1
|
Singh S A, Singh S, Begum RF, Vijayan S, Vellapandian C. Unveiling the profound influence of sucralose on metabolism and its role in shaping obesity trends. Front Nutr 2024; 11:1387646. [PMID: 39015535 PMCID: PMC11250074 DOI: 10.3389/fnut.2024.1387646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Artificial sweeteners, prominently exemplified by sucralose, have become pervasive in contemporary diets, prompting intriguing questions about their impact on metabolism and their potential role in the unfolding trends of obesity. Covering topics from its discovery to analytical methods for detection and determination in food samples, the manuscript scrutinizes the metabolic effects of sucralose. Notably, the association between sucralose intake and obesity is examined, challenging the conventional belief of its role in weight management. The document comprehensively examines in vivo studies, revealing sucralose's implications on insulin resistance, gut microbiota, and metabolic syndrome, providing a nuanced comprehension of its impact on human health. Additionally, it explores sucralose's effects on glucose and lipid metabolism, blood pressure, and cardiovascular health, underscoring its possible involvement in malignancy development. The review concludes with a call for increased public awareness, education, and updated dietary guidelines to help individuals make informed choices about sweetener consumption. The future perspectives section highlights the need for longitudinal studies, exploring alternative sweeteners, and refining acceptable daily intake limits to ensure public health recommendations align with evolving regulatory guidelines. Overall, the manuscript provides a comprehensive overview of sucralose's multifaceted impact on health, urging further research and a balanced perspective on sweetener consumption.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, Faculty of Pharmacy, Dr.M.G.R. Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Srishti Singh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
2
|
Kearns ML, Reynolds CM. The impact of non-nutritive sweeteners on fertility, maternal and child health outcomes: a review of human and animal studies. Proc Nutr Soc 2024:1-13. [PMID: 38433591 DOI: 10.1017/s0029665124000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
There is significant evidence that an unhealthy diet greatly increases the risk of complications during pregnancy and predisposes offspring to metabolic dysfunction and obesity. While fat intake is typically associated with the onset of obesity and its comorbidities, there is increasing evidence linking sugar, particularly high fructose corn syrup, to the global rise in obesity rates. Furthermore, the detrimental effects of added sugar intake during pregnancy on mother and child have been clearly outlined. Guidelines advising pregnant women to avoid food and beverages with high fat and sugar have led to an increase in consumption of 'diet' or 'light' options. Examination of some human birth cohort studies shows that heavy consumption (at least one beverage a day) of non-nutritive sweetener (NNS) containing beverages has been associated with increased risk of preterm birth and increased weight/BMI in male offspring independent of maternal weight, which appears to be offset by breastfeeding for 6 months. Rodent models have shown that NNS exposure during pregnancy can impact maternal metabolic health, adipose tissue function, gut microbiome profiles and taste preference. However, the mechanisms underlying these effects are multifaceted and further research, particularly in a translational setting is required to fully understand the effects of NNS on maternal and infant health during pregnancy. Therefore, this review examines maternal sweetener intakes and their influence on fertility, maternal health outcomes and offspring outcomes in human cohort studies and rodent models.
Collapse
Affiliation(s)
- Michelle L Kearns
- School of Public Health, Physiotherapy and Sports Science/Conway Institute/Institute of Food and Health/Diabetes Complications Research Centre, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - Clare M Reynolds
- School of Public Health, Physiotherapy and Sports Science/Conway Institute/Institute of Food and Health/Diabetes Complications Research Centre, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
3
|
Sylvetsky AC, Clement RA, Stearrett N, Issa NT, Dore FJ, Mazumder R, King CH, Hubal MJ, Walter PJ, Cai H, Sen S, Rother KI, Crandall KA. Consumption of sucralose- and acesulfame-potassium-containing diet soda alters the relative abundance of microbial taxa at the species level: findings of two pilot studies. Appl Physiol Nutr Metab 2024; 49:125-134. [PMID: 37902107 DOI: 10.1139/apnm-2022-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Sucralose and acesulfame-potassium consumption alters gut microbiota in rodents, with unclear effects in humans. We examined effects of three-times daily sucralose- and acesulfame-potassium-containing diet soda consumption for 1 (n = 17) or 8 (n = 8) weeks on gut microbiota composition in young adults. After 8 weeks of diet soda consumption, the relative abundance of Proteobacteria, specifically Enterobacteriaceae, increased; and, increased abundance of two Proteobacteria taxa was also observed after 1 week of diet soda consumption compared with sparkling water. In addition, three taxa in the Bacteroides genus increased following 1 week of diet soda consumption compared with sparkling water. The clinical relevance of these findings and effects of sucralose and acesulfame-potassium consumption on human gut microbiota warrant further investigation in larger studies. Clinical trial registration: NCT02877186 and NCT03125356.
