1
|
Li F, Armet AM, Korpela K, Liu J, Quevedo RM, Asnicar F, Seethaler B, Rusnak TBS, Cole JL, Zhang Z, Zhao S, Wang X, Gagnon A, Deehan EC, Mota JF, Bakal JA, Greiner R, Knights D, Segata N, Bischoff SC, Mereu L, Haqq AM, Field CJ, Li L, Prado CM, Walter J. Cardiometabolic benefits of a non-industrialized-type diet are linked to gut microbiome modulation. Cell 2025:S0092-8674(24)01477-6. [PMID: 39855197 DOI: 10.1016/j.cell.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Industrialization adversely affects the gut microbiome and predisposes individuals to chronic non-communicable diseases. We tested a microbiome restoration strategy comprising a diet that recapitulated key characteristics of non-industrialized dietary patterns (restore diet) and a bacterium rarely found in industrialized microbiomes (Limosilactobacillus reuteri) in a randomized controlled feeding trial in healthy Canadian adults. The restore diet, despite reducing gut microbiome diversity, enhanced the persistence of L. reuteri strain from rural Papua New Guinea (PB-W1) and redressed several microbiome features altered by industrialization. The diet also beneficially altered microbiota-derived plasma metabolites implicated in the etiology of chronic non-communicable diseases. Considerable cardiometabolic benefits were observed independently of L. reuteri administration, several of which could be accurately predicted by baseline and diet-responsive microbiome features. The findings suggest that a dietary intervention targeted toward restoring the gut microbiome can improve host-microbiome interactions that likely underpin chronic pathologies, which can guide dietary recommendations and the development of therapeutic and nutritional strategies.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Anissa M Armet
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Katri Korpela
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Uusimaa, Finland
| | - Junhong Liu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Rodrigo Margain Quevedo
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento 38123, Trentino, Italy
| | - Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Baden-Württemberg, Germany
| | - Tianna B S Rusnak
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Janis L Cole
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Zhihong Zhang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Shuang Zhao
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada
| | - Xiaohang Wang
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada
| | - Adele Gagnon
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edward C Deehan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - João F Mota
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Munster, Ireland; Faculty of Nutrition, Federal University of Goiás, Goiânia, Goiás 74605-080, Brazil
| | - Jeffrey A Bakal
- Division of General Internal Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Machine Intelligence Institute, Edmonton, AB T5J 3B1, Canada
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento 38123, Trentino, Italy
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Baden-Württemberg, Germany
| | - Laurie Mereu
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Liang Li
- The Metabolomics Innovation Centre, Edmonton, AB T6G 2E9, Canada; Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Carla M Prado
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Munster, Ireland; School of Microbiology, University College Cork, Cork T12 YT20, Munster, Ireland; Department of Medicine, University College Cork, Cork T12 YT20, Munster, Ireland; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
2
|
Perkins IC, Blacker SD, Willems MET. Individual Responses to Repeated Dosing with Anthocyanin-Rich New Zealand Blackcurrant Extract During High-Intensity Intermittent Treadmill Running in Active Males. Nutrients 2024; 16:4253. [PMID: 39770875 PMCID: PMC11677273 DOI: 10.3390/nu16244253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Intake of New Zealand blackcurrant (NZBC) extract for 7 days has been shown to improve high-intensity intermittent running (HIIR) performance. OBJECTIVES We examined the repeat response of NZBC extract on HIIR performance. METHODS Sixteen active males (age: 23 ± 3 yrs, height: 179 ± 5 cm, mass: 79 ± 11 kg, V˙O2max: 55.3 ± 5 mL∙kg-1∙min-1, velocity at V˙O2max: 17.2 ± 0.8 km∙h-1, mean ± SD) participated. Familiarized subjects completed the HIIR test at individualized exercise intensities with stages consisting of six 19 s high-intensity running bouts interspersed by 15 s of low-intensity running and 1 min of inter-stage rest. The test was repeated at increasing speeds until exhaustion, under four conditions; two with a daily dose of 600 mg of NZBC extract (CurraNZ™, providing 210 mg anthocyanins) and two with a placebo, each over 7 days. The study used a double-blind, randomized, cross-over design with a wash-out period of at least 14 days. RESULTS For the cohort, there were no differences between the placebo and NZBC conditions for mean heart rate (p = 0.071), mean oxygen uptake (p = 0.713), and mean lactate (p = 0.121) at exhaustion for the HIIR. The NZBC extract increased the mean total running distance and mean high-intensity running distance by 7.9% and 8.0% compared to the placebo. With NZBC extract, 8 of the 16 participants (50%) enhanced in both trials beyond the smallest worthwhile change for total running distance (≥173 m) and high-intensity running distance (≥111 m). For repeated responders, total running distance and high-intensity running distance was increased by 16.7% (95% CI [11.0, 22.4%] and 16.6% (95% CI [11.0, 22.2%]. Three participants had enhanced running performance in one trial beyond the SWC, and five participants were considered non-responders. CONCLUSIONS This is the first study on the repeated response by an anthocyanin-rich supplement on high-intensity running performance. New Zealand blackcurrant extract can substantially enhance intermittent high-intensity running performance in consistent responders. Future work should examine dosing strategies of New Zealand blackcurrant, and whether a repeated response rate exceeding 50% can be attained. These findings suggest that NZBC extract could be beneficial for athletes participating in high-intensity team sports.
Collapse
Affiliation(s)
- Ian C. Perkins
- Institute of Education and Social Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK;
- Institute of Applied Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK;
| | - Sam D. Blacker
- Institute of Applied Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK;
| | - Mark E. T. Willems
- Institute of Applied Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK;
| |
Collapse
|
3
|
Pang J, Yang C, Liu J, Wang Z, Tao X, Cao Z. Correlation between vitamin D metabolic pathway-related gene polymorphisms and cardiovascular disease. Food Funct 2024; 15:11342-11364. [PMID: 39494806 DOI: 10.1039/d4fo03234a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Vitamin D plays important roles in various physiological processes such as cardiovascular health, calcium balance regulation, bone health, immune system support, neurological function regulation, muscle function maintenance, and anti-inflammatory effects. Therefore, maintaining its adequate levels is essential for overall health. Genetic polymorphisms in vitamin D metabolic pathways have become a key factor affecting the susceptibility and progression of cardiovascular disease (CVD). This article reviews the relationship between gene polymorphisms in vitamin D metabolic pathways and vitamin D levels or CVD. It is emphasized that the polymorphisms of key genes such as GC, VDR, CYP2R1, CYP24A1 and CYP27B1 are related to the pathogenesis of CVD. These polymorphisms can regulate serum levels of vitamin D, thereby affecting the susceptibility, comorbidities and clinical manifestations of CVD. Despite the progress made, there are still inconsistencies and gaps in the literature. Thus, it is necessary to conduct large-scale, multicenter studies to verify these findings and deepen our understanding of the intricate interactions between gene polymorphisms in vitamin D metabolic pathways and CVD.
Collapse
Affiliation(s)
- Jiao Pang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- College of Life Science, Northwest University, Xi'an City, 710069, China
| | - Chunshuo Yang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Jiaqi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211103, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Xueshu Tao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Bae M, Le C, Mehta RS, Dong X, Pieper LM, Ramirez L, Alexander M, Kiamehr S, Turnbaugh PJ, Huttenhower C, Chan AT, Balskus EP. Metatranscriptomics-guided discovery and characterization of a polyphenol-metabolizing gut microbial enzyme. Cell Host Microbe 2024; 32:1887-1896.e8. [PMID: 39471822 PMCID: PMC11585353 DOI: 10.1016/j.chom.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Gut microbial catechol dehydroxylases are a largely uncharacterized family of metalloenzymes that potentially impact human health by metabolizing dietary polyphenols. Here, we use metatranscriptomics (MTX) to identify highly transcribed catechol-dehydroxylase-encoding genes in human gut microbiomes. We discover a prevalent, previously uncharacterized catechol dehydroxylase (Gp Hcdh) from Gordonibacter pamelaeae that dehydroxylates hydrocaffeic acid (HCA), an anti-inflammatory gut microbial metabolite derived from plant-based foods. Further analyses suggest that the activity of Gp Hcdh may reduce anti-inflammatory benefits of polyphenol-rich foods. Together, these results show the utility of combining MTX analysis and biochemical characterization for gut microbial enzyme discovery and reveal a potential link between host inflammation and a specific polyphenol-metabolizing gut microbial enzyme.
