1
|
Rosqvist F, Cedernaes J, Martínez Mora A, Fridén M, Johansson HE, Iggman D, Larsson A, Ahlström H, Kullberg J, Risérus U. Overfeeding polyunsaturated fat compared with saturated fat does not differentially influence lean tissue accumulation in individuals with overweight: a randomized controlled trial. Am J Clin Nutr 2024; 120:121-128. [PMID: 38636844 DOI: 10.1016/j.ajcnut.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Fatty acids may influence lean tissue volume and skeletal muscle function. We previously reported in young lean participants that overfeeding PUFA compared with SFA induced greater lean tissue accumulation despite similar weight gain. OBJECTIVES In a double-blind randomized controlled trial, we aimed to investigate if the differential effects of overfeeding SFA and PUFA on lean tissue accumulation could be replicated in individuals with overweight and identify potential determinants. Further, using substitution models, we investigated associations between SFA and PUFA concentrations with lean tissue volume in a large population-based sample (UK Biobank). METHODS Sixty-one males and females with overweight [BMI (kg/m2): 27.3 (interquartile range (IQR), 25.4-29.3); age: 43 (IQR, 36-48)] were overfed SFA (palm oil) or n-6 (ω-6) PUFA (sunflower oil) for 8 wk. Lean tissue was assessed by MRI. We had access to n = 13,849 participants with data on diet, covariates, and MRI measurements of lean tissue, as well as 9119 participants with data on circulating fatty acids in the UK Biobank. RESULTS Body weight gain mean (SD) was similar in PUFA (2.01 ± 1.90 kg) and SFA (2.31 ± 1.38 kg) groups. Lean tissue increased to a similar extent [0.54 ± 0.93 L and 0.67 ± 1.21 L for PUFA and SFA groups, respectively, with a difference between groups of 0.07 (-0.21, 0.35)]. We observed no differential effects on circulating amino acids, myostatin, or IL-15 and no clear determinants of lean tissue accumulation. Similar nonsignificant results for SFA and PUFA were observed in UK Biobank, but circulating fatty acids demonstrated ambiguous and sex-dependent associations. CONCLUSIONS Overfeeding SFA or PUFA does not differentially affect lean tissue accumulation during 8 wk in individuals with overweight. A lack of dietary fat type-specific effects on lean tissue is supported by specified substitution models in a large population-based cohort consuming their habitual diet. This trial was registered at clinicaltrials.gov identifier as NCT02211612.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden.
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Sweden; Department of Medical Cell Biology, Uppsala University, Sweden
| | | | - Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden
| | - Hans-Erik Johansson
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden
| | - David Iggman
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden; Center for Clinical Research Dalarna, Uppsala University, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Sweden; Antaros Medical AB, Mölndal, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Sweden; Antaros Medical AB, Mölndal, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden
| |
Collapse
|
2
|
Gumpper-Fedus K, Chasser K, Pita-Grisanti V, Torok M, Pfau T, Mace TA, Cole RM, Belury MA, Culp S, Hart PA, Krishna SG, Lara LF, Ramsey ML, Fisher W, Fogel EL, Forsmark CE, Li L, Pandol S, Park WG, Serrano J, Van Den Eeden SK, Vege SS, Yadav D, Conwell DL, Cruz-Monserrate Z. Systemic Neutrophil Gelatinase-Associated Lipocalin Alterations in Chronic Pancreatitis: A Multicenter, Cross-Sectional Study. Clin Transl Gastroenterol 2024; 15:e00686. [PMID: 38284831 PMCID: PMC11042777 DOI: 10.14309/ctg.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a progressive fibroinflammatory disorder lacking therapies and biomarkers. Neutrophil gelatinase-associated lipocalin (NGAL) is a proinflammatory cytokine elevated during inflammation that binds fatty acids (FAs) such as linoleic acid. We hypothesized that systemic NGAL could serve as a biomarker for CP and, with FAs, provide insights into inflammatory and metabolic alterations. METHODS NGAL was measured by immunoassay, and FA composition was measured by gas chromatography in plasma (n = 171) from a multicenter study, including controls (n = 50), acute and recurrent acute pancreatitis (AP/RAP) (n = 71), and CP (n = 50). Peripheral blood mononuclear cells (PBMCs) from controls (n = 16), AP/RAP (n = 17), and CP (n = 15) were measured by cytometry by time-of-flight. RESULTS Plasma NGAL was elevated in subjects with CP compared with controls (area under the curve [AUC] = 0.777) or AP/RAP (AUC = 0.754) in univariate and multivariate analyses with sex, age, body mass index, and smoking (control AUC = 0.874; AP/RAP AUC = 0.819). NGAL was elevated in CP and diabetes compared with CP without diabetes ( P < 0.001). NGAL + PBMC populations distinguished CP from controls (AUC = 0.950) or AP/RAP (AUC = 0.941). Linoleic acid was lower, whereas dihomo-γ-linolenic and adrenic acids were elevated in CP ( P < 0.05). Linoleic acid was elevated in CP with diabetes compared with CP subjects without diabetes ( P = 0.0471). DISCUSSION Elevated plasma NGAL and differences in NGAL + PBMCs indicate an immune response shift that may serve as biomarkers of CP. The potential interaction of FAs and NGAL levels provide insights into the metabolic pathophysiology and improve diagnostic classification of CP.
Collapse
Affiliation(s)
- Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Molly Torok
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Timothy Pfau
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas A. Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rachel M. Cole
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Columbus, Ohio, USA
| | - Martha A. Belury
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Columbus, Ohio, USA
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Luis F. Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mitchell L. Ramsey
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - William Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Evan L. Fogel
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Chris E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Walter G. Park
- Division of Gastroenterology & Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institutes of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | - Santhi Swaroop Vege
- Department of Gastroenterology and Hepatology, The Mayo Clinic, Rochester, Minnesota, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Darwin L. Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
3
|
Kim OY, Song J. Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia. Life Sci 2024; 337:122356. [PMID: 38123015 DOI: 10.1016/j.lfs.2023.122356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Garg PK, Guan W, Nomura S, Weir NL, Tintle N, Virtanen JK, Hirakawa Y, Qian F, Sun Q, Rimm E, Lemaitre RN, Jensen PN, Heckbert SR, Imamura F, Steur M, Leander K, Laguzzi F, Voortman T, Ninomiya T, Mozaffarian D, Harris WS, Siscovick DS, Tsai MY. n-6 fatty acid biomarkers and incident atrial fibrillation: an individual participant-level pooled analysis of 11 international prospective studies. Am J Clin Nutr 2023; 118:921-929. [PMID: 37769813 DOI: 10.1016/j.ajcnut.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The presence of atrial fibrillation (AF) is associated with an over 2-fold increased risk of stroke, heart failure, and cardiovascular mortality. Long chain n-6 PUFAs have been suggested to have a variety of beneficial biologic effects that may reduce AF development; however, prior studies evaluating this relationship are limited. OBJECTIVES We prospectively evaluated the association between circulating levels of linoleic acid (LA) and arachidonic acid (AA) with incident AF. METHODS We used participant-level data from a global consortium of 11 prospective cohort studies with measurements of LA and AA in adults (aged ≥18 y). Participating studies conducted de novo analyses using a prespecified analytical plan with harmonized definitions for exposures, outcomes, covariates, and subgroups. Associations were pooled using inverse-variance weighted meta-analysis. RESULTS Among 41,335 participants, 6173 incident cases of AF were ascertained, with median follow-up time of 14 y. In multivariable analysis, per interquintile range (difference between the 10th and 90th percentiles for each fatty acid), circulating n-6 levels were not associated with incident AF. For LA, the hazard ratio per interquintile range was 0.96 (95% confidence interval [CI]: 0.89, 1.04), and for AA, 1.02 (95% CI: 0.94, 1.10), with little evidence of heterogeneity between cohorts. Associations were similarly nonsignificant across subgroups of age, race, and biomarker fraction. CONCLUSIONS Biomarkers of n-6 fatty acids including LA and AA are not associated with incident AF. These findings suggest that overall effects of n-6 PUFAs on influencing AF development are neutral.
