1
|
Vallesi A, Porcaro C, Visalli A, Fasolato D, Rossato F, Bussè C, Cagnin A. Resting-state EEG spectral and fractal features in dementia with Lewy bodies with and without visual hallucinations. Clin Neurophysiol 2024; 168:43-51. [PMID: 39442361 DOI: 10.1016/j.clinph.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Complex visual hallucinations (VH) are a core feature of dementia with Lewy bodies (DLB), though they may not occur in all patients. Power spectral density (PSD) analysis of resting-state EEG (rs-EEG) shows associations between some frequency bands (e.g., theta), individual alpha frequency (IAF) and VH. However, new tools that improve early differential diagnosis and symptom-based stratification with higher sensitivity and specificity, even within the DLB population, are desirable. We aimed to assess differences in rs-EEG data between DLB patients with VH (DLB-VH+) and without VH (DLB-VH-), comparing innovative non-linear approaches with more traditional linear ones. METHODS We retrospectively analyzed rs-EEG recordings of DLB-VH+, DLB-VH-, Alzheimer's disease patients and age-matched healthy controls. EEG was analyzed using the nonlinear Higuchi's Fractal Dimension (FD) measure, and the results were compared with those of entropy and standard linear methods based on PSD and IAF. RESULTS Only the FD measure could discriminate between DLB-VH+ and DLB-VH-. CONCLUSIONS In conclusion, rs-EEG differences between DLB-VH+ and DLB-VH- are better characterized by FD analysis than by a more traditional power spectrum approach. SIGNIFICANCE This suggests that the presence of complex VH is associated with less complex brain dynamics at rest, as reflected by the FD measure.
Collapse
Affiliation(s)
- Antonino Vallesi
- Dipartimento di Neuroscienze, Università degli Studi di Padova, Italy; Padova Neuroscience Center, Università degli Studi di Padova, Italy.
| | - Camillo Porcaro
- Dipartimento di Neuroscienze, Università degli Studi di Padova, Italy; Padova Neuroscience Center, Università degli Studi di Padova, Italy; Institute of Cognitive Sciences and Technologies-National Research Council, Rome, Italy; Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Antonino Visalli
- IRCCS San Camillo Hospital, Lido di Venezia, Venice, Italy; Dipartimento di Psicologia Generale, University of Padova, Italy
| | - Davide Fasolato
- Dipartimento di Neuroscienze, Università degli Studi di Padova, Italy
| | - Francesco Rossato
- Dipartimento di Neuroscienze, Università degli Studi di Padova, Italy
| | - Cinzia Bussè
- Dipartimento di Neuroscienze, Università degli Studi di Padova, Italy
| | - Annachiara Cagnin
- Dipartimento di Neuroscienze, Università degli Studi di Padova, Italy; Padova Neuroscience Center, Università degli Studi di Padova, Italy.
| |
Collapse
|
2
|
Lin H, Fang J, Zhang J, Zhang X, Piao W, Liu Y. Resting-State Electroencephalogram Depression Diagnosis Based on Traditional Machine Learning and Deep Learning: A Comparative Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6815. [PMID: 39517712 PMCID: PMC11548331 DOI: 10.3390/s24216815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The global prevalence of Major Depressive Disorder (MDD) is increasing at an alarming rate, underscoring the urgent need for timely and accurate diagnoses to facilitate effective interventions and treatments. Electroencephalography remains a widely used neuroimaging technique in psychiatry, due to its non-invasive nature and cost-effectiveness. With the rise of computational psychiatry, the integration of EEG with artificial intelligence has yielded remarkable results in diagnosing depression. This review offers a comparative analysis of two predominant methodologies in research: traditional machine learning and deep learning methods. Furthermore, this review addresses key challenges in current research and suggests potential solutions. These insights aim to enhance diagnostic accuracy for depression and also foster further development in the area of computational psychiatry.
Collapse
Affiliation(s)
- Haijun Lin
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Jing Fang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Junpeng Zhang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Xuhui Zhang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Weiying Piao
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| | - Yukun Liu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
3
|
Jiang H, Zhao S, Wu Q, Cao Y, Zhou W, Gong Y, Shao C, Chi A. Dragon boat exercise reshapes the temporal-spatial dynamics of the brain. PeerJ 2024; 12:e17623. [PMID: 38952974 PMCID: PMC11216202 DOI: 10.7717/peerj.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/02/2024] [Indexed: 07/03/2024] Open
Abstract
Although exercise training has been shown to enhance neurological function, there is a shortage of research on how exercise training affects the temporal-spatial synchronization properties of functional networks, which are crucial to the neurological system. This study recruited 23 professional and 24 amateur dragon boat racers to perform simulated paddling on ergometers while recording EEG. The spatiotemporal dynamics of the brain were analyzed using microstates and omega complexity. Temporal dynamics results showed that microstate D, which is associated with attentional networks, appeared significantly altered, with significantly higher duration, occurrence, and coverage in the professional group than in the amateur group. The transition probabilities of microstate D exhibited a similar pattern. The spatial dynamics results showed the professional group had lower brain complexity than the amateur group, with a significant decrease in omega complexity in the α (8-12 Hz) and β (13-30 Hz) bands. Dragon boat training may strengthen the attentive network and reduce the complexity of the brain. This study provides evidence that dragon boat exercise improves the efficiency of the cerebral functional networks on a spatiotemporal scale.
Collapse
Affiliation(s)
- Hongke Jiang
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Shanguang Zhao
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Qianqian Wu
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Yingying Cao
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Wu Zhou
- School of Physical Education, Shaanxi Normal University, Xian, China
| | - Youwu Gong
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Changzhuan Shao
- Department of Physical Education, Shanghai Maritime University, Shanghai, China
| | - Aiping Chi
- School of Physical Education, Shaanxi Normal University, Xian, China
| |
Collapse
|
4
|
Bergosh M, Medvidovic S, Zepeda N, Crown L, Ipe J, Debattista L, Romero L, Amjadi E, Lam T, Hakopian E, Choi W, Wu K, Lo JYT, Lee DJ. Immediate and long-term electrophysiological biomarkers of antidepressant-like behavioral effects after subanesthetic ketamine and medial prefrontal cortex deep brain stimulation treatment. Front Neurosci 2024; 18:1389096. [PMID: 38966758 PMCID: PMC11222339 DOI: 10.3389/fnins.2024.1389096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Both ketamine (KET) and medial prefrontal cortex (mPFC) deep brain stimulation (DBS) are emerging therapies for treatment-resistant depression, yet our understanding of their electrophysiological mechanisms and biomarkers is incomplete. This study investigates aperiodic and periodic spectral parameters, and the signal complexity measure sample entropy, within mPFC local field potentials (LFP) in a chronic corticosterone (CORT) depression model after ketamine and/or mPFC DBS. Methods Male rats were intraperitoneally administered CORT or vehicle for 21 days. Over the last 7 days, animals receiving CORT were treated with mPFC DBS, KET, both, or neither; then tested across an array of behavioral tasks for 9 days. Results We found that the depression-like behavioral and weight effects of CORT correlated with a decrease in aperiodic-adjusted theta power (5-10 Hz) and an increase in sample entropy during the administration phase, and an increase in theta peak frequency and a decrease in the aperiodic exponent once the depression-like phenotype had been induced. The remission-like behavioral effects of ketamine alone correlated with a post-treatment increase in the offset and exponent, and decrease in sample entropy, both immediately and up to eight days post-treatment. The remission-like behavioral effects of mPFC DBS alone correlated with an immediate decrease in sample entropy, an immediate and sustained increase in low gamma (20-50 Hz) peak width and aperiodic offset, and sustained improvements in cognitive function. Failure to fully induce remission-like behavior in the combinatorial treatment group correlated with a failure to suppress an increase in sample entropy immediately after treatment. Conclusion Our findings therefore support the potential of periodic theta parameters as biomarkers of depression-severity; and periodic low gamma parameters and cognitive measures as biomarkers of mPFC DBS treatment efficacy. They also support sample entropy and the aperiodic spectral parameters as potential cross-modal biomarkers of depression severity and the therapeutic efficacy of mPFC DBS and/or ketamine. Study of these biomarkers is important as objective measures of disease severity and predictive measures of therapeutic efficacy can be used to personalize care and promote the translatability of research across studies, modalities, and species.
