1
|
Giannoulaki P, Kotzakioulafi E, Nakas A, Kontoninas Z, Karlafti E, Evripidou P, Kantartzis K, Savopoulos C, Chourdakis M, Didangelos T. Effect of Crocus sativus Extract Supplementation in the Metabolic Control of People with Diabetes Mellitus Type 1: A Double-Blind Randomized Placebo-Controlled Trial. Nutrients 2024; 16:2089. [PMID: 38999837 PMCID: PMC11243156 DOI: 10.3390/nu16132089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Introduction-Background: Data from experimental trials show that Crocus sativus L. (saffron) is considered to improve glycemia, lipid profile, and blood pressure and reduce oxidative stress. So far, clinical trials have been conducted in individuals with metabolic syndrome and Diabetes Mellitus type 2 (DMT-2). The purpose of this study is to assess the effectiveness of saffron in individuals with Diabetes Mellitus type 1 (DMT-1). PATIENTS-METHODS 61 individuals with DMT-1, mean age 48 years old (48.3 ± 14.6), 26 females (42.6%) were randomized to receive a new oral supplement in sachets containing probiotics, prebiotics, magnesium, and Crocus sativus L. extract or placebo containing probiotics, prebiotics and magnesium daily for 6 months. Glycemic control was assessed with a continuous glucose monitoring system and laboratory measurement of HbA1c and lipid profile was also examined. Blood pressure at baseline and end of intervention was also measured. Individuals were either on a continuous subcutaneous insulin infusion with an insulin pump or in multiple daily injection regimens. Diabetes distress and satiety were assessed through a questionnaire and body composition was assessed with bioelectrical impedance. RESULTS At the end of the intervention, the two groups differed significantly only in serum triglycerides (p = 0.049). After 6 months of treatment, a significant reduction in the active group was observed in glycated hemoglobin (p = 0.046) and serum triglycerides (p = 0.021) compared to baseline. The other primary endpoints (glycemic control, lipid profile, blood pressure) did not differ within the groups from baseline to end of intervention, and there was no significant difference between the two groups. Diabetes distress score improved significantly only in the active group (p = 0.044), suggesting an overall improvement in diabetes disease burden in these individuals but that was not significant enough between the two groups. CONCLUSIONS A probiotic supplement with saffron extract improves serum triglycerides in well-controlled people with DMT-1 and may potentially be a valuable adjunct for enhancing glycemic control.
Collapse
Affiliation(s)
- Parthena Giannoulaki
- Department of Clinical Nutrition, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Alexandros Nakas
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Zisis Kontoninas
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Eleni Karlafti
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Polykarpos Evripidou
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Konstantinos Kantartzis
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany;
- Institute for Diabetes Research and Metabolic Diseases (IDM), Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Christos Savopoulos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| |
Collapse
|
2
|
Mir RA, Tyagi A, Hussain SJ, Almalki MA, Zeyad MT, Deshmukh R, Ali S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1467. [PMID: 38891276 PMCID: PMC11174376 DOI: 10.3390/plants13111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal 191201, India;
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, India;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
3
|
Sheng SR, Wu YH, Dai ZH, Jin C, He GL, Jin SQ, Zhao BY, Zhou X, Xie CL, Zheng G, Tian NF. Safranal inhibits estrogen-deficiency osteoporosis by targeting Sirt1 to interfere with NF-κB acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154739. [PMID: 37004404 DOI: 10.1016/j.phymed.2023.154739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Estrogen deficiency-mediated hyperactivated osteoclasts is the initiating factor for bone loss, which is regulated by nuclear factor-κB (NF-κB) signaling. Safranal (Saf) is a monoterpene aldehyde produced from Saffron (Crocus sativus L.) and possesses multiple biological properties, particularly the anti-inflammatory property. However, Saf's role in osteoporosis remains unknown. PURPOSE This study aims to validate the role of Saf in osteoporosis and explore the potential mechanism. STUDY DESIGN The RANKL-exposed mouse BMM (bone marrow monocytes) and the castration-mediated osteoporosis model were applied to explore the effect and mechanism of Saf in vitro and in vivo. METHOD The effect of Saf on osteoclast formation and function were assessed by TRAcP staining, bone-resorptive experiment, qPCR, immunoblotting and immunofluorescence, etc. Micro-CT, HE, TRAcP and immunohistochemical staining were performed to estimate the effects of Saf administration on OVX-mediated osteoporosis in mice at imaging and histological levels. RESULTS Saf concentration-dependently inhibited RANKL-mediated osteoclast differentiation without affecting cellular viability. Meanwhile, Saf-mediated anti-osteolytic capacity and Sirt1 upregulation were also found in ovariectomized mice. Mechanistically, Saf interfered with NF-κB signaling by activating Sirt1 to increase p65 deacetylation and inactivating IKK to decrease IκBα degradation. CONCLUSION Our results support the potential application of Saf as a therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Sun-Ren Sheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Yu-Hao Wu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Zi-Han Dai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Chen Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Gao-Lu He
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Shu-Qing Jin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Bi-Yao Zhao
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Xin Zhou
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China
| | - Cheng-Long Xie
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| | - Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| | - Nai-Feng Tian
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, 270# Xueyuan Road, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
4
|
Sanaie S, Nikanfar S, Kalekhane ZY, Azizi-Zeinalhajlou A, Sadigh-Eteghad S, Araj-Khodaei M, Ayati MH, Andalib S. Saffron as a promising therapy for diabetes and Alzheimer's disease: mechanistic insights. Metab Brain Dis 2023; 38:137-162. [PMID: 35986812 DOI: 10.1007/s11011-022-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
The prevalence of both Alzheimer's disease (AD) and diabetes mellitus is increasing with the societies' aging and has become an essential social concern worldwide. Accumulation of amyloid plaques and neurofibrillary tangles (NFTs) of tau proteins in the brain are hallmarks of AD. Diabetes is an underlying risk factor for AD. Insulin resistance has been proposed to be involved in amyloid-beta (Aβ) aggregation in the brain. It seems that diabetic conditions can result in AD pathology by setting off a cascade of processes, including inflammation, mitochondrial dysfunction, and ROS and advanced glycation end products (AGEs) synthesis. Due to the several side effects of chemical drugs and their high cost, using herbal medicine has recently attracted attention for the treatment of diabetes and AD. Saffron and its active ingredients have been used for its anti-inflammatory, anti-oxidant, anti-diabetic, and anti-AD properties. Therefore, in the present review paper, we take account of the clinical, in vivo and in vitro evidence regarding the anti-diabetic and anti-AD effects of saffron and discuss the preventive or postponing properties of saffron or its components on AD development via its anti-diabetic effects.
Collapse
Affiliation(s)
- Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Yousefi Kalekhane
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran
| | - Akbar Azizi-Zeinalhajlou
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Ayati
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sasan Andalib
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Ashrafian S, Zarrineh M, Jensen P, Nawrocki A, Rezadoost H, Ansari AM, Farahmand L, Ghassempour A, Larsen MR. Quantitative Phosphoproteomics and Acetylomics of Safranal Anticancer Effects in Triple-Negative Breast Cancer Cells. J Proteome Res 2022; 21:2566-2585. [PMID: 36173113 DOI: 10.1021/acs.jproteome.2c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Safranal, as an aroma in saffron, is one of the cytotoxic compounds in saffron that causes cell death in triple-negative breast cancer cells. Our recent research reported the anti-cancer effects of safranal, which further demonstrated its impact on protein translation, mitochondrial dysfunction, and DNA fragmentation. To better understand the underlying mechanisms, we identified acetylated and phosphorylated peptides in safranal-treated cancer cells. We conducted a comprehensive phosphoproteomics and acetylomics analysis of safranal-treated MDA-MB-231 cells by using a combination of TMT labeling and enrichment methods including titanium dioxide and immunoprecipitation. We provide a wide range of phosphoproteome regulation in different signaling pathways that are disrupted by safranal treatment. Safranal influences the phosphorylation level on proteins involved in DNA replication and repair, translation, and EGFR activation/accumulation, which can lead the cells into apoptosis. Safranal causes DNA damage which is followed by the activation of cell cycle checkpoints for DNA repair. Over time, checkpoints and DNA repair are inhibited and cells are under a mitotic catastrophe. Moreover, safranal prevents repair by the hypo-acetylation of H4 and facilitates the transcription of proapoptotic genes by hyper-acetylation of H3, which push the cells to the brink of death.
