced Care Oncology and Hematology Associates, Springfield, NJ, USA
| | - Qiao Wang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Irina Gurvich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Rachael A Safyan
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.,Internal Medicine Resident at Westchester Medical Center, Valhalla, NY, USA
| | - Gulam A Manji
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.,Internal Medicine Resident at Westchester Medical Center, Valhalla, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Abby B Siegel
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Merck & Co, Kenilworth, NJ, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA. .,Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Zeisel S. Choline, Other Methyl-Donors and Epigenetics. Nutrients 2017; 9:nu9050445. [PMID: 28468239 PMCID: PMC5452175 DOI: 10.3390/nu9050445] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases.
Collapse
Affiliation(s)
- Steven Zeisel
- UNC Nutrition Research Institute, Departments of Nutrition and Pediatrics, University of North Carolina at Chapel Hill, 500 Laureate Drive, Kannapolis, NC 28081, USA.
| |
Collapse
|
31
|
Zhou RF, Chen XL, Zhou ZG, Zhang YJ, Lan QY, Liao GC, Chen YM, Zhu HL. Higher dietary intakes of choline and betaine are associated with a lower risk of primary liver cancer: a case-control study. Sci Rep 2017; 7:679. [PMID: 28386093 PMCID: PMC5429604 DOI: 10.1038/s41598-017-00773-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
The dietary intake of methyl donors is favorably associated with many diseases, but the findings regarding primary liver cancer (PLC) risk are limited. This study investigated the association between the intake of choline, betaine and methionine and PLC risk in adults. This 1:1 matched case-control study enrolled 644 hospital-based PLC patients and 644 community-based controls who were matched by sex and age, in Guangzhou, China. An interviewer-administered questionnaire and a food-frequency questionnaire were used to collect general information and dietary intake information. Conditional logistic regression showed a significantly inverse association between total choline and betaine intakes and PLC risk. The multivariable-adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) for PLC for the top (vs. bottom) tertile were 0.34 (0.24–0.49; P-trend < 0.001) for total choline and 0.67 (0.48–0.93; P-trend = 0.011) for betaine. No significant association was observed between the intake of methionine and PLC risk (P > 0.05). For individual choline compounds, higher consumptions of free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin were associated with a lower PLC risk (all P-trend < 0.05). The studied associations were not significantly modified by the folate intake (P-interactions: 0.488–0.890). Our findings suggest that higher choline and betaine intakes may be associated with a lower risk of PLC.
Collapse
Affiliation(s)
- Rui-Fen Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Xiao-Lin Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Zhong-Guo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510080, P.R. China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510080, P.R. China
| | - Qiu-Ye Lan
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Gong-Cheng Liao
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Yu-Ming Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Hui-Lian Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China.
| |
Collapse
|
32
|
Mattocks DAL, Mentch SJ, Shneyder J, Ables GP, Sun D, Richie JP, Locasale JW, Nichenametla SN. Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Exp Gerontol 2016; 88:1-8. [PMID: 27940170 DOI: 10.1016/j.exger.2016.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/16/2016] [Accepted: 12/05/2016] [Indexed: 11/26/2022]
Abstract
Despite well-documented evidence for lifespan extension by methionine restriction (MR), underlying mechanisms remain unknown. As methionine can alter S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), the substrate and product of DNA methyltransferase-1 (DNMT1), we hypothesized that MR diet alters DNA methylation. Young (8-week-old) and adult (1-year-old) male C57BL/6J mice were fed diets with different levels of methionine (0.12%-MR, 0.84%-CD) for 12weeks. Functional indicators of DNA methylation, including global methylation (GM), gene-specific methylation (GSM) and LINE-1 methylation; and biochemical factors affecting DNA methylation, SAH, SAM, and DNMT1 were assessed in different tissues. MR altered DNA methylation depending on the age of intervention. While MR had no effect on hepatic GM in young animals, it increased GM by 27% over CD in adults (p<0.01). In comparison with young animals, hepatic GM levels were 17% lower in CD adults (p<0.05), but not different in MR adults. The MR-induced increase in hepatic GM was associated with a 38% decrease in SAH levels in adults (p<0.001), with SAH and GM levels being negatively correlated (r2=0.33, p<0.001). No changes were observed in DNMT protein levels in liver. In adipose tissue, MR caused a 6% decline in GM in adults (p<0.05), a corresponding 2-fold increase in SAH (p<0.05), and a 2-fold decrease in DNMT1 (p<0.01). MR caused both increases and decreases in GSM of liver and adipose. No changes were observed in LINE-1. Together, these findings provide evidence for protective effects of MR diet on hepatic DNA hypomethylation in adults, apparently mediated by SAH. These findings also indicate that altered DNA methylation might be playing a role in benefits conferred by MR diet.
