1
|
Liu Z, Solano-Aguilar G, Lakshman S, Urban JF, Zhang M, Chen P, Yu LL, Sun J. Metabolic pathway and network analysis integration for discovering the biomarkers in pig feces after a controlled fruit-vegetable dietary intervention. Food Chem 2024; 461:140836. [PMID: 39154458 DOI: 10.1016/j.foodchem.2024.140836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to establish a strategy for identifying dietary intake biomarkers using a non-targeted metabolomic approach, including metabolic pathway and network analysis. The strategy was successfully applied to identify dietary intake biomarkers in fecal samples from pigs fed two doses of a polyphenol-rich fruit and vegetable (FV) diet following the Dietary Guidelines for Americans (DGA) recommendations. Potential biomarkers were identified among dietary treatment groups using liquid chromatography-high resolution mass spectrometry (LC-HRMS) based on a non-targeted metabolomic approach with metabolic pathway and network analysis. Principal component analysis (PCA) results showed significant differences in fecal metabolite profiles between the control and two FV intervention groups, indicating a diet-induced differential fecal metabolite profile after FV intervention. Metabolites from common flavonoids, e.g., (epi)catechin and protocatechuic acid, or unique flavonoids, e.g., 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxyflavone and 3,5,3',4'-tetrahydroxy-6,7-methylenedioxyflavone, were identified as highly discriminating factors, confirming their potential as fecal markers for the FV dietary intervention. Microbiota pathway prediction using targeted flavonoids provided valuable and reliable biomarker exploration with high confidence. A correlation network analysis between these discriminatory ion features was applied to find connections to possible dietary biomarkers, further validating these biomarkers with biochemical insights. This study demonstrates that integrating metabolic pathways and network analysis with a non-targeted metabolomic approach is highly effective for rapid and accurate identification and prediction of fecal biomarkers under controlled dietary conditions in animal studies. This approach can also be utilized to study microbial metabolisms in human clinical research.
Collapse
Affiliation(s)
- Zhihao Liu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Gloria Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
2
|
Egorova AA, Zykova TE, Hertig CW, Hoffie I, Morozov SV, Chernyak EI, Rogachev AD, Korotkova AM, Vikhorev AV, Vasiliev GV, Shoeva OY, Kumlehn J, Gerasimova SV, Khlestkina EK. Accumulation of Anthocyanin in the Aleurone of Barley Grains by Targeted Restoration of the MYC2 Gene. Int J Mol Sci 2024; 25:12705. [PMID: 39684416 DOI: 10.3390/ijms252312705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Blue barley grain pigmentation results from anthocyanin accumulation in the aleurone layer. Anthocyanins are known for their beneficial effects on human health. The gene encoding the MYELOCYTOMATOSIS 2 (MYC2) transcription factor is potentially responsible for the blue coloration of the aleurone. In non-pigmented barley, a single nucleotide insertion in this gene causes a frameshift mutation with a premature stop codon. It was hypothesized that restoring the MYC2 reading frame could activate anthocyanin accumulation in the aleurone. Using a targeted mutagenesis approach in the present study, the reading frame of MYC2 was restored in the non-pigmented cultivar Golden Promise. Genetic constructs harboring cas9 and gRNA expression units were developed, pre-validated in protoplasts, and then functional MYC2 alleles were generated at the plant level via Agrobacterium-mediated transformation. Anthocyanin accumulation in the aleurone layer of grains from these mutants was confirmed through microscopy and chemical analysis. The expression of anthocyanin biosynthesis genes was analyzed, revealing that the restoration of MYC2 led to increased transcript levels of F3H and ANS genes. These results confirm the critical role of the MYC2 transcription factor in the blue aleurone trait and provide a biotechnological solution for enriching barley grain with anthocyanins.
Collapse
Affiliation(s)
- Anastasiya A Egorova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Tatyana E Zykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Christian W Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Sergey V Morozov
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna M Korotkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Alexander V Vikhorev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Gennady V Vasiliev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olesya Y Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Sophia V Gerasimova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| | - Elena K Khlestkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia
| |
Collapse
|
3
|
Aguiar Freire CECD, Gonçalves SF, de Souza Moreira C, Reis RM, Matias de Alencar S, Mello Cesar AS. Yogurt enriched with nanoencapsulated anthocyanins: Effects on the modulation of the gut microbiota and its infuence on health. Curr Res Food Sci 2024; 9:100857. [PMID: 39328390 PMCID: PMC11424949 DOI: 10.1016/j.crfs.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Anthocyanins are phenolic compounds present in various plant products with interesting functional characteristics studied by science, such as their anti-inflammatory and antioxidant activities, among others. However, anthocyanins are considered unstable to various factors, which can affect their functional capacity. For this reason, some technologies, such as nanoencapsulation, are being applied to ensure their functional capacity effectively. The incorporation of anthocyanins in yogurt has shown various benefits, such as the ability to inhibit pathogenic microorganisms, reduce enzyme activity, and prolong the shelf life of the product. Additionally, the functional effects include their ability to modulate the gut microbiota, generating antioxidant, anti-inflammatory, and even antiproliferative responses, thereby reducing the capacity of tumor progression. For these reasons, this graphic review discussed the functional effects of yogurt enriched with nanoencapsulated anthocyanins on the gut microbiota and its influence on human health.
Collapse
Affiliation(s)
| | - Samuel Ferreira Gonçalves
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Carolina de Souza Moreira
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Ranam Moreira Reis
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, 13414-903, Brazil
| | - Severino Matias de Alencar
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Aline Silva Mello Cesar
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
4
|
Zhang D, Wu M, Yi X, Shi J, Ouyang Y, Dong N, Gong G, Guo L, Zhou L. Correlation analysis of myopia and dietary factors among primary and secondary school students in Shenyang, China. Sci Rep 2024; 14:20619. [PMID: 39232029 PMCID: PMC11375006 DOI: 10.1038/s41598-024-71254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Currently, the global prevalence of myopia is high and on the rise, seriously affecting the health of students. Studies have suggested that dietary factors may be associated with the occurrence and development of myopia, but the results are inconsistent. This survey aims to analyze the correlation between dietary factors and myopia while controlling for more confounding factors. A multi-stage stratified cluster sampling method was performed to select 10,619 primary and secondary school students in Shenyang for visual examination, and questionnaires were administered to 6974 of them. Logistic regression was performed with myopia as the dependent variable and the variables with p < 0.1 in the univariate analysis as independent variables. Sensitivity analysis was conducted using propensity score matching. The results showed that the overall prevalence of myopia among primary and secondary school students in Shenyang was 59.1%, with mild myopia predominating. Students who ate fresh fruits two or more times a day had a 0.69 times lower risk of myopia compared to those who did not eat fruits (95% CI 0.50-0.97). However, subgroup analysis demonstrated that this protective effect was only significant for male students, with an OR of 0.59 (95% CI 0.38-0.91). Moreover, female students who consumed sugary beverages once or more a day had a 1.8 times higher risk of myopia compared to those who did not consume sugary beverages (95% CI 1.03-3.15). Vegetable consumption, intake of fried foods, and breakfast habits were not significantly associated with myopia. In summary, excessive consumption of sugary beverages could increase the risk of myopia, especially in female students, whereas fruit intake contributed to reducing the risk of myopia, particularly in male students.
Collapse
Affiliation(s)
- Dan Zhang
- Shenyang Center for Disease Control and Prevention, Shenyang, 110623, China
- School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | - Ming Wu
- Liaoning Center for Disease Control and Prevention, Shenyang, 110005, Liaoning, China
| | - Xiaodan Yi
- Shenyang Center for Disease Control and Prevention, Shenyang, 110623, China
| | - Juping Shi
- School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | - Yu Ouyang
- School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | - Nan Dong
- Shenyang Center for Disease Control and Prevention, Shenyang, 110623, China
| | - Guifang Gong
- Shenyang Center for Disease Control and Prevention, Shenyang, 110623, China
| | - Lianying Guo
- School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China.
| | - Lin Zhou
- School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China.
- Liaoning Medical Functional Food Professional Technology Innovation Center, Shenyang Medical College, Shenyang, 110034, Liaoning, China.
| |
Collapse
|
5
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
6
|
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang J, Zhao S, Li M, Tong X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids. Nutr Metab (Lond) 2024; 21:49. [PMID: 39026248 PMCID: PMC11256480 DOI: 10.1186/s12986-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.