Collapse
Affiliation(s)
- Parveen K Garg
- Division of Cardiology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Sarah Nomura
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Natalie L Weir
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Nathan Tintle
- Department of Population Health Sciences, College of Nursing, University of Illinois-Chicago, Chicago, IL, United States
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Yoichiro Hirakawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Frank Qian
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Eric Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Paul N Jensen
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Marinka Steur
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States; Division of Cardiology, Tufts Medical Center, Boston, MA, United States
| | - William S Harris
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States
| | | | - Michael Y Tsai
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
5
|
Wang D, Qin P, Zhang K, Wang Y, Guo Y, Cheng Z, Li Z, Tian Y, Kang X, Li H, Liu X. Integrated LC/MS-based lipidomics and transcriptomics analyses revealed lipid composition heterogeneity between pectoralis intramuscular fat and abdominal fat and its regulatory mechanism in chicken. Food Res Int 2023; 172:113083. [PMID: 37689861 DOI: 10.1016/j.foodres.2023.113083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 09/11/2023]
Abstract
Intramuscular fat (IMF) content is conducive to multiple meat quality properties, while abdominal fat (AF) is treated as waste product in chicken industry. However, the heterogeneity and distinct regulatory mechanisms of lipid composition between the IMF and AF are still unclear. In this study, we carried out non-targeted lipidomics analyses of pectoralis IMF and AF, and detected a total of 423 differential lipid molecules (DLMs) between chicken IMF and AF, including 307 up-regulated and 116 down-regulated DLMs in pectoral IMF. These DLMs exhibited the definite alteration of lipid composition. The up-reglated DLMs in IMF were mainly glycerophospholipids (GPs), including the bulk of phosphatidylcholines (PC, PC (P) and PC (O)), phosphatidylethanolamines (PE, PE (P) and PE (O)), phosphatidylglycerols (PG) and phosphatidylinositol (PI), while the up-reglated DLMs in AF were mainly glycerolipids (GLs), including most of triacylglycerols (TG) and diacylglycerols (DG). We further identified 28 main DLMs contributing to the heterogeneous deposition of IMF and AF, including 11 TGs common to IMF and AF, 12 PCs/PC (P)s specific to IMF and 5 DGs specific to AF. Further integration of transcriptome with the main DLMs by weighted gene co-expression network analysis (WGCNA), we found five key gene sets that included 386 unique genes promoting IMF deposition in pectoralis, 213 unique genes promoting AF deposition, 6 unique genes detrimental to AF deposition, 7 common genes that promote IMF deposition in pectoralis while adversely affect AF deposition, and 28 genes that only promoted IMF deposition in pectoralis but had no effect on AF deposition. In addition, we also observed the expression characteristics of key genes in vivo and in vitro, and found that transmembrane protein family gene TMEM164 might be mainly involved in the positive regulation of intramuscular fat deposition in pectoralis and zinc finger protein family gene ZNF488 had a potential unique positive regulatory function on abdominal fat deposition. These findings provide new perspectives for understanding IMF and AF heterodeposition and will serve as a valuable information resource for improving meat quality via breeding selection in chicken.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhimin Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Sousa S, Pestana D, Faria G, Delerue-Matos C, Calhau C, Fernandes Domingues V. Adipose tissue fatty acids as biomarkers for metabolic dysfunction in obese females: Implication of menopause and ageing. Prostaglandins Leukot Essent Fatty Acids 2023; 195:102581. [PMID: 37494765 DOI: 10.1016/j.plefa.2023.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Fatty acids (FA) are biomarkers of metabolic dysfunction. Adipose tissue is the largest reservoir of FA and acts differently in obese individuals. Menopause by itself significantly alters metabolism, lipid metabolism dysregulation, and adipose tissue distribution. How adipose tissue FA alters an obese individual's metabolism depending on a female's menopausal status is yet poorly understood. Hence, the subcutaneous (scAT) and visceral adipose tissue (vAT) FA profile for 173 obese premenopausal and postmenopausal women was measured and associated with biochemical parameters. scAT and vAT FA profiles were distinct by themselves and in menopause. In total 816 associations were found with biochemical parameters, where only 58 were independent of the menopausal status. The associations found to emphasize the importance of assessing the adipose tissue FA profile and how their behavior changes with menopause. The FA are crucial in metabolic processes and can be helpful biomarkers in the prevention/treatment and follow-up of female obesity.
Collapse
Affiliation(s)
- Sara Sousa
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Center for Research in Health Technologies and Information Systems, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Diogo Pestana
- Center for Research in Health Technologies and Information Systems, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Nutrição e Metabolismo NOVA Medical School Faculdade de Ciências Médicas Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Gil Faria
- Center for Research in Health Technologies and Information Systems, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Conceição Calhau
- Center for Research in Health Technologies and Information Systems, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Nutrição e Metabolismo NOVA Medical School Faculdade de Ciências Médicas Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | | |
Collapse
|
7
|
Carbohydrate Intakes below Recommendations with a High Intake of Fat Are associated with Higher Prevalence of Metabolic Syndrome. J Acad Nutr Diet 2023:S2212-2672(23)00098-9. [PMID: 36841355 DOI: 10.1016/j.jand.2023.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND More than one-third of adults in the United States have metabolic syndrome, and dietary carbohydrate intake may modify the likelihood of developing this condition. Currently, there is a lack of consistent evidence demonstrating the relationship between carbohydrate intake that falls below recommendations and metabolic syndrome. Not accounting for the differences in fatty acid classes of these dietary patterns may be a reason for inconsistent findings. OBJECTIVE This study evaluated the association between a carbohydrate intake below recommendations and metabolic syndrome stratified by fat quantity and fatty acid classes in a nationally representative sample of US adults. DESIGN This cross-sectional study acquired data on food and nutrient intake and markers of metabolic syndrome from respondents in the National Health and Nutrition Examination Survey 1999-2018. PARTICIPANTS/SETTING This study included 19,078 respondents who were aged 20 years or older, had reliable and complete data on food and nutrient intake and markers of metabolic syndrome, and were not pregnant or breastfeeding. MAIN OUTCOME MEASURES The main outcome was prevalence of metabolic syndrome. STATISTICAL ANALYSES PERFORMED Usual dietary intake was estimated using the National Cancer Institute's usual intake methodology. Multivariable logistic regression models assessed the relative odds of prevalent metabolic syndrome between those who had a carbohydrate intake below recommendations and those who met carbohydrate recommendations. RESULTS Those who had a carbohydrate intake below recommendations had 1.067 (95% CI 1.063 to 1.071) times greater odds of having metabolic syndrome compared with those who met carbohydrate recommendations (P < 0.001). High intake of fat of any class was associated with higher odds of metabolic syndrome (total fat: 1.271, 95% CI 1.256 to 1.286; saturated fatty acid: 1.072, 95% CI 1.060 to 1.085; monounsaturated fatty acid: 1.317, 95% CI 1.300 to 1.333; polyunsaturated fatty acid: 1.056, 95% CI 1.047 to 1.066; P < 0.001 for all comparisons) in those who had a carbohydrate intake below recommendations. CONCLUSIONS The odds of prevalent metabolic syndrome were higher among individuals who had a carbohydrate intake below recommendations compared with individuals who met carbohydrate recommendations.
Collapse
|
8
|
de Branco FMS, Rinaldi AEM, Pereira JL, Roschel H, Azeredo CM, de Oliveira EP. Plasma omega-3 fatty acids are positively associated with appendicular muscle mass index only in adults with low protein intake: Results from NHANES 2011-2012. Clin Nutr 2023; 42:76-82. [PMID: 36508774 DOI: 10.1016/j.clnu.2022.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Omega-3 (ω-3) fatty acids may indirectly increase muscle protein synthesis making the muscle more sensitive to amino acids uptake; therefore, ω-3 could promote benefits on muscle mass mainly when protein intake is low. However, no study has evaluated the association between ω-3 fatty acids and muscle mass according to protein intake. AIM To evaluate the association between plasma ω-3 fatty acids and appendicular muscle mass index (AMMI) in adults according to the protein intake. METHODS A cross-sectional study was performed evaluating 1037 individuals aged 20-59 years from a sub-sample of the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Gas chromatography-mass spectrometry method was used to assess plasma ω-3 fatty acids. The lean mass was evaluated by dual-energy x-ray absorptiometry (DXA) and AMMI (kg/m2) was calculated by appendicular lean mass (kg) divided by height squared. The evaluation of protein intake was performed using two 24-h dietary recalls. Linear regression analysis was performed to assess the association of total plasma ω-3, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), and EPA plus DHA with AMMI according to protein intake (<0.8; ≥0.8; ≥0.8 - <1.2; ≥1.2 - <1.6; and ≥1.6 g/kg/d). RESULTS Total plasma ω-3 (β = 0.0030; CI = 0.0013-0.0046; p = 0.002), ALA (β = 0.0063; CI = 0.0020-0.0107; p = 0.008), EPA (β = 0.0073; CI = 0.0005-0.0142, p = 0.037), DHA (β = 0.0057; CI = 0.0022-0.0093; p = 0.004) and EPA + DHA (β = 0.0040; CI = 0.0010-0.0071; p = 0.013) were positively associated with AMMI in individuals with low protein intake (<0.8 g/kg). However, no association was observed in individuals with protein intake higher than 0.8 g/kg. CONCLUSION Plasma ω-3 fatty acids were positively associated with AMMI only in individuals with low protein intake.
Collapse
Affiliation(s)
- Flávia M S de Branco
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Ana Elisa M Rinaldi
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Jaqueline L Pereira
- Department of Nutrition, School of Public Health, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 65, São Paulo, SP, Brazil; Rheumatology Division, Hospital Das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Catarina M Azeredo
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Erick P de Oliveira
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Kowalski C, Dustin D, Johnson LK, Belury MA, Conrad Z. Fat Intake Modifies the Association between Restricted Carbohydrate Diets and Prevalent Cardiometabolic Diseases among Adults in the United States: National Health and Nutrition Examination Survey, 1999-2018. Curr Dev Nutr 2023; 7:100019. [PMID: 37181133 PMCID: PMC10100922 DOI: 10.1016/j.cdnut.2022.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cardiometabolic diseases (CMDs), which include heart disease, stroke, and diabetes, account for over one-third of the mortality burden in the United States annually. Nearly one-half of all deaths from CMD are attributable to suboptimal diet quality, and many Americans are turning to special diets for general health improvement. Among the most popular of these diets restrict daily carbohydrate intake to <45% of energy, yet their association with CMD is not well understood. Objectives This study evaluated the association between restricted carbohydrate diets and prevalent CMD, stratified by fat intake. Methods Dietary and CMD data were retrieved from 19,078 participants aged ≥20 y in the National Health and Nutrition Examination Survey, 1999-2018. The National Cancer Institute methodology was used to assess usual dietary intake. Results Compared to participants that met recommendations for all macronutrients, those that consumed restricted carbohydrate diets were 1.15 (95% CI: 1.14, 1.16) times as likely to have CMD; and those that met recommendations for carbohydrates, but not all macronutrients, were 1.02 (95% CI: 1.02, 1.03) times as likely to have CMD. Higher intakes of saturated and polyunsaturated fat were associated with greater prevalence of CMD in restricted and recommended carbohydrate intake groups. Higher intake of monounsaturated fat was associated with lower prevalence of CMD among participants that met carbohydrate, but not all macronutrient, recommendations. Conclusions To our knowledge, this is the first nationally representative study to evaluate the relationship between carbohydrate restriction and CMD, stratifying by fat intake. Greater efforts are needed to understand longitudinal relationships between carbohydrate restriction and CMD.