Collapse
Affiliation(s)
- Dwight A L Mattocks
- Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY 10516, USA
| | - Samantha J Mentch
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
| | - Jelena Shneyder
- Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY 10516, USA
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY 10516, USA
| | - Dongxiao Sun
- Penn State College of Medicine, Department of Pharmacology, Mass Spectrometry Core Facility, Hershey, PA 17033, USA
| | - John P Richie
- Penn State College of Medicine, Department of Public Health Sciences, Hershey, PA 17033, USA
| | - Jason W Locasale
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC 27710, USA
| | - Sailendra N Nichenametla
- Orentreich Foundation for the Advancement of Science, Animal Science Laboratory, Cold Spring-on-Hudson, NY 10516, USA.
| |
Collapse
|
33
|
Howe CG, Liu X, Hall MN, Ilievski V, Caudill MA, Malysheva O, Lomax-Luu AM, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. Sex-Specific Associations between One-Carbon Metabolism Indices and Posttranslational Histone Modifications in Arsenic-Exposed Bangladeshi Adults. Cancer Epidemiol Biomarkers Prev 2016; 26:261-269. [PMID: 27765800 DOI: 10.1158/1055-9965.epi-16-0202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/09/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Posttranslational histone modifications (PTHMs) are altered by arsenic, an environmental carcinogen. PTHMs are also influenced by nutritional methyl donors involved in one-carbon metabolism (OCM), which may protect against epigenetic dysregulation. METHODS We measured global levels of three PTHMs, which are dysregulated in cancers (H3K36me2, H3K36me3, H3K79me2), in peripheral blood mononuclear cells (PBMC) from 324 participants enrolled in the Folic Acid and Creatine Trial, a randomized trial in arsenic-exposed Bangladeshi adults. Sex-specific associations between several blood OCM indices (folate, vitamin B12, choline, betaine, homocysteine) and PTHMs were examined at baseline using regression models, adjusted for multiple tests by controlling for the false discovery rate (PFDR). We also evaluated the effects of folic acid supplementation (400 μg/d for 12 weeks), compared with placebo, on PTHMs. RESULTS Associations between choline and H3K36me2 and between vitamin B12 and H3K79me2 differed significantly by sex (Pdiff < 0.01 and <0.05, respectively). Among men, plasma choline was positively associated with H3K36me2 (PFDR < 0.05), and among women, plasma vitamin B12 was positively associated with H3K79me2 (PFDR < 0.01). Folic acid supplementation did not alter any of the PTHMs examined (PFDR = 0.80). CONCLUSIONS OCM indices may influence PTHMs in a sex-dependent manner, and folic acid supplementation, at this dose and duration, does not alter PTHMs in PBMCs. IMPACT This is the first study to examine the influences of OCM indices on PTHMs in a population that may have increased susceptibility to cancer development due to widespread exposure to arsenic-contaminated drinking water and a high prevalence of hyperhomocysteinemia. Cancer Epidemiol Biomarkers Prev; 26(2); 261-9. ©2016 AACR.