Collapse
Affiliation(s)
- Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingshuo Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Guang'anmen Hospital, Academician of Chinese Academy of Sciences, China Academy of Traditional Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Liang A, Leonard W, Beasley JT, Fang Z, Zhang P, Ranadheera CS. Anthocyanins-gut microbiota-health axis: A review. Crit Rev Food Sci Nutr 2024; 64:7563-7588. [PMID: 36927343 DOI: 10.1080/10408398.2023.2187212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Anthocyanins are a subclass of flavonoids responsible for color in some fruits and vegetables with potent antioxidative capacity. During digestion, a larger proportion of dietary anthocyanins remains unabsorbed and reach the large intestine where they interact with the gut microbiota. Anthocyanins can modulate gut microbial populations to improve diversity and the proportion of beneficial populations, leading to alterations in short chain fatty acid and bile acid production. Some anthocyanins can be degraded into colonic metabolites, such as phenolic acids, which accumulate in the body and regulate a range of biological activities. Here we provide an overview of the effects of dietary anthocyanin consumption on gut microbial interactions, metabolism, and composition. Progression of chronic diseases has been strongly associated with imbalances in gut microbial populations. We therefore focus on the role of the gut microbiota as the 'mediator' that facilitates the therapeutic potential of anthocyanins against various chronic diseases, including obesity, type II diabetes, cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, cancer, fatty liver disease, chronic kidney disease and osteoarthritis.
Collapse
Affiliation(s)
- Anqi Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - William Leonard
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jesse T Beasley
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Chaminda Senaka Ranadheera
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Liu Q, Gao G, Shang C, Li T, Wang Y, Li L, Feng X. Screening and verification of proteins that interact with the anthocyanin-related transcription factor PbrMYB114 in 'Yuluxiang' pear. PeerJ 2024; 12:e17540. [PMID: 38887620 PMCID: PMC11182023 DOI: 10.7717/peerj.17540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.
Collapse
Affiliation(s)
- Qingwei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Ge Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Chen Shang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Tong Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Yadong Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Liulin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi Province, China
| |
Collapse
|
9
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
10
|
Ma Z, Wei C, Wang W, Lin W, Nie H, Duan Z, Liu K, Xiao XO. Non-destructive prediction of anthocyanin concentration in whole eggplant peel using hyperspectral imaging. PeerJ 2024; 12:e17379. [PMID: 39670090 PMCID: PMC11636719 DOI: 10.7717/peerj.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/20/2024] [Indexed: 12/14/2024] Open
Abstract
Accurately detecting the anthocyanin content in eggplant peel is essential for effective eggplant breeding. The present study aims to present a method that combines hyperspectral imaging with advanced computational analysis to rapidly, non-destructively, and precisely measure anthocyanin content in eggplant fruit. For this purpose, hyperspectral images of the fruits of 20 varieties with diverse colors were collected, and the content of the anthocyanin were detected using high performance liquid chromatography (HPLC) methods. In order to minimize background noise in the hyperspectral images, five preprocessing algorithms were utilized on average reflectance spectra: standard normalized variate (SNV), autoscales (AUT), normalization (NOR), Savitzky-Golay convolutional smoothing (SG), and mean centering (MC). Additionally, the competitive adaptive reweighted sampling (CARS) method was employed to reduce the dimensionality of the high-dimensional hyperspectral data. In order to predict the cyanidin, petunidin, delphinidin, and total anthocyanin content of eggplant fruit, two models were constructed: partial least squares regression (PLSR) and least squares support vector machine (LS-SVM). The HPLC results showed that eggplant peel primarily contains three types of anthocyanins. Furthermore, there were significant differences in the average reflectance rates between 400-750 nm wavelength ranges for different colors of eggplant peel. The prediction model results indicated that the model based on NOR CARS LS-SVM achieved the best performance, with a squared coefficient of determination (R2) greater than 0.98, RMSEP and RMSEC less than 0.03 for cyanidin, petunidin, delphinidin, and total anthocyanin predication. These results suggest that hyperspectral imaging is a rapid and non-destructive technique for assessing the anthocyanin content of eggplant peel. This approach holds promise for facilitating the more effective eggplant breeding.
Collapse
Affiliation(s)
- Zhiling Ma
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China
| | - Changbin Wei
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China
| | - Wenhui Wang
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China
| | - Wenqiu Lin
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China
| | - Heng Nie
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China
| | - Zhe Duan
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China
- Yunnan Agricultural University, Puer, Yunnan, China
| | - Ke Liu
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China
- South China Agricultural University, Guangzhou, Guangdong, China
| | - Xi Ou Xiao
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture & Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang Key Laboratory of Tropical Crop Genetic Improvement, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Zhang C, Sha Y, Wang Q, Liu J, Zhang P, Cheng S, Qin P. Integrative metabolome and transcriptome profiling provide insights into elucidation of the synthetic mechanisms of phenolic compounds in Yunnan hulled wheat (Triticum aestivum ssp. yunnanense King). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4109-4127. [PMID: 38308467 DOI: 10.1002/jsfa.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Yunnan hulled wheat grains (YHWs) have abundant phenolic compounds (PCs). However, a systematic elucidation of the phenolic characteristics and molecular basis in YHWs is currently lacking. The aim of the study, for the first time, was to conduct metabolomic and transcriptomic analyses of YHWs at different developmental stages. RESULTS A total of five phenolic metabolite classes (phenolic acids, flavonoids, quinones, lignans and coumarins, and tannins) and 361 PCs were identified, with flavonoids and phenolic acids being the most abundant components. The relative abundance of the identified PCs showed a dynamic decreasing pattern with grain development, and the most significant differences in accumulation were between the enlargement and mature stage, which is consistent with the gene regulation patterns of the corresponding phenolic biosynthesis pathway. Through co-expression and co-network analysis, PAL, HCT, CCR, F3H, CHS, CHI and bZIP were identified and predicted as candidate key enzymes and transcription factors. CONCLUSION The results broaden our understanding of PC accumulation in wheat whole grains, especially the differential transfer between immature and mature grains. The identified PCs and potential regulatory factors provide important information for future in-depth research on the biosynthesis of PCs and the improvement of wheat nutritional quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanli Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- College of Tropical Crops, Yunnan Agricultural University, Kunming, China
| | - Yun Sha
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shunhe Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Jiangshu Lixiahe Institue of Agriculture Science, Yangzhou, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Mora N, Rosa M, Touaibia M, Martin LJ. Effects of Red Sorghum-Derived Deoxyanthocyanidins and Their O-β-D-Glucosides on E-Cadherin Promoter Activity in PC-3 Prostate Cancer Cells. Molecules 2024; 29:1891. [PMID: 38675711 PMCID: PMC11054106 DOI: 10.3390/molecules29081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Although much less common than anthocyanins, 3-Deoxyanthocyanidins (3-DAs) and their glucosides can be found in cereals such as red sorghum. It is speculated that their bioavailability is higher than that of anthocyanins. Thus far, little is known regarding the therapeutic effects of 3-DAs and their O-β-D-glucosides on cancer, including prostate cancer. Thus, we evaluated their potential to decrease cell viability, to modulate the activity of transcription factors such as NFκB, CREB, and SOX, and to regulate the expression of the gene CDH1, encoding E-Cadherin. We found that 4',7-dihydroxyflavylium chloride (P7) and the natural apigeninidin can reduce cell viability, whereas 4',7-dihydroxyflavylium chloride (P7) and 4'-hydroxy-7-O-β-D-glucopyranosyloxyflavylium chloride (P3) increase the activities of NFkB, CREB, and SOX transcription factors, leading to the upregulation of CDH1 promoter activity in PC-3 prostate cancer cells. Thus, these compounds may contribute to the inhibition of the epithelial-to-mesenchymal transition in cancer cells and prevent the metastatic activity of more aggressive forms of androgen-resistant prostate cancer.
Collapse
Affiliation(s)
- Nathalie Mora
- UMR408 INRA–UAPV, SQPO, Qualim, University Avignon, Campus Jean-Henri Fabre, Pôle Agrosciences, 301, Rue Baruch de Spinoza, 84911 Avignon, France; (N.M.); (M.R.)
| | - Maxence Rosa
- UMR408 INRA–UAPV, SQPO, Qualim, University Avignon, Campus Jean-Henri Fabre, Pôle Agrosciences, 301, Rue Baruch de Spinoza, 84911 Avignon, France; (N.M.); (M.R.)
| | - Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, NB E1A 3E9, Canada;
| | - Luc J. Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
13
|
Jiang L, Lyu S, Yu H, Zhang J, Sun B, Liu Q, Mao X, Chen P, Pan D, Chen W, Fan Z, Li C. Transcription factor encoding gene OsC1 regulates leaf sheath color through anthocyanidin metabolism in Oryza rufipogon and Oryza sativa. BMC PLANT BIOLOGY 2024; 24:147. [PMID: 38418937 PMCID: PMC10900563 DOI: 10.1186/s12870-024-04823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Carbohydrates, proteins, lipids, minerals and vitamins are nutrient substances commonly seen in rice grains, but anthocyanidin, with benefit for plant growth and animal health, exists mainly in the common wild rice but hardly in the cultivated rice. To screen the rice germplasm with high intensity of anthocyanidins and identify the variations, we used metabolomics technique and detected significant different accumulation of anthocyanidins in common wild rice (Oryza rufipogon, with purple leaf sheath) and cultivated rice (Oryza sativa, with green leaf sheath). In this study, we identified and characterized a well-known MYB transcription factor, OsC1, through phenotypic (leaf sheath color) and metabolic (metabolite profiling) genome-wide association studies (pGWAS and mGWAS) in 160 common wild rice (O. rufipogon) and 151 cultivated (O. sativa) rice varieties. Transgenic experiments demonstrated that biosynthesis and accumulation of cyanidin-3-Galc, cyanidin 3-O-rutinoside and cyanidin O-syringic acid, as well as purple pigmentation in leaf sheath were regulated by OsC1. A total of 25 sequence variations of OsC1 constructed 16 functional haplotypes (higher accumulation of the three anthocyanidin types within purple leaf sheath) and 9 non-functional haplotypes (less accumulation of anthocyanidins within green leaf sheath). Three haplotypes of OsC1 were newly identified in our germplasm, which have potential values in functional genomics and molecular breeding of rice. Gene-to-metabolite analysis by mGWAS and pGWAS provides a useful and efficient tool for functional gene identification and omics-based crop genetic improvement.