Collapse
Affiliation(s)
- Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chi Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Raaj S Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xueyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lindsey M Pieper
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margaret Alexander
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Andrew T Chan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Reis A, Rocha BS, Laranjinha J, de Freitas V. Dietary (poly)phenols as modulators of the biophysical properties in endothelial cell membranes: its impact on nitric oxide bioavailability in hypertension. FEBS Lett 2024; 598:2190-2210. [PMID: 38281810 DOI: 10.1002/1873-3468.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Hypertension is a major contributor to premature death, owing to the associated increased risk of damage to the heart, brain and kidneys. Although hypertension is manageable by medication and lifestyle changes, the risk increases with age. In an increasingly aged society, the incidence of hypertension is escalating, and is expected to increase the prevalence of (cerebro)vascular events and their associated mortality. Adherence to plant-based diets improves blood pressure and vascular markers in individuals with hypertension. Food flavonoids have an inhibitory effect towards angiotensin-converting enzyme (ACE1) and although this effect is greatly diminished upon metabolization, their microbial metabolites have been found to improve endothelial nitric oxide synthase (eNOS) activity. Considering the transmembrane location of ACE1 and eNOS, the ability of (poly)phenols to interact with membrane lipids modulate the cell membrane's biophysical properties and impact on nitric oxide (·NO) synthesis and bioavailability, remain poorly studied. Herein, we provide an overview of the current knowledge on the lipid remodeling of endothelial membranes with age, its impact on the cell membrane's biophysical properties and ·NO permeability across the endothelial barrier. We also discuss the potential of (poly)phenols and other plant-based compounds as key players in hypertension management, and address the caveats and challenges in adopted methodologies.
Collapse
Affiliation(s)
- Ana Reis
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Barbara S Rocha
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Polo das Ciências da Saúde, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Polo das Ciências da Saúde, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| |
Collapse
|
6
|
Godos J, Romano GL, Laudani S, Gozzo L, Guerrera I, Dominguez Azpíroz I, Martínez Diaz R, Quiles JL, Battino M, Drago F, Giampieri F, Galvano F, Grosso G. Flavan-3-ols and Vascular Health: Clinical Evidence and Mechanisms of Action. Nutrients 2024; 16:2471. [PMID: 39125353 PMCID: PMC11313926 DOI: 10.3390/nu16152471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the main causes of mortality and morbidity worldwide. A healthy diet rich in plant-derived compounds such as (poly)phenols appears to have a key role in improving cardiovascular health. Flavan-3-ols represent a subclass of (poly)phenols of great interest for their possible health benefits. In this review, we summarized the results of clinical studies on vascular outcomes of flavan-3-ol supplementation and we focused on the role of the microbiota in CVD. Clinical trials included in this review showed that supplementation with flavan-3-ols mostly derived from cocoa products significantly reduces blood pressure and improves endothelial function. Studies on catechins from green tea demonstrated better results when involving healthy individuals. From a mechanistic point of view, emerging evidence suggests that microbial metabolites may play a role in the observed effects. Their function extends beyond the previous belief of ROS scavenging activity and encompasses a direct impact on gene expression and protein function. Although flavan-3-ols appear to have effects on cardiovascular health, further studies are needed to clarify and confirm these potential benefits and the rising evidence of the potential involvement of the microbiota.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Lucia Gozzo
- Clinical Pharmacology Unit/Regional Pharmacovigilance Centre, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-S. Marco”, 95123 Catania, Italy
| | - Ida Guerrera
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Irma Dominguez Azpíroz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Research Group on Food, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito EN250, Angola
- Research Group on Food, Nutritional Biochemistry and Health, Universidad de La Romana, La Romana 22000, Dominican Republic
| | - Raquel Martínez Diaz
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
| | - José L. Quiles
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
8
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
9
|
Pinilla-González V, Rojas-Solé C, Gómez-Hevia F, González-Fernández T, Cereceda-Cornejo A, Chichiarelli S, Saso L, Rodrigo R. Tapping into Nature's Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024; 13:1999. [PMID: 38998505 PMCID: PMC11241326 DOI: 10.3390/foods13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Numerous natural antioxidants commonly found in our daily diet have demonstrated significant benefits for human health and various diseases by counteracting the impact of reactive oxygen and nitrogen species. Their chemical properties enable a range of biological actions, including antihypertensive, antimicrobial, anti-inflammatory, anti-fibrotic, and anticancer effects. Despite promising outcomes from preclinical studies, ongoing debate persists regarding their reproducibility in human clinical models. This controversy largely stems from a lack of understanding of the pharmacokinetic properties of these compounds, coupled with the predominant focus on monotherapies in research, neglecting potential synergistic effects arising from combining different antioxidants. This study aims to provide an updated overview of natural antioxidants, operating under the hypothesis that a multitherapeutic approach surpasses monotherapy in efficacy. Additionally, this study underscores the importance of integrating these antioxidants into the daily diet, as they have the potential to prevent the onset and progression of various diseases. To reinforce this perspective, clinical findings pertaining to the treatment and prevention of non-alcoholic fatty liver disease and conditions associated with ischemia and reperfusion phenomena, including myocardial infarction, postoperative atrial fibrillation, and stroke, are presented as key references.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Francisca Gómez-Hevia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Antonia Cereceda-Cornejo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.P.-G.); (C.R.-S.); (F.G.-H.); (T.G.-F.); (A.C.-C.)
| |
Collapse
|
10
|
Nassiri I, Kwok AJ, Bhandari A, Bull KR, Garner LC, Klenerman P, Webber C, Parkkinen L, Lee AW, Wu Y, Fairfax B, Knight JC, Buck D, Piazza P. Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression. BIOINFORMATICS ADVANCES 2024; 4:vbae085. [PMID: 38911824 PMCID: PMC11193101 DOI: 10.1093/bioadv/vbae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Motivation Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps. Results We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells. Availability and implementation EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).
Collapse
Affiliation(s)
- Isar Nassiri
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Andrew J Kwok
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Aneesha Bhandari
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Katherine R Bull
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy, Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX1 3PT, United Kingdom
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Laura Parkkinen
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Angela W Lee
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Yanxia Wu
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Benjamin Fairfax
- MRC–Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- Department of Oncology, University of Oxford & Oxford Cancer Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7DQ, United Kingdom
| | - Julian C Knight
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - David Buck
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Paolo Piazza
- Nuffield Department of Medicine, Centre for Human Genetics, Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), University of Oxford, Oxford, OX3 7BN, United Kingdom
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
11
|
Favari C, Rinaldi de Alvarenga JF, Sánchez-Martínez L, Tosi N, Mignogna C, Cremonini E, Manach C, Bresciani L, Del Rio D, Mena P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol 2024; 71:103095. [PMID: 38428187 PMCID: PMC10912651 DOI: 10.1016/j.redox.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.
Collapse
Affiliation(s)
- Claudia Favari
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
| | | | - Lorena Sánchez-Martínez
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence 'Campus Mare Nostrum', Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de La Arrixaca', Universidad de Murcia, Espinardo, Murcia, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| |
Collapse
|
12
|
Lackner S, Mahnert A, Moissl-Eichinger C, Madl T, Habisch H, Meier-Allard N, Kumpitsch C, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Strobl H, Holasek S. Interindividual differences in aronia juice tolerability linked to gut microbiome and metabolome changes-secondary analysis of a randomized placebo-controlled parallel intervention trial. MICROBIOME 2024; 12:49. [PMID: 38461313 PMCID: PMC10924357 DOI: 10.1186/s40168-024-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Auenbruggerplatz 3, 8036, Graz, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
13
|
Lessard-Lord J, Roussel C, Lupien-Meilleur J, Généreux P, Richard V, Guay V, Roy D, Desjardins Y. Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect. NPJ Biofilms Microbiomes 2024; 10:18. [PMID: 38448452 PMCID: PMC10918075 DOI: 10.1038/s41522-024-00493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Cranberry is associated with multiple health benefits, which are mostly attributed to its high content of (poly)phenols, particularly flavan-3-ols. However, clinical trials attempting to demonstrate these positive effects have yielded heterogeneous results, partly due to the high inter-individual variability associated with gut microbiota interaction with these molecules. In fact, several studies have demonstrated the ability of these molecules to modulate the gut microbiota in animal and in vitro models, but there is a scarcity of information in human subjects. In addition, it has been recently reported that cranberry also contains high concentrations of oligosaccharides, which could contribute to its bioactivity. Hence, the aim of this study was to fully characterize the (poly)phenolic and oligosaccharidic contents of a commercially available cranberry extract and evaluate its capacity to positively modulate the gut microbiota of 28 human subjects. After only four days, the (poly)phenols and oligosaccharides-rich cranberry extract, induced a strong bifidogenic effect, along with an increase in the abundance of several butyrate-producing bacteria, such as Clostridium and Anaerobutyricum. Plasmatic and fecal short-chain fatty acids profiles were also altered by the cranberry extract with a decrease in acetate ratio and an increase in butyrate ratio. Finally, to characterize the inter-individual variability, we stratified the participants according to the alterations observed in the fecal microbiota following supplementation. Interestingly, individuals having a microbiota characterized by the presence of Prevotella benefited from an increase in Faecalibacterium with the cranberry extract supplementation.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Pamela Généreux
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Véronique Richard
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Valérie Guay
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada.
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
| |
Collapse
|
14
|
Pfäffle SP, Herz C, Brombacher E, Proietti M, Gigl M, Hofstetter CK, Mittermeier-Kleßinger VK, Claßen S, Tran HTT, Dawid C, Kreutz C, Günther S, Lamy E. A 14-Day Double-Blind, Randomized, Controlled Crossover Intervention Study with Anti-Bacterial Benzyl Isothiocyanate from Nasturtium ( Tropaeolum majus) on Human Gut Microbiome and Host Defense. Nutrients 2024; 16:373. [PMID: 38337658 PMCID: PMC10857499 DOI: 10.3390/nu16030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species.