Collapse
Affiliation(s)
- Shahrbanou Ashrafian
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Mahshid Zarrineh
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran.,Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, Solna SE17165, Sweden
| | - Pia Jensen
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Arkadiusz Nawrocki
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hassan Rezadoost
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Leila Farahmand
- Integrative Oncology Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Martin R Larsen
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
6
|
Zhang Z, Wu J, Teng C, Wang J, Wang L, Wu L, Chen W, Lin Z, Lin Z. Safranal Treatment Induces Sirt1 Expression and Inhibits Endoplasmic Reticulum Stress in Mouse Chondrocytes and Alleviates Osteoarthritis Progression in a Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9748-9759. [PMID: 35899925 DOI: 10.1021/acs.jafc.2c01773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osteoarthritis (OA) is an age-related degenerative disease. Oxidative stress (OS) modulates OA pathogenesis by enhancing chondrocyte apoptosis and extracellular matrix (ECM) degeneration via activation of the endoplasmic reticulum (ER) stress. Prior studies revealed that safranal plays a critical role in multiple diseases treatments, but there are no reports on its effect on OA. Therefore, investigating the effect of safranal on OA is needed. As a compound that can lead excessive reactive oxygen species (ROS) accumulation, tert-butyl hydroperoxide (TBHP) was used to induce OS and OS-mediated endoplasmic reticulum (ER) stress for imitating OA in vitro. Besides, the bilateral medial meniscus was removed to induce joint instability and excessive friction of the joint surface to establish destabilization of medial meniscus for imitating the initiation and progression of OA in vivo. We, next, conducted Western blot and RT-PCR analyses to identify biomarkers of the underlying signaling pathway. Our results demonstrated that 30 μM safranal strongly upregulated Sirt1 expression, suppressed TBHP-mediated ER stress, and, in turn, prevented chondrocyte apoptosis and ECM degeneration. Furthermore, compared with the other two classic signaling pathways of ER stress, safranal can inhibit the PERK-eIF2α-CHOP axis at the lower concentration (5 and 15 μM). In vivo, using Safranin O staining, X-ray, immunofluorescence (IF), and immunohistochemical (IHC) staining, we demonstrated that OA progression can be postponed with intraperitoneal injection of 90 and 180 mg/kg safranal in an OA mouse model. Taken together, our analyses revealed that safranal can potentially prevent OA development.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jingtao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Cheng Teng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jinquan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Libo Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Wenhao Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zhen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
7
|
Mathakala V, Muppuru MK, Palempalli UMD. Halophila beccarii extract ameliorate glucose uptake in 3T3-L1 adipocyte cells and improves glucose homeostasis in streptozotocin-induced diabetic rats. Heliyon 2022; 8:e10252. [PMID: 36042748 PMCID: PMC9420365 DOI: 10.1016/j.heliyon.2022.e10252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/20/2021] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
The regulation of carbohydrate metabolizing enzymes is an effective way of reducing blood glucose levels and improving glycogen synthesis during the management of type 2 diabetes. The present investigation was conducted to explain the detailed mechanism with which a Seagrass, Halophila beccarii extract (HBE) enhances the glucose uptake in the 3T3-L1 adipocyte cell culture system in invitro. HBE stimulates the glucose uptake by the translocation of glucose transporter 4 (GLUT4) on to plasma cell membrane through induction of insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathways. To assess the effect of HBE on T2DM, we used invivo experimental diabetes rat models induced with streptozotocin (STZ) to perform oral GTT and ITT. Furthermore, we assessed the enzymatic profile of Glycolysis, Pentose phosphate pathway, and gluconeogenesis from liver tissue homogenate. After long-term exposure with HBE, our results confirmed, that HBE improves the glucose uptake in 3T3-L1 cell lines by up-regulation of glucose transporter type 4 (GLUT4) through uptake of glucose by the adipocytes. The resulting data indicated that HBE had a great potentiality in preventing diabetes and maintaining glucose homeostasis through improving glucose uptake. The present data also showed that HBE with its insulin mimetic activity activates glycogen synthesis and enhances glucose utilization by regulating the carbohydrate metabolic enzymes. The similarity between HBE and insulin indicates that the HBE follows the mechanisms same as the insulin signaling pathway to show the antidiabetic activity.
Collapse
Affiliation(s)
- Vani Mathakala
- Department of Applied Microbiology and Biochemistry, Sri Padmavati Mahila Visva vidyalayam, Tirupati, AP, India
| | - Muni Kesavulu Muppuru
- Department of Biosciences, Mohanbabu University, Sree Vidyanikethan Engineering college, Sree Sainath Nagar, Tirupati, AP, India
| | | |
Collapse
|
8
|
Sadigi B, Yarani R, Mirghafourvand M, Travica N, Yousefi Z, Shakouri SK, Ostadrahimi A, Mobasseri M, Pociot F, Sanaie S, Araj-Khodaei M. The effect of saffron supplementation on glycemic parameters: An overview of systematic reviews. Phytother Res 2022; 36:3444-3458. [PMID: 35778993 DOI: 10.1002/ptr.7542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 11/09/2022]
Abstract
Due to the widespread use of herbal medicine and evidence pointing to the health benefits of saffron supplementation, this review was performed to evaluate the effects of saffron supplementation on glycemic parameters and lipid profiles based on previous reviews. Relevant articles were retrieved from various databases, which included PubMed, Scopus, ProQuest, Web of Science, Embase, and Cochrane until 2020, with no date restrictions. The quality of the included reviews was assessed using the Assessment of Multiple Systematic Reviews (AMSTAR) checklist. Finally, of 877 obtained articles, eight reviews meeting the inclusion criteria were included for analysis. Among the eight included reviews, seven articles were meta-analyses. In addition, one review had an average quality while seven had a good quality. A narrative description of the included reviews was performed, while a network meta-analysis was not conducted. A brief review of the results was reported according to the weighted mean difference and mean difference. Seven included reviews assessed the effects of saffron or crocin supplementation on glycemic parameters, and six examined these effects on lipid profile parameters. Almost half of the articles reported significant effects of these supplements on glycemic parameters and lipid profiles. Taken together, results suggest that saffron supplementation may improve glycemic and lipid profile parameters; however, further high-quality studies are needed to confirm the clinical efficacy of saffron on glycemic parameters and lipid profiles.
