1
|
Liao GQ, Han HL, Wang TC, Li HR, Qian YZ, Zhu MX, Jia Q, Qiu J. Comparative analysis of the fatty acid profiles in goat milk during different lactation periods and their interactions with volatile compounds and metabolites. Food Chem 2024; 460:140427. [PMID: 39033635 DOI: 10.1016/j.foodchem.2024.140427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
This study aimed to compare the composition of fatty acids in goat milk during lactation with human milk, as well as analyze the differences in their interaction with odor and metabolites. Polyunsaturated fatty acids content was higher in human milk, while odd-chain, branched-chain, and monounsaturated fatty acids content were higher in goat milk with a decreasing trend during lactation. PUFAs in human milk undergo auto-oxidation to produce aldehydes (hexanal), giving it a mild aroma. Butyric acid in goat colostrum mediates the synthesis and auto-oxidation of PUFA, while taurine mediated the hydrolysis of amino acids. They produce a furanone compound (2(5H)-furanone) with a buttery flavor. The presence of butyric acid in goat transitional milk had an impact on flavor and metabolites. The medium chain fatty acid composition of the goat mature milk was affected by nucleic acid compounds, which then oxidized to produce methyl ketone (2-nonanone), giving it an unpleasant flavor.
Collapse
Affiliation(s)
- Guang-Qin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Hao-Lei Han
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tian-Cai Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hou-Ru Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Chengdu university College of food and biological engineering, Chengdu 610000, China
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Mai-Xun Zhu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China.
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
2
|
He S, Shi L, Zheng ZW, Wu F, Ding CF. Differentiation of Cis/trans-geometrical isomers in long-chain unsaturated fatty acids based on ion mobility and theoretical calculations. Food Chem 2024; 457:140156. [PMID: 38936120 DOI: 10.1016/j.foodchem.2024.140156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In recent years, fatty acids containing conjugated CCs have attracted extensive research attention due to their biological activities against human diseases. However, their differentiation is challenging. This study developed a comprehensive analytical solution to accurately differentiate cis/trans-fatty acid isomers using ion mobility mass spectrometry (IM-MS) and theoretical calculations. Cis/trans-fatty acids were mobility-differentiated via simple complexation with 1,5,9-triazacyclododecane (9C3N) or 1,4,8,11-tetraazacyclotetradecane (10C4N) and metal ions, obtaining baseline separation with a peak-to-peak resolution of 0.35-0.92. Moreover, the conformation of the complexes was optimized theoretically, revealing different binding modes between the cis/trans-fatty acid-9C3N/10C4N-metal ion systems, yielding in-depth structural data on the complexes and elucidating the principles of mobility separation. Furthermore, the proposed method was assessed in terms of quantification, accuracy, and precision repeatability. Finally, the method was applied to analyze oil samples. Given its simplicity, speed, and lack of chemical derivatization or chromatographic separation, this technique has potential applications in food analysis.
Collapse
Affiliation(s)
- Sisi He
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lulu Shi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Zi-Wei Zheng
- Digital Industry Research Institute, Zhejiang Wanli University, No.8 South Qian Hu Road, Ningbo City, Zhejiang Province, PR China
| | - Fangling Wu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
3
|
Hoang PH, Nguyen MT, Ngo HTT, Chu NH, Ha PT, Bui HG, To LH. Enhancement of Bioactive Compounds and Survival of Lactobacillus acidophilus Grown in the Omega-6, -7 Riched Cyanobacteria Spirulina platensis. Curr Microbiol 2024; 81:380. [PMID: 39340578 DOI: 10.1007/s00284-024-03865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Lactobacillus acidophilus is a probiotic commonly used in aquaculture to enhance the growth and immune system of aquatic species through the synthesis of various enzymes, and antimicrobial compounds like lactic acid. Traditional method of growing L. acidophilus involes using the De Man-Rogosa-Sharpe (MRS) medium. However, L. acidophilus belongs to a non-spore forming group, which make it vulnerable to stress conditions, especially during the usage process. Therefore, the present study aimed to improve the survival rate, antibacterial activity, and enrich the polyunsaturated fatty acids (PUFAs) content of L. acidophilus LB when cultured in an algae-supplemented medium, thus increasing its benefits in aquaculture applications. Using different algae biomass species as an alternative to MRS medium for the growth of L. acidophilus LB, the results showed that Spirulina platensis promoted the highest density of L. acidophilus LB. When grown in (S. platensis + glucose) medium, L. acidophilus LB produced the highest lactic acid concentration of 18.24 ± 2.43 mg/mL and survived in extreme conditions such as 4% NaCl, pH 1.0-2.0, and 50 ºC, and inhibited 99.82 ± 0.24% of Vibrio parahaemolyticus population after 2 days of treatment. Additionally, it was observed that the PUFAs content, specifically omega-6, and -7, also increased in the fermentation mixture as compared to the control sample. These findings highlighted the potential of utilizing the cyanobacteria S. platensis as an alternative, eco-friendly growth substance for L. acidophilus LB to enhance its bioactivity and viability under extreme conditions.
Collapse
Affiliation(s)
- Phuong Ha Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam.
| | - Minh T Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Hoai Thu T Ngo
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Nhat Huy Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Phuong Thu Ha
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Huong Giang Bui
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Linh Hang To
- University of Adelaide, (Adelaide) 230 North Tce, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Mourino-Alvarez L, Juarez-Alia C, Sastre-Oliva T, Perales-Sánchez I, Hernandez-Fernandez G, Chicano-Galvez E, Peralbo-Molina Á, Madruga F, Blanco-Lopez E, Tejerina T, Barderas MG. Dysregulation of Lipid Metabolism Serves as A Link Between Alzheimer's and Cardiovascular Disease, As Witnessed in A Cross-Sectional Study. Aging Dis 2024:AD.2024.0434. [PMID: 39012677 DOI: 10.14336/ad.2024.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular risk factors and established cardiovascular disease (CVD) increase the risk of suffering dementia of the Alzheimer's type (DAT). Here, we set out to define specific molecular profiles of CVD in patients with DAT to better understand its relationship, to unravel the mechanisms underlying the high risk of developing DAT in CVD patients and to define new markers of early disease. Plasma samples from patients with DAT, with and without CVD, were analyzed through a multiomics approach, with integration of metabolomics and proteomics datasets using the OmicsNet web-based tool. Metabolomics results showed an enrichment in lipids and lipid-like molecules. Similarly, the most significant cluster identified through proteomics was formed by 5 proteins related to lipoprotein and cholesterol metabolism. After integration and functional enrichment, glycerolipid metabolism, fatty acid degradation and sphingolipid metabolism were among the most significant functions. Finally, differential expression of ABCA1 and APOH proteins was verified, in an independent cohort also including controls and patients with CVD alone. Both proteins positively correlated with phospho-Tau (181), a classical hallmark of DAT. Different molecular profiles exist in patients with DAT, with and without CVD, with exacerbated alterations in patients in which DAT and CVD co-exist. This information may help to define biomarkers like ABCA1 and APOH that identify patients with cardiovascular dysfunction that are at high risk of developing DAT. Such markers will allow more personalized interventions to be selected, a further step towards precision medicine for individuals whose molecular profiles indicate a distinct response to the same management strategies.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Inés Perales-Sánchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| | - Eduardo Chicano-Galvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain
| | - Ángela Peralbo-Molina
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), Córdoba, Spain
| | - Felipe Madruga
- Departament of Geriatrics, Hospital Virgen del Valle, SESCAM, Toledo, Spain
| | - Emilio Blanco-Lopez
- Department of Cardiology, Ciudad Real General University Hospital, Ciudad Real, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, SESCAM, 45071 Toledo, Spain
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, IDISCAM, 45071 Toledo, Spain
| |
Collapse
|
5
|
Bermúdez MA, Garrido A, Pereira L, Garrido T, Balboa MA, Balsinde J. Rapid Movement of Palmitoleic Acid from Phosphatidylcholine to Phosphatidylinositol in Activated Human Monocytes. Biomolecules 2024; 14:707. [PMID: 38927110 PMCID: PMC11202010 DOI: 10.3390/biom14060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This work describes a novel route for phospholipid fatty acid remodeling involving the monounsaturated fatty acid palmitoleic acid. When administered to human monocytes, palmitoleic acid rapidly incorporates into membrane phospholipids, notably into phosphatidylcholine (PC). In resting cells, palmitoleic acid remains within the phospholipid pools where it was initially incorporated, showing no further movement. However, stimulation of the human monocytes with either receptor-directed (opsonized zymosan) or soluble (calcium ionophore A23187) agonists results in the rapid transfer of palmitoleic acid moieties from PC to phosphatidylinositol (PI). This is due to the activation of a coenzyme A-dependent remodeling route involving two different phospholipase A2 enzymes that act on different substrates to generate free palmitoleic acid and lysoPI acceptors. The stimulated enrichment of specific PI molecular species with palmitoleic acid unveils a hitherto-unrecognized pathway for lipid turnover in human monocytes which may play a role in regulating lipid signaling during innate immune activation.
Collapse
Affiliation(s)
- Miguel A. Bermúdez
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alvaro Garrido
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Pereira
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Garrido
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María A. Balboa
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Lipid Metabolism and Inflammation Group, IBGM, CSIC-UVA, 47003 Valladolid, Spain
| | - Jesús Balsinde
- Bioactive Lipids and Lipidomics Core, IBGM, CSIC-UVA, 47003 Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Bakhtiari S, Asri N, Jahdkaran M, Rezaei-Tavirani M, Jahani-Sherafat S, Rostami-Nejad M. The connection between fatty acids and inflammation in celiac disease; a deep exploring. Tissue Barriers 2024:2342619. [PMID: 38618691 DOI: 10.1080/21688370.2024.2342619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The interplay between fatty acids (FAs) and celiac disease (CD) is a burgeoning field of research with significant implications for understanding the pathophysiology and potential therapeutic avenues for this autoimmune disorder. CD, triggered by gluten consumption in susceptible individuals, presents with a range of intestinal and extra-intestinal symptoms impacting various bodily functions. The disruption of intestinal tight junctions (TJs) by gluten proteins leads to increased gut permeability and subsequent inflammatory responses mediated by T-cells. FAs, crucial components of cell membranes, play diverse roles in inflammation and immune regulation. In fact, FAs have been shown to modulate inflammatory processes through various mechanisms. Studies have highlighted alterations in FA profiles in individuals with CD, indicating potential implications for disease pathogenesis and micronutrient deficiencies. Moreover, the exploration of FAs as biomarkers for CD diagnosis offers promising avenues for future research and therapeutic interventions. Understanding the intricate relationship between FAs and CD could lead to novel approaches in managing this complex autoimmune disorder. Therefore, this review article aims to provide an overview of the connection between FAs and inflammation in CD.