Collapse
Affiliation(s)
- Corina Kowalski
- College of Arts & Sciences, William & Mary, Williamsburg, VA, USA
| | - Dakota Dustin
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | | | - Martha A. Belury
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Zach Conrad
- Department of Kinesiology, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
10
|
Snoke DB, Mahler CA, Angelotti A, Cole RM, Sparagna GC, Baskin KK, Belury MA. Linoleic Acid-Enriched Diet Increases Mitochondrial Tetralinoleoyl Cardiolipin, OXPHOS Protein Levels, and Uncoupling in Interscapular Brown Adipose Tissue during Diet-Induced Weight Gain. BIOLOGY 2022; 12:9. [PMID: 36671702 PMCID: PMC9854875 DOI: 10.3390/biology12010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Cardiolipin (CL) is a phospholipid unique to the inner mitochondrial membrane that supports respiratory chain structure and function and is demonstrated to be influenced by types of dietary fats. However, the influence of dietary fat on CL species and how this best supports mitochondrial function in brown adipose tissue (BAT), which exhibits an alternative method of energy utilization through the uncoupling of the mitochondrial proton gradient to generate heat, is not well understood. Therefore, the aim of our study was to evaluate metabolic parameters, interscapular BAT CL quantity, species, and mitochondrial function in mice consuming isocaloric moderate-fat diets with either lard (LD; similar fatty acid profile to western dietary patterns) or safflower oil high in linoleic acid (SO), shown to be metabolically favorable in large clinical meta-analyses. Mice fed the SO diet exhibited decreased adiposity, improved insulin sensitivity, and enrichment of LA-containing CL species in BAT CL. Furthermore, mice fed the SO diet exhibit higher levels of OXPHOS complex proteins and increased oxygen consumption in BAT. Our findings demonstrate that dietary consumption of LA-rich oil improves metabolic parameters, increases LA-containing CL species, and improves BAT function when compared to the consumption of lard in mice during diet-induced weight gain.
Collapse
Affiliation(s)
- Deena B. Snoke
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA
| | - Connor A. Mahler
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA
- Indiana Biosciences Research Institute, Indianapolis, IN 46062, USA
| | - Austin Angelotti
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel M. Cole
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA
| | - Genevieve C. Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kedryn K. Baskin
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Martha A. Belury
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Ormiston K, Gaudier-Diaz MM, TinKai T, Fitzgerald J, Cole RM, Andridge R, Lustberg M, DeVries AC, Orchard T. Effects of plant-based versus marine-based omega-3 fatty acids and sucrose on brain and liver fatty acids in a mouse model of chemotherapy. Nutr Neurosci 2022; 25:2650-2658. [PMID: 34772330 PMCID: PMC9095756 DOI: 10.1080/1028415x.2021.1998296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chemotherapy can result in toxic side effects in the brain. Intake of marine-based omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), alter brain fatty acids, potentially improving brain function. However, it is unclear if alpha-linolenic acid (ALA), the plant-based n-3, affects brain PUFAs during chemotherapy. The objective of this study was to examine the effects of dietary ALA, EPA and DHA, with high or low sucrose, on brain PUFAs in a mouse model of chemotherapy. Secondarily, the use of liver PUFAs as surrogate measures of brain PUFAs was examined. Lipid peroxidation (4-HNE) and neurotrophic markers (BDNF) were assessed. Female C57Bl/6 mice (n = 90) were randomized to 1 of 5 diets (high EPA + DHA/high or low sucrose, high ALA/high or low sucrose, or control with no EPA + DHA/low ALA/low sucrose) and injected with doxorubicin-based chemotherapy or saline. Brain EPA and DHA were greater (p < 0.0001) with high EPA + DHA diets, regardless of sucrose; there were no significant differences in brain PUFAs between high ALA diets and control. Chemotherapy-treated mice had higher brain and liver DHA (p < 0.05) and lower brain and liver linoleic acid (p < 0.0001). Brain n-3 and n-6 PUFAs were strongly correlated with liver n-3 (r = 0.8214, p < 0.0001) and n-6 PUFAs (r = 0.7568, p < 0.0001). BDNF was correlated with brain total PUFAs (r = 0.36; p < 0.05). In conclusion, dietary ALA in proportions approximately two times greater than consumed by humans did not appreciably increase brain n-3 PUFAs compared to low ALA intake. Liver PUFAs may be a useful surrogate marker of brain PUFAs in this mouse model.
Collapse
Affiliation(s)
- Kate Ormiston
- Department of Human Sciences, Human Nutrition Program, The Ohio State University
| | | | - Tial TinKai
- Department of Neuroscience, The Ohio State University
| | | | - Rachel M. Cole
- Department of Human Sciences, Human Nutrition Program, The Ohio State University
| | | | | | | | - Tonya Orchard
- Department of Human Sciences, Human Nutrition Program, The Ohio State University
| |
Collapse
|
12
|
Angelotti A, Snoke DB, Ormiston K, Cole RM, Borkowski K, Newman JW, Orchard TS, Belury MA. Potential Cardioprotective Effects and Lipid Mediator Differences in Long-Chain Omega-3 Polyunsaturated Fatty Acid Supplemented Mice Given Chemotherapy. Metabolites 2022; 12:metabo12090782. [PMID: 36144189 PMCID: PMC9505633 DOI: 10.3390/metabo12090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Many commonly used chemotherapies induce mitochondrial dysfunction in cardiac muscle, which leads to cardiotoxicity and heart failure later in life. Dietary long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) have demonstrated cardioprotective function in non-chemotherapy models of heart failure, potentially through the formation of LC n-3 PUFA-derived bioactive lipid metabolites. However, it is unknown whether dietary supplementation with LC n-3 PUFA can protect against chemotherapy-induced cardiotoxicity. To test this, 36 female ovariectomized C57BL/6J mice were randomized in a two-by-two factorial design to either a low (0 g/kg EPA + DHA) or high (12.2 g/kg EPA + DHA) LC n-3 PUFA diet, and received either two vehicle or two chemotherapy (9 mg/kg anthracycline + 90 mg/kg cyclophosphamide) tail vein injections separated by two weeks. Body weight and food intake were measured as well as heart gene expression and fatty acid composition. Heart mitochondria were isolated using differential centrifugation. Mitochondrial isolate oxylipin and N-acylethanolamide levels were measured by mass spectrometry after alkaline hydrolysis. LC n-3 PUFA supplementation attenuated some chemotherapy-induced differences (Myh7, Col3a1) in heart gene expression, and significantly altered various lipid species in cardiac mitochondrial preparations including several epoxy fatty acids [17(18)-EpETE] and N-acylethanolamines (arachidonoylethanolamine, AEA), suggesting a possible functional link between heart lipids and cardiotoxicity.
Collapse
Affiliation(s)
- Austin Angelotti
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Deena B. Snoke
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Kate Ormiston
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rachel M. Cole
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
- Western Human Nutrition Research Center, United States Department of Agriculture-Agriculture Research Service, Davis, CA 95616, USA
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA
| | - Tonya S. Orchard
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Martha A. Belury
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
13
|
Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice. Metabolites 2022; 12:metabo12080743. [PMID: 36005615 PMCID: PMC9412644 DOI: 10.3390/metabo12080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Polyunsaturated fats are energy substrates and precursors to the biosynthesis of lipid mediators of cellular processes. Adipose tissue not only provides energy storage, but influences whole-body energy metabolism through endocrine functions. How diet influences adipose-lipid mediator balance may have broad impacts on energy metabolism. To determine how dietary lipid sources modulate brown and white adipose tissue and plasma lipid mediators, mice were fed low-fat (15% kcal fat) isocaloric diets, containing either palm oil (POLF) or linoleate-rich safflower oil (SOLF). Baseline and post body weight, adiposity, and 2-week and post fasting blood glucose were measured and lipid mediators were profiled in plasma, and inguinal white and interscapular brown adipose tissues. We identified over 30 species of altered lipid mediators between diets and found that these changes were unique to each tissue. We identified changes to lipid mediators with known functional roles in the regulation of adipose tissue expansion and function, and found that there was a relationship between the average fold difference in lipid mediators between brown adipose tissue and plasma in mice consuming the SOLF diet. Our findings emphasize that even with a low-fat diet, dietary fat quality has a profound effect on lipid mediator profiles in adipose tissues and plasma.