Collapse
Affiliation(s)
- Matthew Bergosh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sasha Medvidovic
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Nancy Zepeda
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lindsey Crown
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jennifer Ipe
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Debattista
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Luis Romero
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Eimon Amjadi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tian Lam
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Erik Hakopian
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States
| | - Wooseong Choi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin Wu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jack Yu Tung Lo
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Darrin Jason Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
| |
Collapse
|
5
|
Allendorfer JB, Nenert R, Goodman AM, Kakulamarri P, Correia S, Philip NS, LaFrance WC, Szaflarski JP. Brain network entropy, depression, and quality of life in people with traumatic brain injury and seizure disorders. Epilepsia Open 2024; 9:969-980. [PMID: 38507279 PMCID: PMC11145610 DOI: 10.1002/epi4.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) often precedes the onset of epileptic (ES) or psychogenic nonepileptic seizures (PNES) with depression being a common comorbidity. The relationship between depression severity and quality of life (QOL) may be related to resting-state network complexity. We investigated these relationships in adults with TBI-only, TBI + ES, or TBI + PNES using Sample Entropy (SampEn), a measure of physiologic signals complexity. METHODS Adults with TBI-only (n = 60), TBI + ES (n = 21), or TBI + PNES (n = 56) completed the Beck Depression Inventory-II (BDI-II; depression symptom severity) and QOL in Epilepsy (QOLIE-31) assessments and underwent resting-state functional magnetic resonance imaging (rs-fMRI). SampEn values derived from six resting state functional networks were calculated per participant. Effects of group, network, and group-by-network-interactions for SampEn were investigated with a mixed-effects model. We examined relationships between BDI-II, QOL, and SampEn of each of the networks. RESULTS Groups did not differ in age, but there was a higher proportion of women with TBI + PNES (p = 0.040). TBI + ES and TBI-only groups did not differ in BDI-II or QOLIE-31 scores, while the TBI + PNES group scored worse on both measures. The fixed effects of the model revealed significant differences in SampEn values across networks (lower SampEn for the frontoparietal network compared to other networks). The likelihood ratio test for group-by-network-interactions was significant (p = 0.033). BDI-II was significantly negatively associated with Overall QOL scale scores in all groups, and significantly negatively associated with network SampEn values only in the TBI + PNES group. SIGNIFICANCE Only TBI + PNES had significant relationships between depression symptom severity and network SampEn values indicating that the resting state network complexity is related to depression severity in this group but not in TBI + ES or TBI-only. PLAIN LANGUAGE SUMMARY The brain has a complex network of internal connections. How well these connections work may be affected by TBI and seizures and may underlie mental health symptoms including depression; the worse the depression, the worse the quality of life. Our study compared brain organization in people with TBI, people with epilepsy after TBI, and people with nonepileptic seizures after TBI. Only people with nonepileptic seizures after TBI showed a relationship between how organized their brain connections were and how bad was their depression. We need to better understand these relationships to develop more impactful, effective treatments.
Collapse
Affiliation(s)
- Jane B. Allendorfer
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Rodolphe Nenert
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Adam M. Goodman
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Pranav Kakulamarri
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Stephen Correia
- VA RR&D Center for Neurorestoration and NeurotechnologyVA Providence Healthcare SystemProvidenceRhode IslandUSA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and NeurotechnologyVA Providence Healthcare SystemProvidenceRhode IslandUSA
- Department of Psychiatry and Human BehaviorBrown UniversityProvidenceRhode IslandUSA
| | - W. Curt LaFrance
- VA RR&D Center for Neurorestoration and NeurotechnologyVA Providence Healthcare SystemProvidenceRhode IslandUSA
- Department of Psychiatry and Human BehaviorBrown UniversityProvidenceRhode IslandUSA
- Department of NeurologyBrown UniversityProvidenceRhode IslandUSA
- Division of Neuropsychiatry and Behavioral NeurologyRhode Island HospitalProvidenceRhode IslandUSA
| | - Jerzy P. Szaflarski
- Department of NeurologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- UAB Epilepsy CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of NeurosurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
6
|
van der Wijk G, Enkhbold Y, Cnudde K, Szostakiwskyj MW, Blier P, Knott V, Jaworska N, Protzner AB. One size does not fit all: notable individual variation in brain activity correlates of antidepressant treatment response. Front Psychiatry 2024; 15:1358018. [PMID: 38628260 PMCID: PMC11018891 DOI: 10.3389/fpsyt.2024.1358018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction To date, no robust electroencephalography (EEG) markers of antidepressant treatment response have been identified. Variable findings may arise from the use of group analyses, which neglect individual variation. Using a combination of group and single-participant analyses, we explored individual variability in EEG characteristics of treatment response. Methods Resting-state EEG data and Montgomery-Åsberg Depression Rating Scale (MADRS) symptom scores were collected from 43 patients with depression before, at 1 and 12 weeks of pharmacotherapy. Partial least squares (PLS) was used to: 1) identify group differences in EEG connectivity (weighted phase lag index) and complexity (multiscale entropy) between eventual medication responders and non-responders, and 2) determine whether group patterns could be identified in individual patients. Results Responders showed decreased alpha and increased beta connectivity, and early, widespread decreases in complexity over treatment. Non-responders showed an opposite connectivity pattern, and later, spatially confined decreases in complexity. Thus, as in previous studies, our group analyses identified significant differences between groups of patients with different treatment outcomes. These group-level EEG characteristics were only identified in ~40-60% of individual patients, as assessed quantitatively by correlating the spatiotemporal brain patterns between groups and individual results, and by independent raters through visualization. Discussion Our single-participant analyses suggest that substantial individual variation exists, and needs to be considered when investigating characteristics of antidepressant treatment response for potential clinical applicability. Clinical trial registration https://clinicaltrials.gov, identifier NCT00519428.