Collapse
Affiliation(s)
- Sajjad Bakhtiari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Jahdkaran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Gao W, Yan Y, Guan Z, Zhang J, Chen W. Effects of Bacillus coagulans TBC169 on gut microbiota and metabolites in gynecological laparoscopy patients. Front Microbiol 2024; 15:1284402. [PMID: 38596369 PMCID: PMC11002114 DOI: 10.3389/fmicb.2024.1284402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Objective The primary objective of this study is to investigate the mechanism by which Bacillus coagulans TBC169 accelerates intestinal function recovery in patients who have undergone gynecological laparoscopic surgery, using metabolomics and gut microbiota analysis. Methods A total of 20 subjects were selected and randomly divided into two groups: the intervention group (n = 10) receiving Bacillus coagulans TBC169 Tablets (6 pills, 1.05 × 108 CFU), and the control group (n = 10) receiving placebos (6 pills). After the initial postoperative defecation, fecal samples were collected from each subject to analyze their gut microbiota and metabolic profiles by high-throughput 16S rRNA gene sequencing analysis and untargeted metabonomic. Results There were no statistically significant differences observed in the α-diversity and β-diversity between the two groups; however, in the intervention group, there was a significant reduction in the relative abundance of unclassified_Enterobacteriaceae at the genus level. Furthermore, the control group showed increased levels of Holdemanella and Enterobacter, whereas the intervention group exhibited elevated levels of Intestinimonas. And administration of Bacillus coagulans TBC169 led to variations in 2 metabolic pathways: D-glutamine and D-glutamate metabolism, and arginine biosynthesis. Conclusion This study demonstrated that consuming Bacillus coagulans TBC169 after gynecological laparoscopic surgery might inhibit the proliferation of harmful Enterobacteriaceae; mainly influence 2 pathways including D-glutamine and D-glutamate metabolism, and arginine biosynthesis; and regulate metabolites related to immunity and intestinal motility; which can help regulate immune function, maintain intestinal balance, promote intestinal peristalsis, and thus accelerate the recovery of intestinal function.
Collapse
Affiliation(s)
- Weiqi Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhaobo Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jingmin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Cetin E, Pedersen B, Porter LM, Adler GK, Burak MF. Protocol for a randomized placebo-controlled clinical trial using pure palmitoleic acid to ameliorate insulin resistance and lipogenesis in overweight and obese subjects with prediabetes. Front Endocrinol (Lausanne) 2024; 14:1306528. [PMID: 38313838 PMCID: PMC10835623 DOI: 10.3389/fendo.2023.1306528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Palmitoleic acid (POA), a nonessential, monounsaturated omega-7 fatty acid (C16:1n7), is a lipid hormone secreted from adipose tissue and has beneficial effects on distant organs, such as the liver and muscle. Interestingly, POA decreases lipogenesis in toxic storage sites such as the liver and muscle, and paradoxically increases lipogenesis in safe storage sites, such as adipose tissue. Furthermore, higher POA levels in humans are correlated with better insulin sensitivity, an improved lipid profile, and a lower incidence of type-2 diabetes and cardiovascular pathologies, such as myocardial infarction. In preclinical animal models, POA improves glucose intolerance, dyslipidemia, and steatosis of the muscle and liver, while improving insulin sensitivity and secretion. This double-blind placebo-controlled clinical trial tests the hypothesis that POA increases insulin sensitivity and decreases hepatic lipogenesis in overweight and obese adult subjects with pre-diabetes. Important to note, that this is the first study ever to use pure (>90%) POA with < 0.3% palmitic acid (PA), which masks the beneficial effects of POA. The possible positive findings may offer a therapeutic and/or preventative pathway against diabetes and related immunometabolic diseases.
Collapse
Affiliation(s)
- Ecesu Cetin
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Brian Pedersen
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Lindsey M. Porter
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Gail K. Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Mehmet Furkan Burak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Sabri Ulker Center, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
9
|
Guo X, Zhou J, Yu H, Cao H, Li X, Hu Q, Yu Y. Serum lipidomic study of long-chain fatty acids in psoriasis patients prior to and after anti-IL-17A monoclonal antibody treatment by quantitative GC‒MS analysis with in situ extraction. Lipids Health Dis 2024; 23:6. [PMID: 38185620 PMCID: PMC10773056 DOI: 10.1186/s12944-023-01999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Long-chain fatty acids (LCFAs) are involved in regulating multiple physiological processes as signalling molecules. Gas chromatography-mass spectrometry (GC-MS) is widely used to quantify LCFAs. However, current quantitative methods for LCFAs using GC-MS have demonstrated complicated issues. Psoriasis is a chronic inflammatory skin disease, and its pathogenesis may be related to the overproduction of interleukin-17A (IL-17A). Clinical efficacy of anti-IL-17A monoclonal antibody (mAb) treatment in psoriasis patients has been demonstrated. Recent studies suggest that LCFAs play varying roles in the pathogenesis of psoriasis. However, more comprehensive research is needed to illuminate the mechanism of LCFAs in psoriasis. METHODS The established in situ derivatization method for analysing LCFAs with a GC-MS platform was utilized to conduct serum lipidomics analysis of healthy volunteers and psoriasis patients receiving pretherapy and posttreatment with of anti-IL-17A mAb. Imiquimod (IMQ)-treated wild type (WT) and T-cell receptor delta chain knock-out (Tcrd-/-) mice were used to investigate the correlation between IL-17A and abnormal changes in LCFAs in psoriasis patients. RESULTS A rapid and sensitive in situ extraction derivatization method for quantifying LCFAs using GC-MS was established. Serum lipidomic results showed that psoriasis patients had higher levels of saturated fatty acids (SFAs) and ω-6 polyunsaturated fatty acids (PUFAs) but lower levels of monounsaturated fatty acids (MUFAs) and ω-3 PUFAs than healthy individuals, indicating impaired serum LCFA metabolism. Anti-IL-17A mAb treatment affected most of these LCFA changes. Analysis of LCFAs in IMQ-treated mice showed that LCFAs increased in the serum of WT mice, while there were no significant changes in the Tcrd-/- mice. SFAs increased in IMQ-treated WT mice, while MUFAs showed the opposite trend, and PUFAs did not change significantly. CONCLUSIONS This study presented a dependable method for quantifying LCFAs that enhanced sensitivity and reduced analysis time. The lipidomic analysis results showed that anti-IL-17A mAb not only ameliorated skin lesions in psoriasis patients but also affected abnormal LCFAs metabolism. Furthermore, the study indicated a potential correlation between IL-17A and abnormal LCFA metabolism in psoriasis patients, which was supported by the alterations in serum LCFAs observed in IMQ-treated WT and Tcrd-/- mice.
Collapse
Affiliation(s)
- XiaoYu Guo
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jianglu Zhou
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Hong Yu
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Han Cao
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, PR China
| | - Xia Li
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, PR China
| | - Qing Hu
- NMPA Key Laboratory for Quality, Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China.
| | - YunQiu Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
10
|
Pu Y, Cheng CK, Zhang H, Luo JY, Wang L, Tomlinson B, Huang Y. Molecular mechanisms and therapeutic perspectives of peroxisome proliferator-activated receptor α agonists in cardiovascular health and disease. Med Res Rev 2023; 43:2086-2114. [PMID: 37119045 DOI: 10.1002/med.21970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
The prevalence of cardiovascular disease (CVD) has been rising due to sedentary lifestyles and unhealthy dietary patterns. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor regulating multiple biological processes, such as lipid metabolism and inflammatory response critical to cardiovascular homeostasis. Healthy endothelial cells (ECs) lining the lumen of blood vessels maintains vascular homeostasis, where endothelial dysfunction associated with increased oxidative stress and inflammation triggers the pathogenesis of CVD. PPARα activation decreases endothelial inflammation and senescence, contributing to improved vascular function and reduced risk of atherosclerosis. Phenotypic switch and inflammation of vascular smooth muscle cells (VSMCs) exacerbate vascular dysfunction and atherogenesis, in which PPARα activation improves VSMC homeostasis. Different immune cells participate in the progression of vascular inflammation and atherosclerosis. PPARα in immune cells plays a critical role in immunological events, such as monocyte/macrophage adhesion and infiltration, macrophage polarization, dendritic cell (DC) embedment, T cell activation, and B cell differentiation. Cardiomyocyte dysfunction, a major risk factor for heart failure, can also be alleviated by PPARα activation through maintaining cardiac mitochondrial stability and inhibiting cardiac lipid accumulation, oxidative stress, inflammation, and fibrosis. This review discusses the current understanding and future perspectives on the role of PPARα in the regulation of the cardiovascular system as well as the clinical application of PPARα ligands.
Collapse
Affiliation(s)
- Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiang-Yun Luo
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Lim C, Lee S, Shin Y, Cho S, Park C, Shin Y, Song EC, Kim WK, Ham C, Kim SB, Kwon YS, Oh KT. Development and application of novel peptide-formulated nanoparticles for treatment of atopic dermatitis. J Mater Chem B 2023; 11:10131-10146. [PMID: 37830254 DOI: 10.1039/d3tb01202f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Atopic dermatitis is a chronic inflammatory skin condition that is characterized by skin inflammation, itching, and redness. Although various treatments can alleviate symptoms, they often come with side effects, highlighting the need for new treatments. Here, we discovered a new peptide-based therapy using the intra-dermal delivery technology (IDDT) platform developed by Remedi Co., Ltd (REMEDI). The platform screens and identifies peptides derived from proteins in the human body that possess cell-penetrating peptide (CPP) properties. We screened over 1000-peptides and identified several derived from the Speckled protein (SP) family that have excellent CPP properties and have anti-inflammatory effects. We assessed these peptides for their potential as a treatment for atopic dermatitis. Among them, the RMSP1 peptide showed the most potent anti-inflammatory effects by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling pathways while possessing CPP properties. To further improve efficacy and stability, we developed a palmitoylated version called Pal-RMSP1. Formulation studies using liposomes (Pal-RMSP1 LP) and micelles (Pal-RMSP1 DP) demonstrated improved anti-inflammatory effects in vitro and enhanced therapeutic effects in vivo. Our study indicates that nano-formulated Pal-RMSP1 could have the potential to become a new treatment option for atopic dermatitis.
Collapse
Affiliation(s)
- Chaemin Lim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488 Gyeonggi-do, Republic of Korea
| | - Subin Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yuseon Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seongmin Cho
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Chanho Park
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Yungyeong Shin
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Ee Chan Song
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Wan Ki Kim
- Remedi Co., Ltd. Research Center, Songdo 21990, Republic of Korea
| | - Cheolmin Ham
- Rare Isotope Science Project, Institute for Basic Science, Daejeon 34000, Republic of Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yong-Su Kwon
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Le X, Zhang W, Sun G, Fan J, Zhu M. Research on the Differences in Phenotypic Traits and Nutritional Composition of Acer Truncatum Bunge Seeds from Various Regions. Foods 2023; 12:2444. [PMID: 37444182 DOI: 10.3390/foods12132444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Acer truncatum Bunge (ATB) is an excellent edible woody oil tree species since it bears a huge amount of fruit and has strong adaptability to be widely cultivated. Selecting an optimal cultivation region for ATB is crucial to improving China's woody oil industrialization. Chemical analysis, correlation analysis, and affiliation function values were used in the present research to systematically analyze the phenotypic traits, organic compound content, and seed oil chemical composition of the seeds of ATB from nine regions. The average contents of oil, protein, and soluble sugar in ATB seeds were 43.30%, 17.40%, and 4.57%, respectively. Thirteen fatty acids were identified from ATB seed oil, the highest content of which was linoleic acid (37.95%) and nervonic acid content was 5-7%. The maximum content of unsaturated fatty acids in ATB seed oil was 90.09%. Alpha-tocopherol content was up to 80.75 mg/100 g. The degree of variation in seed quality traits (25.96%) was stronger than in morphological traits (14.55%). Compared to environmental factors, the phenotypic traits of seeds contribute more to organic compounds and fatty acids. Combining the values of the indicator affiliation functions, Gilgarang, Tongliao, Inner Mongolia was selected as the optimal source of ATB for fruit applications from nine regions.