Collapse
Affiliation(s)
- Caitlin G Howe
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, New York
| | - Megan N Hall
- Department of Epidemiology, Mailman School of Public Health, New York
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Angela M Lomax-Luu
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| | - Max Costa
- Department of Environmental Medicine, NYU Langone Medical Center, New York University, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, New York
| |
Collapse
|
34
|
Liao YJ, Lee TS, Twu YC, Hsu SM, Yang CP, Wang CK, Liang YC, Chen YMA. Glycine N-methyltransferase deficiency in female mice impairs insulin signaling and promotes gluconeogenesis by modulating the PI3K/Akt pathway in the liver. J Biomed Sci 2016; 23:69. [PMID: 27716281 PMCID: PMC5050923 DOI: 10.1186/s12929-016-0278-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/30/2016] [Indexed: 02/06/2023] Open
Abstract
Background Glycine N-methyltransferase (GNMT) is abundantly expressed in the normal liver but is down-regulated in liver cancer tissues. GNMT knockout (Gnmt−/−) mice can spontaneously develop chronic hepatitis, fatty liver, and liver cancer. We previously demonstrated that hepatic GNMT is decreased in high-fat-diet-induced type 2 diabetes mellitus, but its contribution to metabolic syndrome is unclear. Here we show that GNMT modulates key aspects of metabolic syndrome in mice. Methods Eleven-week-old Gnmt−/− and wild-type (WT) mice with a C57BL/6 genetic background were used in this study. The metabolic defects of GNMT deficiency were measured by glucose and insulin tolerance tests, lipid homeostasis, gluconeogenesis, and insulin signaling. Results Gnmt−/− mice, especially females, exhibited glucose intolerance and insulin resistance. However, their body fat and lean mass, food and water intakes, and energy expenditure did not differ from those of WT mice. In addition, glucose-stimulated insulin secretion and insulin-stimulated glucagon secretion were normal in the serum and pancreatic islets of Gnmt−/− mice. Importantly, we found that GNMT deficiency increased lipogenesis and triglycerides in the liver. The elevated triglycerides disrupted the ability of insulin to induce Akt and S6 ribosomal protein phosphorylation, and then triggered insulin resistance and gluconeogenesis in female Gnmt−/− mice. Conclusions Our data indicate that hepatic GNMT regulates lipid and glucose homeostasis, and provide insight into the development of insulin resistance through modulating the PI3K/Akt pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0278-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Kwe Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
35
|
Ho CT, Shang HS, Chang JB, Liu JJ, Liu TZ. Folate deficiency-triggered redox pathways confer drug resistance in hepatocellular carcinoma. Oncotarget 2016; 6:26104-18. [PMID: 26327128 PMCID: PMC4694889 DOI: 10.18632/oncotarget.4422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023] Open
Abstract
Patients with hepatocellular carcinoma (HCC) are prone to folate deficiency (FD). Here we showed that, in cell line-specific manner, FD caused resistance to FD-induced oxidative stress and multi-drug resistance (MDR). This resistance was due to upregulation of glucose-regulated protein 78 (GRP78) and Survivin. Using siRNA and Epigallocatechin gallate (EGCG), we found that GRP78 and Survivin cooperatively conferred MDR by decreasing FD-induced ROS generation. Our data showed that FD increases GRP78 and Survivin, which serve as ROS inhibitors, causing MDR in HCC. We suggest that folate supplementation may enhance the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Chun-Te Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Sheng Shang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Jin-Biou Chang
- Department of Pathology, National Defense Medical Center, Division of Clinical Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Zon Liu
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| |
Collapse
|
36
|
Moreno FS, Heidor R, Pogribny IP. Nutritional Epigenetics and the Prevention of Hepatocellular Carcinoma with Bioactive Food Constituents. Nutr Cancer 2016; 68:719-33. [DOI: 10.1080/01635581.2016.1180410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Folate and vitamin B-6 status are not associated with homocysteine, oxidative stress and antioxidant capacities in patients with hepatocellular carcinoma. Eur J Clin Nutr 2016; 70:855-8. [PMID: 26785765 DOI: 10.1038/ejcn.2015.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 04/25/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to study the effects of serum folate and plasma pyridoxal 5'-phosphate (PLP) on plasma homocysteine, oxidative stress and antioxidant capacities in 44 hepatocellular carcinoma (HCC) patients and 56 healthy controls. The responses of folate, vitamin B-6, homocysteine, oxidative stress and antioxidant enzyme activities in HCC patients before and after tumor resection were also determined. Patients with HCC before tumor resection had significantly lower folate, PLP, homocysteine, glutathione peroxidase and superoxide dismutase levels, but higher malondialdehyde, total antioxidant capacity and glutathione S-transferase activity when compared with healthy controls. Oxidative stress was significantly decreased to a level similar to that of healthy controls after tumor resection in the HCC group. There were no associations of folate and PLP with plasma homocysteine, indicators of oxidative stress and antioxidant capacities. Serum folate and plasma PLP were not significant factors affecting plasma homocysteine, oxidative stress and antioxidant capacities in patients with HCC.