Collapse
Affiliation(s)
- Gwen van der Wijk
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Yaruuna Enkhbold
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Kelsey Cnudde
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | | | - Pierre Blier
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Natalia Jaworska
- Institute of Mental Health Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrea B. Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Fan S, Zhang J, Wu Y, Yu Y, Zheng H, Guo YY, Ji Y, Pang X, Tian Y. Changed brain entropy and functional connectivity patterns induced by electroconvulsive therapy in majoy depression disorder. Psychiatry Res Neuroimaging 2024; 339:111788. [PMID: 38335560 DOI: 10.1016/j.pscychresns.2024.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/09/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Our objective is to innovatively integrate both linear and nonlinear characteristics of brain signals in Electroconvulsive Therapy (ECT) research, with the goal of uncovering deeper insights into the pathogenesis of Major Depressive Disorder (MDD) and identifying novel targets for other physical intervention therapies. METHODS We measured brain entropy (BEN) in 42 MDD patients and 42 matched healthy controls (HC) using rs-fMRI data. Brain regions that differed significantly in patients with MDD before and after ECT were extracted. Then, we use these brain regions as seed points to investigate the differences in whole-brain resting-state functional connectivity (RSFC) patterns before and after ECT. RESULTS Compared to HCs, patients had higher BEN levels in the right precuneus (PCUN.R) and right angular gyrus (ANG.R). After ECT, patients had lower BEN levels in the PCUN.R and ANG.R. Compared with before ECT, patients showed significantly increased RSFC after ECT between the PCUN.R and right middle temporal gyrus and ANG.R. Significantly increased RSFC was observed between the ANG.R and right middle frontal gyrus and right supramarginal gyrus after ECT. CONCLUSION Combining the linear and nonlinear characteristics of brain signals can effectively explore the pathogenesis of depression and provide new targets for ECT.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Jiahua Zhang
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Yue Wu
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei,. 230601, PR China
| | - Yue Yu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Hao Zheng
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Yuan Yuan Guo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Yang Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei. 230022, PR China
| | - Xiaonan Pang
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Yanghua Tian
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, PR China; Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, PR China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, PR China; Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei,. 230601, PR China.
| |
Collapse
|
8
|
Khan MSI, Jelinek HF. Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG). ADVANCES IN NEUROBIOLOGY 2024; 36:693-715. [PMID: 38468059 DOI: 10.1007/978-3-031-47606-8_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Research has shown that relying only on self-reports for diagnosing psychiatric disorders does not yield accurate results at all times. The advances of technology as well as artificial intelligence and other machine learning algorithms have allowed the introduction of point of care testing (POCT) including EEG characterization and correlations with possible psychopathology. Nonlinear methods of EEG analysis have significant advantages over linear methods. Empirical mode decomposition (EMD) is a reliable nonlinear method of EEG pre-processing. In this chapter, we compare two existing EEG complexity measures - Higuchi fractal dimension (HFD) and sample entropy (SE), with our newly proposed method using Higuchi fractal dimension from the Hilbert Huang transform (HFD-HHT). We present an example using the three complexity measures on a 2-minute EEG recorded from a healthy 20-year-old male after signal pre-processing. Furthermore, we showed the usefulness of these complexity measures in the classification of major depressive disorder (MDD) with healthy controls. Our study is in line with previous research and has shown an increase in HFD and SE values in the full, alpha and beta frequency bands suggestive of an increase in EEG irregularity. Moreover, the HFD-HHT values decreased in those three bands for majority of electrodes which is suggestive of a decrease in irregularity in the frequency-time domain. We conclude that all three complexity measures can be vital features useful for EEG analysis which could be incorporated in POCT systems.
Collapse
Affiliation(s)
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
9
|
Iglesias-Parro S, Soriano MF, Ibáñez-Molina AJ. Advances in Understanding Fractals in Affective and Anxiety Disorders. ADVANCES IN NEUROBIOLOGY 2024; 36:717-732. [PMID: 38468060 DOI: 10.1007/978-3-031-47606-8_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In this chapter, we review the research that has applied fractal measures to the study of the most common psychological disorders, that is, affective and anxiety disorders. Early studies focused on heart rate, but diverse measures have also been examined, from variations in subjective mood, or hand movements, to electroencephalogram or magnetoencephalogram data. In general, abnormal fractal dynamics in different physiological and behavioural outcomes have been observed in mental disorders. Despite the disparity of variables measured, fractal analysis has shown high sensitivity in discriminating patients from healthy controls. However, and because of this heterogeneity in measures, the results are not straightforward, and more studies are needed in this promising line.
Collapse
Affiliation(s)
| | - Maria Felipa Soriano
- Department of Mental Health Service, Hospital San Agustín de Linares, Linares, Spain
| | | |
Collapse
|
10
|
Olejarczyk E, Cukic M, Porcaro C, Zappasodi F, Tecchio F. Clinical Sensitivity of Fractal Neurodynamics. ADVANCES IN NEUROBIOLOGY 2024; 36:285-312. [PMID: 38468039 DOI: 10.1007/978-3-031-47606-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Among the significant advances in the understanding of the organization of the neuronal networks that coordinate the body and brain, their complex nature is increasingly important, resulting from the interaction between the very large number of constituents strongly organized hierarchically and at the same time with "self-emerging." This awareness drives us to identify the measures that best quantify the "complexity" that accompanies the continuous evolutionary dynamics of the brain. In this chapter, after an introductory section (Sect. 15.1), we examine how the Higuchi fractal dimension is able to perceive physiological processes (15.2), neurological (15.3) and psychiatric (15.4) disorders, and neuromodulation effects (15.5), giving a mention of other methods of measuring neuronal electrical activity in addition to electroencephalography, such as magnetoencephalography and functional magnetic resonance. Conscious that further progress will support a deeper understanding of the temporal course of neuronal activity because of continuous interaction with the environment, we conclude confident that the fractal dimension has begun to uncover important features of the physiology of brain activity and its alterations.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
| | - Milena Cukic
- Department of Biomimetic Membranes and Textiles, EMPA Material Science and Technology, St. Gallen, Switzerland
| | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Filippo Zappasodi
- Department of Neuroscienze, Imaging and Clinical Sciences, Gabriele D'annunzio University, Chieti, Italy
| | - Franca Tecchio
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| |
Collapse
|
11
|
崔 兴, 秦 泽, 高 之, 万 旺, 顾 忠. [Applications and challenges of wearable electroencephalogram signals in depression recognition and personalized music intervention]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1093-1101. [PMID: 38151931 PMCID: PMC10753324 DOI: 10.7507/1001-5515.202210065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/09/2023] [Indexed: 12/29/2023]
Abstract
Rapid and accurate identification and effective non-drug intervention are the worldwide challenges in the field of depression. Electroencephalogram (EEG) signals contain rich quantitative markers of depression, but whole-brain EEG signals acquisition process is too complicated to be applied on a large-scale population. Based on the wearable frontal lobe EEG monitoring device developed by the authors' laboratory, this study discussed the application of wearable EEG signal in depression recognition and intervention. The technical principle of wearable EEG signals monitoring device and the commonly used wearable EEG devices were introduced. Key technologies for wearable EEG signals-based depression recognition and the existing technical limitations were reviewed and discussed. Finally, a closed-loop brain-computer music interface system for personalized depression intervention was proposed, and the technical challenges were further discussed. This review paper may contribute to the transformation of relevant theories and technologies from basic research to application, and further advance the process of depression screening and personalized intervention.