Collapse
Affiliation(s)
- Xiaona Le
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Wen Zhang
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Guotao Sun
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
| | - Jinshuan Fan
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
- Northwest Research Center of Rural Renewable Energy Exploitation and Utilization of M.O.A, Northwest A&F University, Yangling 712100, China
- College of Forestry, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
13
|
Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat 2023; 165:106704. [PMID: 36621562 DOI: 10.1016/j.prostaglandins.2023.106704] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endothelial cells (ECs) maintain the health of blood vessels and prevent the development of cardiovascular disease (CVD). Free saturated fatty acids (FAs) induce EC damage and increase the risk of CVD by promoting arteriosclerosis. Conversely, polyunsaturated FAs (PUFAs), such as docosahexaenoic acid, are thought to suppress EC damage induced during the early stages of CVD. This review describes the effects of multiple dietary FAs on EC disorders involved in the development of CVD. The roles of FAs in atherosclerosis and CVD were analyzed by evaluating articles published in PubMed, Science Direct, and Web of Science. Saturated FAs were found to induce EC damage by reducing the production and action of EC-derived nitric oxide. Oxidative stress, inflammation, and the renin-angiotensin system were found to be involved in EC disorder. Furthermore, n-3 PUFAs were found to reduce EC dysfunction and prevent the development of EC disorder. These results indicate that FAs may affect EC failure induced during the early stages of CVD and reduce the risk of developing the disease.
Collapse
|
14
|
Balatskyi VV, Dobrzyn P. Role of Stearoyl-CoA Desaturase 1 in Cardiovascular Physiology. Int J Mol Sci 2023; 24:ijms24065531. [PMID: 36982607 PMCID: PMC10059744 DOI: 10.3390/ijms24065531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Stearoyl-CoA desaturase is a rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Monounsaturated fatty acids limit the toxicity of exogenous saturated fats. Studies have shown that stearoyl-CoA desaturase 1 is involved in the remodeling of cardiac metabolism. The loss of stearoyl-CoA desaturase 1 reduces fatty acid oxidation and increases glucose oxidation in the heart. Such a change is protective under conditions of a high-fat diet, which reduces reactive oxygen species-generating β-oxidation. In contrast, stearoyl-CoA desaturase 1 deficiency predisposes individuals to atherosclerosis under conditions of hyperlipidemia but protects against apnea-induced atherosclerosis. Stearoyl-CoA desaturase 1 deficiency also impairs angiogenesis after myocardial infarction. Clinical data show a positive correlation between blood stearoyl-CoA Δ-9 desaturation rates and cardiovascular disease and mortality. Moreover, stearoyl-CoA desaturase inhibition is considered an attractive intervention in some obesity-associated pathologies, and the importance of stearoyl-CoA desaturase in the cardiovascular system might be a limitation for developing such therapy. This review discusses the role of stearoyl-CoA desaturase 1 in the regulation of cardiovascular homeostasis and the development of heart disease and presents markers of systemic stearoyl-CoA desaturase activity and their predictive potential in the diagnosis of cardiovascular disorders.
Collapse
|
15
|
The Role of Dietary Fats in the Development and Treatment of Endometriosis. Life (Basel) 2023; 13:life13030654. [PMID: 36983810 PMCID: PMC10058497 DOI: 10.3390/life13030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
Endometriosis is an estrogen-dependent disease in women of childbearing age that affects approximately 5–15% of the female population. The etiology of endometriosis is complex, multifaceted, and not fully understood. In endometriosis, which is an estrogen-related chronic inflammatory condition, estrogen plays a major role in endometrial cellular growth. High estrogen levels could be another risk factor for developing endometriosis. The aim of this review is to update knowledge on the impact of dietary fats on the development of endometriosis and chronic inflammation in women with endometriosis and diet therapy. Dietary fat may be linked with the progression and development of endometriosis, but studies have been contradictory due to various issues including sample size, different study designs, and different methodological aspects. Results have shown that the risk of endometriosis may increase with a higher consumption of products rich in saturated fats, especially palmitic acid and trans-unsaturated fatty acids. Monounsaturated fats and omega-3 polyunsaturated fatty acids may likely be connected with a lower risk of developing endometriosis and with reductions in the severity of disease. Monounsaturated fats, omega-3 polyunsaturated fatty acids, and a suitable eicosapentaenoic acid to arachidonic acid ratio can be used in diet therapy to improve quality of life by reducing pain and inflammation. Further research is needed in order to fully understand the influence of dietary fats on the risk of development of this disease.
Collapse
|
16
|
Concise review of lipidomics in nonalcoholic fatty liver disease. DIABETES & METABOLISM 2023; 49:101432. [PMID: 36781065 DOI: 10.1016/j.diabet.2023.101432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses simple liver steatosis, nonalcoholic steatohepatitis (NASH), and liver fibrosis that can progress to cirrhosis. NAFLD has become the principal cause of chronic liver disease in many parts of the world. Lipidomic studies, by allowing to determine concentrations of lipid classes and fatty acid composition of different lipid species, have been of great interest to help understand NAFLD pathophysiology and potentially identify novel biomarkers for diagnosis and prognosis. Indeed, lipidomic data give information on qualitative lipid abnormalities associated with NAFLD. The aim of our article was to create a comprehensive and more synthetic review of main results from lipidomic studies in NAFLD. Literature was searched for all human lipidomic studies evaluating plasma samples of individuals with NAFLD. Results were regrouped by the degree of liver damage, either simple steatosis, NASH or liver fibrosis, and presented by lipid categories. Overall, we summarized the main lipidomic abnormalities associated with NAFLD as follows: modification of free fatty acid distribution, increase in ceramides, reduced phosphatidylcholine / phosphatidylethanolamine ratio, and increase in eicosanoids. These lipid abnormalities are likely to promote NASH and liver fibrosis by inducing mitochondrial dysfunction, apoptosis, inflammation, oxidation, and endoplasmic reticulum stress. Although these lipidomic abnormalities are consistently reported in many studies, further research is needed to clarify whether they may be predictive for liver steatosis, NASH or liver fibrosis.
Collapse
|
17
|
Huang S, Huang H, Xie J, Wang F, Fan S, Yang M, Zheng C, Han L, Zhang D. The latest research progress on the prevention of storage pests by natural products: Species, mechanisms, and sources of inspiration. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Palomino OM, Giordani V, Chowen J, Alfonso SF, Goya L. Physiological Doses of Oleic and Palmitic Acids Protect Human Endothelial Cells from Oxidative Stress. Molecules 2022; 27:5217. [PMID: 36014457 PMCID: PMC9415781 DOI: 10.3390/molecules27165217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress has been proposed to be a pathogenic mechanism to induce endothelial dysfunction and the onset of cardiovascular disease. Elevated levels of free fatty acids can cause oxidative stress by increasing mitochondrial uncoupling but, at physiological concentrations, they are essential for cell and tissue function and olive oil free fatty acids have proved to exhibit beneficial effects on risk factors for cardiovascular disease. We hypothesize that realistic concentrations within the physiological range of oleic (OA) and palmitic (PA) acids could be beneficial in the prevention of oxidative stress in vascular endothelium. Hence, pre-treatment and co-treatment with realistic physiological doses of palmitic and oleic acids were tested on cultured endothelial cells submitted to a chemically induced oxidative stress to investigate their potential chemo-protective effect. Cell viability and markers of oxidative status: reactive oxygen species (ROS), reduced glutathione (GSH), malondialdehyde (MDA), glutathione peroxidase (GPx) and glutathione reductase (GR) were evaluated. As a conclusion, the increased ROS generation induced by stress was significantly prevented by a pre- and co-treatment with PA or OA. Moreover, pre- and co-treatment of cells with FFAs recovered the stress-induced MDA concentration to control values and significantly recovered depleted GSH and normalized GPx and GR activities. Finally, pre- and co-treatment of cells with physiological concentrations of PA or OA in the low micromolar range conferred a substantial protection of cell viability against an oxidative insult.
Collapse
Affiliation(s)
- Olga M. Palomino
- Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Julie Chowen
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Department of Endocrinology, Instituto de Investigación la Princesa, IMDEA Food Institute, CEI UAM + CSIC, Hospital Infantil Universitario Niño Jesús, 28009 Madrid, Spain
| | | | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Science and Food Technology and Nutrition (ICTAN—CSIC), 28040 Madrid, Spain
| |
Collapse
|
19
|
Galal-Khallaf A, Al-Awthan YS, Al-Duais MA, Mohammed-Geba K. Nile crab Potamonautes niloticus shell extract: Chromatographic and molecular elucidation of potent antioxidant and anti-inflammatory capabilities. Bioorg Chem 2022; 127:106023. [PMID: 35853295 DOI: 10.1016/j.bioorg.2022.106023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022]
Abstract
Diseases emerging from oxidative stress and inflammatory imbalance are deeply threatening the modern world. Fisheries by-products are rich in bioactive metabolites. However, they are usually discarded, posing a real environmental burden. Herein we aimed to explore the bioactive compounds, anti-oxidant, and anti-inflammatory capabilities of the shell of the freshwater Nile crab Potamonautes niloticus. Methanolic extract of crab shell was subjected to GC/MS and HPLC analyses of total lipids, flavonoids, and phenolic acids. Also, zebrafish Danio rerio was subjected to inflammatory status using CuSO4, then treated with different doses of shell extract. Total antioxidant capacity and QPCR analyses for gene expression of different antioxidant enzymes, i.e. superoxide dismutase(sod), catalase (cat), and glutathione peroxidase (gpx) and pro-inflammatory cytokines, i.e. tumor necrosis factor alpha (tnf-α), nuclear factor kappa B (nf-κb), interleukin 1-Beta (il-1b) were assessed. The results showed the richness of crab shell extract with ω - 9 (32.78 %), ω - 7 (6.37 %), and ω - 6 (4 %) unsaturated fatty acids. Diverse phenolic acids and flavonoids were found, dominaed by Benzoic acid (11.24 µg mL-1), Syringic acid (11.4 µg mL-1), Ferulic acid (10.55 µg mL-1), Kampferol (9.47 µg mL-1), Quercetin (6.33 µg mL-1), and Naringin (4.16 µg mL-1). Crab extract also increased the total antioxidant capacity and oxidative stress enzymeś mRNA levels by 1.3-2.15 folds. It down-regulated pro-inflammatory cytokineś mRNA levels by 1.3-2 folds in comparison to positive control (CuSO4-induced) zebrafishes. The net results indicated that Nile crab shell extract is a rich source of anti-oxidant and anti-inflammatory compounds. Therefore, we recommend to continuously explore the bioactive capabilities of exoskeletons of different shellfish species. This can provide additive values for these products and reduce the environmental burden of their irresponsible discarding.