Collapse
Affiliation(s)
- Liqun Jiang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Shuwei Lyu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Bingrui Sun
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Pingli Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Dajian Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Zhilan Fan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Guangdong Key Laboratory of New Technology in Rice Breeding, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Guangdong Rice Engineering Laboratory, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, No. 3, Jinying East Road, Tianhe, Guangzhou, China.
| |
Collapse
|
14
|
Wang Y, Lu RS, Li MH, Lu XY, Sun XQ, Zhang YM. Unraveling the Molecular Basis of Color Variation in Dioscorea alata Tubers: Integrated Transcriptome and Metabolomics Analysis. Int J Mol Sci 2024; 25:2057. [PMID: 38396734 PMCID: PMC10889544 DOI: 10.3390/ijms25042057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Dioscorea alata L. (Dioscoreaceae) is a widely cultivated tuber crop with variations in tuber color, offering potential value as health-promoting foods. This study focused on the comparison of D. alata tubers possessing two distinct colors, white and purple, to explore the underlying mechanisms of color variation. Flavonoids, a group of polyphenols known to influence plant color and exhibit antioxidant properties, were of particular interest. The total phenol and total flavonoid analyses revealed that purple tubers (PTs) have a significantly higher content of these metabolites than white tubers (WTs) and a higher antioxidant activity than WTs, suggesting potential health benefits of PT D. alata. The transcriptome analysis identified 108 differentially expressed genes associated with the flavonoid synthesis pathway, with 57 genes up-regulated in PTs, including CHS, CHI, DFR, FLS, F3H, F3'5'H, LAR, ANS, and ANR. The metabolomics analysis demonstrated that 424 metabolites, including 104 flavonoids and 8 tannins, accumulated differentially in PTs and WTs. Notably, five of the top ten up-regulated metabolites were flavonoids, including 6-hydroxykaempferol-7-O-glucoside, pinocembrin-7-O-(6″-O-malonyl)glucoside, 6-hydroxykaempferol-3,7,6-O-triglycoside, 6-hydroxykaempferol-7-O-triglycoside, and cyanidin-3-O-(6″-O-feruloyl)sophoroside-5-O-glucoside, with the latter being a precursor to anthocyanin synthesis. Integrating transcriptome and metabolomics data revealed that the 57 genes regulated 20 metabolites within the flavonoid synthesis pathway, potentially influencing the tubers' color variation. The high polyphenol content and antioxidant activity of PTs indicate their suitability as nutritious and health-promoting food sources. Taken together, the findings of this study provide insights into the molecular basis of tuber color variation in D. alata and underscore the potential applications of purple tubers in the food industry and human health promotion. The findings contribute to the understanding of flavonoid biosynthesis and pigment accumulation in D. alata tubers, opening avenues for future research on enhancing the nutritional quality of D. alata cultivars.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Rui-Sen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Ming-Han Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Xin-Yu Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
15
|
Niu M, Chen X, Guo Y, Song J, Cui J, Wang L, Su N. Sugar Signals and R2R3-MYBs Participate in Potassium-Repressed Anthocyanin Accumulation in Radish. PLANT & CELL PHYSIOLOGY 2023; 64:1601-1616. [PMID: 37862259 DOI: 10.1093/pcp/pcad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Anthocyanin biosynthesis in plants is influenced by a wide range of environmental factors, such as light, temperature and nutrient availability. In this study, we revealed that the potassium-repressed anthocyanin accumulation in radish hypocotyls was associated with altered sugar distribution and sugar signaling pathways rather than changes in oxidative stress status. Sugar-feeding experiments suggested a hexokinase-independent glucose signal acted as a major contributor in regulating anthocyanin biosynthesis, transport and regulatory genes at the transcriptional level. Several R2R3-MYBs were identified as anthocyanin-related MYBs. Phylogenetic and protein sequence analyses suggested that RsMYB75 met the criteria of subgroup 6 MYB activator, while RsMYB39 and RsMYB82 seemed to be a non-canonical MYB anthocyanin activator and repressor, respectively. Through yeast-one-hybrid, dual-luciferase and transient expression assays, we confirmed that RsMYB39 strongly induced the promoter activity of anthocyanin transport-related gene RsGSTF12, while RsMYB82 significantly reduced anthocyanin biosynthesis gene RsANS1 expression. Molecular models are proposed in the discussion, allowing speculation on how these novel RsMYBs may regulate the expression levels of anthocyanin-related structural genes. Together, our data evidenced the strong impacts of potassium on sugar metabolism and signaling and its regulation of anthocyanin accumulation through different sugar signals and R2R3-MYBs in a hierarchical regulatory system.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Xuan Chen
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Youyou Guo
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Jinxue Song
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Jin Cui
- College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310027, China
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, No. 1, Weigang, Xiaoling Wei Street, Xuanwu District, Nanjing, Jiangsu 210095, China
| |
Collapse
|
16
|
Li J, Wu K, Li L, Ma G, Fang L, Zeng S. Identification of HpMYB1 inducing anthocyanin accumulation in Hippeastrum Hybridum tepals by RNA-seq. BMC PLANT BIOLOGY 2023; 23:594. [PMID: 38012575 PMCID: PMC10683291 DOI: 10.1186/s12870-023-04582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Cultivated Hippeastrum × hybridum is a popular ornamental plant with large and colorful flowers, long flowering duration, and high commercial value. As its main ornamental feature, its flower color is related to the anthocyanin content in the tepals. However, the molecular regulatory mechanisms of anthocyanin biosynthesis in H. × hybridum have not yet been elucidated. RESULTS In the present study, 12 cDNA libraries of four stages of H.× hybridum 'Royal Velvet' tepal development were used for RNA-seq, obtaining 79.83 gigabases (GB) of clean data. The data were assembled into 148,453 unigenes, and 11,262 differentially expressed genes were identified. Forty key enzymes participating in anthocyanin biosynthesis were investigated, and the results showed that most of the anthocyanin structural genes were expressed at low levels in S1 and were markedly upregulated in S2 and S3. The expression profiles of 12 selected genes were verified by qRT-PCR. Furthermore, the R2R3-MYB transcription factor (TF), HpMYB1, involved in the regulation of anthocyanin biosynthesis was identified by sequence, expression pattern, and subcellular localization analyses. Its overexpression in tobacco significantly increased the anthocyanin levels in various tissues and activated anthocyanin-related genes. CONCLUSIONS Using RNA-seq technology, we successfully identified a potential R2R3-MYB gene, HpMYB1, that regulates anthocyanin biosynthesis in H.× hybridum 'Royal Velvet'. Our findings provide basic transcript information and valuable transcriptome data for further identification of key genes involved in anthocyanin biosynthesis and can be applied in the artificial breeding of new H. × hybridum cultivars with enhanced ornamental value.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 510650, Guangzhou, China.
| |
Collapse
|
17
|
Guan L, Liu J, Wang R, Mu Y, Sun T, Wang L, Zhao Y, Zhu N, Ji X, Lu Y, Wang Y. Metabolome and Transcriptome Analyses Reveal Flower Color Differentiation Mechanisms in Various Sophora japonica L. Petal Types. BIOLOGY 2023; 12:1466. [PMID: 38132292 PMCID: PMC10740404 DOI: 10.3390/biology12121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Sophora japonica L. is an important landscaping and ornamental tree species throughout southern and northern parts of China. The most common color of S. japonica petals is yellow and white. In this study, S. japonica flower color mutants with yellow and white flag petals and light purple-red wing and keel petals were used for transcriptomics and metabolomics analyses. To investigate the underlying mechanisms of flower color variation in S. japonica 'AM' mutant, 36 anthocyanin metabolites were screened in the anthocyanin-targeting metabolome. The results demonstrated that cyanidins such as cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside in the 'AM' mutant were the key metabolites responsible for the red color of the wing and keel petals. Transcriptome sequencing and differentially expressed gene (DEG) analysis identified the key structural genes and transcription factors related to anthocyanin biosynthesis. Among these, F3'5'H, ANS, UFGT79B1, bHLH, and WRKY expression was significantly correlated with the cyanidin-type anthocyanins (key regulatory factors affecting anthocyanin biosynthesis) in the flag, wing, and keel petals in S. japonica at various flower development stages.