Collapse
Affiliation(s)
- Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, DC 20052, USA
| | - Rebecca A Clement
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Washington, DC 20052, USA
| | - Nathaniel Stearrett
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Washington, DC 20052, USA
| | - Najy T Issa
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, DC 20052, USA
| | - Fiona J Dore
- Department of Medicine, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Raja Mazumder
- Department of Biochemistry, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Charles Hadley King
- Department of Biochemistry, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Monica J Hubal
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, DC 20052, USA
| | - Peter J Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Hongyi Cai
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Sabyasachi Sen
- Department of Medicine, George Washington University School of Medicine, 2300 Eye Street NW, Washington, DC 20037, USA
| | - Kristina I Rother
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Washington, DC 20052, USA
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Washington, DC 20052, USA
| |
Collapse
|
4
|
Sylvetsky AC, Moore HR, Zhu X, Kaidbey JH, Kang L, Saeed A, Khattak S, Grilo MF, Vallone N, Kuttamperoor J, Cogen FR, Elmi A, Walter PJ, Cai H, DiPietro L, Goran MI, Streisand R. Effects of Low-Calorie Sweetener Restriction on Glycemic Variability and Cardiometabolic Health in Children with Type 1 Diabetes: Findings of a Pilot and Feasibility Study. Nutrients 2023; 15:3867. [PMID: 37764650 PMCID: PMC10534616 DOI: 10.3390/nu15183867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Low-calorie sweeteners (LCS) are commonly consumed by children with type 1 diabetes (T1D), yet their role in cardiometabolic health is unclear. This study examined the feasibility, acceptability, and preliminary effects of 12 weeks of LCS restriction among children with T1D. Children (n = 31) with T1D completed a two-week run-in (n = 28) and were randomly assigned to avoid LCS (LCS restriction, n = 15) or continue their usual LCS intake (n = 13). Feasibility was assessed using recruitment, retention, and adherence rates percentages. Acceptability was assessed through parents completing a qualitative interview (subset, n = 15) and a satisfaction survey at follow-up. Preliminary outcomes were between-group differences in change in average daily time-in-range (TIR) over 12 weeks (primary), and other measures of glycemic variability, lipids, inflammatory biomarkers, visceral adiposity, and dietary intake (secondary). Linear regression, unadjusted and adjusted for age, sex, race, and change in BMI, was used to compare mean changes in all outcomes between groups. LCS restriction was feasible and acceptable. No between-group differences in change in TIR or other measures of glycemic variability were observed. However, significant decreases in TNF-alpha (-0.23 ± 0.08 pg/mL) and improvements in cholesterol (-0.31 ± 0.18 mmol/L) and LDL (-0.60 ± 0.39 mmol/L) were observed with usual LCS intake, compared with LCS restriction. Those randomized to LCS restriction did not report increases in total or added sugar intake, and lower energy intake was reported in both groups (-190.8 ± 106.40 kcal LCS restriction, -245.3 ± 112.90 kcal usual LCS intake group). Decreases in percent energy from carbohydrates (-8.5 ± 2.61) and increases in percent energy from protein (3.2 ± 1.16) and fat (5.2 ± 2.02) were reported with usual LCS intake compared with LCS restriction. Twelve weeks of LCS restriction did not compromise glycemic variability or cardiometabolic outcomes in this small sample of youth with T1D. Further examination of LCS restriction among children with T1D is warranted.
Collapse
Affiliation(s)
- Allison C. Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Hailey R. Moore
- Division of Psychology & Behavioral Health, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; (H.R.M.); (L.K.); (R.S.)
| | - Xinyu Zhu
- Nutrition and Health Sciences Program, Emory University, 1518 Clifton Rd, Atlanta, GA 30322, USA;
| | - Jasmine H. Kaidbey
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Leyi Kang
- Division of Psychology & Behavioral Health, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; (H.R.M.); (L.K.); (R.S.)
| | - Abbas Saeed
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Shazmeena Khattak
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Mariana F. Grilo
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Natalie Vallone
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Janae Kuttamperoor
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Fran R. Cogen
- Division of Endocrinology, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA;
- School of Medicine and Health Sciences, The George Washington University, 2300 I St. NW, Washington, DC 20052, USA
| | - Angelo Elmi
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA;
| | - Peter J. Walter
- Clinical Mass Spectrometry Lab, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA; (P.J.W.); (H.C.)
| | - Hongyi Cai
- Clinical Mass Spectrometry Lab, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA; (P.J.W.); (H.C.)
| | - Loretta DiPietro
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Suite 200, Washington, DC 20052, USA; (J.H.K.); (A.S.); (S.K.); (M.F.G.); (N.V.); (J.K.); (L.D.)