Collapse
Affiliation(s)
- Asmaa Galal-Khallaf
- Molecular Biology and Biotechnology Laboratory, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Mohammed A Al-Duais
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Biochemistry Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb, Yemen
| | - Khaled Mohammed-Geba
- Molecular Biology and Biotechnology Laboratory, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt; Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States.
| |
Collapse
|
20
|
Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells 2022; 11:cells11142146. [PMID: 35883589 PMCID: PMC9319324 DOI: 10.3390/cells11142146] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
In the last few years, the monounsaturated hexadecenoic fatty acids are being increasingly considered as biomarkers of health with key functions in physiology and pathophysiology. Palmitoleic acid (16:1n-7) and sapienic acid (16:1n-10) are synthesized from palmitic acid by the action of stearoyl-CoA desaturase-1 and fatty acid desaturase 2, respectively. A third positional isomer, hypogeic acid (16:1n-9) is produced from the partial β-oxidation of oleic acid. In this review, we discuss the current knowledge of the effects of palmitoleic acid and, where available, sapienic acid and hypogeic acid, on metabolic diseases such as diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and cancer. The results have shown diverse effects among studies in cell lines, animal models and humans. Palmitoleic acid was described as a lipokine able to regulate different metabolic processes such as an increase in insulin sensitivity in muscle, β cell proliferation, prevention of endoplasmic reticulum stress and lipogenic activity in white adipocytes. Numerous beneficial effects have been attributed to palmitoleic acid, both in mouse models and in cell lines. However, its role in humans is not fully understood, and is sometimes controversial. Regarding sapienic acid and hypogeic acid, studies on their biological effects are still scarce, but accumulating evidence suggests that they also play important roles in metabolic regulation. The multiplicity of effects reported for palmitoleic acid and the compartmentalized manner in which they often occur, may suggest the overlapping actions of multiple isomers being present at the same or neighboring locations.
Collapse
|
21
|
Schuldt L, von Brandenstein K, Jacobs C, Symmank J. Oleic acid-related anti-inflammatory effects in force-stressed PdL fibroblasts are mediated by H3 lysine acetylation associated with altered IL10 expression. Epigenetics 2022; 17:1892-1904. [PMID: 35763686 DOI: 10.1080/15592294.2022.2090654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The initiation of a spatially and temporally limited inflammation is essential for tissue and bone remodelling by the periodontal ligament (PdL) located between teeth and alveolar bone. Nutritional components may cause alterations in the inflammatory response of PdL fibroblasts to mechanical stress such as those occurring during orthodontic tooth movement (OTM). Recently, we reported an attenuated pro-inflammatory response of human PdL fibroblasts (HPdLFs) to compressive forces when stimulated with oleic acid (OA), a monounsaturated fatty acid particularly prominent in the Mediterranean diet. Fatty acids could serve as alternative source of acetyl-CoA, thereby affecting epigenetic histone marks, such as histone 3 lysine acetylation (H3Kac) in a lipid metabolism-dependent manner. In this study, we aimed to investigate the extent to which OA exerts its anti-inflammatory effect in compressed HPdLFs via changes in H3Kac. Six-hour compressed HPdLFs showed increased H3Kac when cultured with OA. Inhibition of histone deacetylases resulted in a comparable IL10-increase as observed in compressed OA-cultures. In contrast, inhibition of histone acetyltransferases, particularly p300/CBP, in compressed HPdLFs exposed to OA normalized the inflammatory response to control levels. OA-dependent increased association of H3Kac to IL10 promoter regions in compressed HPdLFs further strengthened the assumption that OA exhibits its anti-inflammatory properties via modulation of this epigenetic mark. In conclusion, our study strongly suggests that nutritional components can directly affect PdL cells via changes in their epigenetic code. Since epigenetic inhibitors are already widely used clinically, they may hold promise for novel approaches for personalized orthodontic treatment that incorporates nutritional and metabolism-related changes.
Collapse
Affiliation(s)
- Lisa Schuldt
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| |
Collapse
|
22
|
Ran J, Zhu Y, Ren T, Qin L. Effects of Geographic Region and Cultivar on Fatty Acid Profile and Thermal Stability of Zanthoxylum bungeanum Seed Oil. J Oleo Sci 2022; 71:631-639. [PMID: 35387915 DOI: 10.5650/jos.ess21398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fatty acid profile and thermal stability of 7 varieties zanthoxylum bungeanum (GZF, GDJ, CJJ, SHY, SMN, SJY, GTS) seed oils (ZBO) were studied. Fatty acid profile, thermal stability were determined using gas chromatography equipped with flame ionization detector (GC-FID) and thermogravimetry analysis (TGA), respectively. Chemical properties, total phenolics and antioxidant activities of ZBO were determined as well. Palmitoleic acid and oleic acid (OA) were the dominant fatty acids, the ratio of ω-6/ω-3 polyunsaturated fatty acids (PUFA) of ZBO ranged from 0.66 ± 0.01 to 1.17 ± 0.01, seven varieties ZBO showed a higher thermal stability, with the 50% mass loss temperature ranged from 397.35 ± 4.02°C to 412.50 ± 2.35°C, GZF seed oil showed a balance fatty acid profile, the ratio of ω-6/ω-3 PUFA was 0.90 ± 0.01, GDJ seed oil showed a higher thermal stability, which the 50% mass loss temperature was 412.50 ± 2.35°C. These results suggested that fatty acid profile and thermal stability of ZBO were affected by cultivars and geographic region, and it may serve as a functional dietary oil.
Collapse
Affiliation(s)
- Jingqi Ran
- School of Liquor and Food Engineering, Guizhou University
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University
| | - Tingyuan Ren
- School of Liquor and Food Engineering, Guizhou University
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University
| |
Collapse
|
23
|
Park SH, Bae SW, Jeong KY, Koo EH, Choi JH, Park JH, Kong SH, Choi WS, Park DJ, Lee HJ, Yang HK. Clinical significance of lipid droplets formed in the peritoneal fluid after laparoscopic surgery for gastric cancer. Surg Endosc 2022; 36:6095-6104. [PMID: 35312849 DOI: 10.1007/s00464-022-09173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Several studies have previously reported that laparoscopic surgery using an energy sealing device generates hazardous surgical smoke. However, the droplets appearing on the surface of peritoneal fluid irrigated with saline, after dissection phase of laparoscopic gastrectomy were ignored for a long time. This study aimed to investigate the composition and clinical significance of these droplet particles. METHODS This study prospectively enrolled 15 patients with early gastric cancer (cT1NanyM0) who were scheduled for laparoscopic gastrectomy. Floating phases of peritoneal irrigation fluid containing droplets in dissected area were retrieved before and after surgical dissection. Using gas chromatography analysis, the areas under the peak were compared between the samples retrieved before and after surgical dissection. We also analyzed if the area value with significant change was related to the inflammatory response. RESULTS In gas chromatography, the area values after laparoscopic surgical dissection were significantly increased in 10 out of 37 kinds of fatty acids, compared to those before surgical dissection. The significant increase in area value of α-linoleic and eicosadienoic acids were positively correlated with the elevated level of C-reactive protein at postoperative day 2 (Spearman's ρ = 0.843, P < 0.001; Spearman's ρ = 0.785, P = 0.001). CONCLUSIONS The lipid droplets, generated after laparoscopic lymphadenectomy during gastric cancer surgery, contained various types of fatty acids, and some of them have been found to be associated with inflammatory response.
Collapse
Affiliation(s)
- Shin-Hoo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea.,Division of Foregut Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Woo Bae
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Yun Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Hee Koo
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Ho Choi
- Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ji-Hyeon Park
- Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea
| | - Won-Sil Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea. .,Department of Surgery, Seoul National University Hospital, 101 Daehark-ro, Jongno-gu, Seoul, 03080, Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Schuldt L, Reimann M, von Brandenstein K, Steinmetz J, Döding A, Schulze-Späte U, Jacobs C, Symmank J. Palmitate-Triggered COX2/PGE2-Related Hyperinflammation in Dual-Stressed PdL Fibroblasts Is Mediated by Repressive H3K27 Trimethylation. Cells 2022; 11:955. [PMID: 35326406 PMCID: PMC8946768 DOI: 10.3390/cells11060955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The interrelationships between periodontal disease, obesity-related hyperlipidemia and mechanical forces and their modulating effects on the epigenetic profile of periodontal ligament (PdL) cells are assumed to be remarkably complex. The PdL serves as a connective tissue between teeth and alveolar bone and is involved in pathogen defense and the inflammatory responses to mechanical stimuli occurring during tooth movement. Altered inflammatory signaling could promote root resorption and tooth loss. Hyperinflammatory COX2/PGE2 signaling was reported for human PdL fibroblasts (HPdLFs) concomitantly stressed with Porphyromonas gingivalis lipopolysaccharides and compressive force after exposure to palmitic acid (PA). The aim of this study was to investigate the extent to which this was modulated by global and gene-specific changes in histone modifications. The expression of key epigenetic players and global H3Kac and H3K27me3 levels were quantitatively evaluated in dual-stressed HPdLFs exposed to PA, revealing a minor force-related reduction in repressive H3K27me3. UNC1999-induced H3K27me3 inhibition reversed the hyperinflammatory responses of dual-stressed PA cultures characterized by increased COX2 expression, PGE2 secretion and THP1 adhesion. The reduced expression of the gene encoding the anti-inflammatory cytokine IL-10 and the increased presence of H3K27me3 at its promoter-associated sites were reversed by inhibitor treatment. Thus, the data highlight an important epigenetic interplay between the different stimuli to which the PdL is exposed.
Collapse
Affiliation(s)
- Lisa Schuldt
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Michael Reimann
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Katrin von Brandenstein
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Julia Steinmetz
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (M.R.); (A.D.); (U.S.-S.)
| | - Collin Jacobs
- Center for Dental, Oral and Maxillofacial Medicine, Department of Orthodontics, University Hospital Jena, 07743 Jena, Germany;
| | - Judit Symmank
- Orthodontic Research Laboratory, Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; (L.S.); (K.v.B.); (J.S.)
| |
Collapse
|
25
|
Calder PC, Mundi MS. Editorial: Bioactive fatty acids for public and patient benefit - harnessing the full potential. Curr Opin Clin Nutr Metab Care 2022; 25:57-59. [PMID: 35115446 DOI: 10.1097/mco.0000000000000808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Chi M, Wang H, Yan Z, Cao L, Gao X, Qin K. Magnetic Ligand Fishing Using Immobilized Cyclooxygenase-2 for Identification and Screening of Anticoronary Heart Disease Ligands From Choerospondias axillaris. Front Nutr 2022; 8:794193. [PMID: 35174196 PMCID: PMC8841743 DOI: 10.3389/fnut.2021.794193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibition of cyclooxygenase-2 (COX-2) activity is an effective way for treatment of coronary heart disease. And as an important source of COX-2 inhibitors, bioactive compounds of Choerospondias axillaris and pharmacological mechanisms remained lacking in prospective researches. Therefore, for the purpose of accelerating the discovery of natural products targeting designed inhibitors, the COX-2 microreactor composed of functionalized microspheres and magnetic ligand fishing was developed and applied in Choerospondias axillaris, and the physicochemical properties of the COX-2 functionalized microspheres were characterized using Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, the bioactive compounds singled out from ethanol decoction without prepurification were dissociated and identified by ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UPLC-Q-Exactive Orbitrap-MS/MS). Consequently, 21 bioactive compounds consisting of 6 organic acids, 8 flavonoids, and 7 others were separated and characterized from Choerospondias axillaris, which were reported to participate in the COX-2 inhibitory pathway to varying degrees. Therefore, this method could provide a prospective solution for the extraction and identification of active pharmaceutical ingredients and the rapid screening of some enzyme inhibitors in the complex mixtures.