Collapse
Affiliation(s)
- Lingshan Guan
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Jinshi Liu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Ruilong Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Yanjuan Mu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Tao Sun
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Lili Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yunchao Zhao
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Nana Zhu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
- State-Owned Yishan Forest Farm in Yishui County, Linyi 276400, China
| | - Xinyue Ji
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yizeng Lu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yan Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| |
Collapse
|
18
|
Lewis JA, Zhang B, Harza R, Palmer N, Sarath G, Sattler SE, Twigg P, Vermerris W, Kang C. Structural Similarities and Overlapping Activities among Dihydroflavonol 4-Reductase, Flavanone 4-Reductase, and Anthocyanidin Reductase Offer Metabolic Flexibility in the Flavonoid Pathway. Int J Mol Sci 2023; 24:13901. [PMID: 37762209 PMCID: PMC10531346 DOI: 10.3390/ijms241813901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Flavonoids are potent antioxidants that play a role in defense against pathogens, UV-radiation, and the detoxification of reactive oxygen species. Dihydroflavonol 4-reductase (DFR) and flavanone 4-reductase (FNR) reduce dihydroflavonols and flavanones, respectively, using NAD(P)H to produce flavan-(3)-4-(di)ols in flavonoid biosynthesis. Anthocyanidin reductase (ANR) reduces anthocyanidins to flavan-3-ols. In addition to their sequences, the 3D structures of recombinant DFR, FNR and ANR from sorghum and switchgrass showed a high level of similarity. The catalytic mechanism, substrate-specificity and key residues of three reductases were deduced from crystal structures, site-directed mutagenesis, molecular docking, kinetics, and thermodynamic ana-lyses. Although DFR displayed its highest activity against dihydroflavonols, it also showed activity against flavanones and anthocyanidins. It was inhibited by the flavonol quercetin and high concentrations of dihydroflavonols/flavonones. SbFNR1 and SbFNR2 did not show any activity against dihydroflavonols. However, SbFNR1 displayed activity against flavanones and ANR activity against two anthocyanidins, cyanidin and pelargonidin. Therefore, SbFNR1 and SbFNR2 could be specific ANR isozymes without delphinidin activity. Sorghum has high concentrations of 3-deoxyanthocyanidins in vivo, supporting the observed high activity of SbDFR against flavonols. Mining of expression data indicated substantial induction of these three reductase genes in both switchgrass and sorghum in response to biotic stress. Key signature sequences for proper DFR/ANR classification are proposed and could form the basis for future metabolic engineering of flavonoid metabolism.
Collapse
Affiliation(s)
- Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (B.Z.)
| | - Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (B.Z.)
| | - Rishi Harza
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (B.Z.)
| | - Nathan Palmer
- Wheat, Sorghum, Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA; (N.P.); (G.S.); (S.E.S.)
| | - Gautam Sarath
- Wheat, Sorghum, Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA; (N.P.); (G.S.); (S.E.S.)
| | - Scott E. Sattler
- Wheat, Sorghum, Forage Research Unit, U.S. Department of Agriculture—Agricultural Research Service, Lincoln, NE 68583, USA; (N.P.); (G.S.); (S.E.S.)
| | - Paul Twigg
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA;
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA;
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (B.Z.)
| |
Collapse
|
19
|
Yu Q, Yu F, Li Q, Zhang J, Peng Y, Wang X, Li T, Yin N, Sun G, Ouyang H, Chen Y, Mine Y, Tsao R, Zhang H. Anthocyanin-Rich Butterfly Pea Flower Extract Ameliorating Low-Grade Inflammation in a High-Fat-Diet and Lipopolysaccharide-Induced Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11941-11956. [PMID: 37526116 DOI: 10.1021/acs.jafc.3c02696] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This study aimed to explore the enhancive effects of butterfly pea flower (BF) extracts on metabolic and immune homeostasis in a low-grade inflammation mouse model. The BF extract was found to contain mainly anthocyanins among other flavonoids. BF supplementation alleviated metabolic endotoxemia by lowering the plasma glucose, lipopolysaccharide (LPS), and tumor necrosis factor-α (TNF-α) levels and restored lipid metabolism and the balance between Treg and Th17 cells, thereby inhibiting the dysfunctional liver and abdominal white adipose tissues. BF extract increased the tight junction protein expression and reduced the expression of proinflammatory cytokines, therefore sustaining the colonic mucosa structure. Furthermore, BF extracts reshaped the gut microbiota structure characterized by significantly promoted SCFA-producing gut microbiota such as Akkermansia and Butyricicoccaceae. Additionally, BF extracts enhanced fecal primary bile acid (BA) levels and modulated bile acid signaling in the liver and ileum to facilitate BA synthesis for the restoration of lipid metabolism. In summary, anthocyanin-enriched BF extracts alleviated the profound negative dietary alterations and helped maintain the metabolic health by modulating the various aspects of the gut microenvironment and enhancing hepatic bile acid synthesis.
Collapse
Affiliation(s)
- Qinqin Yu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Fengyao Yu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiong Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - You Peng
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China
| | - Xiaoya Wang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tao Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ning Yin
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Genlin Sun
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yuhuan Chen
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Rong Tsao
- Guelph Food Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
20
|
Tan C, Chen H, Dai G, Liu Y, Shen W, Wang C, Liu D, Liu S, Xu S, Zhu B, Chen D, Cui C. Identification and characterization of the gene BraANS.A03 associated with purple leaf color in pak choi (Brassica rapa L. ssp. chinensis). PLANTA 2023; 258:19. [PMID: 37314587 DOI: 10.1007/s00425-023-04171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION BraANS.A3 was the key gene controlling purple leaf color in pak choi, and two short fragments of promoter region in green pak choi might be interfering its normal expression. Pak choi (B. rapa L. ssp. chinensis) is an influential and important vegetable with green, yellow, or purple leaves that is cultivated worldwide. The purple leaves are rich in anthocyanins, but the underlying genetics and evolution have yet to be extensively studied. Free-hand sections of the purple leaves indicated that anthocyanins mainly accumulate throughout the adaxial and abaxial epidermal leaf cells. Segregation analyses of an F2 population of a B. rapa ssp. chinensis L. purple leaf mutant ZBC indicated that the purple trait is controlled by an incompletely dominant nuclear gene. Bulked segregant analysis (BSA) showed that the key genes controlling the trait were between 24.25 and 38.10 Mb on chromosome A03 of B. rapa. From the annotated genes, only BraA03g050560.3C, homologous to Arabidopsis AtANS, was related to the anthocyanin synthesis pathway. Genome annotation results and transcriptional sequencing analyses revealed that the BraANS.A3 gene was involved in the purple leaf trait. qRT-PCR analyses showed that BraANS.A3 was highly upregulated in ZBC but hardly expressed in the leaves of an inbred homozygous line of B. campestris ssp. chinensis L. green leaf mutant WTC, indicating that BraANS.A3 played a key role catalyzing anthocyanin synthesis in ZBC. Full-length sequence alignment of BraANS.A3 in WTC and ZBC showed that it was highly conserved in the gene region, with significant variation in the promoter region. In particular, the insertion of two short fragments of the promoter region in WTC may interfere with its normal expression. The promoter regions of ANS in six Brassica species all had multiple cis-elements involved in responses to abscisic acid, light, and stress, suggesting that ANS may be involved in multiple metabolic pathways or biological processes. Protein-protein interactions predicted that BraANS.A3 interacts with virtually all catalytic proteins in the anthocyanin synthesis pathway and has a strong relationship with Transparent Testa 8 (TT8). These results suggest that BraANS.A3 promotes anthocyanin accumulation in purple pak choi and provide new insights into the functional analysis of anthocyanin-related genes in Chinese cabbage and transcriptional regulatory networks.
Collapse
Affiliation(s)
- Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Duannv Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Sijia Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Shuqi Xu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
| |
Collapse
|
21
|
Zhao X, Yin Y, Fang W, Yang Z. What happens when fruit married with beer? Int J Gastron Food Sci 2023. [DOI: 10.1016/j.ijgfs.2023.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Cardoso AL, Teixeira LDL, Hassimotto NMA, Baptista SDL, Copetti CLK, Rieger DK, Vieira FGK, Micke GA, Vitali L, Assis MAAD, Schulz M, Fett R, Silva ELD, Pietro PFD. Kinetic Profile of Urine Metabolites after Acute Intake of a Phenolic Compounds-Rich Juice of Juçara ( Euterpe edulis Mart.) and Antioxidant Capacity in Serum and Erythrocytes: A Human Study. Int J Mol Sci 2023; 24:ijms24119555. [PMID: 37298506 DOI: 10.3390/ijms24119555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
The juçara palm tree produces a small spherical and black-purple fruit similar to açaí. It is rich in phenolic compounds, especially anthocyanins. A clinical trial evaluated the absorption and excretion of the main bioactive compounds in urine and the antioxidant capacity in serum and erythrocytes of 10 healthy subjects after juçara juice intake. Blood samples were collected before (0.0 h) and 0.5 h, 1 h, 2 h, and 4 h after a single dose (400 mL) of juçara juice, while urine was collected at baseline and 0-3 and 3-6 h after juice intake. Seven phenolic acids and conjugated phenolic acids were identified in urine deriving from the degradation of anthocyanins: protocatechuic acid, vanillic acid, vanillic acid glucuronide, hippuric acid, hydroxybenzoic acid, hydroxyphenylacetic acid, and ferulic acid derivative. In addition, kaempferol glucuronide was also found in urine as a metabolite of the parent compound in juçara juice. Juçara juice caused a decrease in the total oxidant status of serum after 0.5 h in comparison to baseline values (p < 0.05) and increased the phenolic acid metabolites excretion. This study shows the relationship between the production of metabolites of juçara juice and the total antioxidant status in human serum, indicating evidence of its antioxidant capacity.