Collapse
|
14
|
Cole RM, Angelotti A, Sparagna GC, Ni A, Belury MA. Linoleic Acid-Rich Oil Alters Circulating Cardiolipin Species and Fatty Acid Composition in Adults: A Randomized Controlled Trial. Mol Nutr Food Res 2022; 66:e2101132. [PMID: 35596730 PMCID: PMC9540417 DOI: 10.1002/mnfr.202101132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/07/2022] [Indexed: 11/08/2022]
Abstract
SCOPE Higher circulating linoleic acid (LA) and muscle-derived tetralinoleoyl-cardiolipin (LA4 CL) are each associated with decreased cardiometabolic disease risk. Mitochondrial dysfunction occurs with low LA4 CL. Whether LA-rich oil fortification can increase LA4 CL in humans is unknown. The aims of this study are to determine whether dietary fortification with LA-rich oil for 2 weeks increases: 1) LA in plasma, erythrocytes, and peripheral blood mononuclear cells (PBMC); and 2) LA4 CL in PBMC in adults. METHODS AND RESULTS In this randomized controlled trial, adults are instructed to consume one cookie per day delivering 10 g grapeseed (LA-cookie, N = 42) or high oleate (OA) safflower (OA-cookie, N = 42) oil. In the LA-cookie group, LA increases in plasma, erythrocyte, and PBMC by 6%, 7%, and 10% respectively. PBMC and erythrocyte OA increase by 7% and 4% in the OA-cookie group but is unchanged in the plasma. PBMC LA4 CL increases (5%) while LA3 OA1 CL decreases (7%) in the LA-cookie group but are unaltered in the OA-cookie group. CONCLUSIONS LA-rich oil fortification increases while OA-oil has no effect on LA4 CL in adults. Because LA-rich oil fortification reduces cardiometabolic disease risk and increases LA4 CL, determining whether mitochondrial dysfunction is repaired through dietary fortification is warranted.
Collapse
Affiliation(s)
- Rachel M. Cole
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Austin Angelotti
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Genevieve C. Sparagna
- Division of CardiologyThe Department of MedicineUniversity of Colorado Anschutz Medical CenterAuroraCO80045USA
| | - Ai Ni
- Division of BiostatisticsCollege of Public HealthThe Ohio State UniversityColumbusOH43210USA
| | - Martha A. Belury
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
15
|
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14071440. [PMID: 35406067 PMCID: PMC9003415 DOI: 10.3390/nu14071440] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet (MedD). In this narrative review, we synthesize and illustrate the various characteristics and clinical applications of EVOO and its components—such as oleic acid, hydroxytyrosol, and oleuropein—in the field of clinical nutrition and dietetics. The evidence is split into diet therapy, oleic acid-based enteral nutrition formulations and oral supplementation formulations, oleic acid-based parenteral nutrition, and nutraceutical supplementation of minor components of EVOO. EVOO has diverse beneficial health properties, and current evidence supports the use of whole EVOO in diet therapy and the supplementation of its minor components to improve cardiovascular health, lipoprotein metabolism, and diabetes mellitus in clinical nutrition. Nevertheless, more intervention studies in humans are needed to chisel specific recommendations for its therapeutic use through different formulations in other specific diseases and clinical populations.
Collapse
Affiliation(s)
- Andrés Jiménez-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| | - Antonio Jesús Martínez-Ortega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Torrecárdenas, C. Hermandad de Donantes de Sangre, s/n, 04009 Almería, Spain
| | - Pablo Jesús Remón-Ruiz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Ana Piñar-Gutiérrez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - José Luis Pereira-Cunill
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Pedro Pablo García-Luna
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| |
Collapse
|
16
|
de Branco FMS, Rossato LT, Rinaldi AEM, Azeredo CM, de Oliveira EP. Plasma omega-3 is not associated with appendicular muscle mass index in young and middle-aged individuals: Results from NHANES 2011-2012. Prostaglandins Leukot Essent Fatty Acids 2022; 178:102412. [PMID: 35290916 DOI: 10.1016/j.plefa.2022.102412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate the association between plasma omega-3 (ω-3) and appendicular muscle mass index (AMMI) in young and middle-aged individuals; and also to evaluate whether these associations are sex-specific. A cross-sectional study was performed evaluating 1037 individuals aged 20 to 59 years from a sub-sample of the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Plasma ω-3 was evaluated by gas chromatography-mass spectrometry and lean mass was assessed by dual-energy x-ray absorptiometry (DXA). Total plasma ω-3, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and alpha-linolenic acid (ALA) were not associated with AMMI in total sample, men and women after adjustments for confounders. Plasma ω-3 and its subtypes were not associated with AMMI in a subanalysis evaluating young (20 to 44 y) and middle-aged (45 to 59 y) individuals separately. In conclusion, plasma ω-3 fatty acids are not associated with AMMI in young and middle-aged individuals regardless of sex.
Collapse
Affiliation(s)
- Flávia M S de Branco
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Luana T Rossato
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Ana Elisa M Rinaldi
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Catarina M Azeredo
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Erick P de Oliveira
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Hamilton JS, Klett EL. Linoleic acid and the regulation of glucose homeostasis: A review of the evidence. Prostaglandins Leukot Essent Fatty Acids 2021; 175:102366. [PMID: 34763302 PMCID: PMC8691379 DOI: 10.1016/j.plefa.2021.102366] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
The consumption of linoleic acid (LA, ω-6 18:2), the most common ω-6 polyunsaturated fatty acid (PUFA) in the Modern Western diet (MWD), has significantly increased over the last century in tandem with unprecedented incidence of chronic metabolic diseases like obesity and type 2 diabetes mellitus (T2DM). Although an essential fatty acid for health, LA was a very rare fatty acid in the diet of humans during their evolution. While the intake of other dietary macronutrients (carbohydrates like fructose) has also risen, diets rich in ω-6 PUFAs have been promoted in an effort to reduce cardiovascular disease despite unclear evidence as to how increased dietary LA consumption could promote a proinflammatory state and affect glucose metabolism. Current evidence suggests that sex, genetics, environmental factors, and disease status can differentially modulate how LA influences insulin sensitivity and peripheral glucose uptake as well as insulin secretion and pancreatic beta-cell function. Therefore, the aim of this review will be to summarize recent additions to our knowledge to refine the unique physiological and pathophysiological roles of LA in the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Jakob S Hamilton
- Department of Nutrition, University of North Carolina School of Public Health, Chapel Hill, North Carolina, United States of America
| | - Eric L Klett
- Department of Medicine, Division of Endocrinology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Nutrition, University of North Carolina School of Public Health, Chapel Hill, North Carolina, United States of America.
| |
Collapse
|
18
|
Belury MA, Cole RM, Andridge R, Keiter A, Raman SV, Lustberg MB, Kiecolt-Glaser JK. Erythrocyte Long-Chain ω-3 Fatty Acids Are Positively Associated with Lean Mass and Grip Strength in Women with Recent Diagnoses of Breast Cancer. J Nutr 2021; 151:2125-2133. [PMID: 34036350 PMCID: PMC8349126 DOI: 10.1093/jn/nxab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sarcopenia may hasten the risk of mortality in women with breast cancer. Long-chain omega-3 (n-3) polyunsaturated fatty acids (LCn-3PUFAs) may favor muscle mass which, in turn, could enhance resilience of cancer patients toward cancer treatment. OBJECTIVES The objective of this study was to measure the relation of erythrocyte LCn-3PUFA concentrations with lean mass, grip strength, and postprandial energy metabolism in women with newly diagnosed breast cancer. METHODS This cross-sectional analysis evaluated women (n = 150) ages 65 y and younger who were recently diagnosed with breast cancer (stages I-III). Erythrocyte LCn-3PUFA composition was measured using GC. Body composition was measured by DXA. Grip strength was assessed at the same visit. Postprandial energy metabolism was measured for 7.5 h after the consumption of a high-calorie, high-saturated-fat test meal using indirect calorimetry. Associations of fatty acids with outcomes were analyzed using multiple linear regression models and linear mixed-effects models. RESULTS The ω-3 index, a measurement of LCn-3PUFA status, was positively associated with appendicular lean mass (ALM)/BMI (β = 0.015, P = 0.01) and grip strength (β = 0.757, P = 0.04) after adjusting data for age and cancer stage. However, when cardiorespiratory fitness was also included in the analyses, these relations were no longer significant (P > 0.08). After a test meal, a higher ω-3 index was associated with a less steep rise in fat oxidation (P = 0.02) and a steeper decline in glucose (P = 0.01) when adjusting for age, BMI, cancer stage, and cardiorespiratory fitness. CONCLUSIONS The ω-3 index was positively associated with ALM/BMI and grip strength in women newly diagnosed with breast cancer and was associated with altered postprandial substrate metabolism. These findings warrant further studies to determine whether enriching the diet with LCn-3PUFAs during and after cancer treatments is causally linked with better muscle health and metabolic outcomes in breast cancer survivors.