Collapse
Affiliation(s)
- 兴然 崔
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - 泽光 秦
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - 之琳 高
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - 旺 万
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - 忠泽 顾
- 东南大学 生物科学与医学工程学院(南京 210096)School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
12
|
de la Torre-Luque A, Pemau A, Galvez-Merlin A, Garcia-Ramos A. Immunometabolic alterations in older adults with heightened depressive symptom trajectories: a network approach. Aging Ment Health 2023; 27:2229-2237. [PMID: 37401624 DOI: 10.1080/13607863.2023.2227114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
Objective: To analyse the patterns of relationships between depressive symptoms and immunometabolic markers across longitudinal depression status in older people. Methods: A sample of 3349 older adults (55.21% women; initial age: m = 58.44, sd = 5.21) from the English Longitudinal Study of Ageing was used. Participants were classified according to their longitudinal depression status: minimal depressive symptoms (n = 2736), depressive episode onset (n = 481), or chronic depression (n = 132). Network analysis was used to study the relationships between depression symptoms (CES-D 8 items), inflammatory (white blood cell, C-reactive protein, fibrinogen) and metabolic biomarkers (metabolic syndrome markers). Results: Network structure remained invariant across groups. The minimal symptom group had higher overall strength than both clinical groups (p < .01). Moreover, significant relationships between symptoms and markers were observed across group-specific networks. C-reactive protein and effort symptom were positively connected in the minimal symptom group but not in the other groups. Loneliness and diastolic blood pressure were positively associated only in the chronic depression group. Finally, metabolic markers were identified as central nodes in the clinical status networks. Conclusion: The network analysis constitutes a useful approach to disentangle pathophysiological relationships that may maintain mental disorders in old age.
Collapse
Affiliation(s)
- Alejandro de la Torre-Luque
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Spain
- Centre for Biomedical Research in Mental Health (CIBERSAM), Spain
| | - Andres Pemau
- Faculty of Psychology, Universidad Complutense de Madrid, Spain
| | | | - Adriana Garcia-Ramos
- Department of Legal Medicine, Psychiatry and Pathology, Universidad Complutense de Madrid, Spain
| |
Collapse
|
13
|
Stier AJ, Cardenas-Iniguez C, Kardan O, Moore TM, Meyer FAC, Rosenberg MD, Kaczkurkin AN, Lahey BB, Berman MG. A pattern of cognitive resource disruptions in childhood psychopathology. Netw Neurosci 2023; 7:1153-1180. [PMID: 37781141 PMCID: PMC10473262 DOI: 10.1162/netn_a_00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/01/2023] [Indexed: 10/03/2023] Open
Abstract
The Hurst exponent (H) isolated in fractal analyses of neuroimaging time series is implicated broadly in cognition. Within this literature, H is associated with multiple mental disorders, suggesting that H is transdimensionally associated with psychopathology. Here, we unify these results and demonstrate a pattern of decreased H with increased general psychopathology and attention-deficit/hyperactivity factor scores during a working memory task in 1,839 children. This pattern predicts current and future cognitive performance in children and some psychopathology in 703 adults. This pattern also defines psychological and functional axes associating psychopathology with an imbalance in resource allocation between fronto-parietal and sensorimotor regions, driven by reduced resource allocation to fronto-parietal regions. This suggests the hypothesis that impaired working memory function in psychopathology follows from a reduced cognitive resource pool and a reduction in resources allocated to the task at hand.
Collapse
Affiliation(s)
| | | | - Omid Kardan
- Department of Psychology, University of Chicago
| | | | | | - Monica D. Rosenberg
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| | | | | | - Marc G. Berman
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| |
Collapse
|
14
|
Bokhan NA, Galkin SA, Vasilyeva SN. EEG alpha band characteristics in patients with a depressive episode within recurrent and bipolar depression. CONSORTIUM PSYCHIATRICUM 2023; 4:5-12. [PMID: 38249536 PMCID: PMC10795944 DOI: 10.17816/cp6140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/03/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The search for biological markers for the differential diagnosis of recurrent depression and bipolar depression is an important undertaking in modern psychiatry. Electroencephalography (EEG) is one of the promising tools in addressing this challenge. AIM To identify differences in the quantitative characteristics of the electroencephalographic alpha band activity in patients with a depressive episode within the framework of recurrent depression and bipolar depression. METHODS Two groups of patients (all women) were formed: one consisting of subjects with recurrent depressive disorder and one with subjects experiencing a current mild/moderate episode (30 patients), and subjects with bipolar affective disorder or a current episode of mild or moderate depression (30 patients). The groups did not receive pharmacotherapy and did not differ in their socio-demographic parameters or total score on the Hamilton depression scale. A baseline electroencephalogram was recorded, and the quantitative characteristics of the alpha band activity were analyzed, including the absolute spectral power, interhemispheric coherence, and EEG activation. RESULTS The patients with recurrent depressive disorder demonstrated statistically significantly lower values of the average absolute spectral power of the alpha band (z=2.481; p=0.042), as well as less alpha attenuation from eyes closed to eyes open (z=2.573; p=0.035), as compared with the patients with bipolar affective disorder. CONCLUSION The presented quantitative characteristics of alpha activity are confirmation that patients with affective disorders of different origins also display distinctive electrophysiological features which can become promising biomarkers and could help separate bipolar depression from the recurrent type.
Collapse
Affiliation(s)
- Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
- Siberian State Medical University
| | - Stanislav A. Galkin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
| | - Svetlana N. Vasilyeva
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
| |
Collapse
|
15
|
Tsai YC, Li CT, Juan CH. A review of critical brain oscillations in depression and the efficacy of transcranial magnetic stimulation treatment. Front Psychiatry 2023; 14:1073984. [PMID: 37260762 PMCID: PMC10228658 DOI: 10.3389/fpsyt.2023.1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 06/02/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) and intermittent theta burst stimulation (iTBS) have been proven effective non-invasive treatments for patients with drug-resistant major depressive disorder (MDD). However, some depressed patients do not respond to these treatments. Therefore, the investigation of reliable and valid brain oscillations as potential indices for facilitating the precision of diagnosis and treatment protocols has become a critical issue. The current review focuses on brain oscillations that, mostly based on EEG power analysis and connectivity, distinguish between MDD and controls, responders and non-responders, and potential depression severity indices, prognostic indicators, and potential biomarkers for rTMS or iTBS treatment. The possible roles of each biomarker and the potential reasons for heterogeneous results are discussed, and the directions of future studies are proposed.