Collapse
Affiliation(s)
- Alyne Lizane Cardoso
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Luciane de Lira Teixeira
- Department of Food Science and Experimental Nutrition, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | | | - Sheyla de Liz Baptista
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Cândice Laís Knöner Copetti
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Debora Kurrler Rieger
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | | | - Gustavo Amadeu Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Luciano Vitali
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Maria Alice Altenburg de Assis
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis 88034-001, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis 88034-001, SC, Brazil
| | - Edson Luiz da Silva
- Graduate Program in Nutrition, Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Patricia Faria Di Pietro
- Graduate Program in Nutrition, Department of Nutrition, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil
| |
Collapse
|
23
|
Ahmed M, Bose I, Goksen G, Roy S. Himalayan Sources of Anthocyanins and Its Multifunctional Applications: A Review. Foods 2023; 12:foods12112203. [PMID: 37297448 DOI: 10.3390/foods12112203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Anthocyanins, the colored water-soluble pigments, have increasingly drawn the attention of researchers for their novel applications. The sources of anthocyanin are highly diverse, and it can be easily extracted. The unique biodiversity of the Himalayan Mountain range is an excellent source of anthocyanin, but it is not completely explored. Numerous attempts have been made to study the phytochemical aspects of different Himalayan plants. The distinct flora of the Himalayas can serve as a potential source of anthocyanins for the food industry. In this context, this review is an overview of the phytochemical studies conducted on Himalayan plants for the estimation of anthocyanins. For that, many articles have been studied to conclude that plants (such as Berberis asiatica, Morus alba, Ficus palmata, Begonia xanthina, Begonia palmata, Fragaria nubicola, etc.) contain significant amounts of anthocyanin. The application of Himalayan anthocyanin in nutraceuticals, food colorants, and intelligent packaging films have also been briefly debated. This review creates a path for further research on Himalayan plants as a potential source of anthocyanins and their sustainable utilization in the food systems.
Collapse
Affiliation(s)
- Mustafa Ahmed
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Ipsheta Bose
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Swarup Roy
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
24
|
He R, Liu K, Zhang S, Ju J, Hu Y, Li Y, Liu X, Liu H. Omics Analysis Unveils the Pathway Involved in the Anthocyanin Biosynthesis in Tomato Seedling and Fruits. Int J Mol Sci 2023; 24:ijms24108690. [PMID: 37240046 DOI: 10.3390/ijms24108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The purple tomato variety 'Indigo Rose' (InR) is favored due to its bright appearance, abundant anthocyanins and outstanding antioxidant capacity. SlHY5 is associated with anthocyanin biosynthesis in 'Indigo Rose' plants. However, residual anthocyanins still present in Slhy5 seedlings and fruit peel indicated there was an anthocyanin induction pathway that is independent of HY5 in plants. The molecular mechanism of anthocyanins formation in 'Indigo Rose' and Slhy5 mutants is unclear. In this study, we performed omics analysis to clarify the regulatory network underlying anthocyanin biosynthesis in seedling and fruit peel of 'Indigo Rose' and Slhy5 mutant. Results showed that the total amount of anthocyanins in both seedling and fruit of InR was significantly higher than those in the Slhy5 mutant, and most genes associated with anthocyanin biosynthesis exhibited higher expression levels in InR, suggesting that SlHY5 play pivotal roles in flavonoid biosynthesis both in tomato seedlings and fruit. Yeast two-hybrid (Y2H) results revealed that SlBBX24 physically interacts with SlAN2-like and SlAN2, while SlWRKY44 could interact with SlAN11 protein. Unexpectedly, both SlPIF1 and SlPIF3 were found to interact with SlBBX24, SlAN1 and SlJAF13 by yeast two-hybrid assay. Suppression of SlBBX24 by virus-induced gene silencing (VIGS) retarded the purple coloration of the fruit peel, indicating an important role of SlBBX24 in the regulation of anthocyanin accumulation. These results deepen the understanding of purple color formation in tomato seedlings and fruits in an HY5-dependent or independent manner via excavating the genes involved in anthocyanin biosynthesis based on omics analysis.
Collapse
Affiliation(s)
- Rui He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kaizhe Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shuchang Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Ju
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Youzhi Hu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yamin Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Zhang Y, Balasooriya H, Sirisena S, Ng K. The effectiveness of dietary polyphenols in obesity management: A systematic review and meta-analysis of human clinical trials. Food Chem 2023; 404:134668. [DOI: 10.1016/j.foodchem.2022.134668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
|
26
|
Anthocyanins Prevent AAPH-Induced Steroidogenesis Disorder in Leydig Cells by Counteracting Oxidative Stress and StAR Abnormal Expression in a Structure-Dependent Manner. Antioxidants (Basel) 2023; 12:antiox12020508. [PMID: 36830066 PMCID: PMC9952726 DOI: 10.3390/antiox12020508] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Testosterone deficiency may increase the risk of sexual dysfunction and the failure of spermatogenesis. Oxidative stress that is derived from the destruction of homeostasis, disease, and exposure to contaminants can damage the steroidogenicity process in Leydig cells, resulting in a reduction in testosterone synthesis. Anthocyanins are a group of innoxious antioxidants widely recognized in food sources, and are an ideal candidate to relieve oxidative stress-related steroidogenesis disorder. However, there is still a major gap in our knowledge of the structure-function relationship of anthocyanin on the activity mentioned above. In the present study, four anthocyanins including cyanidin-3-glucoside (Cy-3-glu), delphinidin-3-glucoside (Dp-3-glu), pelargonidin-3-glucoside (Pg-3-glu), and cyanidin-3,5-diglucoside (Cy-3,5-diglu) were applied to reverse testosterone generation after employing 2,2'-Azobis(2-amidinopropane)-dihydrochloride (AAPH) as the inducer of oxidative stress in R2C cells. The results demonstrated that all four kinds of anthocyanins can inhibit ROS generation, alleviate mitochondrial membrane potential damage, and contribute to increased testosterone. Among them, Cy-3,5-diglu with diglycoside performed best on antioxidative ability and improved cell dysfunction and upregulated the expression of the steroidogenic acute regulatory protein (StAR). The molecular docking further revealed the direct combination between anthocyanins and StAR, suggesting that anthocyanins with monosaccharide were more likely to interact with StAR than with diglycoside. Taken together, these data indicate that recipient R2C cells under oxidative stress submitted to anthocyanins exhibited improved steroidogenesis in a structure-dependent manner. Anthocyanins could be considered the ideal ingredients against oxidative stress-induced testosterone deficiency.
Collapse
|
27
|
Kim E, Jeon S. The Impact of Phytochemicals in Obesity-Related Metabolic Diseases: Focus on Ceramide Metabolism. Nutrients 2023; 15:703. [PMID: 36771408 PMCID: PMC9920427 DOI: 10.3390/nu15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
The prevalence of obesity and related metabolic diseases has increased dramatically worldwide. As obesity progresses, various lipid species accumulate in ectopic tissues. Amongst them, ceramides-a deleterious sphingolipid species-accumulate and cause lipotoxicity and metabolic disturbances. Dysregulated ceramide metabolism appears to be a key feature in the pathogenesis of obesity-related metabolic diseases. Notably, dietary modification might have an impact on modulating ceramide metabolism. Phytochemicals are plant-derived compounds with various physiological properties, which have been shown to protect against obesity-related metabolic diseases. In this review, we aim to examine the impact of a myriad of phytochemicals and their dietary sources in altering ceramide deposition and ceramide-related metabolism from in vitro, in vivo, and human clinical/epidemiological studies. This review discusses how numerous phytochemicals are able to alleviate ceramide-induced metabolic defects and reduce the risk of obesity-related metabolic diseases via diverse mechanisms.