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA;
| | - Randi Streisand
- Division of Psychology & Behavioral Health, Children’s National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; (H.R.M.); (L.K.); (R.S.)
- School of Medicine and Health Sciences, The George Washington University, 2300 I St. NW, Washington, DC 20052, USA
| |
Collapse
|
5
|
Schiffman SS, Scholl EH, Furey TS, Nagle HT. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: in vitro screening assays. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:307-341. [PMID: 37246822 DOI: 10.1080/10937404.2023.2213903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.
Collapse
Affiliation(s)
- Susan S Schiffman
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
| | | | - Terrence S Furey
- Departments of Genetics and Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H Troy Nagle
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Skurk T, Krämer T, Marcinek P, Malki A, Lang R, Dunkel A, Krautwurst T, Hofmann TF, Krautwurst D. Sweetener System Intervention Shifted Neutrophils from Homeostasis to Priming. Nutrients 2023; 15:nu15051260. [PMID: 36904259 PMCID: PMC10005247 DOI: 10.3390/nu15051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.
Collapse
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, TUM School for Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Tamara Krämer
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Agne Malki
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Tiffany Krautwurst
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas F. Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
7
|
Bridge-Comer PE, Vickers MH, Morton-Jones J, Spada A, Rong J, Reynolds CM. Maternal intake of fructose or artificial sweetener during pregnancy and lactation has persistent effects on metabolic and reproductive health of dams post-weaning. J Dev Orig Health Dis 2022; 13:642-649. [PMID: 35322784 DOI: 10.1017/s2040174422000022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As rates of obesity, diabetes, and related comorbidities have increased, the consumption of artificial sweeteners (ASs) as sugar substitutes has also risen in popularity as they are perceived as a healthier alternative to sugar sweetened products. However, there is conflicting evidence regarding the impact of AS intake on metabolic and reproductive health. Glucose intolerance during pregnancy due to intake of sugar sweetened foods can result in an increased risk for the development of type 2 diabetes post-pregnancy. However, limited information exists on the impact of AS intake during pregnancy and lactation on the mother's health in later life. We hypothesised both AS and fructose would impair metabolic health post-partum (PP) following maternal consumption during pregnancy and lactation. Female C57Bl/6 mice received a standard control diet ad libitum with either water (CD), fructose (Fr; 34.7 mm intake), or AS (AS;12.5 mm Acesulfame-K) throughout pregnancy and lactation. Post-weaning, AS and Fr dams were fed the CD diet for the remainder of the experiment. Oral glucose tolerance tests were undertaken 8 weeks PP and dams were humanely killed at 9 weeks PP, with adipose tissue and ovaries collected for analysis. Experimental diets did not influence maternal bodyweight. At 8 weeks PP, increased glucose intolerance was evident in both AS and Fr dams. Adipocyte size was significantly increased in both the AS and Fr groups PP. Further, in the ovary, AS increased expression of genes associated with follicular development and ovulation. Therefore, ASs may not represent beneficial substitutes to fructose during pregnancy, with the potential to increase the risk of T2DM in later life in mothers.