Collapse
Affiliation(s)
- Behnam Sadigi
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Zahra Yousefi
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Department of Internal Medicine, School of Medicine, Tabriz University of medical sciences, Tabriz, Iran
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Alam MB, Ra JS, Lim JY, Song BR, Javed A, Lee SH. Lariciresinol Displays Anti-Diabetic Activity through Inhibition of α-Glucosidase and Activation and Enhancement of Insulin Signaling. Mol Nutr Food Res 2022; 66:e2100751. [PMID: 35490401 DOI: 10.1002/mnfr.202100751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/09/2022] [Indexed: 12/14/2022]
Abstract
SCOPE The aim of this study is to investigate the antidiabetic effect of lariciresinol (LSR) in C2C12 myotubes and streptozotocin (STZ)-induced diabetic mice. METHODS AND RESULTS To investigate antidiabetic potential of LSR, α-glucosidase inhibitory assay, molecular docking, glucose uptake assay, western blot assay on antidiabetic biomarkers are performed. STZ-induced diabetic model is used for in vivo study by calculating oral glucose tolerance test, histochemical examination, and glycogen assay. LSR inhibits α-glucosidase activity with an IC50 value of 6.97 ± 0.37 µM and acts as a competitive inhibitor with an inhibitory constant (Ki) value of 0.046 µM. In C2C12 cells, LSR activates insulin signaling leading to glucose transporter 4 (GLUT4) translocation and augmented glucose uptake. Furthermore, in Streptozotocin (STZ)-treated diabetic mice, 3 weeks of oral LSR administration (10 mg kg-1 ) considerably decrease blood glucose levels, while increasing insulin levels in an oral glucose tolerance test, improve pancreatic islet size, increase GLUT4 expression, and significantly enhance insulin signaling in skeletal muscle. LSR treatment also activates glycogen synthase kinase 3β (GSK-3β) resulting in improved glycogen content. CONCLUSION The findings indicate a potential usefulness for oral LSR in the management and prevention of diabetes by enhancing glucose homeostasis.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea.,Food and Bio-Industry Research Institute, Inner Beauty/Anti-Aging Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong-Sic Ra
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Young Lim
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea.,Food and Bio-Industry Research Institute, Inner Beauty/Anti-Aging Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
10
|
Sepahi S, Golfakhrabadi M, Bonakdaran S, Lotfi H, Mohajeri SA. Effect of crocin on diabetic patients a Placebo- controlled, triple-blinded clinical trial. Clin Nutr ESPEN 2022; 50:255-263. [DOI: 10.1016/j.clnesp.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/23/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022]
|
11
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
12
|
Kadoglou NPE, Christodoulou E, Kostomitsopoulos N, Valsami G. The cardiovascular-protective properties of saffron and its potential pharmaceutical applications: A critical appraisal of the literature. Phytother Res 2021; 35:6735-6753. [PMID: 34448254 DOI: 10.1002/ptr.7260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Saffron, the dried stigma of Crocus sativus L., is used in traditional medicine for its healing properties and the treatment of various pathological conditions. The present literature review aimed to summarize and evaluate the preclinical and clinical data regarding the protective effects and mechanisms of saffron and its main components (crocin, crocetin, safranal) on cardiovascular risk factors and diseases. Many in vitro and animal studies have been conducted implicating antioxidant, hypolipidemic, anti-diabetic, and antiinflammatory impact of saffron and its constituents. Notably, there is evidence of direct atherosclerosis regression and stabilization in valid atherosclerosis-prone animal models. However, current clinical trials have shown mostly weak effects of saffron and its constituents on cardiovascular risk factors: (a) Modest lowering of fasting blood glucose, without significant reduction of HbA1c in type 2 diabetic patients, (b) moderate/controversial hypolipidemic effects, (c) negligible hypotensive effect, and (d) inconsistent modification of metabolic syndrome parameters. There are important drawbacks in clinical trial design, including the absence of pharmacokinetic/pharmacodynamic tests, the wide variance of doses and cohorts' characteristics, the small number of patients, the short duration. Therefore, large, properly designed, high-quality clinical trials, focusing on specific conditions are required to evaluate the biological/pharmacological activities and firmly establish the clinical efficacy of saffron and its possible therapeutic uses in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Oshimo M, Nakashima F, Kai K, Matsui H, Shibata T, Akagawa M. Sodium sulfite causes gastric mucosal cell death by inducing oxidative stress. Free Radic Res 2021; 55:731-743. [PMID: 34074194 DOI: 10.1080/10715762.2021.1937620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sulfites are commonly used as a preservative and antioxidant additives in the food industry. Sulfites are absorbed by the gastrointestinal tract and distributed essentially to all body tissues. Although sulfites have been believed to be safe food additives, some studies have shown that they exhibit adverse effects in various tissues. In this study, we examined the cytotoxic effect of sodium sulfite (Na2SO3) against rat gastric mucosal cells (RGM1) and further investigated its underlying molecular mechanism. We demonstrated that exposure to Na2SO3 exerts significant cytotoxicity in RGM1 cells through induction of oxidative stress. Exposure of RGM1 cells to Na2SO3 caused a significant formation of protein carbonyls and 8-hydroxy-2'-deoxyguanosine, major oxidative stress markers, with a concomitant accumulation of carbonylated protein-related aggregates. Furthermore, we found that incubation of lysozyme with Na2SO3 evokes protein carbonylation and aggregation via the metal ion-catalyzed free radical formation derived from Na2SO3. Our results suggest that Na2SO3 might lead to gastric tissue injury via induction of oxidative stress by the formation of Na2SO3-related free radicals.
Collapse
Affiliation(s)
- Moeri Oshimo
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenji Kai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Graduate School for Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mitsugu Akagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
14
|
Rosenzweig T, Sampson SR. Activation of Insulin Signaling by Botanical Products. Int J Mol Sci 2021; 22:ijms22084193. [PMID: 33919569 PMCID: PMC8073144 DOI: 10.3390/ijms22084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is a worldwide health problem, ranked as one of the leading causes for severe morbidity and premature mortality in modern society. Management of blood glucose is of major importance in order to limit the severe outcomes of the disease. However, despite the impressive success in the development of new antidiabetic drugs, almost no progress has been achieved with regard to the development of novel insulin-sensitizing agents. As insulin resistance is the most eminent factor in the patho-etiology of T2D, it is not surprising that an alarming number of patients still fail to meet glycemic goals. Owing to its wealth of chemical structures, the plant kingdom is considered as an inventory of compounds exerting various bioactivities, which might be used as a basis for the development of novel medications for various pathologies. Antidiabetic activity is found in over 400 plant species, and is attributable to varying mechanisms of action. Nevertheless, relatively limited evidence exists regarding phytochemicals directly activating insulin signaling, which is the focus of this review. Here, we will list plants and phytochemicals that have been found to improve insulin sensitivity by activation of the insulin signaling cascade, and will describe the active constituents and their mechanism of action.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Departments of Molecular Biology and Nutritional Studies, Ariel University, Ariel 4077625, Israel
- Correspondence:
| | - Sanford R. Sampson
- Department of Molecular Cell Biology, Rehovot and Faculty of Life Sciences, Weizmann Institute of Science, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| |
Collapse
|
15
|
Insulin-Mimetic Dihydroxanthyletin-Type Coumarins from Angelica decursiva with Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitory Activities and Docking Studies of Their Molecular Mechanisms. Antioxidants (Basel) 2021; 10:antiox10020292. [PMID: 33672051 PMCID: PMC7919472 DOI: 10.3390/antiox10020292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
As a traditional medicine, Angelica decursiva has been used for the treatment of many diseases. The goal of this study was to evaluate the potential of four natural major dihydroxanthyletin-type coumarins—(+)-trans-decursidinol, Pd-C-I, Pd-C-II, and Pd-C-III—to inhibit the enzymes, protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In the kinetic study of the PTP1B enzyme’s inhibition, we found that (+)-trans-decursidinol, Pd-C-I, and Pd-C-II led to competitive inhibition, while Pd-C-III displayed mixed-type inhibition. Moreover, (+)-trans-decursidinol exhibited competitive-type, and Pd-C-I and Pd-C-II mixed-type, while Pd-C-III showed non-competitive type inhibition of α-glucosidase. Docking simulations of these coumarins showed negative binding energies and a similar proximity to residues in the PTP1B and α-glucosidase binding pocket, which means they are closely connected and strongly binding with the active enzyme site. In addition, dihydroxanthyletin-type coumarins are up to 40 µM non-toxic in HepG2 cells and have substantially increased glucose uptake and decreased expression of PTP1B in insulin-resistant HepG2 cells. Further, coumarins inhibited ONOO−-mediated albumin nitration and scavenged peroxynitrite (ONOO−), and reactive oxygen species (ROS). Our overall findings showed that dihydroxanthyletin-type coumarins derived from A. decursiva is used as a dual inhibitor for enzymes, such as PTP1B and α-glucosidase, as well as for insulin susceptibility.
Collapse
|
16
|
Nanda S, Madan K. The role of Safranal and saffron stigma extracts in oxidative stress, diseases and photoaging: A systematic review. Heliyon 2021; 7:e06117. [PMID: 33615006 PMCID: PMC7881230 DOI: 10.1016/j.heliyon.2021.e06117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are produced as a result of various environmental factors and cellular metabolism reactions creating oxidative stress. The reversible oxidative modification on proteins such as cysteine oxidation may be useful and can play positive role. ROS generated offer some benefits such as cellular signalling and tissue repair when present in low concentration. However, most of the times, these reactive species cause detrimental effects to cell components which leads to various pathological conditions which causes or aggravates diseases due to oxidative stress. The degenerative diseases due to oxidative stress are diabetes, cardiovascular diseases, epilepsy, cancer and aging. Antioxidants are the compounds which scavenge these free radicals and hence neutralize their effects. Research has enabled the use of natural antioxidants as therapeutic agent in the treatment of diseases. Safranal is one such natural agent which is a major volatile component of saffron. Saffron, Red gold is the most expensive spice found in limited region of the planet and is also reported to be used in traditional systems of medicine. Chemically, safranal is a monoterpene aldehyde possessing a sweet fragrance. While exploring for the photoprotective properties of safranal, we learnt about the immense antioxidant potential of safranal. Investigation by various research groups established safranal as an anti-inflammatory, antidepressant, anxiolytic, antiasthamatic, antihypertensive, anticonvulsant, anticancer and antitussive and antigenotoxic agent. It has brought researchers over the world to explore the antioxidant benefits of saffron for human health. In the present paper, potential of safranal and its related molecules as radical scavenger in combating oxidative stress, diseased conditions is collated and the underlying mechanisms have been explained. Various cell lines and animal models used for study of Safranal have been discussed.