Collapse
|
38
|
Fages A, Duarte-Salles T, Stepien M, Ferrari P, Fedirko V, Pontoizeau C, Trichopoulou A, Aleksandrova K, Tjønneland A, Olsen A, Clavel-Chapelon F, Boutron-Ruault MC, Severi G, Kaaks R, Kuhn T, Floegel A, Boeing H, Lagiou P, Bamia C, Trichopoulos D, Palli D, Pala V, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita HB, Peeters PH, Weiderpass E, Agudo A, Molina-Montes E, Huerta JM, Ardanaz E, Dorronsoro M, Sjöberg K, Ohlsson B, Khaw KT, Wareham N, Travis RC, Schmidt JA, Cross A, Gunter M, Riboli E, Scalbert A, Romieu I, Elena-Herrmann B, Jenab M. Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med 2015; 13:242. [PMID: 26399231 PMCID: PMC4581424 DOI: 10.1186/s12916-015-0462-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease and little progress in identification of early risk biomarkers. METHODS To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort. RESULTS A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis. CONCLUSION Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.
Collapse
Affiliation(s)
- Anne Fages
- Institut des Sciences Analytiques, Centre de RMN à très hauts champs, CNRS/ENS Lyon/UCB Lyon-1, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | | | - Magdalena Stepien
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Pietro Ferrari
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Clément Pontoizeau
- Institut des Sciences Analytiques, Centre de RMN à très hauts champs, CNRS/ENS Lyon/UCB Lyon-1, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Alexandroupoleos 23, GR-115 27, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, Kaisareias 13, GR-115 27, Athens, Greece
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100, Copenhagen, Denmark
| | - Anja Olsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100, Copenhagen, Denmark
| | - Françoise Clavel-Chapelon
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, F-94805, Villejuif, France
- Université Paris Sud, UMRS 1018, F-94805, Villejuif, France
- Institut Gustave Roussy, F-94805, Villejuif, France
| | - Marie-Christine Boutron-Ruault
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, F-94805, Villejuif, France
- Université Paris Sud, UMRS 1018, F-94805, Villejuif, France
- Institut Gustave Roussy, F-94805, Villejuif, France
| | | | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Tilman Kuhn
- Department of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Anna Floegel
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, 75 M. Asias, Goudi, GR-115 27, Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Christina Bamia
- Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, 75 M. Asias, Goudi, GR-115 27, Athens, Greece
| | - Dimitrios Trichopoulos
- Hellenic Health Foundation, Alexandroupoleos 23, GR-115 27, Athens, Greece
- Bureau of Epidemiologic Research, Academy of Athens, Kaisareias 13, GR-115 27, Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milano, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, Ragusa, Italy
| | - Paolo Vineis
- Human Genetics Foundation (HuGeF), Torino, Italy
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - H Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra H Peeters
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Samfundet Folkhälsan, Helsinki, Finland
| | - Antonio Agudo
- Unit of Nutrition and Cancer, IDIBELL, Catalan Institute of Oncology-ICO, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Esther Molina-Montes
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - José María Huerta
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarre Public Health Institute, Pamplona, Spain
| | - Miren Dorronsoro
- Public Health Direction and Biodonostia CIBERESP, Basque Regional Health Department, San Sebastian, Spain
| | - Klas Sjöberg
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Gastroenterology and Nutrition, Skåne University Hospital, Malmö, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences, Division of Internal Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine, Clinical Gerontology Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Amanda Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Marc Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Augustin Scalbert
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Isabelle Romieu
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Benedicte Elena-Herrmann
- Institut des Sciences Analytiques, Centre de RMN à très hauts champs, CNRS/ENS Lyon/UCB Lyon-1, Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France.