Collapse
Affiliation(s)
| | - Sookyoung Jeon
- Department of Food Science and Nutrition and the Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
28
|
Naliyadhara N, Kumar A, Kumar Gangwar S, Nair Devanarayanan T, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakara A. Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far? J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
29
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
30
|
Ghalandari H, Askarpour M, Setayesh L, Ghaedi E. Effect of plum supplementation on blood pressure, weight indices, and C-reactive protein: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2022; 52:285-295. [PMID: 36513468 DOI: 10.1016/j.clnesp.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/13/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Metabolic syndrome and its components are major health concerns around the world. Among various factors, overweight/obesity, its consequent inflammation, and hypertension are of special importance. Plums are anti-oxidant-rich fruits which have long been investigated for their health benefits. In this systematic review and meta-analysis, we investigated the possible impact of plum supplementation on obesity, inflammation, and blood pressure. METHODS All of the major databases (PubMed, Scopus, Cochrane, and Web of Science, Google Scholar and EMBASE) were searched to obtain the articles eligible for the review. Relevant data was extracted for the final analysis. Weighted mean difference (WMD) was obtained using fixed and random effect models. The main outcomes included systolic and diastolic blood pressure, body weight, body mass index (BMI), body fat percentage, waist circumference (WC) and blood C-reactive protein (CRP) levels. The effect sizes were expressed as weighted mean difference (WMD) and 95% confidence intervals (CI). RESULTS Crude search provided 3121 articles, among which 11 were eligible to be included. After crude and subgroup analysis, we were unable to detect any significant impact of plum supplementation on body weight (weight mean difference (WMD) of 0.04 kg; 95% CI: -1.55, 1.63, p = 0.959), BMI (WMD 0.39 kg/m2; 95% CI: -0.11, 0.90, p = 0.125), body fat percentage (WMD = 0.59%; 95% CI: -0.41, 1.59, p = 0.249), waist circumference (WMD = 0.60 cm; 95% CI: -1.83, 3.04, p = 0.627), systolic blood pressure (WMD -1.24 mmHg; 95% CI: -3.08, 0.59, p = 0.185), diastolic blood pressure (WMD -4.32 mmHg (95% CI: -9.29, 0.65, p = 0.089), or inflammation indicated by C-reactive protein (CRP) levels (WMD = 0.23 mg/l; 95% CI: -0.27, 0.73, p = 0.371). CONCLUSION Our results show that plum supplementation has no positive effect on factors of metabolic syndrome. We recommend that further research in the form of clinical trials be conducted to make a clear conclusion as of the effectiveness of plum supplementation on parameters of metabolic syndrome.
Collapse
Affiliation(s)
- Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Setayesh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ghaedi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Praveena R, Balasankar A, Aruchamy K, Oh T, Polisetti V, Ramasundaram S, Anbazhakan K. Structural Activity and HAD Inhibition Efficiency of Pelargonidin and Its Glucoside-A Theoretical Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228016. [PMID: 36432125 PMCID: PMC9696994 DOI: 10.3390/molecules27228016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Anthocyanins are an important pharmaceutical ingredient possessing diet regulatory, antioxidant, anticancer, antidiabetic, anti-obesity, antimicrobial, and anti-inflammatory properties. Pelargonidin is an important anthocyanin-based orange-red flavonoid compound used in drugs for treating hypoglycemia, retinopathy, skeletal myopathy, etc. The main sources of pelargonidin are strawberries and food products with red pigmentation. There is a lack of evidence for supporting its use as an independent supplement. In the present study, pelargonidin and pelargonidin-3-O-glucoside are studied for their structural properties using quantum chemical calculations based on density functional theory. The results confirmed that the parent compound and its glycosylated derivative acted as good electron donors. Electrostatic potential, frontier molecular orbitals, and molecular descriptor analyses also substantiated their electron donating properties. Furthermore, based on the probability, a target prediction was performed for pelargonidin and pelargonidin-3-O-glucoside. Hydroxyacyl-coenzyme A dehydrogenase was chosen as an enzymatic target of interest, since the presence work focuses on glucuronidated compounds and their efficacy over diabetes. Possible interactions between these compounds and a target with nominable binding energies were also evaluated. Further, the structural stability of these two compounds were also analyzed using a molecular dynamics simulation.
Collapse
Affiliation(s)
- Rangasamy Praveena
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638401, India
| | | | - Kanakaraj Aruchamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Taehwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Veerababu Polisetti
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Correspondence: (V.P.); (S.R.); (K.A.)
| | - Subramaniyan Ramasundaram
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (V.P.); (S.R.); (K.A.)
| | - Kandasamy Anbazhakan
- Department of Physics, Gobi Arts & Science College, Gobichettipalayam 638453, India
- Correspondence: (V.P.); (S.R.); (K.A.)
| |
Collapse
|
32
|
Iqbal AZ, Javaid N, Hameeda M. Synergic interactions between berry polyphenols and gut microbiota in cardiovascular diseases. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-220071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Now a days, scientific community has been taking initiatives to decrease burden of metabolic disorders including diabetes mellitus, chronic hypertension, cardiovascular diseases and many others. Many nutraceuticals and functional food have a crucial function in preventing and decreasing burden of chronic diseases. Main purpose of the study was to relate association between mechanism of gut microbiota effecting cardiovascular diseases, moreover, to find out advantageous effects of berry polyphenols on gut microbiota and cardiovascular diseases. To summarize, we explore literature for beneficial effects of berry polyphenols by using multiple search engines including Google Scholar, Science Direct and PubMed. Original research article, review articles, experimental trials (human and animal studies) and abstract were also included in the current study based on relevancy to the characteristics of berries and their potential benefit on human health. This detailed review revealed that all classes of berries and their metabolites possess a definite impact on human health by preventing onset of chronic diseases by its anti-inflammatory property, thus, consider as one of the beneficial natural compounds that can be consumed on daily basis to prevent various disorders. There is also a positive association between berry polyphenols and modulation of gut microbiota and their metabolites, furthermore, showed a relationship between gut microbiome and incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Ayesha Zafar Iqbal
- College of Allied Health Sciences, Akhtar Saeed Medical and Dental College, Lahore
| | - Nida Javaid
- University Institute of Diet and Nutritional Sciences, University of Lahore, Lahore
| | - Maryam Hameeda
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore
| |
Collapse
|
33
|
NAUREEN ZAKIRA, DHULI KRISTJANA, DONATO KEVIN, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, BERTELLI MATTEO. Foods of the Mediterranean diet: citrus, cucumber and grape. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E21-E27. [PMID: 36479487 PMCID: PMC9710412 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fruit and vegetables are excellent sources of health-promoting bioactive compounds and nutraceuticals. Regular consumption of fruit and vegetables helps prevent the onset and progression of many non-communicable diseases. The Mediterranean diet envisages consumption of healthy vegetables and fruit on a daily basis for maximum health benefits. Traditional use envisages vegetable-based and fruit-based diets, and many studies scientifically proved the beneficial effects of Mediterranean vegetables and fruits. Rich in bioactive phytochemicals, citrus, cucumbers and grapes have antioxidant, anti-inflammatory, antimicrobial, cardioprotective, anti-ageing and anti-cancer properties. Studies indicate that intake of citrus, cucumbers and grapes reduces hypertension, hyperlipidemia, skin problems and infections and improves the health of the cardiovascular and nervous systems. These beneficial effects are mediated by several bioactive molecules present in Mediterranean diet vegetables and fruits, such as citrus, cucumbers and grapes. Indeed, they contains flavones, isoflavones, tannins, polyphenols and many beneficial natural molecules. This review focuses on the bioactive ingredients in citrus fruit, cucumbers and grapes, all components of the Mediterranean diet, and their health effects. A deep understanding of Mediterranean diet's components, as well as clinical trials to test natural molecules beneficial effects, will permit to further explore the therapeutic potential of the Mediterranean diet in several pathological conditions.
Collapse
Affiliation(s)
| | - KRISTJANA DHULI
- MAGI’s Lab, Rovereto (TN), Italy
- Correspondence: Kristjana Dhuli, MAGI’s Lab, Rovereto (TN), 38068, Italy. E-mail:
| | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’s Lab, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
34
|
Review of Evidence for the Usage of Antioxidants for Eye Aging. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5810373. [PMID: 36225983 PMCID: PMC9550496 DOI: 10.1155/2022/5810373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress is one of the common factors leading to age-related eye diseases in older adults. Factors such as high oxygen consumption, high concentration of polyunsaturated fatty acids, and cumulative exposure to high-energy visible light in the eyes, lead to excessive generation of reactive oxygen species, hence triggering apoptosis of ocular cells and giving rise to ophthalmic diseases. Dietary supplements such as carotenoids, anthocyanins, and vitamins have antioxidant properties which may be of benefit in retaining better vision or reversing vision impairment; thus, studies have been conducted to understand the role of dietary supplements in the treatment or prevention of ophthalmic diseases. While high concentration of carotenoids such as lutein and zeaxanthin decrease the risk of developing age-related macular disease, anthocyanins and vitamins play a role in the treatment and prevention of other ophthalmic diseases: saffron extract reduced intraocular pressure in glaucoma patients; bilberry extract prevented impairments in lenses and retina, as well as alleviate symptoms of dry eye disease; high concentration of beta-carotene may reduce the risk of developing cataract. Further studies with clinical measurements are required to investigate the effectiveness of antioxidants on visual function and ophthalmic diseases.