Collapse
Affiliation(s)
- Sanju Nanda
- Department of Pharmaceutical Sciences, M. D. University, 124001 Rohtak, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology, Greater Noida, 201306, India
| |
Collapse
|
17
|
Lei S, Zhang D, Qi Y, Chowdhury SR, Sun R, Wang J, Du Y, Fu L, Jiang F. Synthesis and biological evaluation of geniposide derivatives as potent and selective PTPlB inhibitors. Eur J Med Chem 2020; 205:112508. [PMID: 32738350 DOI: 10.1016/j.ejmech.2020.112508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Herein a series of Geniposide derivatives were designed, synthesized and evaluated as protein tyrosine phosphatase 1B (PTPlB) inhibitors. Most of these compounds exhibited potent in vitro PTP1B inhibitory activities, the representative 7a and 17f were found to be the most potent inhibitors against the enzyme with IC50 values of 0.35 and 0.41 μM, respectively. More importantly, they showcased 4 to10-fold selectivity over SHP2 and 3-fold over TCPTP. Further biological activity studies revealed that compounds 7a, 17b and 17f could effectively enhance insulin-stimulated glucose uptake with no significant cytotoxicity. Subsequent molecular docking and structural activity relationship analyses demonstrated that the glucose scaffold, benzylated glycosyl groups, and arylethenesulfonic acid ester significantly impact on the activity and selectivity.
Collapse
Affiliation(s)
- Shuwen Lei
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Dongdong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Yunyue Qi
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Sharmin Reza Chowdhury
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Ran Sun
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China
| | - Yi Du
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Rd., Yangpu District, Shanghai, 200092, PR China
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China.
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd. Minhang District, Shanghai, 200240, PR China.
| |
Collapse
|
18
|
CYC31, A Natural Bromophenol PTP1B Inhibitor, Activates Insulin Signaling and Improves Long Chain-Fatty Acid Oxidation in C2C12 Myotubes. Mar Drugs 2020; 18:md18050267. [PMID: 32438641 PMCID: PMC7281472 DOI: 10.3390/md18050267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
3-bromo-4,5-Bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol (CYC31) is a bromophenol protein tyrosine phosphatase 1B (PTP1B) inhibitor isolated from the red alga Rhodomela confervoides. Here, the effect of CYC31 on the insulin signaling and fatty-acid-induced disorders in C2C12 myotubes was investigated. Molecular docking assay showed that CYC31 was embedded into the catalytic pocket of PTP1B. A cellular study found that CYC31 increased the activity of insulin signaling and promoted 2-NBDG uptake through GLUT4 translocation in C2C12 myotubes. Further studies showed that CYC31 ameliorated palmitate-induced insulin resistance in C2C12 myotubes. Moreover, CYC31 treatment significantly increased the mRNA expression of carnitine palmitoyltransferase 1B (CPT-1B) and fatty acid binding protein 3 (FABP3), which was tightly linked with fatty acid oxidation. These findings suggested that CYC31 could prevent palmitate-induce insulin resistance and could improve fatty acid oxidation through PTP1B inhibition.
Collapse
|
19
|
Giannoulaki P, Kotzakioulafi E, Chourdakis M, Hatzitolios A, Didangelos T. Impact of Crocus Sativus L. on Metabolic Profile in Patients with Diabetes Mellitus or Metabolic Syndrome: A Systematic Review. Nutrients 2020; 12:nu12051424. [PMID: 32423173 PMCID: PMC7284534 DOI: 10.3390/nu12051424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Experimental studies demonstrated a positive effect of administration of Crocus sativus L. (saffron) and its bioactive ingredients on metabolic profile through their antioxidant capacity. Purpose: To determine if the use of saffron in humans is beneficial to patients with diabetes mellitus (DM) or metabolic syndrome (MS). Methods: This systematic review includes 14 randomized control trials that investigated the impact of saffron administration and its bioactive ingredient crocin on the metabolic profile of patients with DM, MS, prediabetes, and coronary artery disease. We documented the following clinical outcomes: fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, systolic, and diastolic blood pressure. Results: Eight studies examined the efficacy of saffron in patients with DM, four with the metabolic syndrome, one with prediabetes and one with coronary artery disease. A favorable effect on FBG was observed. The results regarding blood lipids and blood pressure were inconclusive in the current review. Conclusions: According to the available limited evidence, saffron may have a favorable effect on FBG. Many of the studies in the reviewed literature are of poor quality, and more research is needed in this direction to confirm and establish the above findings.
Collapse
Affiliation(s)
- Parthena Giannoulaki
- Department of Nutrition and Dietetics, University General Hospital of Thessaloniki AHEPA, 54621 Thessaloniki, Greece;
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propeudetic Department of Internal Medicine, School of Health Sciences, Medical School, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (A.H.)
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Apostolos Hatzitolios
- Diabetes Center, 1st Propeudetic Department of Internal Medicine, School of Health Sciences, Medical School, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (A.H.)
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propeudetic Department of Internal Medicine, School of Health Sciences, Medical School, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (A.H.)
- Correspondence: ; Tel.: +30-694-486-3803
| |
Collapse
|
20
|
Kumar A, Rana D, Rana R, Bhatia R. Protein Tyrosine Phosphatase (PTP1B): A promising Drug Target Against Life-threatening Ailments. Curr Mol Pharmacol 2020; 13:17-30. [DOI: 10.2174/1874467212666190724150723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Background:Protein tyrosine phosphatases are enzymes which help in the signal transduction in diabetes, obesity, cancer, liver diseases and neurodegenerative diseases. PTP1B is the main member of this enzyme from the protein extract of human placenta. In phosphate inhibitors development, significant progress has been made over the last 10 years. In early-stage clinical trials, few compounds have reached whereas in the later stage trials or registration, yet none have progressed. Many researchers investigate different ways to improve the pharmacological properties of PTP1B inhibitors.Objective:In the present review, authors have summarized various aspects related to the involvement of PTP1B in various types of signal transduction mechanisms and its prominent role in various diseases like cancer, liver diseases and diabetes mellitus.Conclusion:There are still certain challenges for the selection of PTP1B as a drug target. Therefore, continuous future efforts are required to explore this target for the development of PTP inhibitors to treat the prevailing diseases associated with it.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Divya Rana
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Rajat Rana
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| |
Collapse
|
21
|
Discovery of 2-ethoxy-4-(methoxymethyl)benzamide derivatives as potent and selective PTP1B inhibitors. Bioorg Chem 2019; 92:103273. [DOI: 10.1016/j.bioorg.2019.103273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 11/24/2022]
|
22
|
Peng Y, Sun Q, Gao R, Park Y. AAK-2 and SKN-1 Are Involved in Chicoric-Acid-Induced Lifespan Extension in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9178-9186. [PMID: 30835107 DOI: 10.1021/acs.jafc.9b00705] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chicoric acid is a dicaffeoyl ester with many bioactivities, including antioxidation, antidiabetes, and anti-inflammation. A previous study reported that chicoric acid extended the lifespan in Caenorhabditis elegans; however, the mechanism behind the effect of chicoric acid on the extended lifespan remains unknown. Consistent with the previous report, chicoric acid (25 and 50 μM) extended the maximum lifespan compared to the control (17.5 ± 3.3 and 15.6 ± 5%, respectively; p < 0.001 for both). The declines of the pumping rate and locomotive activity, two indicators of aging, were delayed by chicoric acid. Moreover, chicoric acid enhanced resistance to oxidative stress in C. elegans. It was further determined that the extended lifespan by chicoric acid was in part via aak-2 [a homologue of adenosine monophosphate (AMP)-activated protein kinase] and skn-1 (a homologue of nuclear factor erythroid 2-related factor 2). The current findings suggest that chicoric acid has the potential to be used as an anti-aging bioactive compound.
Collapse
Affiliation(s)
- Ye Peng
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang , Jiangsu 212013 , People's Republic of China
- Department of Food Science , University of Massachusetts, Amherst , 102 Holdsworth Way , Amherst , Massachusetts 01003 , United States
| | - Quancai Sun
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang , Jiangsu 212013 , People's Republic of China
| | - Ruichang Gao
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang , Jiangsu 212013 , People's Republic of China
| | - Yeonhwa Park
- Department of Food Science , University of Massachusetts, Amherst , 102 Holdsworth Way , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
23
|
Peng Y, Sun Q, Park Y. Chicoric acid promotes glucose uptake and Akt phosphorylation via AMP-activated protein kinase α-dependent pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
24
|
Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Arch Biochem Biophys 2019; 672:108057. [PMID: 31356781 DOI: 10.1016/j.abb.2019.07.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are generated by gut microbial fermentation of dietary fiber. SCFAs may exert multiple beneficial effects on human lipid and glucose metabolism. However, their actions and underlying mechanisms are not fully elucidated. In this study, we examined the direct effects of propionate on hepatic glucose and lipid metabolism using human HepG2 hepatocytes. Here, we demonstrate that propionate at a physiologically-relevant concentration effectively suppresses palmitate-enhanced glucose production in HepG2 cells but does not affect intracellular neutral lipid levels. Our results indicated that propionate can decline in gluconeogenesis by down-regulation of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) through activation of AMP-activated protein kinase (AMPK), which is a major regulator of the hepatic glucose metabolism. Mechanistic studies also revealed that propionate-stimulated AMPK phosphorylation can be ascribed to Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) activation in response to an increase in intracellular Ca2+ concentration. Moreover, siRNA-mediated knockdown of the propionate receptor GPR43 prevented propionate-inducible activation of AMPK and abrogates the gluconeogenesis-inhibitory action. Thus, our data indicate that the binding of propionate to hepatic GPR43 elicits CaMKKβ-dependent activation of AMPK through intracellular Ca2+ increase, leading to suppression of gluconeogenesis. The present study suggests the potential efficacy of propionate in preventive and therapeutic management of diabetes.