Collapse
Affiliation(s)
- Simon P. Pfäffle
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Engesserstrasse 4, D-79108 Freiburg, Germany
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Corinna Herz
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Engesserstrasse 4, D-79108 Freiburg, Germany
| | - Eva Brombacher
- Institute of Medical Biometry and Statistics, University Medical Center and Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 26, D-79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, D-79104 Freiburg, Germany
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Schänzlestr. 18, D-79104 Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Microbiome Core Facility, Breisacher Strasse 115, D-79106 Freiburg, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, D-85354 Freising, Germany
| | - Christoph K. Hofstetter
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising, Germany
| | - Verena K. Mittermeier-Kleßinger
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising, Germany
| | - Sophie Claßen
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Engesserstrasse 4, D-79108 Freiburg, Germany
| | - Hoai T. T. Tran
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Engesserstrasse 4, D-79108 Freiburg, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Strasse 34, D-85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, D-85354 Freising, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, University Medical Center and Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 26, D-79104 Freiburg, Germany
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Schänzlestr. 18, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Engesserstrasse 4, D-79108 Freiburg, Germany
| |
Collapse
|
15
|
Macià A, Romero MP, Pedret A, Solà R, Clifford MN, Rubió-Piqué L. Assessment of human inter-individual variability of phloretin metabolites in urine after apple consumption. AppleCOR study. Food Funct 2023; 14:10387-10400. [PMID: 37933196 DOI: 10.1039/d3fo02985a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Purpose: This study aimed to assess the inter-individual variation in phloretin absorption and metabolism and to seek possible phloretin metabotypes following apple snack consumption. Methods: The excreted phloretin metabolites in 24 h urine samples were determined by UPLC-MS/MS in 62 volunteers after acute and sustained (6 weeks) interventions in a randomized and parallel study with a daily supplementation of 80 g of a low-phloretin (39.5 μmol) or a high-phloretin (103 μmol) freeze-dried apple snacks. Results: absorption estimated as phloridzin equivalents for 62 volunteers varied almost 70-fold ranging from 0.1% to 6.94% of phloretin glycoside intake. Volunteers were stratified into low, medium and high producers and by the balance between glucuronidation and sulphation. For 74% of the volunteers phloretin-O-glucuronide was the dominant urinary metabolite, especially at the higher phloretin glycoside intake and for higher producers. Sulphate conjugation assumed greater significance for the remaining volunteers especially for low producers. Females dominated glucuronide profile (64.1%) and males dominated the low excretion group. Analysis of plasma glucose and insulin at the start and end of the sustained study showed a trend towards modest reductions for high producers. Furthermore, plausible factors contributing to the inter-individual variation in phloretin uptake are discussed. Conclusions: extensive inter-individual variability exists in the excretion of phloretin phase-II conjugates following consumption of apple snacks, which could be related to oral microbiota phloridzin-hydrolysing activity, lactase non-persistence trait or the metabotype to which the subject belongs. There were inconsistent effects on post-prandial serum glucose concentrations but there was a tendency for decreases to be associated with higher excretion of phloretin phase-II conjugates. Trial registration: The acute and sustained studies were registered at ClinicalTrials.gov Identifier: NCT03795324.
Collapse
Affiliation(s)
- Alba Macià
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| | - María-Paz Romero
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| | - Anna Pedret
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), C/Sant Llorenç 21, 4320-Reus, Spain
| | - Rosa Solà
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), C/Sant Llorenç 21, 4320-Reus, Spain
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Victoria, Australia
| | - Laura Rubió-Piqué
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| |
Collapse
|
16
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
17
|
Tosi N, Favari C, Bresciani L, Flanagan E, Hornberger M, Narbad A, Del Rio D, Vauzour D, Mena P. Unravelling phenolic metabotypes in the frame of the COMBAT study, a randomized, controlled trial with cranberry supplementation. Food Res Int 2023; 172:113187. [PMID: 37689939 DOI: 10.1016/j.foodres.2023.113187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Cranberry (poly)phenols may have potential health benefits. Circulating (poly)phenol metabolites can act as mediators of these effects, but they are subjected to an extensive inter-individual variability. This study aimed to quantify both plasma and urine (poly)phenol metabolites following a 12-week intake of a cranberry powder in healthy older adults, and to investigate inter-individual differences by considering the existence of urinary metabotypes related to dietary (poly)phenols. Up to 13 and 67 metabolites were quantified in plasma and urine respectively. Cranberry consumption led to changes in plasma metabolites, mainly hydroxycinnamates and hippuric acid. Individual variability in urinary metabolites was assessed using different data sets and a combination of statistical models. Three phenolic metabotypes were identified, colonic metabolism being the main driver for subject clustering. Metabotypes were characterized by quali-quantitative differences in the excretion of some metabolites such as phenyl-γ-valerolactones, hydroxycinnamic acids, and phenylpropanoic acids. Metabotypes were further confirmed when applying a model only focused on flavan-3-ol colonic metabolites. 5-(3',4'-dihydroxyphenyl)-γ-valerolactone derivatives were the most relevant metabolites for metabotyping. Metabotype allocation was well preserved after 12-week intervention. This metabotyping approach for cranberry metabolites represents an innovative step to handle the complexity of (poly)phenol metabolism in free-living conditions, deciphering the existence of metabotypes derived from the simultaneous consumption of different classes of (poly)phenols. These results will help contribute to studying the health effects of cranberries and other (poly)phenol-rich foods, mainly considering gut microbiota-driven individual differences.
Collapse
Affiliation(s)
- Nicole Tosi
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Emma Flanagan
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Michael Hornberger
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy; School of Advanced Studies on Food and Nutrition, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy.
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, Norwich, United Kingdom.
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
18
|
Laudani S, Godos J, Di Domenico FM, Barbagallo I, Randazzo CL, Leggio GM, Galvano F, Grosso G. Anthocyanin Effects on Vascular and Endothelial Health: Evidence from Clinical Trials and Role of Gut Microbiota Metabolites. Antioxidants (Basel) 2023; 12:1773. [PMID: 37760077 PMCID: PMC10525277 DOI: 10.3390/antiox12091773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Hypertension and derived cardiovascular disease (CVD) are among the leading causes of death worldwide. Increased oxidative stress and inflammatory state are involved in different alterations in endothelial functions that contribute to the onset of CVD. Polyphenols, and in particular anthocyanins, have aroused great interest for their antioxidant effects and their cardioprotective role. However, anthocyanins are rarely detected in blood serum because they are primarily metabolized by the gut microbiota. This review presents studies published to date that report the main results from clinical studies on the cardioprotective effects of anthocyanins and the role of the gut microbiota in the metabolism and bioavailability of anthocyanins and their influence on the composition of the microbiota. Even if it seems that anthocyanins have a significant effect on vascular health, more studies are required to better clarify which molecules and doses show vascular benefits without forgetting the crucial role of the microbiota.
Collapse
Affiliation(s)
- Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Federica Martina Di Domenico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Ignazio Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
- ProBioEtna, Spin-Off of University of Catania, 95123 Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.L.); (F.M.D.D.); (I.B.); (G.M.L.); (F.G.); (G.G.)
| |
Collapse
|
19
|
Brennan L, de Roos B. Role of metabolomics in the delivery of precision nutrition. Redox Biol 2023; 65:102808. [PMID: 37423161 PMCID: PMC10461186 DOI: 10.1016/j.redox.2023.102808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Precision nutrition aims to deliver personalised dietary advice to individuals based on their personal genetics, metabolism and dietary/environmental exposures. Recent advances have demonstrated promise for the use of omic technologies for furthering the field of precision nutrition. Metabolomics in particular is highly attractive as measurement of metabolites can capture information on food intake, levels of bioactive compounds and the impact of diets on endogenous metabolism. These aspects contain useful information for precision nutrition. Furthermore using metabolomic profiles to identify subgroups or metabotypes is attractive for the delivery of personalised dietary advice. Combining metabolomic derived metabolites with other parameters in prediction models is also an exciting avenue for understanding and predicting response to dietary interventions. Examples include but not limited to role of one carbon metabolism and associated co-factors in blood pressure response. Overall, while evidence exists for potential in this field there are also many unanswered questions. Addressing these and clearly demonstrating that precision nutrition approaches enable adherence to healthier diets and improvements in health will be key in the near future.