Collapse
Affiliation(s)
| | - Rachel M Cole
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, USA,The Ohio State University Nutrition Doctoral Program, The Ohio State University, Columbus, OH, USA
| | - Rebecca Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Ashleigh Keiter
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Subha V Raman
- Krannert Institute of Cardiology, Indiana University College of Medicine, Indianapolis, IN, USA
| | - Maryam B Lustberg
- Division of Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Janice K Kiecolt-Glaser
- Department of Psychiatry, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Shrestha N, Vidimce J, Holland OJ, Cuffe JSM, Beck BR, Perkins AV, McAinch AJ, Hryciw DH. Maternal and Postnatal High Linoleic Acid Diet Impacts Lipid Metabolism in Adult Rat Offspring in a Sex-Specific Manner. Int J Mol Sci 2021; 22:ijms22062946. [PMID: 33799409 PMCID: PMC7999727 DOI: 10.3390/ijms22062946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid metabolism in the liver of adult offspring. Female rats were fed with low LA (LLA; 1.44% LA) or HLA (6.21% LA) diets for 10 weeks before pregnancy, and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), fed either LLA or HLA diets and sacrificed at PN180. Postnatal HLA diet decreased circulating total n-3 PUFA and alpha-linolenic acid (ALA), while increased total n-6 PUFA, LA and arachidonic acid (AA) in both male and female offspring. Maternal HLA diet increased circulating leptin in female offspring, but not in males. Maternal HLA diet decreased circulating adiponectin in males. Postnatal HLA diet significantly decreased aspartate transaminase (AST) in females and downregulated total cholesterol, HDL-cholesterol and triglycerides in the plasma of males. Maternal HLA diet downregulated the hepatic mRNA expression of Hmgcr in both male and female offspring and decreased the hepatic mRNA expression of Cpt1a and Acox1 in females. Both maternal and postnatal HLA diet decreased hepatic mRNA expression of Cyp27a1 in females. Postnatal diet significantly altered circulating fatty acid concentrations, with sex-specific differences in genes that control lipid metabolism in the adult offspring following exposure to high LA diet in utero.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (J.V.); (O.J.H.); (A.V.P.)
| | - Josif Vidimce
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (J.V.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (J.V.); (O.J.H.); (A.V.P.)
- Institute of Health and Biomedical Innovation, Queensland University of Technology, South Brisbane, QLD 4001, Australia
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Belinda R. Beck
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Anthony V. Perkins
- School of Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (J.V.); (O.J.H.); (A.V.P.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Deanne H. Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
- Correspondence:
| |
Collapse
|
20
|
Monnard CR, Dulloo AG. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes Rev 2021; 22 Suppl 2:e13197. [PMID: 33471425 DOI: 10.1111/obr.13197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
It is now recognized that the amount and type of dietary fat consumed play an important role in metabolic health. In humans, high intake of polyunsaturated fatty acids (PUFAs) has been associated with reductions in cardiovascular disease risk, improvements in glucose homeostasis, and changes in body composition that involve reductions in central adiposity and, more recently, increases in lean body mass. There is also emerging evidence, which suggests that high intakes of the plant-based essential fatty acids (ePUFAs)-n-6 linoleic acid (LA) and n-3 α-linolenic acid (ALA)-have a greater impact on body composition (fat mass and lean mass) and on glucose homeostasis than the marine-derived long-chain n-3 PUFA-eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In addition, high intake of both ePUFAs (LA and ALA) may also have anti-inflammatory effects in humans. The purpose of this review is to highlight the emerging evidence, from both epidemiological prospective studies and clinical intervention trials, of a role for PUFA, in particular ePUFA, in the long-term regulation of body weight and body composition, and their impact on cardiometabolic health. It also discusses current notions about the mechanisms by which PUFAs modulate fat mass and lean mass through altered control of energy intake, thermogenesis, or lean-fat partitioning.
Collapse
Affiliation(s)
- Cathriona R Monnard
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Mak IL, Cohen TR, Vanstone CA, Weiler HA. Increased adiposity in children with obesity is associated with low red blood cell omega-3 fatty acid status and inadequate polyunsaturated fatty acid dietary intake. Pediatr Obes 2020; 15:e12689. [PMID: 32662950 DOI: 10.1111/ijpo.12689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/13/2020] [Accepted: 05/18/2020] [Indexed: 01/15/2023]
Abstract
The association between total dietary fat intake and measures of body fatness in children with obesity remains inconsistent. This study aimed to determine whether dietary long-chain polyunsaturated fatty acids (LCPUFA) and LCPUFA status relate to body composition in children with obesity. Children (n = 63, 9.0 ± 0.2 year, BMI Z-score 3.1 ± 0.2) were divided into tertiles of percentage body fat assessed by dual-energy X-ray absorptiometry. Diet was assessed 3-days food diaries. Fatty acid proportions in red blood cells (RBC) were measured by gas chromatography. Data stratified by sex and Tanner stages were compared with a MIXED model ANOVA. Associations between RBC fatty acid status and dietary intakes were examined with Spearman correlation. Moderate correlations were observed between RBC eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) proportions, dietary EPA and DHA (r = 0.39, P < .05) as well as fish servings (r = 0.33, P < .05). Dietary LCPUFA did not differ among tertiles. Children in tertile 3 had lower RBC α-linolenic acid (-40%) and EPA + DHA (-15%) proportions adjusted for age, Tanner stages and race compared with tertile 1. The lower omega-3 LCPUFA status in children with greater adiposity is consistent with suboptimal intakes of omega-3 LCPUFA and fish in the diet.
Collapse
Affiliation(s)
- Ivy L Mak
- School of Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Tamara R Cohen
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Hope A Weiler
- School of Human Nutrition, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Song Z, Wang Z, Zhao H, Cai L, Li Z, Zhang S, Zhang X. Metabolic fingerprinting of cell types in mouse skeletal muscle by combining TOF-SIMS with immunofluorescence staining. Analyst 2020; 145:6901-6909. [PMID: 32820753 DOI: 10.1039/d0an00738b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skeletal muscle tissue is composed of various muscle cell types which differ in physiological functions. Changes in cell type composition of skeletal muscle are associated with the development of metabolic diseases. Skeletal muscle cell types are currently distinguished by immunofluorescence (IF) staining based on myosin heavy chain (MHC) isoform difference. However, it remains a challenge to provide metabolic fingerprints of different muscle cell types by IF staining. Therefore, in this study, we proposed a method to examine metabolite distribution within different cell types by time-of-flight secondary ion mass spectrometry (TOF-SIMS) with high spatial resolution. Skeletal muscle samples from C57/BL6 mice were obtained by slicing. Cell types in TOF-SIMS images were labelled corresponding to IF images from the same region of serially cut sections. Mass spectra corresponding to individual muscle cells were extracted to compare metabolic fingerprints among cell types. Skeletal muscle cells were classified into two clusters based on the mass spectra of individual cells. Unsaturated diacylglycerol (DG) and fatty acid (FA) species were found to be distributed in a cell-type dependent manner. Moreover, relative quantification showed that the content of unsaturated DGs, oleic acid and linoleic acid was higher in type I and type IIA cells than in type IIB cells. TOF-SIMS in combination with IF enables us to directly visualize metabolite distribution in different cell types, to find potential biomarkers for cell type classification. TOF-SIMS imaging coupled with IF staining has been proved to be a promising tool for metabolic fingerprinting of different skeletal muscle cell types.
Collapse
Affiliation(s)
- Zhe Song
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Petersen KS, Sullivan VK, Fulgoni VL, Eren F, Cassens ME, Bunczek MT, Kris-Etherton PM. Circulating Concentrations of Essential Fatty Acids, Linoleic and α-Linolenic Acid, in US Adults in 2003-2004 and 2011-2012 and the Relation with Risk Factors for Cardiometabolic Disease: An NHANES Analysis. Curr Dev Nutr 2020; 4:nzaa149. [PMID: 33024926 PMCID: PMC7524638 DOI: 10.1093/cdn/nzaa149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/09/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The increased use of high-oleic oils to replace trans fat has led to concern about declining intake of PUFA and the potential for essential fatty acid insufficiency or even deficiency. OBJECTIVES The aim of this study was to examine circulating concentrations of essential and poorly biosynthesized fatty acids, as biomarkers of dietary intake, in the NHANES data sets prior to (2003-2004 cycle) and following (2011-2012 cycle) legislation to reduce trans fat in the food supply and also to explore the associations between these fatty acids and markers of cardiometabolic health. METHODS Fasting circulating concentrations of fatty acids from adults (aged ≥20 y) in the 2003-2004 and 2011-2012 NHANES cycles were used for analysis. Dietary data from one day of both the 2003-2004 and 2011-2012 cycles were used to examine differences in dietary fatty acid intake between these cycles. Regression analyses were used to assess relations between circulating concentrations of fatty acids and cardiometabolic health. RESULTS Between 2003-2004 and 2011-2012, circulating concentrations of linoleic acid (LA) increased (1.38%, P = 0.002); no difference in dietary intake was observed. α-Linolenic acid (ALA), measured by dietary intake (0.14 g, P < 0.001) and circulating concentrations (0.23%, P < 0.01), increased from 2003-2004 to 2011-2012. Circulating LA was inversely associated with BMI (in kg/m2; regression coefficient per percentage point change in LA ± SE: -0.22 ± 0.04), waist circumference (-0.62 ± 0.09 cm), systolic blood pressure (-0.38 ± 0.09 mm Hg), triglycerides (-9.92 ± 0.63 mg/dL), glucose (-3.34 ± 0.13 mg/dL), insulin (-0.18 ± 0.05 µU/mL), and HOMA-IR (-0.29 ± 0.05). CONCLUSIONS In a nationally representative sample of US adults, no declines in circulating concentrations of essential fatty acids, LA and ALA, were observed between 2003-2004 and 2011-2012, a time when high-oleic oils were increasingly used in the food supply. Higher amounts of circulating LA were correlated with lower risk of cardiometabolic dysfunction, which underscores the importance of monitoring consumption in the United States.