Collapse
|
25
|
Li C, Luo J, Guo S, Jia X, Guo C, Li X, Xu Q, Shi D. Highly Selective Protein Tyrosine Phosphatase Inhibitor, 2,2',3,3'-Tetrabromo-4,4',5,5'-tetrahydroxydiphenylmethane, Ameliorates Type 2 Diabetes Mellitus in BKS db Mice. Mol Pharm 2019; 16:1839-1850. [PMID: 30974944 DOI: 10.1021/acs.molpharmaceut.8b01106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a widely confirmed target of the type 2 diabetes mellitus (T2DM) treatment. Herein, we reported a highly specific PTP1B inhibitor 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxydiphenylmethane (compound 1), which showed promising hypoglycemic activity in diabetic BKS db mice. With the IC50 value of 2.4 μM, compound 1 could directly bind to the catalytic pocket of PTP1B through a series of hydrogen bonds. Surface plasmon resonance analysis revealed that the target affinity [KD (equilibrium dissociation constant) value] of compound 1 binding to PTP1B was 2.90 μM. Moreover, compound 1 could activate the insulin signaling pathway in C2C12 skeletal muscle cells. We further evaluated the long-term effects of compound 1 in diabetic BKS db mice. Notably, oral administration of compound 1 significantly reduced the blood glucose levels of diabetic mice with increasing insulin sensitivity. In addition, the dyslipidemia of diabetic mice was also significantly improved by compound 1 gavage. The histological experiments showed that compound 1 treatment significantly ameliorated the disordered hepatic and pancreatic architecture and increased the glycogen content in the liver tissues as well as improved the insulin secretion function of pancreas. Taken together, our results manifested that the natural product compound 1 was a highly specific PTP1B inhibitor, which could activate insulin signaling pathway and ameliorate hyperglycemia and dyslipidemia in diabetic BKS db mice.
Collapse
Affiliation(s)
- Chao Li
- CAS Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , 7 Nanhai Road , Qingdao 266071 , P. R. China
- University of Chinese Academy of Sciences , Beijing , China
| | - Jiao Luo
- CAS Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , 7 Nanhai Road , Qingdao 266071 , P. R. China
- University of Chinese Academy of Sciences , Beijing , China
| | - Shuju Guo
- CAS Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , 7 Nanhai Road , Qingdao 266071 , P. R. China
| | - Xiaoling Jia
- CAS Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , 7 Nanhai Road , Qingdao 266071 , P. R. China
| | - Chuanlong Guo
- CAS Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , 7 Nanhai Road , Qingdao 266071 , P. R. China
- University of Chinese Academy of Sciences , Beijing , China
| | - Xiangqian Li
- CAS Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , 7 Nanhai Road , Qingdao 266071 , P. R. China
| | - Qi Xu
- CAS Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , 7 Nanhai Road , Qingdao 266071 , P. R. China
- University of Chinese Academy of Sciences , Beijing , China
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology , Institute of Oceanology, Chinese Academy of Sciences , Qingdao 266071 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , 7 Nanhai Road , Qingdao 266071 , P. R. China
- University of Chinese Academy of Sciences , Beijing , China
- State Key Laboratory of Microbial Technology , Shandong University , Qingdao , China
| |
Collapse
|
26
|
Xie F, Yang F, Liang Y, Li L, Xia Y, Jiang F, Liu W, Qi Y, Chowdhury SR, Xie D, Fu L. Investigation of stereoisomeric bisarylethenesulfonic acid esters for discovering potent and selective PTP1B inhibitors. Eur J Med Chem 2019; 164:408-422. [DOI: 10.1016/j.ejmech.2018.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/03/2023]
|
27
|
Yaribeygi H, Zare V, Butler AE, Barreto GE, Sahebkar A. Antidiabetic potential of saffron and its active constituents. J Cell Physiol 2018; 234:8610-8617. [PMID: 30515777 DOI: 10.1002/jcp.27843] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
The prevalence of diabetes mellitus is growing rapidly worldwide. This metabolic disorder affects many physiological pathways and is a key underlying cause of a multitude of debilitating complications. There is, therefore, a critical need for effective diabetes management. Although many synthetic therapeutic glucose-lowering agents have been developed to control glucose homeostasis, they may have unfavorable side effects or limited efficacy. Herbal-based hypoglycemic agents present an adjunct treatment option to mitigate insulin resistance, improve glycemic control and reduce the required dose of standard antidiabetic medications. Saffron (Crocus sativus L.), whilst widely used as a food additive, is a natural product with insulin-sensitizing and hypoglycemic effects. Saffron contains several bioactive β carotenes, which exert their pharmacological effects in various tissues without any obvious side effects. In this study, we discuss how saffron and its major components exert their hypoglycemic effects by induction of insulin sensitivity, improving insulin signaling and preventing β-cell failure, all mechanisms combining to achieve better glycemic control.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Zare
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Yagi M, Nakatsuji Y, Maeda A, Ota H, Kamikubo R, Miyoshi N, Nakamura Y, Akagawa M. Phenethyl isothiocyanate activates leptin signaling and decreases food intake. PLoS One 2018; 13:e0206748. [PMID: 30383868 PMCID: PMC6211728 DOI: 10.1371/journal.pone.0206748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
Obesity, a principal risk factor for the development of diabetes mellitus, heart disease, and hypertension, is a growing and serious health problem all over the world. Leptin is a weight-reducing hormone produced by adipose tissue, which decreases food intake via hypothalamic leptin receptors (Ob-Rb) and the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Protein tyrosine phosphatase 1B (PTP1B) negatively regulates leptin signaling by dephosphorylating JAK2, and the increased activity of PTP1B is implicated in the pathogenesis of obesity. Hence, inhibition of PTP1B may help prevent and reduce obesity. In this study, we revealed that phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate in certain cruciferous vegetables, potently inhibits recombinant PTP1B by binding to the reactive cysteinyl thiol. Moreover, we found that PEITC causes the ligand-independent phosphorylation of Ob-Rb, JAK2, and STAT3 by inhibiting cellular PTP1B in differentiated human SH-SY5Y neuronal cells. PEITC treatment also induced nuclear accumulation of phosphorylated STAT3, resulting in enhanced anorexigenic POMC expression and suppressed orexigenic NPY/AGRP expression. We demonstrated that oral administration of PEITC to mice significantly reduces food intake, and stimulates hypothalamic leptin signaling. Our results suggest that PEITC might help prevent and improve obesity.
Collapse
Affiliation(s)
- Miho Yagi
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yukiko Nakatsuji
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ayumi Maeda
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hiroki Ota
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ryosuke Kamikubo
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mitsugu Akagawa
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
- * E-mail:
| |
Collapse
|
29
|
Gossypol from Cottonseeds Ameliorates Glucose Uptake by Mimicking Insulin Signaling and Improves Glucose Homeostasis in Mice with Streptozotocin-Induced Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5796102. [PMID: 30510623 PMCID: PMC6230386 DOI: 10.1155/2018/5796102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
Glucose absorption from the gut and glucose uptake into muscles are vital for the regulation of glucose homeostasis. In the current study, we determined if gossypol (GSP) reduces postprandial hyperglycemia or enhances glucose uptake; we also investigated the molecular mechanisms underlying those processes in vitro and in vivo. GSP strongly and concentration dependently inhibited α-glucosidase by functioning as a competitive inhibitor with IC50 value of 0.67 ± 0.44. GSP activated the insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathways and enhanced glucose uptake through the translocation of glucose transporter 4 (GLUT4) into plasma membrane in C2C12 myotubes. Pretreatment with a specific inhibitor attenuated the in vitro effects of GSP. We used a streptozotocin-induced diabetic mouse model to assess the antidiabetic potential of GSP. Consistent with the in vitro study, a higher dose of GSP (2.5 mg/kg-1) dramatically decreased the postprandial blood glucose levels associated with the upregulated expressions of GLUT4 and the IRS-1/Akt-mediated signaling cascade in skeletal muscle. GSP treatment also significantly boosted antioxidant enzyme expression and mitigated gluconeogenesis in the liver. Collectively, these data imply that GSP has the potential in managing and preventing diabetes by ameliorating glucose uptake and improving glucose homeostasis.