Collapse
Affiliation(s)
- Lorraine Brennan
- Institute of Food and Health and Conway Institute, UCD School of Agriculture and Food Science, UCD, Belfield, Dublin 4, Ireland.
| | - Baukje de Roos
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
20
|
Herz C, Frei L, Tran HTT, Claßen S, Spöttel J, Krell M, Hanschen FS, Arvandi M, Binder N, Schreiner M, Rohn S, Lamy E. A monocentric, randomized, double-blind, controlled crossover trial of nasturtium ( Tropaeolum majus) on the lipid regulator prostaglandin E 2. Front Nutr 2023; 10:1223158. [PMID: 37599682 PMCID: PMC10434789 DOI: 10.3389/fnut.2023.1223158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Scope As prostaglandin E2 (PGE2) has important roles in physiological and inflammatory functions, a double-blind randomized controlled crossover study to investigate the potential of nasturtium (Tropaeolum majus) for modulating PGE2 was conducted, aiming at clarifying the role of benzyl isothiocyanate (BITC). As secondary parameters leukotriene 4 (LTB4), and cytokine release (tumor necrosis factor alpha, TNF-α; interleukins IL-1β, IL-10, and IL-12) were quantified. Methods and results Thirty-four healthy female participants consumed 1.5 g nasturtium containing BITC, (verum) or no BITC (control) twice a day for 2 weeks each. Nasturtium intervention resulted in an increase in mean PGE2 levels in serum samples (verum: 1.76-fold, p ≤ 0.05; control: 1.78-fold, p ≤ 0.01), and ex vivo stimulated peripheral blood mononuclear cells (PBMC) (verum: 1.71-fold, p ≤ 0.01; control: 1.43-fold). Using a pre-to-post responder analysis approach, 18 of 34 subjects showed a > 25% PGE2 increase in serum, while it was >25% decreased for 9 subjects (stimulated PBMC: 14 and 8 of 28, respectively). Under the selected conditions, the BITC content of nasturtium did not affect the observed changes in PGE2. Verum intervention also increased mean LTB4 serum level (1.24-fold, p ≤ 0.01), but not in LPS stimulated PBMC, and significantly increased TNF-α release in stimulated PBMC after 3 h (verum: 1.65-fold, p = 0.0032; control: 1.22-fold, p = 0.7818). No change was seen in the anti-inflammatory cytokine IL-10, or the pro-inflammatory cytokines IL-1β, and IL-12. Conclusion In contrast to the previously reported in vitro results, on average, LPS activated PBMC and serum from both groups showed increased PGE2 levels. Further analyses suggest that PGE2 release after intervention could possibly depend on the baseline PGE2 level. Identification of phenotypes that respond differently to the nasturtium intervention could be useful to establish personalized approaches for dosing phytopharmaceuticals medicines.
Collapse
Affiliation(s)
- Corinna Herz
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Linda Frei
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hoai T. T. Tran
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sophie Claßen
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jenny Spöttel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Mareike Krell
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Marjan Arvandi
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute of Public Health, Medical Decision Making and HTA, UMIT TIROL, University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Nadine Binder
- Institute of General Practice/Family Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Fraga LN, Milenkovic D, Coutinho CP, Rozenbaum AC, Lajolo FM, Hassimotto NMA. Interaction between APOE, APOA1, and LPL Gene Polymorphisms and Variability in Changes in Lipid and Blood Pressure following Orange Juice Intake: A Pilot Study. Mol Nutr Food Res 2023; 67:e2200847. [PMID: 37128695 DOI: 10.1002/mnfr.202200847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
SCOPE Chronic orange juice intake is associated with reduced risk of cardiovascular disease, however, a large inter-individual variability in response to orange juice for lipid profile and blood pressure has been observed. This heterogeneity in responsiveness could be associated with single nucleotide polymorphism (SNP), which has not been previously addressed. This study aims to investigate the influence of SNP in apolipoprotein E (APOE), apolipoprotein A1 (APOA1), mevalonate (MVK), and lipase lipoprotein (LPL) genes in the biological response after chronic orange juice intake. METHODS AND RESULTS Forty-six volunteers ingested 500 mL daily for 60 days and blood pressure and biochemical parameters are measured. Also, SNPs in APOE, APOA1, MVK, and LPL genes are genotyped in the volunteers that are medium/high excretors of flavanone metabolites. Genotypes CC (APOA1), AA, and GG (LPL) are associated with positive health effects of orange juice and the CC (APOE), GG (APOA1), GG, and AA (LPL) genotypes are associated with no effects of orange juice consumption (p < 0.05). CONCLUSION These results identify for the first-time SNP associated with effects of orange juice on lipid levels and blood pressure, results that may provide bases for future precise nutritional recommendations regarding this flavanone-rich food to lower the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Layanne Nascimento Fraga
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA, 95616-5270, USA
| | - Camille Perella Coutinho
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Adriana Campos Rozenbaum
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
22
|
Das T, Chatterjee N, Capanoglu E, Lorenzo JM, Das AK, Dhar P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem X 2023; 18:100697. [PMID: 37206320 PMCID: PMC10189415 DOI: 10.1016/j.fochx.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Most of the pertinent research which aims at exploring the therapeutic effects of polyphenols usually misapprehends a large fraction of non-extractable polyphenols due to their poor aqueous-organic solvent extractability. These polymeric polyphenols (i.e., proanthocyanins, hydrolysable tannins and phenolic acids) possess a unique property to adhere to the food matrix polysaccharides and protein sowing to their structural complexity with high glycosylation, degree of polymerization, and plenty of hydroxyl groups. Surprisingly resistance to intestinal absorption does not hinder its bioactivity but accelerates its functionality manifolds due to the colonic microbial catabolism in the gastrointestinal tract, thereby protecting the body from local and systemic inflammatory diseases. This review highlights not only the chemistry, digestion, colonic metabolism of non-extractable polyphenols (NEPP) but also summarises the synergistic effect of matrix-bound NEPP exerting local as well as systemic health benefits.
Collapse
Affiliation(s)
- Trina Das
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| |
Collapse
|
23
|
Grohmann T, Walker AW, Russell WR, Hoggard N, Zhang X, Horgan G, de Roos B. A grape seed and bilberry extract reduces blood pressure in individuals at risk of developing type 2 diabetes: the PRECISE study, a double-blind placebo-controlled cross-over intervention study. Front Nutr 2023; 10:1139880. [PMID: 37351191 PMCID: PMC10283353 DOI: 10.3389/fnut.2023.1139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023] Open
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is a major risk factor for the development of cardiometabolic diseases. T2DM prevention is largely based on weight-loss and whole diet changes, but intervention with dietary plant bioactives may also improve metabolic health. Objective To assess whether supplementation with bilberry and grape seed extract for 12 weeks improves cardiometabolic outcomes in individuals at risk of developing T2DM, and to determine whether individual treatment response is associated with differences in gut microbiota composition and levels of phenolic metabolites in blood and feces. Methods In the randomized, double-blind, placebo-controlled, cross-over PRECISE intervention study, 14 participants, aged ≥45 years, with a BMI >28 kg/m2, and having an increased risk of T2DM, received a supplement containing 250 mg of bilberry plus 300 mg of grape seed extract, or 550 mg of a control extract, per day, for 12 weeks each. Blood samples were obtained for the assessment of HbA1c, fasting glucose, oral glucose tolerance tests, insulin, glucagon levels, total, LDL and HDL cholesterol, and phenolic acids. We also assessed advanced glycation end products in the skin, ambulatory 24 hours blood pressure, 7-day dietary intake by weighed food diaries, fecal levels of phenolic metabolites using LC-MS/MS and gut microbiota composition using 16S rRNA gene sequencing analysis. Results The combined bilberry and grape seed extract did not affect glucose and cholesterol outcomes, but it decreased systolic and diastolic ambulatory blood pressure by 4.7 (p < 0.001) and 2.3 (p = 0.0009) mmHg, respectively. Eight out of fourteen participants were identified as blood pressure 'responders'. These responders had higher levels of phenylpropionic and phenyllactic acids in their fecal samples, and a higher proportional abundance of Fusicatenibacter-related bacteria (p < 0.01) in their baseline stool samples. Conclusion Long-term supplementation with bilberry and grape seed extract can improve systolic and diastolic blood pressure in individuals at risk of T2DM. Individual responsiveness was correlated with the presence of certain fecal bacterial strains, and an ability to metabolize (epi)catechin into smaller phenolic metabolites.Clinical trial registry number: Research Registry (number 4084).