Collapse
Affiliation(s)
- Kristina S Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Valerie K Sullivan
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Fulya Eren
- ACH Food Companies, Oakbrook Terrace, IL, USA
| | | | | | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
24
|
Butler MJ, Cole RM, Deems NP, Belury MA, Barrientos RM. Fatty food, fatty acids, and microglial priming in the adult and aged hippocampus and amygdala. Brain Behav Immun 2020; 89:145-158. [PMID: 32544595 PMCID: PMC7572563 DOI: 10.1016/j.bbi.2020.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/20/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Short-term (3-day) consumption of a high fat diet (HFD) rich in saturated fats is associated with a neuroinflammatory response and subsequent cognitive impairment in aged, but not young adult, male rats. This exaggerated effect in aged rats could be due to a "primed" microglial phenotype observed in the normal aging process in rodents in which aged microglia display a potentiated response to immune challenge. Here, we investigated the impact of HFD on microglial priming and lipid composition in the hippocampus and amygdala of young and aged rats. Furthermore, we investigated the microglial response to palmitate, the main saturated fatty acid (SFA) found in HFD that is proinflammatory. Our results indicate that HFD increased gene expression of microglial markers of activation indicative of microglial priming, including CD11b, MHCII, CX3CR1, and NLRP3, as well as the pro-inflammatory marker IL-1β in both hippocampus and amygdala-derived microglia. Furthermore, HFD increased the concentration of SFAs and decreased the concentration of polyunsaturated fatty acids (PUFAs) in the hippocampus. We also observed a specific decrease in the anti-inflammatory PUFA docosahexaenoic acid (DHA) in the hippocampus and amygdala of aged rats. In a separate cohort of young and aged animals, isolated microglia from the hippocampus and amygdala exposed to palmitate in vitro induced an inflammatory gene expression profile mimicking the effects of HFD in vivo. These data suggest that palmitate may be a critical nutritional signal from the HFD that is directly involved in hippocampal and amygdalar inflammation. Interestingly, microglial activation markers were increased in response to HFD or palmitate in an age-independent manner, suggesting that HFD sensitivity of microglia, under these experimental conditions, is not the sole mediator of the exaggerated inflammatory response observed in whole tissue extracts from aged HFD-fed rats.
Collapse
Affiliation(s)
- Michael J. Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Rachel M. Cole
- Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Nicholas P. Deems
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Martha A. Belury
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA,Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Ruth M. Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA,Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA,Corresponding author: Dr. Ruth M. Barrientos, Institute for Behavioral Medicine Research and Department of Psychiatry and Behavioral Health, Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, Tel.: 614-293-6591,
| |
Collapse
|
25
|
Cole RM, Puchala S, Ke JY, Abdel-Rasoul M, Harlow K, O'Donnell B, Bradley D, Andridge R, Borkowski K, Newman JW, Belury MA. Linoleic Acid-Rich Oil Supplementation Increases Total and High-Molecular-Weight Adiponectin and Alters Plasma Oxylipins in Postmenopausal Women with Metabolic Syndrome. Curr Dev Nutr 2020; 4:nzaa136. [PMID: 32923921 PMCID: PMC7475005 DOI: 10.1093/cdn/nzaa136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The onset of menopause increases the risk of metabolic syndrome (MetS). Adiponectin is an adipokine associated with insulin sensitivity that is lower in people with MetS. Supplementing diets with linoleic acid (LA)-rich oil increased adiponectin concentrations and improved glucose control in women with type 2 diabetes. The effect of LA on adipokines, especially total and the bioactive form of adiponectin, high-molecular-weight (HMW) adiponectin, in women with MetS is unknown. OBJECTIVES The aim of this study was to explore the effect of supplementation of the diet with an oil rich in LA on adipokines in women with MetS. The effect of the LA-rich oil (LA-oil) on oxylipins, key metabolites that may influence inflammation and metabolism, was also explored. METHODS In this open-label single-arm pilot study, 18 postmenopausal nondiabetic women with MetS enrolled in a 2-phase study were instructed to consume LA-rich vegetable oil (10 mL/d) as part of their habitual diets. Women consumed an oleic acid-rich oil (OA-oil) for 4 wk followed by an LA-oil for 16 wk. Fasting concentrations of adipokines, fatty acids, oxylipins, and markers of glycemia and inflammation were measured. RESULTS After 4 wk of OA-oil consumption, fasting glucose and total adiponectin concentrations decreased whereas fasting C-reactive protein increased. After 16 wk of LA-oil supplementation total and HMW adiponectin and plasma oxylipins increased. Markers of inflammation and glycemia were unchanged after LA-oil consumption. CONCLUSIONS Supplementation with LA-oil increased total and HMW adiponectin concentrations and altered plasma oxylipin profiles. Larger studies are needed to elucidate the links between these changes and MetS.This trial was registered at clinicaltrials.gov as NCT02063165.
Collapse
Affiliation(s)
- Rachel M Cole
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Sarah Puchala
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Jia-Yu Ke
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | | | - Kristin Harlow
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Benjamin O'Donnell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - David Bradley
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Rebecca Andridge
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA, USA
- USDA Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Martha A Belury
- Program of Human Nutrition, Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Dos Reis AS, Limirio LS, Santos HO, de Oliveira EP. Intake of polyunsaturated fatty acids and ω-3 are protective factors for sarcopenia in kidney transplant patients. Nutrition 2020; 81:110929. [PMID: 32745708 DOI: 10.1016/j.nut.2020.110929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The aim of this study was to associate dietary intake with sarcopenia and its components in kidney transplant patients (KTPs). METHODS A cross-sectional study was performed with 125 KTPs. Strength was evaluated by handgrip strength (HGS) and appendicular muscle mass was estimated by bioelectrical impedance. Functional capacity was assessed by 4-m walking test. Sarcopenia was diagnosed by revised European Consensus on Definition and Diagnosis (2019). Dietary assessment was carried out through two 24-h dietary recalls. It evaluated the consumption of energy (kcal), carbohydrates, protein (total and from animal and vegetable food sources), total fat, saturated fatty acids, monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and ω-3 (g) and ω-6 (g). RESULTS Intake of ω-3 was positively associated with appendicular skeletal muscle mass index (ASMI; kg/m2). The greater intake of PUFA (g and %) and ω-3 (g) was associated with lower chance to present low ASMI and sarcopenia. None of the other dietary components evaluated in the present study were associated with ASMI and sarcopenia. Walking speed and HGS were not associated with dietary variables. CONCLUSIONS Intake of ω-3 and PUFAs are protective factors for sarcopenia and low muscle mass, but not for strength and functional capacity, in KTPs.
Collapse
Affiliation(s)
- Aline S Dos Reis
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Larissa S Limirio
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Heitor O Santos
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Erick P de Oliveira
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Nasir M, Bloch MH. Trim the fat: the role of omega-3 fatty acids in psychopharmacology. Ther Adv Psychopharmacol 2019; 9:2045125319869791. [PMID: 31489174 PMCID: PMC6713969 DOI: 10.1177/2045125319869791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
The American Psychiatric Association (APA) currently recommends the use of omega-3 fatty acid supplementation for depressive disorders, impulse-control disorders, and psychotic disorders in treatment guidelines. This review examines the evidence for efficacy of omega-3 fatty acids in depressive disorders, bipolar disorder, anxiety disorders, post-traumatic stress disorder (PTSD), and psychosis. Meta-analysis of randomized-controlled trials of omega-3 fatty acids for depression are inconclusive, with strong evidence of publication bias, sizable heterogeneity between included studies, and substantial methodological shortcomings in included trials. The large amount of heterogeneity in findings of RCTs of omega-3 fatty acids for unipolar depression is likely attributable to highly heterogeneous sample populations that are given different omega-3 supplements [which differ widely in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content, ratio, and dosage] as either adjunctive or monotherapy of other existing treatments, and then measure several different outcomes of depression symptomatology with likely incomplete blinding. Evidence of efficacy of omega-3 supplementation in treating psychosis, PTSD, anxiety, and bipolar mania is minimal. The current guidelines recommending the use of omega-3 fatty acids in adulthood psychiatric conditions should be revisited, especially given several recent negative studies examining the effects of omega-3 fatty acids for cardiovascular disease. Recommending likely ineffective treatment to patients, no matter how benign the side-effect profile, has opportunity cost (e.g. other more effective medications or therapies not being utilized) and likely affects patient compliance with other evidence-based treatments.
Collapse
Affiliation(s)
- Madeeha Nasir
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Michael H. Bloch
- Child Study Center, Yale University School of Medicine, 230 S. Frontage Road, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
28
|
Angelotti A, Cole RM, Schnell PM, Raatz SK, Belury MA. Evaluation of a Rapid Assessment Questionnaire Using a Biomarker for Dietary Intake of n-3 Fatty Acids. Lipids 2019; 54:321-328. [PMID: 31087416 DOI: 10.1002/lipd.12150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/05/2023]
Abstract
While there is considerable evidence supporting health benefits of consuming diets high in omega-3 (n-3) fatty acids, there is no quick and effective tool to measure n-3 intake. The objective of this study was to evaluate the accuracy of a rapid assessment questionnaire (the Omega-3 Checklist) used to quantify intake of n-3 fatty acids. This was done by comparing n-3 intakes to blood biomarkers of n-3 exposure in a population of healthy men and women. In addition, a separate analysis was run including covariates age, sex, and weight, which have been shown to affect n-3 biomarker levels. Reported intake of eicosapentaenoic acid (EPA), docoshexaenoic acid (DHA), and EPA + DHA was correlated with erythrocyte EPA (Spearman's rank correlation rs = 0.51, p < 0.001), DHA (rs = 0.54, p < 0.001), and the Omega-3 Index (rs = 0.57, p < 0.001). These associations remained significant when controlling for age, sex, and weight. Therefore, the Omega-3 Checklist can be a useful, rapid assessment tool to estimate individuals' EPA and DHA intake.