Collapse
Affiliation(s)
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Ana Spada
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jing Rong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
- School of Public Health, Physiotherapy and Sports Science, Conway Institute, Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
8
|
Stampe S, Leth-Møller M, Greibe E, Hoffmann-Lücke E, Pedersen M, Ovesen P. Artificial Sweeteners in Breast Milk: A Clinical Investigation with a Kinetic Perspective. Nutrients 2022; 14:nu14132635. [PMID: 35807817 PMCID: PMC9268461 DOI: 10.3390/nu14132635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Artificial sweeteners (ASs) are calorie-free chemical substances used instead of sugar to sweeten foods and drinks. Pregnant women with obesity or diabetes are often recommended to substitute sugary products with ASs to prevent an increase in body weight. However, some recent controversy surrounding ASs relates to concerns about the risk of obesity caused by a variety of metabolic changes, both in the mother and the offspring. This study addressed these concerns and investigated the biodistribution of ASs in plasma and breast milk of lactating women to clarify whether ASs can transfer from mother to offspring through breast milk. We recruited 49 lactating women who were provided with a beverage containing four different ASs (acesulfame-potassium, saccharin, cyclamate, and sucralose). Blood and breast milk samples were collected before and up to six hours after consumption. The women were categorized: BMI < 25 (n = 20), BMI > 27 (n = 21) and type 1 diabetes (n = 8). We found that all four ASs were present in maternal plasma and breast milk. The time-to-peak was 30−120 min in plasma and 240−300 min in breast milk. Area under the curve (AUC) ratios in breast milk were 88.9% for acesulfame-potassium, 38.9% for saccharin, and 1.9% for cyclamate. We observed no differences in ASs distributions between the groups.
Collapse
Affiliation(s)
- Sofie Stampe
- Department of Gynaecology and Obstetrics, Aarhus University Hospital and Steno Diabetes Centre Aarhus, 8200 Aarhus N, Denmark;
- Comparative Medicine Laboratory, Aarhus University, 8000 Aarhus, Denmark;
- Institute for Clinical Medicine, Health, Aarhus University, 8000 Aarhus, Denmark; (E.G.); (E.H.-L.)
- Correspondence: (S.S.); (P.O.); Tel.: +45-31714417 (S.S.); +45-30714824 (P.O.)
| | - Magnus Leth-Møller
- Department of Gynaecology and Obstetrics, Aarhus University Hospital and Steno Diabetes Centre Aarhus, 8200 Aarhus N, Denmark;
- Comparative Medicine Laboratory, Aarhus University, 8000 Aarhus, Denmark;
- Institute for Clinical Medicine, Health, Aarhus University, 8000 Aarhus, Denmark; (E.G.); (E.H.-L.)
| | - Eva Greibe
- Institute for Clinical Medicine, Health, Aarhus University, 8000 Aarhus, Denmark; (E.G.); (E.H.-L.)
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Elke Hoffmann-Lücke
- Institute for Clinical Medicine, Health, Aarhus University, 8000 Aarhus, Denmark; (E.G.); (E.H.-L.)
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michael Pedersen
- Comparative Medicine Laboratory, Aarhus University, 8000 Aarhus, Denmark;
| | - Per Ovesen
- Department of Gynaecology and Obstetrics, Aarhus University Hospital and Steno Diabetes Centre Aarhus, 8200 Aarhus N, Denmark;
- Institute for Clinical Medicine, Health, Aarhus University, 8000 Aarhus, Denmark; (E.G.); (E.H.-L.)
- Correspondence: (S.S.); (P.O.); Tel.: +45-31714417 (S.S.); +45-30714824 (P.O.)
| |
Collapse
|
9
|
Is There an Academic Bias against Low-Energy Sweeteners? Nutrients 2022; 14:nu14071428. [PMID: 35406042 PMCID: PMC9003104 DOI: 10.3390/nu14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
This perspective considers evidence of a common academic bias against low-energy sweeteners (LES). The core proposition is that this bias is manifested in research and reporting focused on generating and placing a negative spin on LESs, largely through selective citation, interpretation and reporting. The evidence centres on three inter-related points, which together may generate a misleading impression of the balance of evidence: (1) basic and mechanistic research on LES perpetuates “explanations” for unsubstantiated adverse effects of LES; (2) the literature on LES—particularly narrative reviews and commentaries—continually reprises hypotheses of adverse effects without acknowledging where these hypotheses have been rigorously tested and rejected; and (3) negative interpretations of the effects of LES largely rely upon selectively emphasising lower-quality research whilst ignoring or dismissing higher-quality evidence. The expert community should consider these issues in assuring scientific integrity and balance in the academic discourse on LES, and how this is translated into messages for public health and consumers.