Collapse
Affiliation(s)
- Yi-Chun Tsai
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
| | - Cheng-Ta Li
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, College of Health Sciences and Technology, National Central University, Taoyuan City, Taiwan
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City, Taiwan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Kaushik P, Yang H, Roy PP, van Vugt M. Comparing resting state and task-based EEG using machine learning to predict vulnerability to depression in a non-clinical population. Sci Rep 2023; 13:7467. [PMID: 37156879 PMCID: PMC10167316 DOI: 10.1038/s41598-023-34298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Major Depressive Disorder (MDD) affects a large portion of the population and levies a huge societal burden. It has serious consequences like decreased productivity and reduced quality of life, hence there is considerable interest in understanding and predicting it. As it is a mental disorder, neural measures like EEG are used to study and understand its underlying mechanisms. However most of these studies have either explored resting state EEG (rs-EEG) data or task-based EEG data but not both, we seek to compare their respective efficacy. We work with data from non-clinically depressed individuals who score higher and lower on the depression scale and hence are more and less vulnerable to depression, respectively. Forty participants volunteered for the study. Questionnaires and EEG data were collected from participants. We found that people who are more vulnerable to depression had on average increased EEG amplitude in the left frontal channel, and decreased amplitude in the right frontal and occipital channels for raw data (rs-EEG). Task-based EEG data from a sustained attention to response task used to measure spontaneous thinking, an increased EEG amplitude in the central part of the brain for individuals with low vulnerability and an increased EEG amplitude in right temporal, occipital and parietal regions in individuals more vulnerable to depression were found. In an attempt to predict vulnerability (high/low) to depression, we found that a Long Short Term Memory model gave the maximum accuracy of 91.42% in delta wave for task-based data whereas 1D-Convolution neural network gave the maximum accuracy of 98.06% corresponding to raw rs-EEG data. Hence if one has to look at the primary question of which data will be good for predicting vulnerability to depression, rs-EEG seems to be better than task-based EEG data. However, if mechanisms driving depression like rumination or stickiness are to be understood, task-based data may be more effective. Furthermore, as there is no consensus as to which biomarker of rs-EEG is more effective in the detection of MDD, we also experimented with evolutionary algorithms to find the most informative subset of these biomarkers. Higuchi fractal dimension, phase lag index, correlation and coherence features were also found to be the most important features for predicting vulnerability to depression using rs-EEG. These findings bring up new possibilities for EEG-based machine/deep learning diagnostics in the future.
Collapse
Affiliation(s)
- Pallavi Kaushik
- Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands.
- Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - Hang Yang
- Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands
| | - Partha Pratim Roy
- Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Marieke van Vugt
- Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
17
|
Lord B, Allen JJB. Evaluating EEG complexity metrics as biomarkers for depression. Psychophysiology 2023:e14274. [PMID: 36811526 DOI: 10.1111/psyp.14274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
Nonlinear EEG analysis offers the potential for both increased diagnostic accuracy and deeper mechanistic understanding of psychopathology. EEG complexity measures have previously been shown to positively correlate with clinical depression. In this study, resting state EEG recordings were taken across multiple sessions and days with both eyes open and eyes closed conditions from a total of 306 subjects, 62 of which were in a current depressive episode, and 81 of which had a history of diagnosed depression but were not currently depressed. Three different EEG montages (mastoids, average, and Laplacian) were also computed. Higuchi fractal dimension (HFD) and sample entropy (SampEn) were calculated for each unique condition. The complexity metrics showed high internal consistency within session and high stability across days. Higher complexity was found in open-eye recordings compared to closed eyes. The predicted correlation between complexity and depression was not found. However, an unexpected sex effect was observed, in which males and females exhibited different topographic patterns of complexity.
Collapse
Affiliation(s)
- Brian Lord
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - John J B Allen
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Čukić M, Savić D, Sidorova J. When Heart Beats Differently in Depression: Review of Nonlinear Heart Rate Variability Measures. JMIR Ment Health 2023; 10:e40342. [PMID: 36649063 PMCID: PMC9890355 DOI: 10.2196/40342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Disturbed heart dynamics in depression seriously increases mortality risk. Heart rate variability (HRV) is a rich source of information for studying this dynamics. This paper is a meta-analytic review with methodological commentary of the application of nonlinear analysis of HRV and its possibility to address cardiovascular diseases in depression. OBJECTIVE This paper aimed to appeal for the introduction of cardiological screening to patients with depression, because it is still far from established practice. The other (main) objective of the paper was to show that nonlinear methods in HRV analysis give better results than standard ones. METHODS We systematically searched on the web for papers on nonlinear analyses of HRV in depression, in line with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 framework recommendations. We scrutinized the chosen publications and performed random-effects meta-analysis, using the esci module in jamovi software where standardized effect sizes (ESs) are corrected to yield the proof of the practical utility of their results. RESULTS In all, 26 publications on the connection of nonlinear HRV measures and depression meeting our inclusion criteria were selected, examining a total of 1537 patients diagnosed with depression and 1041 healthy controls (N=2578). The overall ES (unbiased) was 1.03 (95% CI 0.703-1.35; diamond ratio 3.60). We performed 3 more meta-analytic comparisons, demonstrating the overall effectiveness of 3 groups of nonlinear analysis: detrended fluctuation analysis (overall ES 0.364, 95% CI 0.237-0.491), entropy-based measures (overall ES 1.05, 95% CI 0.572-1.52), and all other nonlinear measures (overall ES 0.702, 95% CI 0.422-0.982). The effectiveness of the applied methods of electrocardiogram analysis was compared and discussed in the light of detection and prevention of depression-related cardiovascular risk. CONCLUSIONS We compared the ESs of nonlinear and conventional time and spectral methods (found in the literature) and demonstrated that those of the former are larger, which recommends their use for the early screening of cardiovascular abnormalities in patients with depression to prevent possible deleterious events.