Collapse
|
30
|
Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study. Int J Mol Sci 2018; 19:ijms19051542. [PMID: 29786669 PMCID: PMC5983811 DOI: 10.3390/ijms19051542] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
Type II diabetes mellitus (T2DM) is the most common form of diabetes and has become a major health problem across the world. The root bark of Morus alba L. is widely used in Traditional Chinese Medicine for treatment and management of diabetes. The aim of the present study was to evaluate the enzyme inhibitory potentials of three principle components, mulberrofuran G (1), albanol B (2), and kuwanon G (3) in M. alba root bark against diabetes, establish their enzyme kinetics, carry out a molecular docking simulation, and demonstrate the glucose uptake activity in insulin-resistant HepG2 cells. Compounds 1–3 showed potent mixed-type enzyme inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In particular, molecular docking simulations of 1–3 demonstrated negative binding energies in both enzymes. Moreover, 1–3 were non-toxic up to 5 µM concentration in HepG2 cells and enhanced glucose uptake significantly and decreased PTP1B expression in a dose-dependent manner in insulin-resistant HepG2 cells. Our overall results depict 1–3 from M. alba root bark as dual inhibitors of PTP1B and α-glucosidase enzymes, as well as insulin sensitizers. These active constituents in M. alba may potentially be utilized as an effective treatment for T2DM.
Collapse
|
31
|
Du Y, Zhang Y, Ling H, Li Q, Shen J. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site. Eur J Med Chem 2018; 144:692-700. [DOI: 10.1016/j.ejmech.2017.12.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/05/2017] [Accepted: 12/17/2017] [Indexed: 12/12/2022]
|
32
|
Shafiee M, Aghili Moghaddam NS, Nosrati M, Tousi M, Avan A, Ryzhikov M, Parizadeh MR, Fiuji H, Rajabian M, Bahreyni A, Khazaei M, Hassanian SM. Saffron against Components of Metabolic Syndrome: Current Status and Prospective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10837-10843. [PMID: 29136374 DOI: 10.1021/acs.jafc.7b03762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Saffron, the dried stigmas of Crocus sativus L., is mainly used as a food coloring and flavoring agent. This agricultural product is used in traditional medicine for the treatment of several diseases including asthma, liver disease, menstruation disorders, and, of special interest in this review, metabolic syndrome. Saffron and its active components including crocin, crocetin, and safranal are potential therapeutic candidates for attenuating MetS complications including hypertension, hyperglycemia, obesity, and dyslipidemia. This review summarizes the protective role of saffron and its constituents in the pathogenesis of MetS for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
| | | | - Mohammad Nosrati
- Department of Nutrition, Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran 1983969411, Iran
| | | | | | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University , School of Medicine, Saint Louis, Missouri 63130-4899, United States
| | | | - Hamid Fiuji
- Department of Biochemistry, Payame-Noor University , Mashhad 433-91735, Iran
| | - Majid Rajabian
- Department of Biochemistry, Payame-Noor University , Mashhad 433-91735, Iran
| | - Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences , Sari, Mazandaran 48175-866, Iran
| | | | | |
Collapse
|
33
|
Jung HJ, Seong SH, Ali MY, Min BS, Jung HA, Choi JS. α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Arch Pharm Res 2017; 40:1403-1413. [PMID: 29177868 DOI: 10.1007/s12272-017-0992-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/19/2017] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus is one of the greatest global health issues and much research effort continues to be directed toward identifying novel therapeutic agents. Insulin resistance is a challenging integrally related topic and molecules capable of overcoming it are of considerable therapeutic interest in the context of type 2 diabetes mellitus (T2DM). Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling transduction and is regarded a novel therapeutic target in T2DM. Here, we investigated the inhibitory effect of α-methyl artoflavanocoumarin (MAFC), a natural flavanocoumarin isolated from Juniperus chinensis, on PTP1B in insulin-resistant HepG2 cells. MAFC was found to potently inhibit PTP1B with an IC50 of 25.27 ± 0.14 µM, and a kinetics study revealed MAFC is a mixed type PTP1B inhibitor with a K i value of 13.84 µM. Molecular docking simulations demonstrated MAFC can bind to catalytic and allosteric sites of PTP1B. Furthermore, MAFC significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells, down-regulated the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307), and dose-dependently enhanced the protein levels of IRS-1, phosphorylated phosphoinositide 3-kinase (PI3K), Akt, and ERK1. These results suggest that MAFC from J. chinensis has therapeutic potential in T2DM by inhibiting PTP1B and activating insulin signaling pathways.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Md Yousof Ali
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, 38430, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
34
|
Bhakta HK, Paudel P, Fujii H, Sato A, Park CH, Yokozawa T, Jung HA, Choi JS. Oligonol promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B. Arch Pharm Res 2017; 40:1314-1327. [PMID: 29027136 DOI: 10.1007/s12272-017-0970-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
Abstract
Insulin resistance and protein tyrosine phosphatase 1B (PTP1B) overexpression are strongly associated with type 2 diabetes mellitus (T2DM), which is characterized by defects in insulin signaling and glucose intolerance. In a previous study, we demonstrated oligonol inhibits PTP1B and α-glucosidase related to T2DM. In this study, we examined the molecular mechanisms underlying the anti-diabetic effects of oligonol in insulin-resistant HepG2 cells. Glucose uptake was assessed using a fluorescent glucose tracer, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose, and the signaling pathway was investigated by western blotting. Oligonol significantly increased insulin-provoked glucose uptake and decreased PTP1B expression, followed by modulation of ERK phosphorylation. In addition, oligonol activated insulin receptor substrate 1 by reducing phosphorylation at serine 307 and increasing that at tyrosine 895, and enhanced the phosphorylations of Akt and phosphatidylinositol 3-kinase. Interestingly, it also reduced the expression of two key enzymes of gluconeogenesis (glucose 6-phosphatase and phosphoenolpyruvate carboxykinase), attenuated oxidative stress by scavenging/inhibiting peroxynitrite, and reactive oxygen species (ROS) generation, and augmented the expression of nuclear factor kappa B. These findings suggest oligonol improved the insulin sensitivity of insulin-resistant HepG2 cells by attenuating the insulin signaling blockade and modulating glucose uptake and production. Furthermore, oligonol attenuated ROS-related inflammation and prevented oxidative damage in our in vitro model of type 2 diabetes. These result indicate oligonol has promising potential as a treatment for T2DM.
Collapse
Affiliation(s)
- Himanshu Kumar Bhakta
- Department of Food and Life Science, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Hajime Fujii
- Amino Up Chemical Company Ltd., Sapporo, 004-0839, Japan
| | - Atsuya Sato
- Amino Up Chemical Company Ltd., Sapporo, 004-0839, Japan
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research, University of Toyama, Toyama, 930-8555, Japan
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 608-737, Republic of Korea.