Collapse
Affiliation(s)
- Austin Angelotti
- OSU Nutrition Interdisciplinary PhD Program, Graduate School, 1787 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel M Cole
- OSU Nutrition Interdisciplinary PhD Program, Graduate School, 1787 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| | - Patrick M Schnell
- Division of Biostatistics, College of Public Health, 1787 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| | - Susan K Raatz
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - Martha A Belury
- Program of Human Nutrition, Department of Human Sciences, 1787 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Is there sufficient evidence to supplement omega-3 fatty acids to increase muscle mass and strength in young and older adults? Clin Nutr 2019; 39:23-32. [PMID: 30661906 DOI: 10.1016/j.clnu.2019.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023]
Abstract
Omega-3 (ω-3) is a polyunsaturated fatty acid with anti-inflammatory properties that presents three main forms: alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. Recently, studies performed in both young and older adults suggest that ω-3 may improve gains in muscle mass and/or enhance physical function. Thus, the aim of this narrative review was to evaluate the current evidence of ω-3 intake/supplementation on muscle/lean mass (LM) and physical function in young and older adults, and draw research-based conclusions as to the practical implications of findings. We first assessed whether ω-3 intake is associated with muscle mass and strength (observational studies), and then sought to determine whether evidence shows that supplementation of ω-3 increases muscle protein synthesis, LM and strength in adults and older adults (interventional studies). The search was carried out in PubMed and Scopus databases for the periods between 1997 and November 2018. The following keywords were used alone and in combination: ω-3, fish oil, muscle protein synthesis, muscle mass, lean mass, body composition, and physical function. In general, the evidence is mixed as to the effects of ω-3 supplementation on muscle mass in sedentary young and older adults; the hypertrophic effects of supplementation when combined with resistance training remain equivocal. Moreover, there is conflicting evidence as to whether supplementation confers a beneficial effect on muscle function in older adults. Importantly, this conclusion is based on limited data and more studies are needed before ω-3 supplementation can be recommended as a viable strategy for such purposes in clinical practice.
Collapse
|
30
|
Orchard TS, Gaudier-Diaz MM, Phuwamongkolwiwat-Chu P, Andridge R, Lustberg MB, Bomser J, Cole RM, Belury MA, DeVries AC. Low Sucrose, Omega-3 Enriched Diet Has Region-Specific Effects on Neuroinflammation and Synaptic Function Markers in a Mouse Model of Doxorubicin-Based Chemotherapy. Nutrients 2018; 10:E2004. [PMID: 30567351 PMCID: PMC6316589 DOI: 10.3390/nu10122004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/21/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Chemotherapeutic agents such as doxorubicin may negatively affect long-term brain functioning in cancer survivors; neuroinflammation may play a causal role. Dietary approaches that reduce inflammation, such as lowering sucrose and increasing eicosapentaenoic acid plus docosahexaenoic acid (EPA + DHA), may attenuate chemotherapy-induced neuroinflammation and synaptic damage, thereby improving quality of life. Ovariectomized, C57BL/6 mice were assigned to a chemotherapy (9 mg/kg doxorubicin + 90 mg/kg cyclophosphamide) or vehicle two-injection regimen, with injections two and four weeks after starting diets. In Study 1, mice received low sucrose diets with EPA + DHA or No EPA + DHA for four to six weeks; tissues were collected four, seven, or 14 days after the second injection. Compared to vehicle, chemotherapy increased pro-inflammatory cytokine IL-1β at day seven in the cortex and hippocampus, and reduced gene expression of synaptic marker Shank 3 at all timepoints in cortex, while EPA + DHA increased expression of Shank 3. In Study 2, high or low sucrose/EPA + DHA or No EPA + DHA diets were fed for five weeks; tissues were collected ten days after the second injection. Among chemotherapy-treated mice, brain DHA was higher with low sucrose feeding. Furthermore, low sucrose increased gene expression of Shank 1, while EPA + DHA increased expression of Shank 3 and reduced protein concentrations of pro-inflammatory markers IL-5, IL-6 and KC/GRO in the cortex, but not the hippocampus. Low sucrose, EPA + DHA diets may attenuate neuroinflammation and synaptic damage induced by doxorubicin-based chemotherapy in specific brain regions.
Collapse
Affiliation(s)
- Tonya S Orchard
- Department of Human Sciences, Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Monica M Gaudier-Diaz
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27707, USA.
| | | | - Rebecca Andridge
- Division of Biostatistics, The Ohio State University, Columbus, OH 43210, USA.
| | - Maryam B Lustberg
- Division of Medical Oncology, The Ohio State University, Columbus, OH 43210, USA.
| | - Joshua Bomser
- Department of Human Sciences, Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Rachel M Cole
- Department of Human Sciences, Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Martha A Belury
- Department of Human Sciences, Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| | - A Courtney DeVries
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
31
|
A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. Sci Rep 2018; 8:14336. [PMID: 30254373 PMCID: PMC6156218 DOI: 10.1038/s41598-018-32710-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023] Open
Abstract
Arachidonic acid (C20:4) is related to a wide range of biological effects including lipid homeostasis. The fatty acid desaturase-2 (FADS2) gene encodes for the delta-6-desaturase, which is involved in the biosynthesis of C20:4 from linoleic acid (C18:2). The purpose of this study was to characterise mutations in the promoter of the porcine FADS2, evaluating in particular the effect of one haplotype tagging polymorphism (rs321384923A > G) on the biosynthesis pathway of C20:4. A total of 1,192 Duroc barrows with records on fatty acid composition in muscle and subcutaneous fat were genotyped. Pigs carrying the A allele showed, irrespective of fat content, both enhanced FADS2 expression and higher C20:4 in muscle and exhibited increased ratios of C20:4 to C18:2 and of C20:4 to eicosadienoic acid (C20:2) in both muscle and adipose tissue. Despite the inverse relationship observed between C20:4 and fat content, the rs321384923 polymorphism had no impact on lean weight. It is concluded that the haplotype encompassing the rs321384923 polymorphism at the porcine FADS2 affects the n-6 fatty acid profile by specifically modifying the desaturation efficiency of C18:2 to C20:4 rather than by concomitant variations in C18:2 following changes in fat content.
Collapse
|
32
|
Belury MA, Cole RM, Snoke DB, Banh T, Angelotti A. Linoleic acid, glycemic control and Type 2 diabetes. Prostaglandins Leukot Essent Fatty Acids 2018; 132:30-33. [PMID: 29735020 PMCID: PMC11190750 DOI: 10.1016/j.plefa.2018.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022]
Abstract
Dietary fat quality, especially the intake of specific types of fatty acids, impacts the risk of many chronic diseases, including cardiovascular diseases, certain cancers and type 2 diabetes (T2DM). A recent pooled analysis involving 20 studies from around the world revealed that higher linoleic acid (18:2n-6 LA) biomarker is associated with dose-dependent decreases in the incidence of T2DM. This latest study corroborates earlier cross-sectional studies and intervention trials showing that biomarkers of LA intake are associated with reduced risk of T2DM and better glycemic control and/or insulin sensitivity. This review highlights key clinical trials that have evaluated the role of LA in glycemia and the related condition, insulin sensitivity.
Collapse
Affiliation(s)
- Martha A Belury
- Program of Human Nutrition, 1787 Neil Avenue, 302 Campbell Hall, The Ohio State University, Columbus, OH 43210, USA.
| | - Rachel M Cole
- OSU Nutrition Graduate Program, Graduate School, The Ohio State University, Columbus, OH 43210, USA
| | - Deena B Snoke
- OSU Nutrition Graduate Program, Graduate School, The Ohio State University, Columbus, OH 43210, USA
| | - Taylor Banh
- OSU Nutrition Graduate Program, Graduate School, The Ohio State University, Columbus, OH 43210, USA
| | - Austin Angelotti
- OSU Nutrition Graduate Program, Graduate School, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Harris WS. The Omega-6:Omega-3 ratio: A critical appraisal and possible successor. Prostaglandins Leukot Essent Fatty Acids 2018; 132:34-40. [PMID: 29599053 DOI: 10.1016/j.plefa.2018.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022]
Abstract
The well-known health effects of the long-chain, marine omega-3 (n-3) fatty acids (FAs) has led to a growing interest in the prognostic value that blood levels of these FAs might have vis-à-vis cardiovascular and neurocognitive diseases. The measurement and expression of n-3 FA levels is not straight-forward, however, and a wide variety of means of expression of n-3 FA status have been used in research and clinical medicine. This has led to considerable confusion as to what "optimal" n-3 FA status is. The n-6:n-3 ratio has enjoyed relatively widespread use, but this apparently simple metric has both theoretical and practical difficulties that have contributed to misunderstandings in this field. Just as the once-popular polyunsaturated:saturated FA ratio has largely disappeared from the nutritional and medical literature, it may be time to replace the n-6:n-3 ratio with a newer metric that focuses on the primary deficiency in Western diets - the lack of eicosapentaenoic and docosahexaenoic acids (EPA and DHA). The Omega-3 Index (red blood cell EPA+DHA) has much to recommend it in this regard.