Collapse
|
10
|
Zhang M, Chen S, Dai Y, Duan T, Xu Y, Li X, Yang J, Zhu X. Aspartame and sucralose extend the lifespan and improve the health status of C. elegans. Food Funct 2021; 12:9912-9921. [PMID: 34486601 DOI: 10.1039/d1fo01579f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aspartame (ASP) and sucralose (SUC) are non-nutritive sweeteners which are widely consumed worldwide. They are considered safe for human consumption, but their effects on certain physiological aspects, such as the lifespan or health status, of the organism have not yet been studied in depth and only limited data are available in the literature. The objectives of this study were to evaluate the effects of ASP and SUC on the lifespan and health indexes using Caenorhabditis elegans (C. elegans) as a model system. Interestingly, it was shown that at the concentrations tested, ASP (0.03-3 mg mL-1) showed an increasing trend of the mean lifespan of C. elegans, with a significant increase of 27.6% compared to the control at 3 mg mL-1. Similarly, SUC (ranging from 0.03 to 10 mg mL-1) also significantly increased the mean lifespan by 20.3% and 22.3% at 0.03 and 0.3 mg mL-1, respectively. However, 10 mg mL-1 SUC had a negative effect on the lifespan, though it did not reach a statistically significant level. In addition, ASP and SUC decreased lipofuscin accumulation and transiently improved motility, indicating improved health status. Nonetheless, they had different effects on food intake and intestinal fat deposition (IFD) at different intervals of time. Taken together, our findings revealed that ASP and SUC can prolong the lifespan and improve the health status of C. elegans.
Collapse
Affiliation(s)
- Mohan Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China.,Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Shuai Chen
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China
| | - Yuhua Dai
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| | - Ting Duan
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yuying Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Xiaolin Li
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs district, Shanghai 200135, China
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China. .,Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Xinqiang Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China. .,Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Rationale and design of DRINK-T1D: A randomized clinical trial of effects of low-calorie sweetener restriction in children with type 1 diabetes. Contemp Clin Trials 2021; 106:106431. [PMID: 33974993 DOI: 10.1016/j.cct.2021.106431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Low-calorie sweeteners (LCSs) provide sweetness without sugar or calories and are used to replace added sugars by many children with type 1 diabetes (T1D). However, the role of LCSs in diabetes management and cardiometabolic health is unclear. OBJECTIVE The Diabetes Research in Kids Study (DRINK-T1D) aims to investigate effects of LCS restriction on glycemic variability, visceral adiposity, lipid profiles, and systemic inflammation among children 6-12 years old with T1D. METHODS Children with T1D, who report habitual consumption of foods and beverages containing LCSs, are recruited from the Washington Nationals Diabetes Care Complex (DCC) at Children's National Hospital (CNH) in Washington, DC. Following a phone screening and two-week run-in period involving continuation of usual LCS intake, children are randomized to 12 weeks of LCS restriction (replacement of diet beverages with still or sparkling water and avoidance of other sources of LCSs) or continued usual LCS intake (control). The primary outcome is the difference in change in glycemic variability in the LCS restriction group versus the control group. Change in glycemic variability will be assessed as the difference in daily average time-in-range (TIR), measured using continuous glucose monitoring (CGM) during two weeks at the end of the 12-week intervention, compared with during the two-week run-in period prior to randomization. Participants also complete a variety of anthropometric, metabolic, dietary, and behavioral assessments throughout the 14-week study. CONCLUSIONS DRINK-T1D is an innovative, randomized controlled trial, evaluating effects of LCS restriction on glycemic variability and cardiometabolic health in children with T1D. Findings of DRINK-T1D will support or challenge the common practice of recommending LCS use in this patient population and will have clinically relevant implications for pediatric T1D management. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT04385888.
Collapse
|
12
|
Graneri LT, Mamo JCL, D’Alonzo Z, Lam V, Takechi R. Chronic Intake of Energy Drinks and Their Sugar Free Substitution Similarly Promotes Metabolic Syndrome. Nutrients 2021; 13:nu13041202. [PMID: 33917297 PMCID: PMC8067378 DOI: 10.3390/nu13041202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Energy drinks containing significant quantities of caffeine, taurine and sugar are increasingly consumed, particularly by adolescents and young adults. The putative effects of chronic ingestion of either standard energy drink, MotherTM (ED), or its sugar-free formulation (sfED) on metabolic syndrome were determined in wild-type C57BL/6J mice, in comparison to a soft drink, Coca-Cola (SD), a Western-styled diet enriched in saturated fatty acids (SFA), and a combination of SFA + ED. Following 13 weeks of intervention, mice treated with ED were hyperglycaemic and hypertriglyceridaemic, indicating higher triglyceride glucose index, which was similar to the mice maintained on SD. Surprisingly, the mice maintained on sfED also showed signs of insulin resistance with hyperglycaemia, hypertriglyceridaemia, and greater triglyceride glucose index, comparable to the ED group mice. In addition, the ED mice had greater adiposity primarily due to the increase in white adipose tissue, although the body weight was comparable to the control mice receiving only water. The mice maintained on SFA diet exhibited significantly greater weight gain, body fat, cholesterol and insulin, whilst blood glucose and triglyceride concentrations remained comparable to the control mice. Collectively, these data suggest that the consumption of both standard and sugar-free forms of energy drinks induces metabolic syndrome, particularly insulin resistance.