Collapse
Affiliation(s)
- Milena Čukić
- Empa Materials Science and Technology, Empa Swiss Federal Institute, St Gallen, Switzerland
| | - Danka Savić
- Vinča Institute for Nuclear Physics, Laboratory of Theoretical and Condensed Matter Physics 020/2, Vinca Institute, University of Belgrade, Belgrade, Serbia
| | - Julia Sidorova
- Bioinformatics Platform, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
19
|
Djuričić GJ, Ahammer H, Rajković S, Kovač JD, Milošević Z, Sopta JP, Radulovic M. Directionally Sensitive Fractal Radiomics Compatible With Irregularly Shaped Magnetic Resonance Tumor Regions of Interest: Association With Osteosarcoma Chemoresistance. J Magn Reson Imaging 2023; 57:248-258. [PMID: 35561019 DOI: 10.1002/jmri.28232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Computational analysis of routinely acquired MRI has potential to improve the tumor chemoresistance prediction and to provide decision support in precision medicine, which may extend patient survival. Most radiomic analytical methods are compatible only with rectangular regions of interest (ROIs) and irregular tumor shape is therefore an important limitation. Furthermore, the currently used analytical methods are not directionally sensitive. PURPOSE To implement a tumor analysis that is directionally sensitive and compatible with irregularly shaped ROIs. STUDY TYPE Retrospective. SUBJECTS A total of 54 patients with histopathologic diagnosis of primary osteosarcoma on tubular long bones and with prechemotherapy MRI. FIELD STRENGTH/SEQUENCE A 1.5 T, T2-weighted-short-tau-inversion-recovery-fast-spin-echo. ASSESSMENT A model to explore associations with osteosarcoma chemo-responsiveness included MRI data obtained before OsteoSa MAP neoadjuvant cytotoxic chemotherapy. Osteosarcoma morphology was analyzed in the MRI data by calculation of the nondirectional two-dimensional (2D) and directional and nondirectional one-dimensional (1D) Higuchi dimensions (Dh). MAP chemotherapy response was assessed by histopathological necrosis. STATISTICAL TESTS The area under the receiver operating characteristic (ROC) curve (AUC) evaluated the association of the calculated features with the actual chemoresponsiveness, using tumor histopathological necrosis (95%) as the endpoint. Least absolute shrinkage and selection operator (LASSO) machine learning and multivariable regression were used for feature selection. Significance was set at <0.05. RESULTS The nondirectional 1D Dh reached an AUC of 0.88 in association with the 95% tumor necrosis, while the directional 1D analysis along 180 radial lines significantly improved this association according to the Hanley/McNeil test, reaching an AUC of 0.95. The model defined by variable selection using LASSO reached an AUC of 0.98. The directional analysis showed an optimal predictive range between 90° and 97° and revealed structural osteosarcoma anisotropy manifested by its directionally dependent textural properties. DATA CONCLUSION Directionally sensitive radiomics had superior predictive performance in comparison to the standard nondirectional image analysis algorithms with AUCs reaching 0.95 and full compatibility with irregularly shaped ROIs. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Goran J Djuričić
- Faculty of Medicine, Department of Radiology, University of Belgrade, University Children's Hospital, Belgrade, Serbia
| | - Helmut Ahammer
- Division of Biophysics, GSRC, Medical University of Graz, Graz, Austria
| | - Stanislav Rajković
- Faculty of Medicine, University of Belgrade, Institute for Orthopaedics "Banjica", Belgrade, Serbia
| | - Jelena Djokić Kovač
- University of Belgrade, Faculty of Medicine, Center for Radiology, Clinical Center of Serbia, Belgrade, Serbia
| | - Zorica Milošević
- University of Belgrade, Faculty of Medicine, Institute for Oncology & Radiology of Serbia, Clinic for Radiation Oncology and Radiology, Belgrade, Serbia
| | - Jelena P Sopta
- University of Belgrade, Faculty of Medicine, Institute of Pathology, Belgrade, Serbia
| | - Marko Radulovic
- Department of Experimental Oncology, Institute for Oncology & Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
20
|
Zhang S, Liu A, Zhou Z, Huang Z, Cheng J, Chen D, Zhong Q, Yu Q, Peng Z, Hong M. Clinical features and power spectral entropy of electroencephalography in Wilson's disease with dystonia. Brain Behav 2022; 12:e2791. [PMID: 36282481 PMCID: PMC9759124 DOI: 10.1002/brb3.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/28/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To study the clinical features and power spectral entropy (PSE) of electroencephalography signals in Wilson's disease (WD) patients with dystonia. METHODS Several scale evaluations were performed to assess the clinical features of WD patients. Demographic information and electroencephalography signals were obtained in all subjects. RESULTS 34 WD patients with dystonia were recruited in the case group and 24 patients without dystonia were recruited in the control group. 20 healthy individuals were included in the healthy control group. The mean body mass index (BMI) in the case group was significantly lower than that in the controls (p < .05). The case group had significantly higher SAS, SDS, and Bucco-Facial-Apraxia Assessment scores (p < .05). Total BADS scores in the case group were lower than those in the control group (p < .01). Note that 94.11% of the case group presented with dysarthria and 70.59% of them suffered from dysphagia. Dysphagia was mainly related to the oral preparatory stage and oral stage. Mean power spectral entropy (PSE) values in the case group were significantly different (p < .05) from those in the control group and the healthy group across the different tasks. CONCLUSIONS The patients with dystonia were usually accompanied with low BMI, anxiety, depression, apraxia, executive dysfunction, dysarthria and dysphagia. The cortical activities of the WD patients with dystonia seemed to be more chaotic during the eyes-closed and reading tasks but lower during the swallowing stages than those in the control group.
Collapse
Affiliation(s)
- Shaoru Zhang
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Aiqun Liu
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhihua Zhou
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zheng Huang
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jing Cheng
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Danping Chen
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qizhi Zhong
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qingyun Yu
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhongxing Peng
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mingfan Hong
- Department of Neurology, The First Affiliated Hospital, Clinical Medicine College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Lau ZJ, Pham T, Chen SHA, Makowski D. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. Eur J Neurosci 2022; 56:5047-5069. [PMID: 35985344 PMCID: PMC9826422 DOI: 10.1111/ejn.15800] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
There has been an increasing trend towards the use of complexity analysis in quantifying neural activity measured by electroencephalography (EEG) signals. On top of revealing complex neuronal processes of the brain that may not be possible with linear approaches, EEG complexity measures have also demonstrated their potential as biomarkers of psychopathology such as depression and schizophrenia. Unfortunately, the opacity of algorithms and descriptions originating from mathematical concepts have made it difficult to understand what complexity is and how to draw consistent conclusions when applied within psychology and neuropsychiatry research. In this review, we provide an overview and entry-level explanation of existing EEG complexity measures, which can be broadly categorized as measures of predictability and regularity. We then synthesize complexity findings across different areas of psychological science, namely, in consciousness research, mood and anxiety disorders, schizophrenia, neurodevelopmental and neurodegenerative disorders, as well as changes across the lifespan, while addressing some theoretical and methodological issues underlying the discrepancies in the data. Finally, we present important considerations when choosing and interpreting these metrics.