Collapse
Affiliation(s)
- William S Harris
- OmegaQuant Analytics, LLC and Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States.
| |
Collapse
|
34
|
Individual fatty acids in erythrocyte membranes are associated with several features of the metabolic syndrome in obese children. Eur J Nutr 2018; 58:731-742. [PMID: 29594475 DOI: 10.1007/s00394-018-1677-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Obesity leads to the clustering of cardiovascular (CV) risk factors and the metabolic syndrome (MetS) also in children and is often accompanied by non-alcoholic fatty liver disease. Quality of dietary fat, beyond the quantity, can influence CV risk profile and, in particular, omega-3 fatty acids (FA) have been proposed as beneficial in this setting. The aim of the study was to evaluate the associations of individual CV risk factors, characterizing the MetS, with erythrocyte membrane FA, markers of average intake, in a group of 70 overweight/obese children. METHODS We conducted an observational study. Erythrocyte membrane FA were measured by gas chromatography. Spearman correlation coefficients (rS) were calculated to evaluate associations between FA and features of the MetS. RESULTS Mean content of Omega-3 FA was low (Omega-3 Index = 4.7 ± 0.8%). Not omega-3 FA but some omega-6 FA, especially arachidonic acid (AA), were inversely associated with several features of the MetS: AA resulted inversely correlated with waist circumference (rS = - 0.352), triglycerides (rS = - 0.379), fasting insulin (rS = - 0.337) and 24-h SBP (rS = - 0.313). Total amount of saturated FA (SFA) and specifically palmitic acid, correlated positively with waist circumference (rS = 0.354), triglycerides (rS = 0.400) and fasting insulin (rS = 0.287). Fatty Liver Index (FLI), a predictive score of steatosis based on GGT, triglycerides and anthropometric indexes, was positively correlated to palmitic acid (rS = 0.515) and inversely to AA (rS = - 0.472). CONCLUSIONS Our data suggest that omega-6 FA, and especially AA, could be protective toward CV risk factors featuring the MetS and also to indexes of hepatic steatosis in obese children, whereas SFA seems to exert opposite effects.
Collapse
|
35
|
Li K, Brennan L, Bloomfield JF, Duff DJ, McNulty BA, Flynn A, Walton J, Gibney MJ, Nugent AP. Adiposity Associated Plasma Linoleic Acid is Related to Demographic, Metabolic Health and Haplotypes of FADS1/2 Genes in Irish Adults. Mol Nutr Food Res 2018; 62:e1700785. [DOI: 10.1002/mnfr.201700785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/04/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Kaifeng Li
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
| | - Lorraine Brennan
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
| | | | - Dan J. Duff
- Chemical Analysis Laboratories; Sandycove Republic of Ireland
| | - Breige A. McNulty
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
| | - Albert Flynn
- School of Food and Nutritional Sciences; University College Cork; Cork Republic of Ireland
| | - Janette Walton
- School of Food and Nutritional Sciences; University College Cork; Cork Republic of Ireland
- School of Biological Sciences; Cork Institute of Technology; Cork Republic of Ireland
| | - Michael J. Gibney
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
| | - Anne P. Nugent
- Institute of Food and Health; School of Agriculture and Food Science; University College Dublin (UCD); Belfield Republic of Ireland
- School of Biological Sciences; Institute for Global Food Security; Queens University; Belfast Northern Ireland
| |
Collapse
|
36
|
Sihag J, Jones PJH. Oleoylethanolamide: The role of a bioactive lipid amide in modulating eating behaviour. Obes Rev 2018; 19:178-197. [PMID: 29124885 DOI: 10.1111/obr.12630] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Fatty acid ethanolamides are lipid mediators that regulate a plethora of physiological functions. One such bioactive lipid mediator, oleoylethanolamide (OEA), is a potent agonist of the peroxisome proliferator-activated receptor-alpha (PPAR-α), which modulates increased expression of the fatty acid translocase CD36 that enables the regulation of feeding behaviour. Consumption of dietary fat rich in oleic acid activates taste receptors in the gut activating specific enzymes that lead to the formation of OEA. OEA further combines with PPAR-α to enable fat oxidation in the liver, resulting in enhanced energy production. Evidence suggests that sustained ingestion of a high-fat diet abolishes the anorexic signal of OEA. Additionally, malfunction of the enterocyte that transforms oleic acid produced during fat digestion into OEA might be responsible for reduced satiety and hyperphagia, resulting in overweight and obesity. Thus, OEA anorectic signalling may be an essential element of the physiology and metabolic system regulating dietary fat intake and obesity. The evidence reviewed in this article indicates that intake of oleic acid, and thereby the resulting OEA imparting anorexic properties, is dependent on CD36, PPAR-α, enterocyte fat sensory receptors, histamine, oxytocin and dopamine; leading to increased fat oxidation and enhanced energy expenditure to induce satiety and increase feeding latency; and that a disruption in any of these systems will cease/curb fat-induced satiety.
Collapse
Affiliation(s)
- J Sihag
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada
| | - P J H Jones
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
37
|
Atanasov AG, Sabharanjak SM, Zengin G, Mollica A, Szostak A, Simirgiotis M, Huminiecki Ł, Horbanczuk OK, Nabavi SM, Mocan A. Pecan nuts: A review of reported bioactivities and health effects. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Giardina S, Sala-Vila A, Hernández-Alonso P, Calvo C, Salas-Salvadó J, Bulló M. Carbohydrate quality and quantity affects the composition of the red blood cell fatty acid membrane in overweight and obese individuals. Clin Nutr 2017; 37:481-487. [PMID: 28237295 DOI: 10.1016/j.clnu.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cell membrane fatty acid (FA) composition may play a role in human metabolic diseases. However, the modulatory effect of nutrients other than fat is poorly explored. OBJECTIVE To investigate the effect of moderate-carbohydrate diets with different glycemic indices (GI) and a low-fat diet (LF) on red blood cell (RBC) FA membrane composition. DESIGN The RBC FA profile was measured in 87 subjects from the GLYNDIET study. Participants were randomly assigned to one of the following energy-restricted diet for 6 months: moderate-carbohydrate/low-GI diet (LGI, n = 31), moderate-carbohydrate/high-GI diet (HGI, n = 30) or LF-diet (n = 26). RESULTS We observed a significant increase in C20:0 and decrease in C20:3n-6 in the LGI and HGI groups compared to LF group. Compared to LF-diet, C22:4n-6 was lower after the HGI while C22:6n-3 was higher after LGI diet. Also, a tendency was found for higher concentrations of long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) in LGI compared to HGI and LF groups. The intra-group analysis showed significantly increased levels of total monounsaturated fatty acids (MUFA) after LGI and HGI interventions, as well as a significant increase in C22:5n-6 and a decrease in LCn-3PUFA and omega-3-index after the LF diet. The decrease in C20:5n-3 after HGI and LF diets was also significant. CONCLUSION Diets with a moderate amount of carbohydrates and healthy fat, mainly with LGI, modify the RBC fatty acid membrane composition.
Collapse
Affiliation(s)
- Simona Giardina
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pablo Hernández-Alonso
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Calvo
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
39
|
Liu X, Kris-Etherton PM, West SG, Lamarche B, Jenkins DJA, Fleming JA, McCrea CE, Pu S, Couture P, Connelly PW, Jones PJH. Effects of canola and high-oleic-acid canola oils on abdominal fat mass in individuals with central obesity. Obesity (Silver Spring) 2016; 24:2261-2268. [PMID: 27804268 PMCID: PMC5119743 DOI: 10.1002/oby.21584] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To determine the effect of diets low in saturated fatty acids and high in monounsaturated fatty acids (MUFA) or polyunsaturated fatty acids on body composition in participants at risk for metabolic syndrome (MetS). METHODS This study was a randomized, crossover, controlled feeding study. Participants (n = 101, ages 49.5 ± 1.2, BMI 29.4 ± 0.4 kg/m2 ) were randomized to five isocaloric diets containing treatment oils: Canola, CanolaOleic, CanolaDHA, Corn/Safflower, and Flax/Safflower. Each diet period was 4 weeks followed by a 2- to 4-week washout period. RESULTS Canola (3.1 kg, P = 0.026) and CanolaOleic oil diets (3.09 kg, P = 0.03) reduced android fat mass compared with the Flax/Saff oil diet (3.2 kg), particularly in men. The decrease in abdominal fat mass was correlated with the reduction in blood pressure after the Canola (systolic blood pressure: r = 0.26, P = 0.062; diastolic blood pressure: r = 0.38, P = 0.0049) and CanolaOleic oil diets (systolic blood pressure: r = 0.39 P = 0.004; diastolic blood pressure: r = 0.45, P = 0.0006). The decrease in abdominal fat mass also was associated with a reduction in triglyceride levels after the CanolaOleic oil diet (r = 0.42, P = 0.002). CONCLUSIONS Diets high in MUFA (compared with PUFA) reduced central obesity with an accompanying improvement in MetS risk factors. Diets high in MUFA may be beneficial for treating and perhaps preventing MetS.
Collapse
Affiliation(s)
- Xiaoran Liu
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Sheila G West
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - David J A Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Fleming
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cindy E McCrea
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shuaihua Pu
- Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Philip W Connelly
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Peter J H Jones
- Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|