Collapse
Affiliation(s)
- Teresa Grohmann
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Alan W. Walker
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Wendy R. Russell
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Nigel Hoggard
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, United Kingdom
| | - Baukje de Roos
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
24
|
García-Cordero J, Mateos R, González-Rámila S, Seguido MA, Sierra-Cinos JL, Sarriá B, Bravo L. Dietary Supplements Containing Oat Beta-Glucan and/or Green Coffee (Poly)phenols Showed Limited Effect in Modulating Cardiometabolic Risk Biomarkers in Overweight/Obese Patients without a Lifestyle Intervention. Nutrients 2023; 15:2223. [PMID: 37432380 DOI: 10.3390/nu15092223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity has reached pandemic proportions and has become a major health concern worldwide. Therefore, it is necessary to find new strategies against this condition and its associated comorbidities. Green coffee polyphenols (GCP) and oat beta-glucans (BGs) have proven their hypolipidaemic and hypoglycaemic effects. This study aimed to examine the effects of the long-term consumption of supplements containing GCP, BG or the novel GCP/BG combination on lipid and glucose metabolism biomarkers in overweight/obese subjects who maintained their dietary habits and physical activity, hence addressing the difficulty that this population faces in adapting to lifestyle changes. A randomised, crossover, blind trial was carried out in 29 volunteers who consumed either GCP (300 mg), BG (2.5 g) or GCP/BG (300 mg + 2.5 g) twice a day for 8 weeks. Blood samples were collected, and blood pressure and body composition were measured at the beginning and end of each intervention. Total cholesterol, triglycerides, high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), very low-density lipoprotein (VLDL-C) cholesterol, glycated haemoglobin, fasting glucose, insulin, aspartate transaminase, alanine transaminase and different hormones and adipokines were analysed. Only VLDL-C (p = 0.01) and diastolic blood pressure (p = 0.027) decreased after the intervention, especially with the BG supplement. There were no other significant changes in the analysed biomarkers. In conclusion, the regular intake of GCP, BG and GCP/BG without lifestyle changes is not an efficient strategy to improve lipid and glucose homeostasis in overweight/obese subjects.
Collapse
Affiliation(s)
- Joaquín García-Cordero
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Susana González-Rámila
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Miguel A Seguido
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/Jose Antonio Novais 10, 28040 Madrid, Spain
| | - José Luis Sierra-Cinos
- Department of Nutrition and Food Science I, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Beatriz Sarriá
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Laura Bravo
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/Jose Antonio Novais 10, 28040 Madrid, Spain
| |
Collapse
|
25
|
Fratta Pasini AM, Cominacini L. Potential Benefits of Antioxidant Phytochemicals on Endogenous Antioxidants Defences in Chronic Diseases. Antioxidants (Basel) 2023; 12:antiox12040890. [PMID: 37107265 PMCID: PMC10135316 DOI: 10.3390/antiox12040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Chronic diseases and cancer are worldwide health problems which result in death and disability for millions of people [...]
Collapse
Affiliation(s)
- Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine D, University of Verona, 37134 Verona, Italy
| | - Luciano Cominacini
- Department of Medicine, Section of Internal Medicine D, University of Verona, 37134 Verona, Italy
| |
Collapse
|
26
|
Arancibia-Riveros C, Domínguez-López I, Tresserra-Rimbau A, Guo X, Estruch R, Martínez-González MÁ, Fitó M, Ros E, Ruiz-Canela M, Lamuela-Raventós RM. Total urinary polyphenol excretion: a biomarker of an anti-inflammatory diet and metabolic syndrome status. Am J Clin Nutr 2023; 117:814-822. [PMID: 37019541 DOI: 10.1016/j.ajcnut.2022.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Chronic inflammation is associated with noncommunicable diseases, including obesity, metabolic syndrome (MetS), and CVDs. The Mediterranean diet has been shown to have strong anti-inflammatory effects, attributed in part to the polyphenol richness of many of its components. OBJECTIVES This study aimed to assess the value of polyphenols as a urinary biomarker of an anti-inflammatory diet and their influence on MetS status. METHODS A longitudinal analysis was performed in Spain considering 543 participants with high CVD risk in a PREDIMED study. Approximately 52% of the participants were women and 48% were men with a mean age of 67.5 (5.9) y. Total polyphenol excretion (TPE) in urine was determined at baseline and 5 y of intervention using a validated Folin-Ciocalteu spectrophotometric method, and the dietary inflammatory index (DII) was calculated from a validated 137-item food-frequency questionnaire. Three categories were built according to tertiles of change in the DII score. Multivariable linear regression analyses were performed to assess the association of changes in TPE with changes in the DII scores and with MetS status at 5 y. RESULTS Tertiles 2 and 3 compared with tertile 1 presented a lower anti-inflammatory potential of the diet and were inversely associated with TPE in women [-0.30 mg gallic acid equivalent (GAE)/g creatinine; 95% CI: -0.46, -0.15; P value = 0.006 and -0.29 mg GAE/g creatinine; 95% CI: -0.43, -0.15; P value = 0.005], respectively. The mean changes in TPE were 7.9 (56.1) mg GAE/g creatinine in women and 7.7 (48.2) mg GAE/g creatinine in men. In addition, TPE was inversely associated with changes in MetS status [-0.06 (-0.09; -0.02), P value = 0.009] in both men and women. CONCLUSIONS Urinary polyphenols may be a potential biomarker of anti-inflammatory diet consumption in women and are prospectively associated with improvement in MetS.
Collapse
|
27
|
Tretola M, Bee G, Dohme-Meier F, Silacci P. Review: Harmonised in vitro digestion and the Ussing chamber for investigating the effects of polyphenols on intestinal physiology in monogastrics and ruminants. Animal 2023; 17:100785. [PMID: 37060748 DOI: 10.1016/j.animal.2023.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023] Open
Abstract
Because of the relevant effects of plant-derived polyphenols (PPs) on monogastrics and ruminants' nutrition, emissions and performance, an increasing number of in vivo and in vitro studies are being performed to better understand the mechanisms of action of polyphenols at both the ruminal and intestinal levels. The biological properties of these phenolic compounds strongly depend on their degradation, absorption and metabolism. The harmonised in vitro digestion method (INFOGEST) is one of the most reliable in vitro methods used to assess the bioaccessibility and or antioxidant activity of PP contained in different matrixes, as well as the interactions of PP and their degradation products with other feed ingredients. The effects of PP released from their matrix after in vitro digestion on different intestinal physiological parameters, such as epithelium integrity, can be further evaluated by the use of ex vivo models such as the Ussing chamber. This review aims to describe the combination of the INFOGEST method, coupled with the Ussing chamber as a valuable model for the digestion and subsequent effects and absorption of phenolic compounds in monogastrics and potentially in ruminants. The advances, challenges and limits of this approach are also discussed.
Collapse
Affiliation(s)
- M Tretola
- Agroscope, Animal Biology Group, La Tioleyre 4, 1725 Posieux, Switzerland; Agroscope, Swine Group, La Tioleyre 4, 1725 Posieux, Switzerland; Agroscope, Ruminant Research Group, La Tioleyre 4, 1725 Posieux, Switzerland; Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy.
| | - G Bee
- Agroscope, Swine Group, La Tioleyre 4, 1725 Posieux, Switzerland
| | - F Dohme-Meier
- Agroscope, Ruminant Research Group, La Tioleyre 4, 1725 Posieux, Switzerland
| | - P Silacci
- Agroscope, Animal Biology Group, La Tioleyre 4, 1725 Posieux, Switzerland
| |
Collapse
|
28
|
Singh V. Current challenges and future implications of exploiting the omics data into nutrigenetics and nutrigenomics for personalized diagnosis and nutrition-based care. Nutrition 2023; 110:112002. [PMID: 36940623 DOI: 10.1016/j.nut.2023.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Nutrigenetics and nutrigenomics, combined with the omics technologies, are a demanding and an increasingly important field in personalizing nutrition-based care to understand an individual's response to nutrition-guided therapy. Omics is defined as the analysis of the large data sets of the biological system featuring transcriptomics, proteomics, and metabolomics and providing new insights into cell regulation. The effect of combining nutrigenetics and nutrigenomics with omics will give insight into molecular analysis, as human nutrition requirements vary per individual. Omics measures modest intraindividual variability and is critical to exploit these data for use in the development of precision nutrition. Omics, combined with nutrigenetics and nutrigenomics, is instrumental in the creation of goals for improving the accuracy of nutrition evaluations. Although dietary-based therapies are provided for various clinical conditions such as inborn errors of metabolism, limited advancement has been done to expand the omics data for a more mechanistic understanding of cellular networks dependent on nutrition-based expression and overall regulation of genes. The greatest challenge remains in the clinical sector to integrate the current data available, overcome the well-established limits of self-reported methods in research, and provide omics data, combined with nutrigenetics and nutrigenomics research, for each individual. Hence, the future seems promising if a design for personalized, nutrition-based diagnosis and care can be implemented practically in the health care sector.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India.
| |
Collapse
|
29
|
Zhang S, Mao B, Cui S, Zhang Q, Zhao J, Tang X, Chen W. Absorption, metabolism, bioactivity, and biotransformation of epigallocatechin gallate. Crit Rev Food Sci Nutr 2023; 64:6546-6566. [PMID: 36728926 DOI: 10.1080/10408398.2023.2170972] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epigallocatechin gallate (EGCG), a typical flavone-3-ol polyphenol containing eight free hydroxyl groups, is associated with a variety of bioactivities, such as antioxidant, anti-inflammatory, anti-cancer, and antibacterial activities. However, the poor bioavailability of EGCG restricts its use. In this review, we discuss the processes involved in the absorption and metabolism of EGCG, with a focus on its metabolic interactions with the gut microbiota. Next, we summarize the bioactivities of some key metabolites, describe the biotransformation of EGCG by different microorganisms, and discuss its catabolism by specific bacteria. A deeper understanding of the absorption, metabolism, and biotransformation of EGCG may enable its disease-preventive and therapeutic properties to be better utilized. This review provides a theoretical basis for further development and utilization of EGCG and its metabolites for improving the gut microbiota and physiological health.