Collapse
Affiliation(s)
- Zen J. Lau
- School of Social SciencesNanyang Technological UniversitySingapore
| | - Tam Pham
- School of Social SciencesNanyang Technological UniversitySingapore
| | - S. H. Annabel Chen
- School of Social SciencesNanyang Technological UniversitySingapore,Centre for Research and Development in LearningNanyang Technological UniversitySingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore,National Institute of EducationNanyang Technological UniversitySingapore
| | | |
Collapse
|
22
|
Benchmarks for machine learning in depression discrimination using electroencephalography signals. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Zhao Z, Niu Y, Zhao X, Zhu Y, Shao Z, Wu X, Wang C, Gao X, Wang C, Xu Y, Zhao J, Gao Z, Ding J, Yu Y. EEG microstate in first-episode drug-naive adolescents with depression. J Neural Eng 2022; 19. [PMID: 35952647 DOI: 10.1088/1741-2552/ac88f6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND A growing number of studies have revealed significant abnormalities in EEG microstate in patients with depression, but these findings may be affected by medication. Therefore, how the EEG microstates abnormally change in patients with depression in the early stage and without the influence of medication has not been investigated so far. METHODS Resting-state EEG data and Hamilton Depression Rating Scale (HDRS) were collected from 34 first-episode drug-naïve adolescent with depression and 34 matched healthy controls. EEG microstate analysis was applied and nonlinear characteristics of EEG microstate sequences were studied by sample entropy and Lempel-Ziv complexity (LZC). The microstate temporal parameters and complexity were tried to train a SVM for classification of patients with depression. RESULTS Four typical EEG microstate topographies were obtained in both groups, but microstate C topography was significantly abnormal in depression patients. The duration of microstate B, C, D and the occurrence and coverage of microstate B significantly increased, the occurrence and coverage of microstate A, C reduced significantly in depression group. Sample entropy and LZC in the depression group were abnormally increased and were negatively correlated with HDRS. When the combination of EEG microstate temporal parameters and complexity of microstate sequence was used to classify patients with depression from healthy controls, a classification accuracy of 90.9% was obtained. CONCLUSION Abnormal EEG microstate has appeared in early depression, reflecting an underlying abnormality in configuring neural resources and transitions between distinct brain network states. EEG microstate can be used as a neurophysiological biomarker for early auxiliary diagnosis of depression.
Collapse
Affiliation(s)
- Zongya Zhao
- Xinxiang Medical University, College of Medical Engineering, Xinxiang, Henan, 453003, CHINA
| | - Yanxiang Niu
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xiaofeng Zhao
- First Affiliated Hospital of Zhengzhou University, Department of Psychiatry, Zhengzhou, 450000, CHINA
| | - Yu Zhu
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Zhenpeng Shao
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xingyang Wu
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Chong Wang
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Xudong Gao
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Chang Wang
- Xinxiang Medical University, college of medical engineering, Xinxiang, Henan, 453600, CHINA
| | - Yongtao Xu
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Junqiang Zhao
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Zhixian Gao
- Xinxiang Medical University, college of medical engineering, Xinxiang, 453003, CHINA
| | - Junqing Ding
- First Affiliated Hospital of Zhengzhou University Zhengzhou, Department of Neurology, Zhengzhou, 450000, CHINA
| | - Yi Yu
- Xinxiang Medical University, college of Biomedical Engineering, Xinxiang, 453003, CHINA
| |
Collapse
|
24
|
Llamocca P, López V, Čukić M. The Proposition for Bipolar Depression Forecasting Based on Wearable Data Collection. Front Physiol 2022; 12:777137. [PMID: 35145422 PMCID: PMC8821957 DOI: 10.3389/fphys.2021.777137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bipolar depression is treated wrongly as unipolar depression, on average, for 8 years. It is shown that this mismedication affects the occurrence of a manic episode and aggravates the overall condition of patients with bipolar depression. Significant effort was invested in early detection of depression and forecasting of responses to certain therapeutic approaches using a combination of features extracted from standard and online testing, wearables monitoring, and machine learning. In the case of unipolar depression, this approach yielded evidence that this data-based computational psychiatry approach would be helpful in clinical practice. Following a similar pipeline, we examined the usefulness of this approach to foresee a manic episode in bipolar depression, so that clinicians and family of the patient can help patient navigate through the time of crisis. Our projects combined the results from self-reported daily questionnaires, the data obtained from smart watches, and the data from regular reports from standard psychiatric interviews to feed various machine learning models to predict a crisis in bipolar depression. Contrary to satisfactory predictions in unipolar depression, we found that bipolar depression, having more complex dynamics, requires personalized approach. A previous work on physiological complexity (complex variability) suggests that an inclusion of electrophysiological data, properly quantified, might lead to better solutions, as shown in other projects of our group concerning unipolar depression. Here, we make a comparison of previously performed research in a methodological sense, revisiting and additionally interpreting our own results showing that the methodological approach to mania forecasting may be modified to provide an accurate prediction in bipolar depression.
Collapse
Affiliation(s)
- Pavel Llamocca
- Computer Architecture Department, Complutense University of Madrid, Madrid, Spain
| | - Victoria López
- Quantitative Methods Department, Cunef University, Madrid, Spain
| | - Milena Čukić
- Institute for Technology of Knowledge, Complutense University of Madrid, Madrid, Spain
- 3EGA, Amsterdam, Netherlands
- Department for General Physiology and Biophysics, Belgrade University, Belgrade, Serbia
| |
Collapse
|
25
|
Olejarczyk E, Gotman J, Frauscher B. Region-specific complexity of the intracranial EEG in the sleeping human brain. Sci Rep 2022; 12:451. [PMID: 35013431 PMCID: PMC8748934 DOI: 10.1038/s41598-021-04213-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
As the brain is a complex system with occurrence of self-similarity at different levels, a dedicated analysis of the complexity of brain signals is of interest to elucidate the functional role of various brain regions across the various stages of vigilance. We exploited intracranial electroencephalogram data from 38 cortical regions using the Higuchi fractal dimension (HFD) as measure to assess brain complexity, on a dataset of 1772 electrode locations. HFD values depended on sleep stage and topography. HFD increased with higher levels of vigilance, being highest during wakefulness in the frontal lobe. HFD did not change from wake to stage N2 in temporo-occipital regions. The transverse temporal gyrus was the only area in which the HFD did not differ between any two vigilance stages. Interestingly, HFD of wakefulness and stage R were different mainly in the precentral gyrus, possibly reflecting motor inhibition in stage R. The fusiform and parahippocampal gyri were the only areas showing no difference between wakefulness and N2. Stages R and N2 were similar only for the postcentral gyrus. Topographical analysis of brain complexity revealed that sleep stages are clearly differentiated in fronto-central brain regions, but that temporo-occipital regions sleep differently.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Str., 02-109, Warsaw, Poland.
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
26
|
Automated diagnosis of depression from EEG signals using traditional and deep learning approaches: A comparative analysis. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Wu CT, Huang HC, Huang S, Chen IM, Liao SC, Chen CK, Lin C, Lee SH, Chen MH, Tsai CF, Weng CH, Ko LW, Jung TP, Liu YH. Resting-State EEG Signal for Major Depressive Disorder Detection: A Systematic Validation on a Large and Diverse Dataset. BIOSENSORS 2021; 11:499. [PMID: 34940256 PMCID: PMC8699348 DOI: 10.3390/bios11120499] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 05/09/2023]
Abstract
Major depressive disorder (MDD) is a global healthcare issue and one of the leading causes of disability. Machine learning combined with non-invasive electroencephalography (EEG) has recently been shown to have the potential to diagnose MDD. However, most of these studies analyzed small samples of participants recruited from a single source, raising serious concerns about the generalizability of these results in clinical practice. Thus, it has become critical to re-evaluate the efficacy of various common EEG features for MDD detection across large and diverse datasets. To address this issue, we collected resting-state EEG data from 400 participants across four medical centers and tested classification performance of four common EEG features: band power (BP), coherence, Higuchi's fractal dimension, and Katz's fractal dimension. Then, a sequential backward selection (SBS) method was used to determine the optimal subset. To overcome the large data variability due to an increased data size and multi-site EEG recordings, we introduced the conformal kernel (CK) transformation to further improve the MDD as compared with the healthy control (HC) classification performance of support vector machine (SVM). The results show that (1) coherence features account for 98% of the optimal feature subset; (2) the CK-SVM outperforms other classifiers such as K-nearest neighbors (K-NN), linear discriminant analysis (LDA), and SVM; (3) the combination of the optimal feature subset and CK-SVM achieves a high five-fold cross-validation accuracy of 91.07% on the training set (140 MDD and 140 HC) and 84.16% on the independent test set (60 MDD and 60 HC). The current results suggest that the coherence-based connectivity is a more reliable feature for achieving high and generalizable MDD detection performance in real-life clinical practice.