| |
Collapse
|
35
|
Efentakis P, Rizakou A, Christodoulou E, Chatzianastasiou A, López MG, León R, Balafas E, Kadoglou NPE, Tseti I, Skaltsa H, Kostomitsopoulos N, Iliodromitis EK, Valsami G, Andreadou I. Saffron (Crocus sativus) intake provides nutritional preconditioning against myocardial ischemia-reperfusion injury in Wild Type and ApoE (-/-) mice: Involvement of Nrf2 activation. Nutr Metab Cardiovasc Dis 2017; 27:919-929. [PMID: 28964663 DOI: 10.1016/j.numecd.2017.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Saffron is an antioxidant herbal derivative; however, its efficacy as a nutritional cardioprotective agent has not been fully elucidated. We investigated the cardioprotective properties of a standardized saffron aqueous extract (SFE) against ischemia/reperfusion (I/R) injury in Wild-Type (WT) and ApoE(-/-) mice and the underlying molecular mechanisms. METHODS AND RESULTS WT and ApoE(-/-) mice were subjected to 30 min I and 2 h R, with the following per os interventions for 4 weeks: 1) WT Control Group, receiving Water for Injection (WFI); 2) WT Crocus Group, receiving SFE at a dose of 60 mg/kg/day; 3) WT Crocus + Wort group, receiving SFE as described above and wortmannin at a dose of 60 μg/kg bolus 15 min before R; 4) ApoE(-/-) Control Group, receiving WFI; 5) ApoE(-/-) Crocus Group, receiving SFE at a dose of 60 mg/kg/day and 6) ApoE(-/-) Crocus + Wort: receiving SFE as described above and wortmannin at a dose of 60 μg/kg bolus, 15 min before R. Ischemic area/area at risk (I/R%) ratio was measured. Blood samples and ischemic myocardial tissue were collected at the 10th min of reperfusion for assessment of troponin I, malondialdehyde (MDA), nitrotyrosine (NT), p-eNOS, eNOS, p-Akt, Akt, p-p42/p-p44, p-GSK3β, GSK3β, IL-6, Nrf2, HO-1 and MnSOD expression. The effect of SFE on Nrf2 expression was also evaluated in vitro. SFE reduced infarct size in WT (16.15 ± 3.7% vs 41.57 ± 2.48%, ***p < 0.001) and in ApoE(-/-) mice (16.14 ± 1.47% vs 45.57 ± 1.73%, ***p < 0.001). The administration of wortmannin resulted in partial inhibition of the infarct size limitation efficacy of SFE (in both WT and Apo-E(-/-) mice). Mice receiving SFE showed increased levels of eNOS, p-Akt, p-ERK1/2, p-44/p-42 and p-GSK3β-Ser9 and reduced expression of IL-6 and iNOS; furthermore, SFE reduced the levels of MDA and NT. SFE induced Nrf2 expression and its downstream targets, HO-1 and MnSOD in the myocardium of the treated animals, and induced Nrf2 expression in vitro in a dose-dependent manner. CONCLUSIONS SFE limits myocardial infarction in Wild-Type and ApoE(-/-) mice in a multifaceted manner including activation of Akt/eNOS/ERK1/2/GSK3-β and through Nrf2 pathway, bestowing antioxidant protection against I/R.
Collapse
Affiliation(s)
- P Efentakis
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Athens, Greece
| | - A Rizakou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Athens, Greece
| | - E Christodoulou
- National and Kapodistrian University of Athens, Laboratory of Biopharmaceutics, Faculty of Pharmacy, Athens, Greece
| | - A Chatzianastasiou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Athens, Greece
| | - M G López
- Departamento de Farmacología y Terapéutica, Instituto Téofilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - R León
- Departamento de Farmacología y Terapéutica, Instituto Téofilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario la Princesa, Madrid, Spain
| | - E Balafas
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Athens, Greece
| | - N P E Kadoglou
- National and Kapodistrian University of Athens, Laboratory of Biopharmaceutics, Faculty of Pharmacy, Athens, Greece
| | - I Tseti
- Uni-Pharma S.A., Athens, Greece
| | - H Skaltsa
- National and Kapodistrian University of Athens, Department of Pharmacognocy and Chemistry of Natural Products, Faculty of Pharmacy, Athens, Greece
| | - N Kostomitsopoulos
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Athens, Greece
| | - E K Iliodromitis
- National and Kapodistrian University of Athens, Medical School, Second University Department of Cardiology, Athens, Greece
| | - G Valsami
- National and Kapodistrian University of Athens, Laboratory of Biopharmaceutics, Faculty of Pharmacy, Athens, Greece
| | - I Andreadou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Athens, Greece.
| |
Collapse
|
36
|
Huang Q, Han L, Liu Y, Wang C, Duan D, Lu N, Wang K, Zhang L, Gu K, Duan S, Mai Y. Elevation of PTPN1 promoter methylation is a significant risk factor of type 2 diabetes in the Chinese population. Exp Ther Med 2017; 14:2976-2982. [PMID: 29042909 PMCID: PMC5639402 DOI: 10.3892/etm.2017.4924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the contribution of DNA methylation of the protein tyrosine phosphatase, non-receptor type 1 (PTPN1) gene to the susceptibility to type 2 diabetes (T2D). Peripheral blood mononuclear cells (PBMCs) were collected from 97 patients with T2D and 97 age- and gender-matched controls. DNA methylation of the PTPN1 gene promoter was evaluated by bisulfite pyrosequencing. Independent sample t-tests were used to compare the differences in the PTPN1 promoter and other phenotypes between the patients with T2D and the controls. The results indicated a significant correlation between PTPN1 promoter methylation and the risk of T2D. Additionally, a breakdown analysis by gender revealed that PTPN1 methylation was associated with an increased risk of T2D in females. Furthermore, low-density lipoprotein (r=−0.183, P=0.046) and total cholesterol (r=−0.310, P=0.001) were inversely associated with PTPN1 methylation in females. In conclusion, the results indicate that elevated PTPN1 promoter methylation is a risk factor for T2D in the female Chinese population.
Collapse
Affiliation(s)
- Qing Huang
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, P.R. China
| | - Liyuan Han
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yanfen Liu
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Changyi Wang
- Department of Chronic Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong 518000, P.R. China
| | - Donghui Duan
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Nanjia Lu
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Kaiyue Wang
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lu Zhang
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Kaibo Gu
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yifeng Mai
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
37
|
Li XQ, Xu Q, Luo J, Wang LJ, Jiang B, Zhang RS, Shi DY. Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B. Eur J Med Chem 2017; 136:348-359. [PMID: 28511130 DOI: 10.1016/j.ejmech.2017.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/27/2022]
Abstract
Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate.
Collapse
Affiliation(s)
- Xiang-Qian Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qi Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li-Jun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ren-Shuai Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Da-Yong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
38
|
Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1679-1685. [PMID: 27861946 DOI: 10.1002/jsfa.8134] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/25/2016] [Accepted: 11/07/2016] [Indexed: 05/28/2023]
Abstract
Metabolic syndrome is a disorder which encompasses obesity, high blood glucose, high cholesterol levels and high blood pressure. Moreover, metabolic syndrome is considered as the most important risk factor for cardiovascular disease (CVD). CVD is the leading cause of mortality in the world for both men and women. Several chemical drugs are available to treat metabolic risk factors, but because of the safety, efficacy, cultural acceptability and lesser side effects, nowadays herbal therapy has a critical role in the treatment of these CVD risk factors. Crocus sativus L. (saffron) is a perennial herb that belongs to the Iridaceae family. Saffron is an extensively used food additive for its colour and taste and has been widely used in traditional as well as modern medicine to treat several illnesses including cardiovascular diseases. Most of the unique properties of this plant are attributed to the presence of three major components, including crocin, safranal and crocetin. It has been proved that saffron has an important role in the management of metabolic syndrome because of its marvelous activities including anti-diabetic, anti-obesity, hypotensive and hypolipidaemic properties. In this review article, we discuss the beneficial properties of saffron and its active components to treat different components of metabolic syndrome and most relevant animal and human studies regarding the use of this plant in cardiovascular disease, with focus on the metabolic risk factors. This review also suggests that after randomised clinical trials, saffron may be implicated as a preventive or therapeutic agent against metabolic syndrome. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Yuan H, Wang T, Niu Y, Liu X, Fu L. AMP-activated protein kinase-mediated expression of heat shock protein beta 1 enhanced insulin sensitivity in the skeletal muscle. FEBS Lett 2016; 591:97-108. [PMID: 27928820 DOI: 10.1002/1873-3468.12516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/18/2016] [Accepted: 11/24/2016] [Indexed: 11/12/2022]
Abstract
Activation of AMP-activated protein kinase (AMPK) has been viewed as an important target for the treatment of insulin resistance. Here, by proteomic analysis, we found that expression of heat shock protein beta-1 (HSPB1) was induced by the AMP analog 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside in palmitate-induced insulin-resistant cells. Overexpression of AMPKα2, or activation of AMPKα via acute/chronic exercise training, increased HSPB1 expression in the skeletal muscle. In AMPKα2-/- mice, HSPB1 expression was downregulated in the quadriceps muscles. Exercise did not increase HSPB1 expression in AMPKα2-/- mice. Moreover, overexpression of HSPB1 enhanced insulin sensitivity in palmitate-induced insulin-resistant cells and restored metabolic phenotypes associated with defective AMPK. Finally, HSPB1 was required for AMPK-mediated activation of the class IIa histone deacetylases and glucose uptake in the skeletal muscle. Our results demonstrate that AMPK-mediated HSPB1 expression enhanced insulin sensitivity in the skeletal muscle.
Collapse
Affiliation(s)
- Hairui Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, China
| | - Tianyi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China
| | - Yanmei Niu
- Department of Rehabilitation and Sports Medicine, Tianjin Medical University, China
| | - Xiaolei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, China
| |
Collapse
|
40
|
Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B. Arch Pharm Res 2016; 39:1454-1464. [PMID: 27544192 DOI: 10.1007/s12272-016-0819-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023]
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.