Collapse
Affiliation(s)
- Miaomiao Chi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Hongsen Wang
- Jiangsu Original Drug Research and Development Co., Ltd., Lianyungang, China
| | - Zhankuan Yan
- Jiangsu Original Drug Research and Development Co., Ltd., Lianyungang, China
| | - Lei Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xun Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xun Gao
| | - Kunming Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Kunming Qin
| |
Collapse
|
27
|
Shah MD, Venmathi Maran BA, Shaleh SRM, Zuldin WH, Gnanaraj C, Yong YS. Therapeutic Potential and Nutraceutical Profiling of North Bornean Seaweeds: A Review. Mar Drugs 2022; 20:101. [PMID: 35200631 PMCID: PMC8879771 DOI: 10.3390/md20020101] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Malaysia has a long coastline surrounded by various islands, including North Borneo, that provide a suitable environment for the growth of diverse species of seaweeds. Some of the important North Bornean seaweed species are Kappaphycus alvarezii, Eucheuma denticulatum, Halymenia durvillaei (Rhodophyta), Caulerpa lentillifera, Caulerpa racemosa (Chlorophyta), Dictyota dichotoma and Sargassum polycystum (Ochrophyta). This review aims to highlight the therapeutic potential of North Bornean seaweeds and their nutraceutical profiling. North Bornean seaweeds have demonstrated anti-inflammatory, antioxidant, antimicrobial, anticancer, cardiovascular protective, neuroprotective, renal protective and hepatic protective potentials. The protective roles of the seaweeds might be due to the presence of a wide variety of nutraceuticals, including phthalic anhydride, 3,4-ethylenedioxythiophene, 2-pentylthiophene, furoic acid (K. alvarezii), eicosapentaenoic acid, palmitoleic acid, fucoxanthin, β-carotene (E. denticulatum), eucalyptol, oleic acid, dodecanal, pentadecane (H. durvillaei), canthaxanthin, oleic acid, pentadecanoic acid, eicosane (C. lentillifera), pseudoephedrine, palmitic acid, monocaprin (C. racemosa), dictyohydroperoxide, squalene, fucosterol, saringosterol (D. dichotoma), and lutein, neophytadiene, cholest-4-en-3-one and cis-vaccenic acid (S. polycystum). Extensive studies on the seaweed isolates are highly recommended to understand their bioactivity and mechanisms of action, while highlighting their commercialization potential.
Collapse
Affiliation(s)
- Muhammad Dawood Shah
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Balu Alagar Venmathi Maran
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Sitti Raehanah Muhamad Shaleh
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Wahidatul Husna Zuldin
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (B.A.V.M.); (S.R.M.S.); (W.H.Z.)
| | - Charles Gnanaraj
- Faculty of Pharmacy and Health Sciences, University Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Yoong Soon Yong
- Laboratory Center, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia;
| |
Collapse
|
28
|
Zhu G, Zhou S, Xu Y, Gao R, Li H, Zhai B, Liu X, He Y, Wang X, Han G, Su W, Wang R. Mendelian randomization study on the causal effects of omega-3 fatty acids on rheumatoid arthritis. Clin Rheumatol 2022; 41:1305-1312. [PMID: 35000008 DOI: 10.1007/s10067-022-06052-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To resolve the ongoing debate on the role of plasma omega-3 fatty acids in rheumatoid arthritis (RA), we attempted to identify the association between omega-3 intake and the risk of RA. METHODS We analyzed data from the largest genome-wide association study (GWAS) for omega-3 fatty acids (N = 114,999 of European ancestry) and RA (14,361 cases and 43,923 controls of European ancestry). Mendelian randomization-egger_intercept, MR-PRESSO, and Cochran's Q test were used to determine pleiotropy and heterogeneity. Egger, weighted median, inverse variance weighted (IVW), simple mode, and weighted mode were used to evaluate the causal association of plasma omega-3 levels on RA. RESULTS We found no significant pleiotropy, heterogeneity, and bias among the omega-3 genetic instrumental variables (IVs) in RA GWAS datasets. MR analysis demonstrated that as omega-3 levels genetically increased, the risk of MS increased using MR-egger (Beta = 0.137, p = 0.037; OR = 1.146, 95% CI: [1.014, 1.296]), weighted median (Beta = 0.162, p = 0.001; OR = 1.176, 95% CI: [1.070, 1.292]), IVW (Beta = 0.102, p = 0.025; OR = 1.108, 95% CI: [1.013, 1.211]), simple mode (Beta = 0.219, p = 0.149; OR = 1.245, 95% CI: [0.931, 1.665]), and weighted mode (Beta = 0.146, p = 0.006; OR = 1.157, 95% CI: [1.051, 1.274]). CONCLUSIONS Our analysis suggested a causal association between genetically increased plasma omega-3 levels and the increased risk of RA in populations with European ancestry. Thus, to reduce the risk of RA, those of European descent should reduce omega-3 intake. Key Points • No significant pleiotropy or heterogeneity among the omega-3 genetic IVs in RA GWAS datasets. • Genetically increased plasma omega-3 levels enhanced the risk of RA in European lineages.
Collapse
Affiliation(s)
- Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Huan Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Bing Zhai
- Department of Geriatric Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoling Liu
- Department of Dermatology, First Medical Centre of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Youdi He
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoqian Wang
- Staidson (Beijing) Biopharmaceuticals Co., Ltd, Beijing, 100176, China
| | - Gencheng Han
- Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Box 130 (3), Taiping Road #27, Beijing, 100850, China.
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
29
|
Hu W, Fitzgerald M, Topp B, Alam M, O'Hare TJ. Fatty acid diversity and interrelationships in macadamia nuts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
HPLC/MS n Profiling and Healing Activity of a Muco-Adhesive Formula of Salvadora persica against Acetic Acid-Induced Oral Ulcer in Rats. Nutrients 2021; 14:nu14010028. [PMID: 35010903 PMCID: PMC8746813 DOI: 10.3390/nu14010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Salvadora persica L. (S. persica, Siwak) is an ethnic plant that is widely used for improving oral hygiene. This study aimed to provide a phytochemical profiling of S. persica ethyl acetate fraction (SPEAF) and to evaluate the healing activity of a muco-adhesive formula of the fraction against acetic acid-induced oral ulcers in rats. HPLC-ESI-QTOF-MS-MS analysis of SPEAF resulted in the tentative identification of 56 metabolites containing fatty acids (23%), urea derivatives (10.5%) and sulphur compounds (10%), in addition to several amides, polyphenols and organic acids (6.5%, 5% and 2%, respectively). For the first time, 19 compounds were identified from S. persica. In vitro and in vivo experiments indicated that the extract is non-toxic. SPEAF exhibited superior healing activities compared to both the negative and positive control groups on days 7 and 14 of tongue ulcer induction. This was confirmed by histopathological examinations of haematoxylin and eosin-stained (H&E) and Masson's trichrome-stained tongue sections. Moreover, SPEAF showed potent anti-inflammatory activities, as evidenced by the inhibited expression of interleukin-6 (IL-6) and tumour necrosis alpha (TNF-α). Moreover, SPEAF exhibited potent antioxidant activity, as it prevented malondialdehyde (MDA) accumulation, reduced glutathione (GSH) depletion and superoxide dismutase (SOD) exhaustion. SPEAF significantly enhanced hydroxyproline tongue content and upregulated collagen type I alpha 1 (Col1A1) mRNA expression. SPEAF also improved angiogenesis, as shown by the increased mRNA expression of the angiopoietin-1 (Ang-1). In conclusion, S. persica has a wide range of secondary metabolites and ameliorates acetic acid-induced tongue ulcers in rats. This can be attributed, at least partly, to its anti-inflammatory, antioxidant, procollagen and angiogenic activities. These findings provide support and validity for the use of S. persica as a traditional and conventional treatment for oral disorders.
Collapse
|
31
|
Emma EM, Amanda J. Dietary lipids from body to brain. Prog Lipid Res 2021; 85:101144. [PMID: 34915080 DOI: 10.1016/j.plipres.2021.101144] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Dietary habits have drastically changed over the last decades in Western societies. The Western diet, rich in saturated fatty acids (SFA), trans fatty acids (TFA), omega-6 polyunsaturated fatty acids (n-6 PUFA) and cholesterol, is accepted as an important factor in the development of metabolic disorders, such as obesity and diabetes type 2. Alongside these diseases, nutrition is associated with the prevalence of brain disorders. Although clinical and epidemiological studies revealed that metabolic diseases and brain disorders might be related, the underlying pathology is multifactorial, making it hard to determine causal links. Neuroinflammation can be a result of unhealthy diets that may cause alterations in peripheral metabolism. Especially, dietary fatty acids are of interest, as they act as signalling molecules responsible for inflammatory processes. Diets rich in n-6 PUFA, SFA and TFA increase neuroinflammation, whereas diets rich in monounsaturated fatty acids (MUFA), omega-3 (n-3) PUFA and sphingolipids (SL) can diminish neuroinflammation. Moreover, these pro- and anti-inflammatory diets might indirectly influence neuroinflammation via the adipose tissue, microbiome, intestine and vasculature. Here, we review the impact of nutrition on brain health. In particular, we will discuss the role of dietary lipids in signalling pathways directly applicable to inflammation and neuronal function.
Collapse
Affiliation(s)
- E M Emma
- Department of Medical Imaging, Anatomy, Radboud university medical center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - J Amanda
- Department of Medical Imaging, Anatomy, Radboud university medical center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands.
| |
Collapse
|
32
|
The impact of extraction protocol on the chemical profile of cannabis extracts from a single cultivar. Sci Rep 2021; 11:21801. [PMID: 34750475 PMCID: PMC8575894 DOI: 10.1038/s41598-021-01378-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The last two decades have seen a dramatic shift in cannabis legislation around the world. Cannabis products are now widely available and commercial production and use of phytocannabinoid products is rapidly growing. However, this growth is outpacing the research needed to elucidate the therapeutic efficacy of the myriad of chemical compounds found primarily in the flower of the female cannabis plant. This lack of research and corresponding regulation has resulted in processing methods, products, and terminology that are variable and confusing for consumers. Importantly, the impact of processing methods on the resulting chemical profile of full spectrum cannabis extracts is not well understood. As a first step in addressing this knowledge gap we have utilized a combination of analytical approaches to characterize the broad chemical composition of a single cannabis cultivar that was processed using previously optimized and commonly used commercial extraction protocols including alcoholic solvents and super critical carbon dioxide. Significant variation in the bioactive chemical profile was observed in the extracts resulting from the different protocols demonstrating the need for further research regarding the influence of processing on therapeutic efficacy as well as the importance of labeling in the marketing of multi-component cannabis products.
Collapse
|
33
|
Castor K, Dawlaty J, Arakaki X, Gross N, Woldeamanuel YW, Harrington MG, Cowan RP, Fonteh AN. Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migraine. Front Mol Neurosci 2021; 14:691733. [PMID: 34531722 PMCID: PMC8438335 DOI: 10.3389/fnmol.2021.691733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. Methods We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. Results Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. Conclusions Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.