Collapse
|
35
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
36
|
Leonard W, Liang A, Ranadheera CS, Fang Z, Zhang P. Fruit juices as a carrier of probiotics to modulate gut phenolics and microbiota. Food Funct 2022; 13:10333-10346. [PMID: 36134438 DOI: 10.1039/d2fo01851a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we attempted to deliver probiotics to the human gut using fruit juices as a carrier, which is less common despite the newest trend to incorporate probiotics into non-dairy food. Phenolic-rich fruit juices, including blueberry, black cherry, concord grape and pomegranate were fortified with Lactobacillus casei, and then compared and comprehensively assessed to develop novel non-fermented probiotic juices. In black cherry juice, probiotics had the most significant retention of viability after 14 days of storage at 4 °C, the least reduction in phenolics (14.59%) after in vitro gastrointestinal digestion, the highest concentration of phenolic metabolites and a significant increase in anaerobic bacteria after faecal fermentation (48 h). 16s rRNA gene sequencing showed that probiotic-enriched juice treatments were associated with highly distinctive Bacteroidota and Bacteroides vulgatus population. Overall, black cherry juice has the highest potential to be developed as a probiotic carrier with benefits in modulating the gut microbiota.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Anqi Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Chaminda Senaka Ranadheera
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
37
|
Hara T, Toyama H, Ohata Y, Ikeuchi T, Nakamura S, Joh T, Ohtsubo K. Black rice bran intake reduces phosphorylated tau levels and enhances insulin signaling in the brain of aged normal mice. Biosci Biotechnol Biochem 2022; 86:1570-1575. [PMID: 36130217 DOI: 10.1093/bbb/zbac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022]
Abstract
This study reports that black rice bran (BRB) intake for 50 to 52 consecutive weeks (approximately 12 months) reduces tau phosphorylation with a concomitant activation of insulin signaling and subsequent PI3K/AKT pathway in the brain of aged normal mice. BRB holds promise for preventing the formation of neurofibrillary tangles consisting of hyperphosphorylated tau, a pathological hallmark of Alzheimer's disease.
Collapse
Affiliation(s)
- Takashi Hara
- Department of Agriculture, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Hanae Toyama
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yumi Ohata
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Sumiko Nakamura
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Toshio Joh
- Department of Agriculture, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Ken'ichi Ohtsubo
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
38
|
Pires JA, Gomes WPC, Teixeira NN, Melchert WR. Effect of drying methods on nutritional constitutes of fermented grape residue. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3458-3463. [PMID: 35875233 PMCID: PMC9304517 DOI: 10.1007/s13197-021-05334-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 06/15/2023]
Abstract
One of the biggest hurdles faced by the wine industry is the disposal of residual biomass generated after vinification. Although this residue is biodegradable, it constitutes a potential source of environmental pollutants. To alleviate this issue, this biomass may be used in alternative applications; for example, it may be transformed into an enriched flour that can be used to improve the nutrient content in different foods. In this study, were evaluated the effects of drying processes on the relevant nutritional components in dry extracts obtained from the residue of fermented grape pomace. The concentrations of phenolic compounds and anthocyanins were higher when drying the flour by the traditional oven procedure than by freeze-drying. The highest difference (approximately 40%) was observed for tannin compounds. Therefore, drying in an oven is recommended due to the lower loss of bioactive compounds, in addition to being simple and cheap.
Collapse
Affiliation(s)
- Juliana A. Pires
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias 11, Box 9, Piracicaba, SP 13418-900 Brazil
| | - Winston P. C. Gomes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP 13416-000 Brazil
| | - Natalia N. Teixeira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP 13416-000 Brazil
| | - Wanessa R. Melchert
- College of Agriculture Luiz de Queiroz, University of São Paulo, Av. Pádua Dias 11, Box 9, Piracicaba, SP 13418-900 Brazil
| |
Collapse
|
39
|
Miclea I. Secondary Metabolites with Biomedical Applications from Plants of the Sarraceniaceae Family. Int J Mol Sci 2022; 23:9877. [PMID: 36077275 PMCID: PMC9456395 DOI: 10.3390/ijms23179877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carnivorous plants have fascinated researchers and hobbyists for centuries because of their mode of nutrition which is unlike that of other plants. They are able to produce bioactive compounds used to attract, capture and digest prey but also as a defense mechanism against microorganisms and free radicals. The main purpose of this review is to provide an overview of the secondary metabolites with significant biological activity found in the Sarraceniaceae family. The review also underlines the necessity of future studies for the biochemical characterization of the less investigated species. Darlingtonia, Heliamphora and Sarracenia plants are rich in compounds with potential pharmaceutical and medical uses. These belong to several classes such as flavonoids, with flavonol glycosides being the most abundant, monoterpenes, triterpenes, sesquiterpenes, fatty acids, alkaloids and others. Some of them are well characterized in terms of chemical properties and biological activity and have widespread commercial applications. The review also discusses biological activity of whole extracts and commercially available products derived from Sarraceniaceae plants. In conclusion, this review underscores that Sarraceniaceae species contain numerous substances with the potential to advance health. Future perspectives should focus on the discovery of new molecules and increasing the production of known compounds using biotechnological methods.
Collapse
Affiliation(s)
- Ileana Miclea
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
40
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
41
|
Puzerytė V, Viškelis P, Balčiūnaitienė A, Štreimikytė P, Viškelis J, Urbonavičienė D. Aralia cordata Thunb. as a Source of Bioactive Compounds: Phytochemical Composition and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:1704. [PMID: 35807656 PMCID: PMC9269114 DOI: 10.3390/plants11131704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Plant primary and secondary metabolites are a significant source for many applications, including extractions of functional components, green synthesis development, and producing higher-added value products. However, in the variety of botanicals, Aralia cordata Thunb. plant is getting attention for its similarity to ginseng. This study comprehensively examines the biochemical and phytochemical profiles of different A. cordata morphological parts: root, stem, leaf, inflorescence, berry, and seed. Additionally, the establishment of total phenolic content and quantitative analysis of powerful antioxidants such as chlorophyll, carotenoids (zeaxanthin, lutein, and β-carotene), proanthocyanidins, and anthocyanins content were evaluated. The results indicated that A. cordata stem and berries are an excellent source of anthocyanins in the range from 18.27 to 78.54 mg/100 g DW. Meanwhile, the antioxidant activity was evaluated using three different methods based on the capacity to scavenge: DPPH• scavenging capacity, ABTS•+ radical cation assay, and ferric reducing antioxidant power (FRAP) and ranged from 27 to 168 µmol TE/g DW, 8 to 117 µmol TE/g DW, and 18 to 157 µmol TE/g DW, respectively. This study proposes a novel competitive plant for many health-promoting applications in the nutraceutical, pharmaceutical, material, and food industries.
Collapse
|
42
|
Abdel Sater AH, Bouferraa Y, Amhaz G, Haibe Y, Lakkiss AE, Shamseddine A. From Tumor Cells to Endothelium and Gut Microbiome: A Complex Interaction Favoring the Metastasis Cascade. Front Oncol 2022; 12:804983. [PMID: 35600385 PMCID: PMC9117727 DOI: 10.3389/fonc.2022.804983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Metastasis is a complicated process through which tumor cells disseminate to distant organs and adapt to novel tumor microenvironments. This multi-step cascade relies on the accumulation of genetic and epigenetic alterations within the tumor cells as well as the surrounding non-tumor stromal cells. Endothelial cells constitute a major player in promoting metastasis formation either by inducing the growth of tumor cells or by directing them towards dissemination in the blood or lymph. In fact, the direct and indirect interactions between tumor and endothelial cells were shown to activate several mechanisms allowing cancer cells’ invasion and extravasation. On the other side, gastrointestinal cancer development was shown to be associated with the disruption of the gut microbiome. While several proposed mechanisms have been investigated in this regard, gut and tumor-associated microbiota were shown to impact the gut endothelial barrier, increasing the dissemination of bacteria through the systemic circulation. This bacterial dislocation allows the formation of an inflammatory premetastatic niche in the distant organs promoting the metastatic cascade of primary tumors. In this review, we discuss the role of the endothelial cells in the metastatic cascade of tumors. We will focus on the role of the gut vascular barrier in the regulation metastasis. We will also discuss the interaction between this vascular barrier and the gut microbiota enhancing the process of metastasis. In addition, we will try to elucidate the different mechanisms through which this bacterial dislocation prepares the favorable metastatic niche at distant organs allowing the dissemination and successful deposition of tumor cells in the new microenvironments. Finally, and given the promising results of the studies combining immune checkpoint inhibitors with either microbiota alterations or anti-angiogenic therapy in many types of cancer, we will elaborate in this review the complex interaction between these 3 factors and their possible therapeutic combination to optimize response to treatment.