Collapse
|
41
|
Liu P, Du Y, Song L, Shen J, Li Q. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity. Eur J Med Chem 2016; 118:27-33. [DOI: 10.1016/j.ejmech.2016.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/03/2016] [Accepted: 04/06/2016] [Indexed: 01/17/2023]
|
42
|
Zhang X, Tian J, Li J, Huang L, Wu S, Liang W, Zhong L, Ye J, Ye F. A novel protein tyrosine phosphatase 1B inhibitor with therapeutic potential for insulin resistance. Br J Pharmacol 2016; 173:1939-49. [PMID: 26990621 DOI: 10.1111/bph.13483] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Insulin-sensitizing drugs are currently limited, and identifying new candidates is a challenge. Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signalling, and its inhibition is anticipated to improve insulin resistance. Here, the pharmacological properties of CX08005, a novel PTP1B inhibitor, were investigated. EXPERIMENTAL APPROACH Recombinant hPTP1B protein was used to study enzyme activity and mode of inhibition. Docking simulation explored the interactions between CX08005 and PTP1B. Insulin sensitivity was evaluated by glucose tolerance test (GTT) in diet-induced obese (DIO) and KKAy mice; glucose-stimulated insulin secretion (GSIS), homeostasis model assessment of insulin resistance index (HOMA-IR) and whole-body insulin sensitivity (ISWB ) were also determined. A hyperinsulinaemic-euglycaemic clamp was performed to evaluate insulin-stimulated glucose disposal in both whole-body and insulin-sensitive tissues. Furthermore, CX08005's effects on muscle, fat and liver cells were determined in vitro. KEY RESULTS CX08005 competitively inhibited PTP1B by binding to the catalytic P-loop through hydrogen bonds. In DIO mice, CX08005 ameliorated glucose intolerance dose-dependently (50-200 mg·kg(-1) ·day(-1) ) and decreased the HOMA-IR. In KKAy mice, CX08005 (50 mg·kg(-1) ·day(-1) ) improved glucose intolerance, GSIS, ISWB and hyperglycaemia. CX08005 also enhanced insulin-stimulated glucose disposal, increased glucose infusion rate and glucose uptake in muscle and fat in DIO mice (hyperinsulinaemic-euglycaemic clamp test). CX08005 enhanced insulin-induced glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and increased phosphorylation of IRβ/IRS1 and downstream molecules in hepatocytes in a dose- and insulin-dependent manner respectively. CONCLUSIONS AND IMPLICATIONS Our results strongly suggest that CX08005 directly enhances insulin action in vitro and in vivo through competitive inhibition of PTP1B.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Juan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Liwei Huang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Song Wu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Liang
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangwei Zhong
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University, Louisiana, LA, USA
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Aragonès G, Ardid-Ruiz A, Ibars M, Suárez M, Bladé C. Modulation of leptin resistance by food compounds. Mol Nutr Food Res 2016; 60:1789-803. [DOI: 10.1002/mnfr.201500964] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Gerard Aragonès
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Andrea Ardid-Ruiz
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Maria Ibars
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Manuel Suárez
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Cinta Bladé
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
44
|
Yamamoto N, Ueda-Wakagi M, Sato T, Kawasaki K, Sawada K, Kawabata K, Akagawa M, Ashida H. Measurement of Glucose Uptake in Cultured Cells. ACTA ACUST UNITED AC 2015; 71:12.14.1-12.14.26. [PMID: 26646194 DOI: 10.1002/0471141755.ph1214s71] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Facilitative glucose uptake transport systems are ubiquitous in animal cells and are responsible for transporting glucose across cell surface membranes. Evaluation of glucose uptake is crucial in the study of numerous diseases and metabolic disorders such as myocardial ischemia, diabetes mellitus, and cancer. Detailed in this unit are laboratory methods for assessing glucose uptake into mammalian cells. The unit is divided into five sections: (1) a brief overview of glucose uptake assays in cultured cells; (2) a method for measuring glucose uptake using radiolabeled 3-O-methylglucose; (3) a method for measuring glucose uptake using radiolabeled 2-deoxyglucose (2DG); (4) a microplate method for measuring 2DG-uptake using an enzymatic, fluorometric assay; and (5) a microplate-based method using a fluorescent analog of 2DG.
Collapse
Affiliation(s)
- Norio Yamamoto
- Research & Development Institute, House Wellness Foods Corporation, Hyogo, Japan
| | - Manabu Ueda-Wakagi
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takuya Sato
- Research & Development Institute, House Wellness Foods Corporation, Hyogo, Japan
| | - Kengo Kawasaki
- Research & Development Institute, House Wellness Foods Corporation, Hyogo, Japan
| | - Keisuke Sawada
- Department of Agrobiosciences, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kyuichi Kawabata
- Department of Bioscience, Fukui Prefectural University, Fukui, Japan
| | - Mitsugu Akagawa
- Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Hitoshi Ashida
- Department of Agrobiosciences, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
45
|
Liu P, Du Y, Song L, Shen J, Li Q. Novel, potent, selective and cellular active ABC type PTP1B inhibitors containing (methanesulfonyl-phenyl-amino)-acetic acid methyl ester phosphotyrosine mimetic. Bioorg Med Chem 2015; 23:7079-88. [DOI: 10.1016/j.bmc.2015.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/29/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
|
46
|
Wang MY, Jin YY, Wei HY, Zhang LS, Sun SX, Chen XB, Dong WL, Xu WR, Cheng XC, Wang RL. Synthesis, biological evaluation and 3D-QSAR studies of imidazolidine-2,4-dione derivatives as novel protein tyrosine phosphatase 1B inhibitors. Eur J Med Chem 2015; 103:91-104. [DOI: 10.1016/j.ejmech.2015.08.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
47
|
Du Y, Ling H, zhang M, Shen J, Li Q. Discovery of novel, potent, selective and cellular active ADC type PTP1B inhibitors via fragment-docking-oriented de novel design. Bioorg Med Chem 2015; 23:4891-4898. [DOI: 10.1016/j.bmc.2015.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
|
48
|
Magnolia officinalis Extract Contains Potent Inhibitors against PTP1B and Attenuates Hyperglycemia in db/db Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:139451. [PMID: 26064877 PMCID: PMC4439476 DOI: 10.1155/2015/139451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 12/20/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an established therapeutic target for type 2 diabetes mellitus (T2DM) and obesity. The aim of this study was to investigate the inhibitory activity of Magnolia officinalis extract (ME) on PTP1B and its anti-T2DM effects. Inhibition assays and inhibition kinetics of ME were performed in vitro. 3T3-L1 adipocytes and C2C12 myotubes were stimulated with ME to explore its bioavailability in cell level. The in vivo studies were performed on db/db mice to probe its anti-T2DM effects. In the present study, ME inhibited PTP1B in a reversible competitive manner and displayed good selectivity against PTPs in vitro. Furthermore, ME enhanced tyrosine phosphorylation levels of cellular proteins, especially the insulin-induced tyrosine phosphorylations of insulin receptor β-subunit (IRβ) and ERK1/2 in a dose-dependent manner in stimulated 3T3-L1 adipocytes and C2C12 myotubes. Meanwhile, ME enhanced insulin-stimulated GLUT4 translocation. More importantly, there was a significant decrease in fasting plasma glucose level of db/db diabetic mice treated orally with 0.5 g/kg ME for 4 weeks. These findings indicated that improvement of insulin sensitivity and hypoglycemic effects of ME may be attributed to the inhibition of PTP1B. Thereby, we pioneered the inhibitory potential of ME targeted on PTP1B as anti-T2DM drug discovery.
Collapse
|
49
|
Liu ZQ, Liu T, Chen C, Li MY, Wang ZY, Chen RS, Wei GX, Wang XY, Luo DQ. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice. Toxicol Appl Pharmacol 2015; 285:61-70. [PMID: 25796170 DOI: 10.1016/j.taap.2015.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties.
Collapse
Affiliation(s)
- Zhi-Qin Liu
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China; College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Ting Liu
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Chuan Chen
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Ming-Yan Li
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Zi-Yu Wang
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Ruo-Song Chen
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Gui-Xiang Wei
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Xiao-Yi Wang
- College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002, PR China
| | - Du-Qiang Luo
- College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
50
|
Ishii M, Maeda A, Tani S, Akagawa M. Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules. Arch Biochem Biophys 2015; 566:26-35. [DOI: 10.1016/j.abb.2014.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/20/2014] [Accepted: 12/07/2014] [Indexed: 01/05/2023]
|