Collapse
Affiliation(s)
- Katherine Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Jessica Dawlaty
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Noah Gross
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Robert P Cowan
- Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
34
|
Ku CW, Ho TJ, Huang CY, Chu PM, Ou HC, Hsieh PL. Cordycepin Attenuates Palmitic Acid-Induced Inflammation and Apoptosis of Vascular Endothelial Cells through Mediating PI3K/Akt/eNOS Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1703-1722. [PMID: 34488549 DOI: 10.1142/s0192415x21500804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A well-known medicinal mushroom in the field of traditional Chinese medicine, Cordyceps sinensis, is a rare natural-occurring entomopathogenic fungus, and it typically grows at high altitudes on the plateau of the Himalayan. Previous studies indicated that cordycepin, the main bioactive chemical of Cordyceps sinensis, has very potent anticancer, anti-oxidant and anti-inflammatory activities. However, its protective effects against atherosclerotic changes in vascular endothelial cells have not been fully elucidated. In this study, we showed that pretreatment with cordycepin significantly attenuated palmitic acid (PA)-induced cytotoxicity, reactive oxygen species (ROS) generation, and inflammatory responses. We found that PA decreased phosphorylation of Akt, eNOS, and bioavailability of nitric oxide (NO), which in turn activated NF-[Formula: see text]B and the downstream inflammatory responses. All these detrimental events were markedly blocked by pretreatment with cordycepin. Moreover, cordycepin ameliorated destabilization of mitochondrial permeability, cytosolic calcium rises, and apoptotic features caused by PA. In addition, all these anti-inflammatory and anti-apoptosis effects of cordycepin were found to be inhibited by the PI3K and eNOS inhibitor, suggesting that its anti-atherosclerotic effects may partially be mediated by the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Chang-Wen Ku
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,School of Post Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University, Taichung, Taiwan.,Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Omega-7 Mixed Fatty Acid Supplementation Fails to Reduce Serum Inflammatory Biomarkers: A Placebo-Controlled, Double-Blind Randomized Crossover Trial. Nutrients 2021; 13:nu13082801. [PMID: 34444963 PMCID: PMC8398705 DOI: 10.3390/nu13082801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
We report the effects of mixed omega-7 fatty acid supplementation on changes in serum hsCRP, TNFα, and IL-6 levels and self-reported outcomes in people with non-specific chronic musculoskeletal discomfort. Design: A double-blind, placebo-controlled, 1:1 randomized single crossover trial composed of 688 mg/day palmiteolate for the verum and an equivalent amount of medium-chain triglycerides for the placebo. Method: Data were analyzed in two independent groups and as a crossover group. Results: From 211 screened participants in 2017–2019, 56 were randomized. Six participants dropped out and fifty completers contributed to the statistical analyses. At baseline, none of the investigated biomarkers were significantly correlated to subjectively assessed musculoskeletal discomfort levels. For the two-group analysis (n = 26 and n = 24), none of the serum biomarkers reached statistical significance; however, a statistically significant placebo effect was found in the subjective outcomes. Conclusion: For the crossover analysis (n = 50), three weeks of supplementation with n7FA containing 688 mg per day of palmiteolate did not reduce serum inflammatory biomarkers nor did it improve subjectively measured quality of life (QoL) compared to placebo. Future studies should explore appropriate biomarkers, sufficient power, length of dosing, inclusion criteria for volunteers with higher BMI, and the verification of cis-palmiteolate versus trans-palmiteolate.
Collapse
|
36
|
A sequence variant in the diacylglycerol O-acyltransferase 2 gene influences palmitoleic acid content in pig muscle. Sci Rep 2021; 11:14797. [PMID: 34285308 PMCID: PMC8292425 DOI: 10.1038/s41598-021-94235-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The bulk of body fat in mammals is in the form of triacylglycerol. Diacylglycerol O-acyltransferase 2 (DGAT2) catalyses the terminal step in triacylglycerol synthesis. The proximity of DGAT2 with stearoyl-CoA desaturase (SCD) in the endoplasmic reticulum may facilitate provision of de novo SCD-mediated fatty acids as substrate for DGAT2. Here, we first searched for sequence variants in the DGAT2 gene to then validate their effect on fat content and fatty acid composition in muscle, subcutaneous fat and liver of 1129 Duroc pigs. A single nucleotide polymorphism in exon 9 (ss7315407085 G > A) was selected as a tag variant for the 33 sequence variants identified in the DGAT2 region. The DGAT2-G allele increased DGAT2 expression in muscle and had a positive impact on muscular C14 and C16 fatty acids at the expense of C18 fatty acids. Although there was no evidence for an interaction of DGAT2 with functional SCD genotypes, pigs carrying the DGAT2-G allele had proportionally more palmitoleic acid relative to palmitic acid. Our findings indicate that DGAT2 preferentially uptakes shorter rather than longer-chain fatty acids as substrate, especially if they are monounsaturated, and confirm that fatty acid metabolism in pigs is subjected to subtle tissue-specific genetic regulatory mechanisms.
Collapse
|
37
|
Tokunaga Y, Yoshizaki H, Toriumi A, Kawaharada R, Ishida C, Hori M, Nakamura A. Effects of omega-7 palmitoleic acids on skeletal muscle differentiation in a hyperglycemic condition. J Vet Med Sci 2021; 83:1369-1377. [PMID: 34248106 PMCID: PMC8498828 DOI: 10.1292/jvms.21-0309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maternal obesity and diabetes are known to be involved in fetal myogenesis, but the later stages of myogenesis are not well understood. In this study, we investigated the influence of a
hyperglycemic environment on L6 skeletal myoblast differentiation and the function of omega-7 palmitoleic acids. Exposure to a high concentration of glucose (25 mM) in high-glucose culture
medium (HG) increased the expression of myogenic genes (MyoD, Myogenin, MRF4, Myhc2x, and Myhc2a) and the
synthesis of myosin. HG also activated the PI3K/AKT pathway revealed muscle cell differentiation. Furthermore, the levels of reactive oxygen species (ROS) and an inflammatory cytokine
(Tnfaip3; tumor necrosis factor alpha-induced protein 3), which are crucial for the growth and differentiation of skeletal muscle, were increased by HG. Palmitoleic acids
suppressed the expression levels of myogenic regulatory genes and increased the expression level of a cell proliferation-related gene (Pax3). Trans-palmitoleic acid and
eicosapentaenoic acid (TPA and EPA) increased the phosphorylation level of MAPK/ERK1/2 and downregulated ROS generation and Tnfaip3 expression. In contrast, cis-palmitoleic
acid inactivated MAPK/ERK1/2, leading to increased ROS generation. In conclusion, a hyperglycemic environment mediated by HG induced excessive muscle differentiation. Palmitoleic acids
inhibited myoblast differentiation by downregulating muscle-specific genes. Moreover, trans-palmitoleic acids may have beneficial antioxidant and/or anti-inflammatory effects in cells.
Collapse
Affiliation(s)
- Yayoi Tokunaga
- Graduate School of Agriculture and Life Sciences, Faculty of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hitomi Yoshizaki
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women's University, 4-1-1 Osakaue, Hino, Tokyo 191-8510, Japan
| | - Akiyo Toriumi
- Graduate School of Medical and Dental Sciences, Comprehensive Reproductive Medicine, National University Corporation Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ritsuko Kawaharada
- Department of Health and Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan
| | - Chisato Ishida
- Department of Nutrition, Japanese Haramachi Red Cross Hospital, 698 Haramachi, Agatsumagun, Higashiagatsuma-machi, Gunma 377-0801, Japan
| | - Masatoshi Hori
- Graduate School of Agriculture and Life Sciences, Faculty of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akio Nakamura
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women's University, 4-1-1 Osakaue, Hino, Tokyo 191-8510, Japan
| |
Collapse
|
38
|
Cai Y, Kim DJ, Takahashi T, Broadhurst DI, Yan H, Ma S, Rattray NJW, Casanovas-Massana A, Israelow B, Klein J, Lucas C, Mao T, Moore AJ, Muenker MC, Oh JE, Silva J, Wong P, Ko AI, Khan SA, Iwasaki A, Johnson CH. Kynurenic acid may underlie sex-specific immune responses to COVID-19. Sci Signal 2021; 14:14/690/eabf8483. [PMID: 34230210 PMCID: PMC8432948 DOI: 10.1126/scisignal.abf8483] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Males and females have different immune responses to SARS-CoV-2 infection, with male sex being a risk factor for mortality, particularly among older individuals. Cai et al. performed metabolomics analysis of serum from COVID-19 patients and uninfected health care workers and identified 17 metabolites that were associated with the disease. However, in male COVID-19 patients only, the amount of the tryptophan metabolite kynurenic acid (KA) correlated with age, inflammation, and disease outcome. KA inhibits glutamate release, and glutamate abundance was reduced in patients who deteriorated. Together, these findings indicate that KA is associated with sex-specific differences in immune responses to COVID-19, suggesting that it might be targeted in male patients. Coronavirus disease 2019 (COVID-19) has poorer clinical outcomes in males than in females, and immune responses underlie these sex-related differences. Because immune responses are, in part, regulated by metabolites, we examined the serum metabolomes of COVID-19 patients. In male patients, kynurenic acid (KA) and a high KA–to–kynurenine (K) ratio (KA:K) positively correlated with age and with inflammatory cytokines and chemokines and negatively correlated with T cell responses. Males that clinically deteriorated had a higher KA:K than those that stabilized. KA inhibits glutamate release, and glutamate abundance was lower in patients that clinically deteriorated and correlated with immune responses. Analysis of data from the Genotype-Tissue Expression (GTEx) project revealed that the expression of the gene encoding the enzyme that produces KA, kynurenine aminotransferase, correlated with cytokine abundance and activation of immune responses in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes in COVID-19, suggesting a positive feedback between metabolites and immune responses in males.
Collapse
Affiliation(s)
- Yuping Cai
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Daniel J Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Takehiro Takahashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David I Broadhurst
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam J Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ji Eun Oh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Wong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sajid A Khan
- Department of Surgery, Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA.
| |
Collapse
|
39
|
Hyperlipidemic Conditions Impact Force-Induced Inflammatory Response of Human Periodontal Ligament Fibroblasts Concomitantly Challenged with P. gingivalis-LPS. Int J Mol Sci 2021; 22:ijms22116069. [PMID: 34199865 PMCID: PMC8200083 DOI: 10.3390/ijms22116069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
In obese patients, enhanced serum levels of free fatty acids (FFA), such as palmitate (PA) or oleate (OA), are associated with an increase in systemic inflammatory markers. Bacterial infection during periodontal disease also promotes local and systemic low-grade inflammation. How both conditions concomitantly impact tooth movement is largely unknown. Thus, the aim of this study was to address the changes in cytokine expression and the secretion of human periodontal ligament fibroblasts (HPdLF) due to hyperlipidemic conditions, when additionally stressed by bacterial and mechanical stimuli. To investigate the impact of obesity-related hyperlipidemic FFA levels on HPdLF, cells were treated with 200 µM PA or OA prior to the application of 2 g/cm2 compressive force. To further determine the additive impact of bacterial infection, HPdLF were stimulated with lipopolysaccharides (LPS) obtained from Porphyromonas gingivalis. In mechanically compressed HPdLF, PA enhanced COX2 expression and PGE2 secretion. When mechanically stressed HPdLF were additionally stimulated with LPS, the PGE2 and IL6 secretion, as well as monocyte adhesion, were further increased in PA-treated cultures. Our data emphasize that a hyperlipidemic condition enhances the susceptibility of HPdLF to an excessive inflammatory response to compressive forces, when cells are concomitantly exposed to bacterial components.