Collapse
Affiliation(s)
- Liam T. Graneri
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Zachary D’Alonzo
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia; (L.T.G.); (J.C.L.M.); (Z.D.); (V.L.)
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
- Correspondence: ; Tel.: +61-8-92662607
| |
Collapse
|
13
|
|
14
|
Farid A, Hesham M, El-Dewak M, Amin A. The hidden hazardous effects of stevia and sucralose consumption in male and female albino mice in comparison to sucrose. Saudi Pharm J 2020; 28:1290-1300. [PMID: 33132722 PMCID: PMC7584803 DOI: 10.1016/j.jsps.2020.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
Replacing sucrose with non-caloric sweeteners is an approach to avoid overweight and diabetes development. Non-caloric sweeteners are classified into either artificial as sucralose or natural as stevia. Both of them have been approved by FDA, but the effects of their chronic consumption are controversial. The present study aimed to evaluate the effects of these two sweeteners, in male and female albino mice, on different blood biochemical parameters, enzymes activities and immunological parameters after 8 and 16 weeks of sweeteners administration. 40.5 mg/ml of sucrose, 5.2 mg/ml of sucralose and 4.2 mg/ml of stevia were dissolved individually in distilled water. Mice were administrated by sweetener's solution for 5 h daily. Male and female mice showed a preference for water consumption with sucralose or stevia. Both of the two sweeteners significantly reduced the hemoglobin level, HCT%, RBCs and WBCs count. After 18 weeks, significant elevations in liver and kidney function enzymes were observed in male and female mice administrated with both non-caloric sweeteners. Histopathological examination in sucralose and stevia administrated groups confirmed the biochemical results; where it revealed a severe damage in liver and kidney sections. While, sucrose administration elevated, only, the levels of ALT, AST and cholesterol in male mice. A vigorous elevation in levels of different immunoglobulin (IgG, IgE and IgA) and pro-inflammatory cytokines (IL-6 and -8), that was accompanied by a significant reduction in level of anti-inflammatory cytokine IL-10, was observed in male and female mice groups administrated with sucralose or stevia. On the other hand, sucrose administration led to an elevation in IgA and reduction in IL-10 levels.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Egypt
| | - Marim Hesham
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Egypt
| | - Mohamed El-Dewak
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Egypt
| | - Ayman Amin
- Department of Plant Physiology, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
15
|
Sucralose promotes accumulation of reactive oxygen species (ROS) and adipogenesis in mesenchymal stromal cells. Stem Cell Res Ther 2020; 11:250. [PMID: 32586409 PMCID: PMC7318498 DOI: 10.1186/s13287-020-01753-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/27/2022] Open
Abstract
Abstract Consumption of non-nutritive sweeteners (NNS) has been consistently associated with obesity and cardiometabolic disease in epidemiologic studies. Herein, we investigated effects of sucralose, a widely used NNS, at a cellular level. We wanted to investigate effect of sucralose on reactive oxygen species accumulation and adipogenesis in a human adipocyte tissue-derived mesenchymal stromal cells (MSCs) in a controlled fashion. Methods In vitro experiments were conducted on commercially available MSCs obtained from human adipose tissue. hMSCs were exposed with sucralose at 0.2 mM (a concentration which could plausibly be observed in the circulatory system of high NNS consumers) up to 1.0 mM (supra-physiologic concentration) in the presence of both normal and high glucose media to detect a dose response based on the outcome measures. Reactive oxygen species (ROS) were detected using Mitosox Red staining and further analyzed by ImageJ and gene expression analysis. Effect of sucralose on adipogenic differentiation was observed in different concentrations of sucralose followed by gene expression analysis and Oil Red O staining. Results Increased ROS accumulation was observed within 72 h of exposure. Increased adipogenesis was also noted when exposed to higher dose of sucralose. Conclusion Sucralose promotes ROS accumulation and adipogenesis in human adipose tissue derived mesenchymal stromal cells.
Collapse
|