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), Lyon, France.
| |
Collapse
|
39
|
Takumi S, Okamura K, Yanagisawa H, Sano T, Kobayashi Y, Nohara K. The effect of a methyl-deficient diet on the global DNA methylation and the DNA methylation regulatory pathways. J Appl Toxicol 2015; 35:1550-6. [PMID: 25690533 DOI: 10.1002/jat.3117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022]
Abstract
Methyl-deficient diets are known to induce various liver disorders, in which DNA methylation changes are implicated. Recent studies have clarified the existence of the active DNA demethylation pathways that start with oxidization of 5-methylcytosine (5meC) to 5-hydroxymethylcytosine by ten-eleven translocation (Tet) enzymes, followed by the action of base-excision-repair pathways. Here, we investigated the effects of a methionine-choline-deficient (MCD) diet on the hepatic DNA methylation of mice by precisely quantifying 5meC using a liquid chromatography-electrospray ionization-mass spectrometry and by investigating the regulatory pathways, including DNA demethylation. Although feeding the MCD diet for 1 week induced hepatic steatosis and lower level of the methyl donor S-adenosylmethionine, it did not cause a significant reduction in the 5meC content. On the other hand, the MCD diet significantly upregulated the gene expression of the Tet enzymes, Tet2 and Tet3, and the base-excision-repair enzymes, thymine DNA glycosylase and apurinic/apyrimidinic-endonuclease 1. At the same time, the gene expression of DNA methyltransferase 1 and a, was also significantly increased by the MCD diet. These results suggest that the DNA methylation level is precisely regulated even when dietary methyl donors are restricted. Methyl-deficient diets are well known to induce oxidative stress and the oxidative-stress-induced DNA damage, 8-hydroxy-2'-deoxyguanosine (8OHdG), is reported to inhibit DNA methylation. In this study, we also clarified that the increase in 8OHdG number per DNA by the MCD diet is approximately 10 000 times smaller than the reduction in 5meC number, suggesting the contribution of 8OHdG formation to DNA methylation would not be significant.