Collapse
Affiliation(s)
- Shuling Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
30
|
Antioxidant Phytochemicals as Potential Therapy for Diabetic Complications. Antioxidants (Basel) 2023; 12:antiox12010123. [PMID: 36670985 PMCID: PMC9855127 DOI: 10.3390/antiox12010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The global prevalence of diabetes continues to increase partly due to rapid urbanization and an increase in the aging population. Consequently, this is associated with a parallel increase in the prevalence of diabetic vascular complications which significantly worsen the burden of diabetes. For these diabetic vascular complications, there is still an unmet need for safe and effective alternative/adjuvant therapeutic interventions. There is also an increasing urge for therapeutic options to come from natural products such as plants. Hyperglycemia-induced oxidative stress is central to the development of diabetes and diabetic complications. Furthermore, oxidative stress-induced inflammation and insulin resistance are central to endothelial damage and the progression of diabetic complications. Human and animal studies have shown that polyphenols could reduce oxidative stress, hyperglycemia, and prevent diabetic complications including diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy. Part of the therapeutic effects of polyphenols is attributed to their modulatory effect on endogenous antioxidant systems. This review attempts to summarize the established effects of polyphenols on endogenous antioxidant systems from the literature. Moreover, potential therapeutic strategies for harnessing the potential benefits of polyphenols for diabetic vascular complications are also discussed.
Collapse
|
31
|
Identification of D-Limonene Metabolites by LC-HRMS: An Exploratory Metabolic Switching Approach in a Mouse Model of Diet-Induced Obesity. Metabolites 2022; 12:metabo12121246. [PMID: 36557284 PMCID: PMC9780935 DOI: 10.3390/metabo12121246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic switching has been raised as an important phenomenon to be studied in relation to xenobiotic metabolites, since the dose of the exposure determines the formation of metabolites and their bioactivity. Limonene is a monoterpene mostly found in citrus fruits with health activity, and its phase II metabolites and activity are still not clear. The aim of this work was to evaluate the effects of D-limonene in the development of diet-induced obesity in mice and to investigate metabolites that could be generated in a study assessing different doses of supplementation. Animals were induced to obesity and supplemented with 0.1% or 0.8% D-limonene added to the feed. Limonene phase I and II metabolites were identified in liver and urine by LC-ESI-qToF-MS/MS. To the best of our knowledge, in this study three new phase I metabolites and ten different phase II metabolites were first attributed to D-limonene. Supplementation with 0.1% D-limonene was associated with lower weight gain and a trend to lower accumulation of adipose tissue deposits. The metabolites limonene-8,9-diol, perillic acid and perillic acid-8,9-diol should be explored in future research as anti-obesogenic agents as they were the metabolites most abundant in the urine of mice that received 0.1% D-limonene in their feed.
Collapse
|
32
|
Williamson G. Effects of Polyphenols on Glucose-Induced Metabolic Changes in Healthy Human Subjects and on Glucose Transporters. Mol Nutr Food Res 2022; 66:e2101113. [PMID: 35315210 PMCID: PMC9788283 DOI: 10.1002/mnfr.202101113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Dietary polyphenols interact with glucose transporters in the small intestine and modulate glucose uptake after food or beverage consumption. This review assesses the transporter interaction in vitro and how this translates to an effect in healthy volunteers consuming glucose. As examples, the apple polyphenol phlorizin inhibits sodium-glucose linked transporter-1; in the intestinal lumen, it is converted to phloretin, a strong inhibitor of glucose transporter-2 (GLUT2), by the brush border digestive enzyme lactase. Consequently, an apple extract rich in phlorizin attenuates blood glucose and insulin in healthy volunteers after a glucose challenge. On the other hand, the olive phenolic, oleuropein, inhibits GLUT2, but the strength of the inhibition is not enough to modulate blood glucose after a glucose challenge in healthy volunteers. Multiple metabolic effects and oxidative stresses after glucose consumption include insulin, incretin hormones, fatty acids, amino acids, and protein markers. However, apart from acute postprandial effects on glucose, insulin, and some incretin hormones, very little is known about the acute effects of polyphenols on these glucose-induced secondary effects. In summary, attenuation of the effect of a glucose challenge in vivo is only observed when polyphenols are strong inhibitors of glucose transporters.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health SciencesMonash UniversityBASE Facility, 264 Ferntree Gully RoadNotting HillVIC 3168Australia
| |
Collapse
|
33
|
Xu H, Chen J, Peng L, Xie J, Zhang XY, Peng T. Fecal excretion kinetics provides further support for polyphenols targeting microbiota: An example with prebiotic-like phlorizin. Food Chem 2022; 405:134838. [DOI: 10.1016/j.foodchem.2022.134838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
34
|
Carregosa D, Pinto C, Ávila-Gálvez MÁ, Bastos P, Berry D, Santos CN. A look beyond dietary (poly)phenols: The low molecular weight phenolic metabolites and their concentrations in human circulation. Compr Rev Food Sci Food Saf 2022; 21:3931-3962. [PMID: 36037277 DOI: 10.1111/1541-4337.13006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
A large number of epidemiological studies have shown that consumption of fruits, vegetables, and beverages rich in (poly)phenols promote numerous health benefits from cardiovascular to neurological diseases. Evidence on (poly)phenols has been applied mainly to flavonoids, yet the role of phenolic acids has been largely overlooked. Such phenolics present in food combine with those resulting from gut microbiota catabolism of flavonoids and chlorogenic acids and those produced by endogenous pathways, resulting in large concentrations of low molecular weight phenolic metabolites in human circulation. Independently of the origin, in human intervention studies using diets rich in (poly)phenols, a total of 137 low molecular weight phenolic metabolites have been detected and quantified in human circulation with largely unknown biological function. In this review, we will pinpoint two main aspects of the low molecular weight phenolic metabolites: (i) the microbiota responsible for their generation, and (ii) the analysis (quali- and quantitative) in human circulation and their respective pharmacokinetics. In doing so, we aim to drive scientific advances regarding the ubiquitous roles of low molecular weight phenolic metabolites using physiologically relevant concentrations and under (patho)physiologically relevant conditions in humans.
Collapse
Affiliation(s)
- Diogo Carregosa
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Catarina Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Paulo Bastos
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Cláudia Nunes Santos
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| |
Collapse
|
35
|
Vingrys K, Mathai M, Ashton JF, Stojanovska L, Vasiljevic T, McAinch AJ, Donkor ON. The effect of malting on phenolic compounds and radical scavenging activity in grains and breakfast cereals. J Food Sci 2022; 87:4188-4202. [PMID: 35998111 DOI: 10.1111/1750-3841.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Breakfast cereals are popular grain foods and sources of polyphenols. Malting alters polyphenol content and activity; however, effects are varied. The total polyphenol content (TPC), radical scavenging activity (RSA), and polyphenol profile were analyzed in unmalted and malted grains (wheat, barley, and sorghum) and breakfast cereals (wheat, barley) by Folin Ciocalteu Reagent (FCR), % inhibition of the free radical 2,2-diphenyl-1-picryl-hydrazyl, and high performance liquid chromatography. Higher TPC was observed in all malted grains and breakfast cereals compared with unmalted samples (p < 0.05). Higher RSA was also observed in all malted samples compared to unmalted samples (p < 0.05) except for wheat grain to malted wheat grain. In this study, malting induced additional polyphenols and antioxidant activity in grains and cereal products. Malted grain breakfast cereals may be practical sources of polyphenol antioxidants. PRACTICAL APPLICATION: This study utilized malting in a unique way to investigate potential health benefits of polyphenols and antioxidant activity in grains (wheat, barley, and sorghum) and ready-to-eat breakfast cereals (wheat and barley). This study found that grains and breakfast cereals are important sources of antioxidant polyphenols, and these were significantly increased in malted varieties. Understanding this is important as grains and breakfast cereals are widely consumed staple foods. Consuming healthier grain products may be a practical strategy in reducing the risk of noncommunicable diseases such as colorectal cancer and type-2 diabetes, where wholegrain consumption may be important in prevention.