Collapse
|
40
|
Sajid-Ur-Rehman M, Ishtiaq S, Khan MA, Alshamrani M, Younus M, Shaheen G, Abdullah M, Sarwar G, Khan MS, Javed F. Phytochemical profiling, in vitro and in vivo anti-inflammatory, analgesic and antipyretic potential of Sesuvium sesuvioides (Fenzl) Verdc. (Aizoaceae). Inflammopharmacology 2021; 29:789-800. [PMID: 34061285 DOI: 10.1007/s10787-021-00824-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Sesuvium sesuvioides (Fenzl) Verdc is traditionally used in the treatment of inflammatory diseases such as arthritis and gout The aim of present study was to assess the possible anti-inflammatory, analgesic and antipyretic potential of the methanol extract of Sesuvium sesuvioides (SsCr) to prove scientifically its folklore use in the inflammatory diseases and to screen its total antioxidant capacity by multiple methods and phytocompounds by GC-MS. The preliminary phytochemical studies showed the presence of phenols, flavonoids, glycosides, coumarin, terpenoids, saponins, fats and carbohydrates in crude extract. The total phenolic contents (27.31 ± 0.28 mg GAE/g) and total flavonoids (3.58 ± 0.12 mgRE/g) values were observed. The antioxidant capacity of SsCr showed significant DPPH, ABTS, CUPRAC, FRAP, PBD and metal chelating results. GC-MS analysis displayed the phytoconstituents with anti-inflammatory potentials such as 2-methoxy-4-vinylphenol, vanillin, umbelliferone, methyl ferulate, palmitoleic acid, methyl palmitate and phytol. SsCr presented noteworthy HRBC membrane stability with maximum inhibition of cell hemolysis (47.79%). In carrageenan-induced hind paw edema assay result showed dose-dependent anti-inflammatory action. SsCr presented significant (p < 0.05) analgesic activity in hot-plate and tail flicking tests similarly it also showed the noteworthy inhibition in pain latency against formalin induced analgesia at 1st and 2nd phases. SsCr reduced the acetic acid-induced writhes at different doses (250, 500 and 750 mg). Results of antipyretic activity of SsCr extract were significant at 500 and 750 mg. The results of in vitro and in vivo experimental studies verified the anti-inflammatory, analgesic and antipyretic potential of Sesuvium sesuvioides and supported the folklore uses of this plant.
Collapse
Affiliation(s)
- M Sajid-Ur-Rehman
- Department of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan. .,Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Saiqa Ishtiaq
- Department of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan.
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Younus
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghazala Shaheen
- Department of Eastern Medicine, University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Sarwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Sohaib Khan
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faraza Javed
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
41
|
Waehler R. Fatty acids: facts vs. fiction. INT J VITAM NUTR RES 2021:1-21. [PMID: 34041926 DOI: 10.1024/0300-9831/a000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the last 100 years official dietary guidelines have recommended an increased consumption of fats derived from seeds while decreasing the consumption of traditional fats, especially saturated fats. These recommendations are being challenged by recent studies. Furthermore, the increased use of refining processes in fat production had deleterious health effects. Today, the number of high-quality studies on fatty acids is large enough to make useful recommendations on clinical application and everyday practice. Saturated fats have many beneficial functions and palmitic acid appears to be problematic only when it is synthesized due to excess fructose consumption. Trans fatty acids were shown to be harmful when they are manmade but beneficial when of natural origin. Conjugated linoleic acid has many benefits but the isomer mix that is available in supplement form differs from its natural origin and may better be avoided. The ω3 fatty acid linolenic acid has rather limited use as an anti-inflammatory agent - a fact that is frequently overlooked. On the other hand, the targeted use of long chain ω3 fatty acids based on blood analysis has great potential to supplement or even be an alternative to various pharmacological therapies. At the same time ω6 fatty acids like linoleic acid and arachidonic acid have important physiological functions and should not be avoided but their consumption needs to be balanced with long chain ω3 fatty acids. The quality and quantity of these fats together with appropriate antioxidative protection are critical for their positive health effects.
Collapse
|
42
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
43
|
Liu B, Sun Y, Hang W, Wang X, Xue J, Ma R, Jia X, Li R. Characterization of a Novel Acyl-ACP Δ 9 Desaturase Gene Responsible for Palmitoleic Acid Accumulation in a Diatom Phaeodactylum tricornutum. Front Microbiol 2020; 11:584589. [PMID: 33391203 PMCID: PMC7772203 DOI: 10.3389/fmicb.2020.584589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Palmitoleic acid (16:1Δ9) possesses a double bond at the seventh carbon atom from methyl end of the acyl chain and belongs to unusual ω-7 monounsaturated fatty acids with broad applications in food, pharmaceuticals, cosmetics, biofuel, and other industries. This high-value fatty acid accumulates up to >40% of total lipid in the marine diatom Phaeodactylum tricornutum. The present study was conducted to determine the key gene responsible for 16:1Δ9 biosynthesis in this unicellular alga. A new full-length cDNA and genomic DNA encoding acyl-ACP Δ9 desaturase (PtAAD) were isolated from P. tricornutum cells. Expression levels of PtAAD gene under normal and stress culture conditions were both positively correlated with 16:1Δ9 accumulation, implying its potential role for fatty acid determination. Functional complementation assay of a yeast mutant strain BY4839 evidenced that PtAAD could restore the synthesis of unsaturated fatty acid, especially generating high levels of 16:1Δ9. Further transient expression of PtAAD gene in Nicotiana benthamiana leaves was accompanied by the accumulation of 16:1Δ9, which was absent from control groups. Three-dimensional structure modeling studies showed that functional domain of PtAAD contained three variant amino acids (F160, A223, and L156), which may narrow the space shape of substrate-binding cavity to ensure the entry of 16:0-ACP. Consistent with this prediction, the mutated version of PtAAD gene (F160L, A223T, and L156M) in N. benthamiana systems failed to accumulate 16:1Δ9, but increased levels of 18:1Δ9. Taken together, PtAAD exhibits a strong enzymatic activity and substrate preference for 16:0-ACP, acting as the key player for high biosynthesis and accumulation of 16:1Δ9 in this alga. These findings provide new insights for better understanding the palmitoleic acid and oil biosynthetic mechanism in P. tricornutum, indicating that PtAAD gene may have practical applications for enriching palmitoleic acid and oil yield in other commercial oleaginous algae and crops.
Collapse
Affiliation(s)
- Baoling Liu
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China.,College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Yan Sun
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Wei Hang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Xiaodan Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Jinai Xue
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyun Jia
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
44
|
Liu N, Li Y, Nan W, Zhou W, Huang J, Li R, Zhou L, Hu R. Interaction of TPPP3 with VDAC1 Promotes Endothelial Injury through Activation of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5950195. [PMID: 33082910 PMCID: PMC7556057 DOI: 10.1155/2020/5950195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
Endothelial injury plays a critical role in the pathogenesis of cardiovascular disorders and metabolic-associated vascular complications which are the leading cause of death worldwide. However, the mechanism underlying endothelial dysfunction is not completely understood. The study is aimed at investigating the role of tubulin polymerization-promoting protein family member 3 (TPPP3) in palmitic acid- (PA-) induced endothelial injury. The effect of TPPP3 on human umbilical vein endothelial cells (HUVECs) was determined by evaluating apoptosis, tube formation, and reactive oxygen species (ROS) production. TPPP3 silencing inhibited PA overload-induced apoptosis and production of ROS, along with the alteration of apoptosis-related key proteins such as BCL-2 and Bax. Mechanically, voltage-dependent anion channel 1 (VDAC1) was identified as a novel functional binding partner of TPPP3, and TPPP3 promoted VDAC1 protein stability and its activity. Further studies indicated that TPPP3 could promote apoptosis, ROS production, tube formation, and proapoptotic protein expression and reduce antiapoptotic protein expression through increasing VDAC1 expression under mildly elevated levels of PA. Collectively, these results demonstrated that TPPP3 could promote PA-induced oxidative damage in HUVECs via a VDAC1-dependent pathway, suggesting that TPPP3 might be considered as a potential therapeutic target in vascular disease.
Collapse
Affiliation(s)
- Naijia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Yintao Li
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wu Nan
- Department of Geriatrics, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenbai Zhou
- Department of Medicine, Emanuel Medical Center, Turlock, California, USA
| | - Jinya Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Rumei Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Linuo Zhou
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Renming Hu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Cai Y, Kim DJ, Takahashi T, Broadhurst DI, Ma S, Rattray NJW, Casanovas-Massana A, Israelow B, Klein J, Lucas C, Mao T, Moore AJ, Muenker MC, Oh J, Silva J, Wong P, Ko AI, Khan SA, Iwasaki A, Johnson CH. Kynurenic acid underlies sex-specific immune responses to COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.09.06.20189159. [PMID: 32935119 PMCID: PMC7491534 DOI: 10.1101/2020.09.06.20189159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coronavirus disease-2019 (COVID-19) has poorer clinical outcomes in males compared to females, and immune responses underlie these sex-related differences in disease trajectory. As immune responses are in part regulated by metabolites, we examined whether the serum metabolome has sex-specificity for immune responses in COVID-19. In males with COVID- 19, kynurenic acid (KA) and a high KA to kynurenine (K) ratio was positively correlated with age, inflammatory cytokines, and chemokines and was negatively correlated with T cell responses, revealing that KA production is linked to immune responses in males. Males that clinically deteriorated had a higher KA:K ratio than those that stabilized. In females with COVID-19, this ratio positively correlated with T cell responses and did not correlate with age or clinical severity. KA is known to inhibit glutamate release, and we observed that serum glutamate is lower in patients that deteriorate from COVID-19 compared to those that stabilize, and correlates with immune responses. Analysis of Genotype-Tissue Expression (GTEx) data revealed that expression of kynurenine aminotransferase, which regulates KA production, correlates most strongly with cytokine levels and aryl hydrocarbon receptor activation in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes, in COVID-19 infection.
Collapse
Affiliation(s)
- Yuping Cai
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Daniel J Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Takehiro Takahashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David I Broadhurst
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Joondalup, 6027, Australia
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam J Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Jieun Oh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick Wong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sajid A Khan
- Department of Surgery, Division of Surgical Oncology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| |
Collapse
|
46
|
Khandouzi N, Zahedmehr A, Nasrollahzadeh J. Effects of canola or olive oil on plasma lipids, lipoprotein-associated phospholipase A 2 and inflammatory cytokines in patients referred for coronary angiography. Lipids Health Dis 2020; 19:183. [PMID: 32795310 PMCID: PMC7427979 DOI: 10.1186/s12944-020-01362-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The potential cardioprotective benefits of olive oil (OO) and canola oil (CO) consumption have been shown in some studies. The present study compared the effects of CO and OO on plasma lipids, some inflammatory cytokines, and lipoprotein-associated phospholipase A2 (Lp-PLA2) mass and activity in patients undergoing coronary angiography. METHODS The current randomized, controlled, parallel-arm, clinical trial involved 48 patients (44 men and 4 women, aged 57.63 ± 6.34 years) with at least one classic cardiovascular risk factor (hypertension, dyslipidemia, or diabetes) who referred for coronary angiography. Patients were randomly divided into two groups and received 25 mL/day refined olive oil (n = 24) or canola oil (n = 24) for 6 weeks. Plasma lipids, some selected inflammatory markers, and Lp-PLA2 levels were measured at baseline and after the intervention. RESULTS CO consumption produced a significant reduction in plasma Lp-PLA2 mass (- 0.97 ± 1.84 vs. 0.34 ± 1.57 ng/mL, p = 0.008 for CO and OO, respectively), whereas the mean changes in interleukine-6 concentration were significantly lower after OO consumption compared with CO (- 9.46 ± 9.46 vs. -0.90 ± 6.80 pg/mL, p = 0.008 for OO and CO, respectively). After 6 weeks of intervention, no significant changes were observed in plasma Lp-PLA2 activity, complement C3, C4, or lipid profiles in the two intervention groups. CONCLUSIONS Comparing the two vegetable oils in subjects with cardiovascular risk factors showed that the consumption of olive oil is more effective in reducing the level of inflammatory cytokine interleukine-6, whereas canola oil was more effective in lowering Lp-PLA2 levels; however, this finding should be interpreted with caution, because Lp-PLA2 activity did not change significantly. TRIAL REGISTRATION IRCT20160702028742N5 at www.irct.ir (04/19/2019).