Collapse
Affiliation(s)
- Shota Takumi
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.,Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kazuyuki Okamura
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Yayoi Kobayashi
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Keiko Nohara
- Center for Environmental Health Sciences, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| |
Collapse
|
40
|
Chang SC, Goldstein BY, Mu L, Cai L, You NCY, He N, Ding BG, Zhao JK, Yu SZ, Heber D, Zhang ZF, Lu QY. Plasma folate, vitamin B12, and homocysteine and cancers of the esophagus, stomach, and liver in a Chinese population. Nutr Cancer 2015; 67:212-23. [PMID: 25607998 DOI: 10.1080/01635581.2015.989375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evidence is accumulating regarding a role of micronutrients in folate metabolism in cancer risk. We investigated the associations of plasma folate, vitamin B12, and homocysteine with upper gastrointestinal (GI) cancers in a population-based case-control study in Taixing City, China. With informed consent, we recruited cases with cancers of esophagus (n = 218), stomach (n = 206), and liver (n = 204), and one common healthy control group (n = 405). A standardized epidemiologic questionnaire was used in face-to-face interviews, and blood samples were collected during interviews. We observed an inverse association between plasma folate levels and liver cancer. The adjusted odds ratio (aOR) was 0.46 [95% confidence interval (CI) = 0.24-0.88] comparing individuals in the highest quartile to those in the lowest. We found a positive association between plasma vitamin B12 levels and all three cancers. The aORs for those in the highest quartile were 2.80 (95% CI = 1.51-5.18) for esophageal cancer, 2.17 (1.21-3.89) for stomach cancer, and 9.97 (4.82-20.60) for liver cancer, comparing to those in the lowest quartile. We further observed interaction between plasma folate and vitamin B12 on these cancers. Our data indicated associations between plasma folate and vitamin B12 with upper GI cancers in Chinese population. Further research is warranted considering the debate over the necessity of food fortification.
Collapse
Affiliation(s)
- Shen-Chih Chang
- a Department of Epidemiology, Fielding School of Public Health , University of California , Los Angeles , California , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Glen CD, McVeigh LE, Voutounou M, Dubrova YE. The effects of methyl-donor deficiency on the pattern of gene expression in mice. Mol Nutr Food Res 2015; 59:501-6. [DOI: 10.1002/mnfr.201400660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Colin D. Glen
- Department of Genetics; University of Leicester; Leicester UK
| | | | | | - Yuri E. Dubrova
- Department of Genetics; University of Leicester; Leicester UK
| |
Collapse
|
42
|
Ahmad A, Li Y, Bao B, Kong D, Sarkar FH. Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals. Mol Nutr Food Res 2013; 58:79-86. [PMID: 24272883 DOI: 10.1002/mnfr.201300528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/06/2013] [Accepted: 10/08/2013] [Indexed: 01/15/2023]
Abstract
Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
43
|
Butler LM, Arning E, Wang R, Bottiglieri T, Govindarajan S, Gao YT, Yuan JM. Prediagnostic levels of serum one-carbon metabolites and risk of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 2013; 22:1884-93. [PMID: 23897582 DOI: 10.1158/1055-9965.epi-13-0497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rats fed diets deficient in choline develop hepatocellular carcinoma. Tumor DNA from these animals is characteristically hypomethylated, suggesting that disruption of the one-carbon metabolism pathway is an underlying mechanism for hepatocarcinogenesis. Prospective studies in humans on circulating choline and other one-carbon metabolites and hepatocellular carcinoma risk have been lacking. METHODS We prospectively examined the association between prediagnostic serum concentrations of one-carbon metabolites including betaine, choline, cystathionine, homocysteine, methionine, 5-methyltetrahydrofolate (5-MTHF), pyridoxal-5-phosphate (PLP, the bioactive form of vitamin B6) and S-adenosylmethionine (SAM), and risk of developing hepatocellular carcinoma based on a nested case-control study of 297 incident cases and 631 matched controls from a cohort of 18,244 men in Shanghai, China. Logistic regression methods were used to calculate ORs and 95% confidence intervals (CI) adjusted for established risk factors for hepatocellular carcinoma. RESULTS Serum choline and PLP were associated with statistically significant reduced risk of hepatocellular carcinoma, whereas serum cystathionine, methionine, and SAM were associated with increased hepatocellular carcinoma risk (all Ptrend < 0.05). The inverse associations for hepatocellular carcinoma risk with choline and PLP remained statistically significant after adjusting for all potential confounders. The multivariate-adjusted ORs (95% CIs) for the highest versus lowest quintiles of serum choline and PLP were 0.35 (0.16-0.78; P = 0.010) and 0.44 (0.25-0.78; P = 0.005), respectively. There were no associations for hepatocellular carcinoma risk with 5-MTHF, betaine, or homocysteine. CONCLUSION The inverse associations between choline and vitamin B6 and the risk of hepatocellular carcinoma development are novel and warrant further investigation. IMPACT Identifying new modifiable factors for hepatocellular carcinoma prevention is warranted.