Collapse
Affiliation(s)
- Kristina Vingrys
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,First Year College, Victoria University, Melbourne, Victoria, Australia
| | - Michael Mathai
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - John F Ashton
- Sanitarium Development and Innovation, Cooranbong, NSW, Australia
| | - Lily Stojanovska
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Todor Vasiljevic
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Osaana N Donkor
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
O'Connor A, Feeney EL, Bhargava N, Noronha N, Gibney ER. Determination of factors associated with serum cholesterol response to dairy fat consumption in overweight adults: Secondary analysis from an RCT. Front Nutr 2022; 9:945723. [PMID: 35990333 PMCID: PMC9382121 DOI: 10.3389/fnut.2022.945723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Elevated intakes of saturated fatty acids (SFA) can adversely affect serum cholesterol levels. Dairy fat contains ~60% SFA, prompting healthy eating guidelines to recommend low-fat dairy. Physiological, and environmental factors influence inter-individual variance in response to food consumption. Evidence exploring the dairy matrix has differing effects of dairy fat consumption on serum cholesterol levels when consumed in the form of cheese. The extent of this variability and determinants of response to dairy fat are currently unknown. The objective of this study was to determine factors associated with lipid metabolism response to a dairy fat intervention, with a focus on serum cholesterol. A 6-week randomized parallel intervention trial was carried out in healthy volunteers (≥50 years, BMI ≥25 kg/m2). Participants (n = 104) consumed ~40 g dairy fat daily in addition to their usual diet, in 1 of 3 forms: butter, cheese, or reduced-fat cheese and butter. For this analysis, “response” was based on the percentage (%) change in serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) from pre- to post-intervention. Participants were divided into tertiles for each lipid response. The upper and lower tertiles were used to categorize participants as “responders” and “non-responders.” For TC and LDL-c, response was classified as a decrease, whereas “response” was defined as an increase for HDL-c. Clinical response was also considered, by calculating pre- and post-intervention prevalence of those meeting target levels of cholesterol recommendations. Participants demonstrating the largest % decrease (Tertile 1; “responders”) in TC had significantly higher levels of TC and HDL-c, at baseline, and lower levels of triglycerides (TAGs) compared to those in tertile 3 (i.e., TC non-responders). Those with the largest % decrease in LDL-c (Tertile 1: LDL-c responders) had higher baseline levels of LDL-c and lower levels of TAGs. Multiple regression analysis revealed that the % change in TC and LDL-c was associated with baseline TC, TAG, body weight and high-sensitivity C-reactive protein (hsCRP; P < 0.05). Previous work has demonstrated the dairy food matrix affects lipid response to dairy consumption. This study suggests that phenotypic differences may also influence response to dairy fat in overweight individuals.
Collapse
Affiliation(s)
- Aileen O'Connor
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland.,Food for Health Ireland, Dublin, Ireland
| | - Emma L Feeney
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland.,Food for Health Ireland, Dublin, Ireland
| | - Nupur Bhargava
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland.,Food for Health Ireland, Dublin, Ireland
| | - Nessa Noronha
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland.,Food for Health Ireland, Dublin, Ireland
| | - Eileen R Gibney
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland.,Food for Health Ireland, Dublin, Ireland
| |
Collapse
|
37
|
Kan J, Wu F, Wang F, Zheng J, Cheng J, Li Y, Yang Y, Du J. Phytonutrients: Sources, bioavailability, interaction with gut microbiota, and their impacts on human health. Front Nutr 2022; 9:960309. [PMID: 36051901 PMCID: PMC9424995 DOI: 10.3389/fnut.2022.960309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Phytonutrients are natural bioactive components present in the daily diet that can exert a positive impact on human health. Studies have shown that phytonutrients may act as antioxidants and improve metabolism after being ingested, which help to regulate physiological processes and prevent metabolic disorders and diseases. However, their efficacy is limited by their low bioavailability. The gut microbiota is symbiotic with humans and its abundance and profile are related to most diseases. Interestingly, studies have shown that the gut microbiota is associated with the metabolism of phytonutrients by converting them into small molecules that can be absorbed by the body, thereby enhancing their bioavailability. Furthermore, phytonutrients can modulate the composition of the gut microbiota, and therefore improve the host's health. Here, we focus on uncovering the mechanisms by which phytonutrients and gut microbiota play roles in health, and the interrelationships between phytonutrients and gut microbiota were summarized. We also reviewed the studies that reported the efficacy of phytonutrients in human health and the future directions.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Feng Wu
- Sequanta Technologies Co., Ltd., Shanghai, China
| | | | | | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Kannapolis, NC, United States
| | - Yuan Li
- Sequanta Technologies Co., Ltd., Shanghai, China
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Yuexin Yang
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Jun Du
| |
Collapse
|
38
|
Phenol metabolic fingerprint and selection of intake biomarkers after acute and sustained consumption of red-fleshed apple versus common apple in humans. The AppleCOR study. Food Chem 2022; 384:132612. [DOI: 10.1016/j.foodchem.2022.132612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/30/2023]
|
39
|
Calabriso N, Scoditti E, Massaro M, Maffia M, Chieppa M, Laddomada B, Carluccio MA. Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients 2022; 14:2679. [PMID: 35807860 PMCID: PMC9268201 DOI: 10.3390/nu14132679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.
Collapse
Affiliation(s)
- Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy
| | - Maria Annunziata Carluccio
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| |
Collapse
|
40
|
Sustained Consumption of a Decaffeinated Green Coffee Nutraceutical Has Limited Effects on Phenolic Metabolism and Bioavailability in Overweight/Obese Subjects. Nutrients 2022; 14:nu14122445. [PMID: 35745175 PMCID: PMC9230201 DOI: 10.3390/nu14122445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Knowledge on the bioavailability of coffee (poly)phenols mostly come from single dose postprandial studies. This study aimed at investigating the effects of regularly consuming a green coffee phenolic extract (GCPE) on the bioavailability and metabolism of (poly)phenols. Volunteers with overweight/obesity consumed a decaffeinated GCPE nutraceutical containing 300 mg hydroxycinnamates twice daily for two months. Plasma and urinary pharmacokinetics, and fecal excretion of phenolic metabolites were characterized by LC-MS-QToF at weeks 0 and 8. Fifty-four metabolites were identified in biological fluids. Regular consumption of the nutraceutical produced certain changes: reduced forms of caffeic, ferulic and coumaric acids in urine or 3-(3′-hydroxypenyl)propanoic, and 3,4-dihydroxybenzoic acids in feces significantly increased (p < 0.05) after 8 weeks; in contrast, coumaroylquinic and dihydrocoumaroylquinic acids in urine decreased (p < 0.05) compared to baseline excretion. The sum of intestinal and colonic metabolites increased after sustained consumption of GCPE, without reaching statistical significance, suggesting a small overall effect on (poly)phenols’ bioavailability.
Collapse
|
41
|
Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022; 14:nu14091925. [PMID: 35565892 PMCID: PMC9101290 DOI: 10.3390/nu14091925] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
When analysing the beneficial effects of phenolic compounds, several factors that exert a clear influence should be taken into account. The content of phenolic compounds in foods is highly variable, directly affecting individual dietary intake. Once ingested, these compounds have a greater or lesser bioaccessibility, defined as the amount available for absorption in the intestine after digestion, and a certain bioavailability, defined as the proportion of the molecule that is available after digestion, absorption and metabolism. Among the external factors that modify the content of phenolic compounds in food are the variety, the cultivation technique and the climate. Regarding functional foods, it is important to take into account the role of the selected food matrix, such as dairy matrices, liquid or solid matrices. It is also essential to consider the interactions between phenolic compounds as well as the interplay that occurs between these and several other components of the diet (macro- and micronutrients) at absorption, metabolism and mechanism of action levels. Furthermore, there is a great inter-individual variability in terms of phase II metabolism of these compounds, composition of the microbiota, and metabolic state or metabotype to which the subject belongs. All these factors introduce variability in the responses observed after ingestion of foods or nutraceuticals containing phenolic compounds.
Collapse
|
42
|
Wang M, Li J, Hu T, Zhao H. Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Vissenaekens H, Grootaert C, Raes K, De Munck J, Smagghe G, Boon N, Van Camp J. Quercetin Mitigates Endothelial Activation in a Novel Intestinal-Endothelial-Monocyte/Macrophage Coculture Setup. Inflammation 2022; 45:1600-1611. [PMID: 35352237 DOI: 10.1007/s10753-022-01645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis initiation is associated with a pro-inflammatory state of the endothelium. Quercetin is a flavonoid abundantly present in plant-based foods, with a possible impact on cardiovascular health. In this study, the effects of quercetin on lipopolysaccharide (LPS)-mediated endothelial inflammation and monocyte adhesion and migration, which are initial steps of the atherogenic process, are studied. Novel in vitro multicellular models simulating the intestinal-endothelial-monocytes/macrophages axis allowed to combine relevant intestinal flavonoid absorption, metabolism and efflux, and the consequent bioactivity towards peripheral endothelial cells. In this triple coculture, quercetin exposure decreased monocyte adhesion to and macrophage migration through an LPS-stressed endothelium, and this was associated with significantly lower levels of soluble vascular cell adhesion molecule-1 (sVCAM-1). Furthermore, quercetin decreased the pro-inflammatory cell environment upon LPS-induced endothelial activation, in terms of tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and sVCAM-1 expression. These findings highlight a mode-of-action by which quercetin may positively impact the initial states of atherosclerosis under more physiologically relevant conditions in terms of quercetin concentrations, metabolites, and intercellular crosstalk.