Collapse
Affiliation(s)
- Nafiseh Khandouzi
- Department of Clinical Nutrition & Dietetics, National Nutrition, and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, No. 7, Hafezi St., Farahzadi Blvd., Qods Town, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition & Dietetics, National Nutrition, and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, No. 7, Hafezi St., Farahzadi Blvd., Qods Town, Tehran, Iran.
| |
Collapse
|
47
|
Souza CO, Teixeira AAS, Biondo LA, Silveira LS, de Souza Breda CN, Braga TT, Camara NOS, Belchior T, Festuccia WT, Diniz TA, Ferreira GM, Hirata MH, Chaves-Filho AB, Yoshinaga MY, Miyamoto S, Calder PC, Sethi JK, Rosa Neto JC. Palmitoleic acid reduces high fat diet-induced liver inflammation by promoting PPAR-γ-independent M2a polarization of myeloid cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158776. [PMID: 32738301 PMCID: PMC7487782 DOI: 10.1016/j.bbalip.2020.158776] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Palmitoleic acid (POA, 16:1n-7) is a lipokine that has potential nutraceutical use to treat non-alcoholic fatty liver disease. We tested the effects of POA supplementation (daily oral gavage, 300 mg/Kg, 15 days) on murine liver inflammation induced by a high fat diet (HFD, 59% fat, 12 weeks). In HFD-fed mice, POA supplementation reduced serum insulin and improved insulin tolerance compared with oleic acid (OA, 300 mg/Kg). The livers of POA-treated mice exhibited less steatosis and inflammation than those of OA-treated mice with lower inflammatory cytokine levels and reduced toll-like receptor 4 protein content. The anti-inflammatory effects of POA in the liver were accompanied by a reduction in liver macrophages (LM, CD11c+; F4/80+; CD86+), an effect that could be triggered by peroxisome proliferator activated receptor (PPAR)-γ, a lipogenic transcription factor upregulated in livers of POA-treated mice. We also used HFD-fed mice with selective deletion of PPAR-γ in myeloid cells (PPAR-γ KOLyzCre+) to test whether the beneficial anti-inflammatory effects of POA are dependent on macrophages PPAR-γ. POA-mediated improvement of insulin tolerance was tightly dependent on myeloid PPAR-γ, while POA anti-inflammatory actions including the reduction in liver inflammatory cytokines were preserved in mice bearing myeloid cells deficient in PPAR-γ. This overlapped with increased CD206+ (M2a) cells and downregulation of CD86+ and CD11c+ liver macrophages. Moreover, POA supplementation increased hepatic AMPK activity and decreased expression of the fatty acid binding scavenger receptor, CD36. We conclude that POA controls liver inflammation triggered by fat accumulation through induction of M2a macrophages independently of myeloid cell PPAR-γ. Palmitoleic acid (POA) supplementation reduced serum insulin and improved insulin tolerance; Livers of POA-treated mice exhibited less steatosis and inflammation; POA lowered the liver M1 macrophages population and the expression of inflammation-related immune-cell markers; POA increased PPAR-γ, a transcription factor that regulates anti-inflammatory effects in macrophages; However, POA reduced liver inflammation even in mice that lack PPAR-γ expression in myeloid cells; POA controls liver inflammation through induction of M2a macrophages independently of PPAR-γ in myeloid cells.
Collapse
Affiliation(s)
- Camila O Souza
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre A S Teixeira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana Amorim Biondo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Loreana Sanches Silveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Cristiane N de Souza Breda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tarcio T Braga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tiego A Diniz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Glaucio Monteiro Ferreira
- Laboratory of Molecular Biology applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mario Hiroyuki Hirata
- Laboratory of Molecular Biology applied to Diagnosis (LBMAD), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Adriano B Chaves-Filho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcos Y Yoshinaga
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Sayuri Miyamoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jaswinder K Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - José C Rosa Neto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
48
|
Montero ML, Liu JW, Orozco J, Casiano CA, De Leon M. Docosahexaenoic acid protection against palmitic acid-induced lipotoxicity in NGF-differentiated PC12 cells involves enhancement of autophagy and inhibition of apoptosis and necroptosis. J Neurochem 2020; 155:559-576. [PMID: 32379343 PMCID: PMC7754135 DOI: 10.1111/jnc.15038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
Lipotoxicity (LTx) leads to cellular dysfunction and cell death and has been proposed to be an underlying process during traumatic and hypoxic injuries and neurodegenerative conditions in the nervous system. This study examines cellular mechanisms responsible for docosahexaenoic acid (DHA 22:6 n‐3) protection in nerve growth factor‐differentiated pheochromocytoma (NGFDPC12) cells from palmitic acid (PAM)‐mediated lipotoxicity (PAM‐LTx). NGFDPC12 cells exposed to PAM show a significant lipotoxicity demonstrated by a robust loss of cell viability, apoptosis, and increased HIF‐1α and BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3 gene expression. Treatment of NGFDPC12 cells undergoing PAM‐LTx with the pan‐caspase inhibitor ZVAD did not protect, but shifted the process from apoptosis to necroptosis. This shift in cell death mechanism was evident by the appearance of the signature necroptotic Topo I protein cleavage fragments, phosphorylation of mixed lineage kinase domain‐like, and inhibition with necrostatin‐1. Cultures exposed to PAM and co‐treated with necrostatin‐1 (necroptosis inhibitor) and rapamycin (autophagy promoter), showed a significant protection against PAM‐LTx compared to necrostatin‐1 alone. In addition, co‐treatment with DHA, as well as 20:5 n‐3, 20:4 n‐6, and 22:5 n‐3, in the presence of PAM protected NGFDPC12 cells against LTx. DHA‐induced neuroprotection includes restoring normal levels of HIF‐1α and BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3 transcripts and caspase 8 and caspase 3 activity, phosphorylation of beclin‐1, de‐phosphorylation of mixed lineage kinase domain‐like, increase in LC3‐II, and up‐regulation of Atg7 and Atg12 genes, suggesting activation of autophagy and inhibition of necroptosis. Furthermore, DHA‐induced protection was suppressed by the lysosomotropic agent chloroquine, an inhibitor of autophagy. We conclude that DHA elicits neuroprotection by regulating multiple cell death pathways including enhancement of autophagy and inhibiting apoptosis and necroptosis. ![]()
Collapse
Affiliation(s)
- Manuel L Montero
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - José Orozco
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
49
|
Huang X, Yi S, Hu J, Du Z, Wang Q, Ye Z, Cao Q, Su G, Yuan G, Zhou C, Wang Y, Kijlstra A, Yang P. Analysis of the role of palmitoleic acid in acute anterior uveitis. Int Immunopharmacol 2020; 84:106552. [PMID: 32422526 DOI: 10.1016/j.intimp.2020.106552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To study the role of palmitoleic acid (PA) in the pathogenesis of acute anterior uveitis (AAU). METHODS PA levels in feces from AAU patients were measured by gas chromatography coupled with a mass spectrometer (GC-MS) and compared with samples obtained from healthy individuals. Enzyme linked immunosorbent assay (ELISA) and flow cytometry (FCM) were used to assess the effect of PA on dendritic cells (DCs) and CD4+T cells obtained from mice, AAU patients and healthy individuals. C57BL/6 mice were fed with PA or vehicle and experimental autoimmune uveitis (EAU) was induced with a human retinal IRBP651-670 peptide. Disease severity of EAU was evaluated by clinical manifestation and histology. Differentiation of splenic Type 1 helper T cells (Th1) and Th17 cells was evaluated by FCM. Tandem mass tag (TMT)-based proteomics analysis was used to identify differentially expressed proteins following incubation of DCs with PA. RESULTS The fecal concentration of PA was increased in AAU patients as compared with healthy individuals. In vitro, PA promoted apoptosis of DCs and inhibited the secretion of TNF-α from mouse bone-marrow-derived dendritic cells (BMDCs) as well as in DCs from AAU patients and healthy individuals. It only decreased DCs surface marker expression and IL-12p70 secretion in BMDCs and healthy individuals DCs but not in AAU patient DCs. PA-treated BMDCs inhibited Th cell differentiation from mouse naïve CD4+T cells and IL-17 and IFN-γ secretion in co-culture supernatants. PA also inhibited the differentiation of Th cells and secretion of IFN-γ and IL-17 in CD4+T cells from mice, AAU patients and healthy individuals. In vivo, PA-treated EAU mice showed milder clinical and histopathological intraocular manifestations as compared with the control group. PA feeding inhibited differentiation of splenic Th17 cells, whereas Th1 cells were not affected. Up to 30 upregulated and 77 downregulated proteins were identified when comparing PA-treated DCs with controls. CONCLUSION An increased expression of fecal PA was observed in AAU patients. PA was shown to have immunoregulatory effects on DCs and CD4+T cells and attenuated disease severity in EAU mice.
Collapse
Affiliation(s)
- Xinyue Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Jianping Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Ziyu Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Gangxiang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Yao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, PR China.
| |
Collapse
|
50
|
Kim MJ, Jung SK. Nutraceuticals for prevention of atherosclerosis: Targeting monocyte infiltration to the vascular endothelium. J Food Biochem 2020; 44:e13200. [PMID: 32189369 DOI: 10.1111/jfbc.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death, globally, and is a serious problem in developing countries. Preventing atherosclerosis is key to reducing the risk of developing CVD. Similar to carcinogenesis, atherogenesis can be divided into four stages: initiation, promotion, progression, and acute events. The current study focuses on the promotion stage, which is characterized by circular monocyte penetration into vascular endothelial cells, monocyte differentiation into macrophages, and the formation of foam cells. This early stage of atherogenesis is a major target for nutraceuticals. We discuss nutraceuticals that can potentially inhibit monocyte adhesion to the vascular endothelium, thereby preventing the promotional stage of atherosclerosis. The mechanisms through which these nutraceuticals prevent monocyte adhesion are classified according to the following targets: NF-κB, ROS, MAPKs, and AP-1. Additionally, we discuss promising targets for nutraceuticals that can regulate monocyte adhesion to the endothelium. PRACTICAL APPLICATIONS: Introduction of atherogenesis with initiation, promotion, progression, and acute events provide specific information and factors for each step in the development of atherosclerosis. Functional food or pharmaceutical researchers can set target stages and use them to develop materials that control atherosclerosis. In particular, because it focuses on vascular inflammation via interaction between monocytes and vascular endothelial cells, it provides specific information to researchers developing functional foods that regulate this process. Therefore, this manuscript, unlike previous papers, will provide material information and potential mechanisms of action to researchers who want to develop functional foods that control vascular inflammation rather than vascular lipids.
Collapse
Affiliation(s)
- Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea.,Institute of Agricultural Science & Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|