Collapse
Affiliation(s)
- Lesley M Butler
- Authors' Affiliations: Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute; and Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania; Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California; and Department of Epidemiology, Shanghai Cancer Institute, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Pogribny IP, Kutanzi K, Melnyk S, de Conti A, Tryndyak V, Montgomery B, Pogribna M, Muskhelishvili L, Latendresse JR, James SJ, Beland FA, Rusyn I. Strain-dependent dysregulation of one-carbon metabolism in male mice is associated with choline- and folate-deficient diet-induced liver injury. FASEB J 2013; 27:2233-43. [PMID: 23439872 DOI: 10.1096/fj.12-227116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysregulation of one-carbon metabolism-related metabolic processes is a major contributor to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). It is well established that genetic and gender-specific variations in one-carbon metabolism contribute to the vulnerability to NAFLD in humans. To examine the role of one-carbon metabolism dysregulation in the pathogenesis and individual susceptibility to NAFLD, we used a "population-based" mouse model where male mice from 7 inbred were fed a choline- and folate-deficient (CFD) diet for 12 wk. Strain-dependent down-regulation of several key one-carbon metabolism genes, including methionine adenosyltransferase 1α (Mat1a), cystathionine-β-synthase (Cbs), methylenetetrahydrofolate reductase (Mthfr), adenosyl-homocysteinase (Ahcy), and methylenetetrahydrofolate dehydrogenase 1 (Mthfd1), was observed. These changes were strongly associated with interstrain variability in liver injury (steatosis, necrosis, inflammation, and activation of fibrogenesis) and hyperhomocysteinemia. Mechanistically, the decreased expression of Mat1a, Ahcy, and Mthfd1 was linked to a reduced level and promoter binding of transcription factor CCAAT/enhancer binding protein β (CEBPβ), which directly regulates their transcription. The strain specificity of diet-induced dysregulation of one-carbon metabolism suggests that interstrain variation in the regulation of one-carbon metabolism may contribute to the differential vulnerability to NFLD and that correcting the imbalance may be considered as preventive and treatment strategies for NAFLD.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Parazzini F, Viganò P, Candiani M, Fedele L. Diet and endometriosis risk: a literature review. Reprod Biomed Online 2013; 26:323-36. [PMID: 23419794 DOI: 10.1016/j.rbmo.2012.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 12/11/2022]
Abstract
A connection between dietary factors and endometriosis onset has become a topic of interest mostly due to the observation that physiological and pathological processes of the disease can be influenced by diet. This paper systematically reviews prior publications dealing with this aspect in order to identify potentially modifiable risk factors. Comprehensive searches in the electronic databases MEDLINE, EMBASE and Science Citation Index Expanded were conducted to identify published studies evaluating the association between food intake (nutrients and food groups) and endometriosis. Eleven studies were identified: 10 case-control and one cohort study. Information on diet was collected using food frequency questionnaires in seven studies, while in one study the questionnaire focused on caffeine and alcohol intake. Women with endometriosis seem to consume fewer vegetables and omega-3 polyunsaturated fatty acids and more red meat, coffee and trans fats but these findings could not be consistently replicated. Most data have also been discussed herein in light of the available experimental and animal model results. At present, evidence supporting a significant association between diet and endometriosis is equivocal. Further studies are needed to clarify the role of diet on endometriosis risk and progression.