Collapse
Affiliation(s)
- Hanne Vissenaekens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Katleen Raes
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Julie De Munck
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
44
|
The intake of flavonoids, stilbenes, and tyrosols, mainly consumed through red wine and virgin olive oil, is associated with lower carotid and femoral subclinical atherosclerosis and coronary calcium. Eur J Nutr 2022; 61:2697-2709. [PMID: 35254491 PMCID: PMC9279214 DOI: 10.1007/s00394-022-02823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022]
Abstract
Purpose It is suggested that polyphenols back the cardiovascular protection offered by the Mediterranean diet. This study evaluates the association of specific types of dietary polyphenols with prevalent subclinical atherosclerosis in middle-aged subjects. Methods Ultrasonography and TC were performed on 2318 men from the Aragon Workers Health Study, recruited between 2011 and 2014, to assess the presence of plaques in carotid and femoral arteries and coronary calcium. Polyphenol intake was assessed using a validated semi-quantitative 136-item food frequency questionnaire. The Phenol Explorer database was used to derive polyphenol class intake. Logistic and linear regressions were used to estimate the cross-sectional association of polyphenols intake with femoral and carotid subclinical atherosclerosis and coronary calcium. Results A higher intake of flavonoids (third vs. first tertile) was associated with a lower risk of both carotid (OR 0.80: CI 95% 0.62–1.02; P trend 0.094) and femoral (0.62: 0.48–0.80, P trend < 0.001) subclinical atherosclerosis. A higher intake of stilbenes was associated with a lower risk of femoral subclinical atherosclerosis (0.62: 0.46–0.83; P trend 0.009) and positive coronary calcium (0.75: 0.55–1.03; P trend 0.131). A higher intake of tyrosols was also associated with a lower risk of positive coronary calcium (0.80: 0.62–1.03; P trend 0.111). The associations remained similar when adjusted for blood lipids and blood pressure. Conclusion Dietary flavonoids, stilbenes, and tyrosols, whose main sources are red wine and virgin olive oil, are associated with lower prevalence of subclinical atherosclerosis in middle-aged subjects. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02823-0.
Collapse
|
45
|
Ortea I. Foodomics in health: advanced techniques for studying the bioactive role of foods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Polia F, Pastor-Belda M, Martínez-Blázquez A, Horcajada MN, Tomás-Barberán FA, García-Villalba R. Technological and Biotechnological Processes To Enhance the Bioavailability of Dietary (Poly)phenols in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2092-2107. [PMID: 35156799 PMCID: PMC8880379 DOI: 10.1021/acs.jafc.1c07198] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/10/2023]
Abstract
The health effects of (poly)phenols (PPs) depend upon their bioavailability that, in general, is very low and shows a high interindividual variability. The low bioavailability of PPs is mainly attributed to their low absorption in the upper gastrointestinal tract as a result of their low water solubility, their presence in foods as polymers or in glycosylated forms, and their tight bond to food matrices. Although many studies have investigated how technological and biotechnological processes affect the phenolic composition of fruits and vegetables, limited information exists regarding their effects on PP bioavailability in humans. In the present review, the effect of food processing (mechanical, thermal, and non-thermal treatments), oral-delivery nanoformulations, enzymatic hydrolysis, fermentation, co-administration with probiotics, and generation of postbiotics in PP bioavailability have been overviewed, focusing in the evidence provided in humans.
Collapse
Affiliation(s)
- Franck Polia
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | - Marta Pastor-Belda
- Department
of Analytical Chemistry, Faculty of Chemistry, Regional Campus of
International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Alberto Martínez-Blázquez
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | | | - Francisco A. Tomás-Barberán
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | - Rocío García-Villalba
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| |
Collapse
|
47
|
Sharifi-Rad J, Quispe C, Durazzo A, Lucarini M, Souto EB, Santini A, Imran M, Moussa AY, Mostafa NM, El-Shazly M, Batiha GES, Qusti S, Alshammari EM, Sener B, Schoebitz M, Martorell M, Alshehri MM, Dey A, Cruz-Martins N. Resveratrol’ biotechnological applications: enlightening its antimicrobial and antioxidant properties. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
The Donor-Dependent and Colon-Region-Dependent Metabolism of (+)-Catechin by Colonic Microbiota in the Simulator of the Human Intestinal Microbial Ecosystem. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010073. [PMID: 35011305 PMCID: PMC8746996 DOI: 10.3390/molecules27010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
The intestinal absorption of dietary catechins is quite low, resulting in most of them being metabolized by gut microbiota in the colon. It has been hypothesized that microbiota-derived metabolites may be partly responsible for the association between catechin consumption and beneficial cardiometabolic effects. Given the profound differences in gut microbiota composition and microbial load between individuals and across different colon regions, this study examined how microbial (+)-catechin metabolite profiles differ between colon regions and individuals. Batch exploration of the interindividual variability in (+)-catechin microbial metabolism resulted in a stratification based on metabolic efficiency: from the 12 tested donor microbiota, we identified a fast- and a slow-converting microbiota that was subsequently inoculated to SHIME, a dynamic model of the human gut. Monitoring of microbial (+)-catechin metabolites from proximal and distal colon compartments with UHPLC-MS and UPLC-IMS-Q-TOF-MS revealed profound donor-dependent and colon-region-dependent metabolite profiles with 5-(3',4'-dihydroxyphenyl)-γ-valerolactone being the largest contributor to differences between the fast- and slow-converting microbiota and the distal colon being a more important region for (+)-catechin metabolism than the proximal colon. Our findings may contribute to further understanding the role of the gut microbiota as a determinant of interindividual variation in pharmacokinetics upon (+)-catechin ingestion.
Collapse
|
49
|
A High Protein Diet Is More Effective in Improving Insulin Resistance and Glycemic Variability Compared to a Mediterranean Diet-A Cross-Over Controlled Inpatient Dietary Study. Nutrients 2021; 13:nu13124380. [PMID: 34959931 PMCID: PMC8707429 DOI: 10.3390/nu13124380] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The optimal dietary pattern to improve metabolic function remains elusive. In a 21-day randomized controlled inpatient crossover feeding trial of 20 insulin-resistant obese women, we assessed the extent to which two isocaloric dietary interventions—Mediterranean (M) and high protein (HP)—improved metabolic parameters. Obese women were assigned to one of the following dietary sequences: M–HP or HP–M. Cardiometabolic parameters, body weight, glucose monitoring and gut microbiome composition were assessed. Sixteen women completed the study. Compared to the M diet, the HP diet was more effective in (i) reducing insulin resistance (insulin: Beta (95% CI) = −6.98 (−12.30, −1.65) µIU/mL, p = 0.01; HOMA-IR: −1.78 (95% CI: −3.03, −0.52), p = 9 × 10−3); and (ii) improving glycemic variability (−3.13 (−4.60, −1.67) mg/dL, p = 4 × 10−4), a risk factor for T2D development. We then identified a panel of 10 microbial genera predictive of the difference in glycemic variability between the two diets. These include the genera Coprococcus and Lachnoclostridium, previously associated with glucose homeostasis and insulin resistance. Our results suggest that morbidly obese women with insulin resistance can achieve better control of insulin resistance and glycemic variability on a high HP diet compared to an M diet.
Collapse
|
50
|
Sánchez-Martínez L, Periago MJ, García-Alonso J, García-Conesa MT, González-Barrio R. A Systematic Review of the Cardiometabolic Benefits of Plant Products Containing Mixed Phenolics and Polyphenols in Postmenopausal Women: Insufficient Evidence for Recommendations to This Specific Population. Nutrients 2021; 13:4276. [PMID: 34959828 PMCID: PMC8707028 DOI: 10.3390/nu13124276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Menopause is characterized by endocrine and physiological changes and is often accompanied by increased body weight and cholesterol, glucose intolerance, and/or hypertension. These alterations are associated with increased risk for cardiovascular diseases (CVDs) and Type II diabetes mellitus (T2DM) that may be moderate by dietary plant phenolic compounds. In this review, we examine the current evidence of the impact of a variety of plant products (foods, extracts, beverages) rich in a mixture of phenolics and polyphenols on: (i) glucose and insulin levels; (ii) lipid profile; (iii) blood pressure; and (iv) biomarkers of inflammation and oxidative stress in postmenopausal women. We critically evaluate both the results of a range of intervention studies conducted in this specific subpopulation and the level of evidence supporting the benefits of consuming those products after the menopause. Overall, the current available evidence does not allow for specific dietary recommendations of these plant products rich in phenolics and polyphenols in this high-risk subpopulation. Our data show rather variable and small effects of the different products examined on the cardiometabolic biomarkers and further support the need to: (1) improve the quality of the study designs and data reporting; and (2) understand the variability in the response of the different biomarkers and establish clear differences between healthy and cardiometabolic disease levels.
Collapse
Affiliation(s)
- Lorena Sánchez-Martínez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital ‘Virgen de la Arrixaca’, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain; (L.S.-M.); (M.-J.P.); (J.G.-A.)
| | - María-Jesús Periago
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital ‘Virgen de la Arrixaca’, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain; (L.S.-M.); (M.-J.P.); (J.G.-A.)
| | - Javier García-Alonso
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital ‘Virgen de la Arrixaca’, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain; (L.S.-M.); (M.-J.P.); (J.G.-A.)
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital ‘Virgen de la Arrixaca’, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain; (L.S.-M.); (M.-J.P.); (J.G.-A.)
| |
Collapse
|