Collapse
Affiliation(s)
- Ali H Abdel Sater
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Youssef Bouferraa
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghid Amhaz
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yolla Haibe
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmed El Lakkiss
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
43
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
44
|
Fei X, Wei Y, Qi Y, Luo Y, Hu H, Wei A. Integrated LC-MS/MS and Transcriptome Sequencing Analysis Reveals the Mechanism of Color Formation During Prickly Ash Fruit Ripening. Front Nutr 2022; 9:847823. [PMID: 35369068 PMCID: PMC8967253 DOI: 10.3389/fnut.2022.847823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 01/12/2023] Open
Abstract
Prickly ash peel is one of the eight major condiments in China and is widely used in cooking because of its unique fragrance and numbing taste. The color of prickly ash fruit is the most intuitive quality that affects consumer choice. However, the main components and key biosynthetic genes responsible for prickly ash fruit color have not yet been determined. To better understand the biosynthetic mechanisms and accumulation of prickly ash fruit color components, we performed an integrated transcriptomic and metabolomic analysis of red and green prickly ash fruit at different growth periods. The transcriptome analysis identified 17,269 differentially expressed genes (DEGs) between fruit of red and green prickly ash: 7,236 upregulated in green fruit and 10,033 downregulated. Liquid chromatography tandem mass spectrometry (LC-MS/MS) identified 214 flavonoids of 10 types. Flavonoids and flavonols are the main flavonoids in prickly ash, and the total flavonoid content of red prickly ash is higher than that of green prickly ash. Comprehensive analysis showed that the main colored metabolites that differed between green and red prickly ash were cyanidin-3-O-galactoside and cyanidin-3-O-glucoside, and differences in the contents of these metabolites were due mainly to differences in the expression of ANS and UFGT. Our results provide insight into the mechanisms underlying color differences in red and green prickly ash and will be useful for improving the quality of prickly ash fruit.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yuan Wei
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yichen Qi
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, China
- *Correspondence: Anzhi Wei
| |
Collapse
|
45
|
Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int J Biol Macromol 2022; 206:567-579. [PMID: 35247420 DOI: 10.1016/j.ijbiomac.2022.03.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 02/09/2023]
Abstract
Compromised carbohydrate metabolism leading to hyperglycemia is the primary metabolic disorder of non-insulin-dependent diabetes mellitus. Reformed digestion and altered absorption of carbohydrates, exhaustion of glycogen stock, enhanced gluconeogenesis and overproduced hepatic glucose, dysfunction of β-cell, resistance to insulin in peripheral tissue, and impaired insulin signaling pathways are essential reasons for hyperglycemia. Although oral anti-diabetic drugs like α-glucosidase inhibitors, sulfonylureas and insulin therapies are commonly used to manage Type 2 Diabetes (T2D) and hyperglycemia, natural compounds in diet also play a significant role in combating the effect of diabetes. Due to their vast bioavailability and anti-hyperglycemic effect with least or no side effects, polyphenolic compounds have gained wide popularity. Polyphenols such as flavonoids and tannins play a significant role in carbohydrate metabolism by inhibiting key enzymes responsible for the digestion of carbohydrates to glucose like α-glucosidase and α-amylase. Several polyphenols such as resveratrol, epigallocatechin-3-gallate (EGCG) and quercetin enhanced glucose uptake in the muscle and adipocytes by translocating GLUT4 to plasma membrane mainly by the activation of the AMP-activated protein kinase (AMPK) pathway. This review provides an insight into the protective role of polyphenols in T2D, highlighting the aspects of insulin resistance.
Collapse
Affiliation(s)
- Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prince M Z Hasan
- Centre of Nanotechnology, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
46
|
Influence of fermentation by lactic acid bacteria and in vitro digestion on the biotransformations of blueberry juice phenolics. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Lima JP, Costa A, Rosso S, Lopes TJ, Quadri M, Quadri M. Scale-up and mass transfer of the adsorption/desorption process of anthocyanins in amorphous silica. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Mohammed HA, Khan RA. Anthocyanins: Traditional Uses, Structural and Functional Variations, Approaches to Increase Yields and Products' Quality, Hepatoprotection, Liver Longevity, and Commercial Products. Int J Mol Sci 2022; 23:2149. [PMID: 35216263 PMCID: PMC8875224 DOI: 10.3390/ijms23042149] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are water-soluble, colored compounds of the flavonoid class, abundantly found in the fruits, leaves, roots, and other parts of the plants. The fruit berries are prime sources and exhibit different colors. The anthocyanins utility as traditional medicament for liver protection and cure, and importance as strongest plants-based anti-oxidants have conferred these plants products different biological activities. These activities include anti-inflammation, liver protective, analgesic, and anti-cancers, which have provided the anthocyanins an immense commercial value, and has impelled their chemistry, biological activity, isolation, and quality investigations as prime focus. Methods in extraction and production of anthocyanin-based products have assumed vital economic importance. Different extraction techniques in aquatic solvents mixtures, eutectic solvents, and other chemically reactive extractions including low acid concentrations-based extractions have been developed. The prophylactic and curative therapy roles of the anthocyanins, together with no reported toxicity has offered much-needed impetus and economic benefits to these classes of compounds which are commercially available. Information retrieval from various search engines, including the PubMed®, ScienceDirect®, Scopus®, and Google Scholar®, were used in the review preparation. This imparted an outlook on the anthocyanins occurrence, roles in plants, isolation-extraction, structures, biosynthetic as well as semi- and total-synthetic pathways, product quality and yields enhancements, including uses as part of traditional medicines, and uses in liver disorders, prophylactic and therapeutic applications in liver protection and longevity, liver cancer and hepatocellular carcinoma. The review also highlights the integrated approach to yields maximizations to meet the regular demands of the anthocyanins products, also as part of the extract-rich preparations together with a listing of marketed products available for human consumption as nutraceuticals/food supplements.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
49
|
Wongwisitchai S, Kijpatanasilp I, Assatarakul K. Changes in content of bioactive constituents and antioxidant activity of riceberry after food processing and degradation kinetics during storage. J Food Sci 2022; 87:1096-1107. [PMID: 35150138 DOI: 10.1111/1750-3841.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
The effect of roasting temperature (70, 120, 140°C) and food processing (soaking, steaming, and roasting) on the content of bioactive constituents (total phenolic content, total flavonoid content, total anthocyanin, and γ-oryzanol) and antioxidant activity of processed riceberry were investigated. In addition, the degradation kinetics of bioactive constituents and antioxidant activity during storage were assessed using zero-order and first-order kinetic models. Results showed riceberry roasted at 120°C had the highest total anthocyanin content and antioxidant activity. In addition, riceberry obtained from roasting exhibited the highest bioactive compound and antioxidant activity. Besides, first-order kinetic was confirmed as the best-fitted model to describe degradation of bioactive constituents and antioxidant activity of processed riceberry during storage. This finding suggested that roasting at 120°C was chosen as an optimum condition to maximize the content of bioactive constituents and antioxidant activity and kinetic models provided a better understanding of antioxidant property reduction of processed riceberry during storage. PRACTICAL APPLICATION: Riceberry is an abundant source of bioactive constituents with beneficial health effects leading to a development of functional food product. However, processing may negatively affect biological properties of riceberry and bioactive constituent degradation of processed riceberry during storage has not been previously reported. Therefore, different processes were investigated to determine the effect on bioactive constituents and antioxidant activity of riceberry, and the degradation kinetic model of bioactive constituents during storage was also studied. Optimum processing is appropriate to design riceberry containing high concentration of bioactive constituents and antioxidant activity, which could be considered as a functional diet for health-conscious consumer.
Collapse
Affiliation(s)
- Sirinan Wongwisitchai
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
50
|
Zhu A, Zhou Q, Hu S, Wang F, Tian Z, Hu X, Liu H, Jiang D, Chen W. Metabolomic analysis of the grain pearling fractions of six bread wheat varieties. Food Chem 2022; 369:130881. [PMID: 34455328 DOI: 10.1016/j.foodchem.2021.130881] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 11/29/2022]
Abstract
Bread wheat is a staple food crop that is consumed worldwide. In this study, using widely targeted LC-MS/MS, we conducted a high-throughput metabolomic analysis and determined the contents and spatial distribution of metabolites in pearled fractions of the dried kernels of six representative bread wheat varieties cultivated in China. Our aim was to explore the cultivars and pearling fractions with a view toward developing functional food products. We accordingly identified notable differences in the nutrient and bioactive metabolomes, and established that the pearling fractions of each cultivar had distinct metabolic profiles. Flavonoids varied the most amongst the cultivars and were found in higher concentration in the outer layers of the grain, but only at low concentrations in the kernel. Data from this study add further evidence of benefits of whole grain wheat consumption but, specifically, medium-gluten and pigmented wheat offer other nutrient and bioactive benefits whole grain products.
Collapse
Affiliation(s)
- Anting Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Zhou
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shiqi Hu
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Fan Wang
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dong Jiang
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|