Collapse
Affiliation(s)
- Fabio Parazzini
- Dipartimento Materno-Infantile, Fondazione IRCCS Ca'Granda, Ospedale Maggiore Policlinico, Università degli Studi of Milano, Italy
| | | | | | | |
Collapse
|
46
|
Keenan KP, Wallig MA, Haschek WM. Nature via nurture: effect of diet on health, obesity, and safety assessment. Toxicol Pathol 2013; 41:190-209. [PMID: 23334694 DOI: 10.1177/0192623312469857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Food is not only vital for the health and well-being of any living being, but it is a potential source of harmful chemicals, both natural and man-made. Further complicating this is the fact that most nutrients themselves are potentially toxic when consumed in excess. Deficiencies in some of these same nutrients may cause effects that resemble toxicosis or enhance the toxic potential of other nutrients or exogenous chemicals and drugs. This review discusses some of the nutritional and metabolic mechanisms involved and the implications of excess and deficiency in macronutrients and micronutrients in toxicologic pathology. In addition, we review the adverse effects of ad libitum (AL) overfeeding on metabolic, endocrine, renal, and cardiac diseases, and many cancers and the healthful effects of moderate dietary restriction (DR) in modulating obesity and controlling spontaneous and induced diseases of laboratory animals used in toxicology and carcinogenicity studies for human safety assessment.
Collapse
|
47
|
Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110337. [PMID: 23166398 PMCID: PMC3539363 DOI: 10.1098/rstb.2011.0337] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of obesity is extremely complex and is associated with extensive gene expression changes in tissues throughout the body. This situation, combined with the fact that all gene expression changes are thought to have associated epigenetic changes, means that the links between obesity and epigenetics will undoubtedly be vast. Much progress in identifying epigenetic changes induced by (or inducing) obesity has already been made, with candidate and genome-wide approaches. These discoveries will aid the clinician through increasing our understanding of the inheritance, development and treatment of obesity. However, they are also of great value for epigenetic researchers, as they have revealed mechanisms of environmental interactions with epigenetics that can produce or perpetuate a disease state. Here, we will review the evidence for four mechanisms through which epigenetics contributes to obesity: as downstream effectors of environmental signals; through abnormal global epigenetic state driving obesogenic expression patterns; through facilitating developmental programming and through transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
48
|
Fouad AA, Al-Mulhim AS, Jresat I. Therapeutic effect of coenzyme Q10 against experimentally-induced hepatocellular carcinoma in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:100-108. [PMID: 23274416 DOI: 10.1016/j.etap.2012.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 11/28/2012] [Indexed: 06/01/2023]
Abstract
The therapeutic potential of coenzyme Q10 was investigated in rats with hepatocellular carcinoma induced by trichloroacetic acid (0.5g/kg/day, p.o., for five days). Coenzyme Q10 treatment (0.4mg/kg/day, i.p.) was applied for four weeks following trichloroacetic acid administration. Coenzyme Q10 significantly suppressed lipid peroxidation, prevented the depletion of reduced glutathione and superoxide dismutase activity, and decreased the elevations of tumor necrosis factor-α and nitric oxide in liver tissue of rats with hepatocellular carcinoma. Also, the histopathological dysplastic changes induced by trichloroacetic acid in liver tissue were ameliorated by coenzyme Q10. Immunohistochemical analysis revealed that coenzyme Q10 significantly decreased the expression of hepPar-1, alpha-fetoprotein, inducible nitric oxide synthase, cyclooxygenase-2 and nuclear factor-κB in liver tissue of rats with hepatocellular carcinoma. It was concluded that coenzyme Q10 may represent a potential therapeutic option for liver carcinogenesis.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| | | | | |
Collapse
|
49
|
Oxidative stress in coronary artery disease: epigenetic perspective. Mol Cell Biochem 2012; 374:203-11. [DOI: 10.1007/s11010-012-1520-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/07/2012] [Indexed: 01/24/2023]
|
50
|
Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, Kong ANT. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 2012; 137:153-71. [PMID: 23041058 DOI: 10.1016/j.pharmthera.2012.09.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/17/2012] [Indexed: 02/06/2023]
Abstract
Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2-Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including NSAIDs.
Collapse
Affiliation(s)
- Jong Hun Lee
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|