Collapse
Affiliation(s)
- Chien-Te Wu
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan;
| | - Hao-Chuan Huang
- Hipposcreen Neurotech Corp. (HNC), Taipei 114, Taiwan; (H.-C.H.); (S.H.); (C.-H.W.)
| | - Shiuan Huang
- Hipposcreen Neurotech Corp. (HNC), Taipei 114, Taiwan; (H.-C.H.); (S.H.); (C.-H.W.)
| | - I-Ming Chen
- Division of Psychosomatic Medicine, Department of Psychiatry, National Taiwan University Hospital, Taipei 100229, Taiwan; (I.-M.C.); (S.-C.L.)
- Institute of Health Policy and Management, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Cheng Liao
- Division of Psychosomatic Medicine, Department of Psychiatry, National Taiwan University Hospital, Taipei 100229, Taiwan; (I.-M.C.); (S.-C.L.)
| | - Chih-Ken Chen
- Department of Psychiatry & Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-K.C.); (C.L.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chemin Lin
- Department of Psychiatry & Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-K.C.); (C.L.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-H.C.); (C.-F.T.)
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Chia-Fen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-H.C.); (C.-F.T.)
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Chang-Hsin Weng
- Hipposcreen Neurotech Corp. (HNC), Taipei 114, Taiwan; (H.-C.H.); (S.H.); (C.-H.W.)
| | - Li-Wei Ko
- Department of Bio Science & Tech., National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Tzyy-Ping Jung
- Institute for Neural Computation, University of California, San Diego, CA 92093, USA
| | - Yi-Hung Liu
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| |
Collapse
|
28
|
Monllor P, Cervera-Ferri A, Lloret MA, Esteve D, Lopez B, Leon JL, Lloret A. Electroencephalography as a Non-Invasive Biomarker of Alzheimer's Disease: A Forgotten Candidate to Substitute CSF Molecules? Int J Mol Sci 2021; 22:10889. [PMID: 34639229 PMCID: PMC8509134 DOI: 10.3390/ijms221910889] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarkers for disease diagnosis and prognosis are crucial in clinical practice. They should be objective and quantifiable and respond to specific therapeutic interventions. Optimal biomarkers should reflect the underlying process (pathological or not), be reproducible, widely available, and allow measurements repeatedly over time. Ideally, biomarkers should also be non-invasive and cost-effective. This review aims to focus on the usefulness and limitations of electroencephalography (EEG) in the search for Alzheimer's disease (AD) biomarkers. The main aim of this article is to review the evolution of the most used biomarkers in AD and the need for new peripheral and, ideally, non-invasive biomarkers. The characteristics of the EEG as a possible source for biomarkers will be revised, highlighting its advantages compared to the molecular markers available so far.
Collapse
Affiliation(s)
- Paloma Monllor
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| | - Ana Cervera-Ferri
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria-Angeles Lloret
- Department of Clinical Neurophysiology, University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain;
| | - Daniel Esteve
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| | - Begoña Lopez
- Department of Neurology, University Clinic Hospital of Valencia, Avda. Blasco Ibanez, 19, 46010 Valencia, Spain;
| | - Jose-Luis Leon
- Ascires Biomedical Group, Department of Neuroradiology, Hospital Clinico Universitario, 46010 Valencia, Spain;
| | - Ana Lloret
- CIBERFES, Department of Physiology, Institute INCLIVA, Faculty of Medicine, Health Research University of Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain; (P.M.); (D.E.)
| |
Collapse
|
29
|
Zu S, Wang D, Fang J, Xiao L, Zhu X, Wu W, Wang G, Hu Y. Comparison of Residual Depressive Symptoms, Functioning, and Quality of Life Between Patients with Recurrent Depression and First Episode Depression After Acute Treatment in China. Neuropsychiatr Dis Treat 2021; 17:3039-3051. [PMID: 34629870 PMCID: PMC8493277 DOI: 10.2147/ndt.s317770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This prospective study aimed to investigate the prognosis and rehabilitation of patients with recurrent depression and first episode depression after acute treatment in China. METHODS A total of 434 patients with first-episode or recurrent depression who received acute treatment respectively from sixteen hospitals in thirteen cities in China were enrolled in this prospective study. All patients were followed up for 6 months after acute treatment. The following data were collected at baseline period and 1, 3, and 6 months after acute treatment: general information of patients, medication information and patient's condition changes, brief 16-item quick inventory of depressive symptomatology self-report (QIDS-SR16), patient health questionnaire-15 (PHQ-15), quality of life enjoyment and satisfaction questionnaire-short form (Q-LES-Q-SF), Sheehan disability scale (SDS) and digit symbol substitution test (DSST). RESULTS During the baseline period, there was a significant difference in QIDS-SR16 between recurrent patients and first-episode patients (p < 0.05), and there was no significant difference in other indicators (p > 0.05). At one month after acute treatment, there were significant differences in the total QIDS-SR16 score, the total Q-LES-SF score, the social life score, and the family life/home responsibilities score of SDS in patients with recurrent depression and first-episode depression (p < 0.05). At three months after acute treatment, there were significant differences in the total Q-LES-SF score and social life score of SDS in patients with recurrent depression and first-episode depression (p < 0.05). At six months after acute treatment, there were significant differences in the total QIDS-SR16 score, the social life score, and the total Q-LES-SF score in patients with recurrent depression and first-episode depression (p < 0.05). Compared with that data during the baseline period, the QIDS-SR16 scores and the SDS scores of all patients decreased, and the Q-LES-SF scores of all patients gradually increased as time went on during the consolidation period. CONCLUSION The recurrent patients have more severe social function impairment, depressive symptoms, and lower life quality than that of the first-episode depressed patients. Given the negative impact of depressed symptom on recurrent patient, more attention should be paid to the treatment of recurrent patient and recurrence prevention of first episode patient.
Collapse
Affiliation(s)
- Si Zu
- Department of Psychiatry, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Dong Wang
- Department of Psychiatry, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jiexin Fang
- Department of Psychiatry, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Le Xiao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xuequan Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wenyuan Wu
- Department of Psychiatry, Tongji Hospital of Tongji University, Shanghai, People’s Republic of China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Yongdong Hu
- Department of Psychiatry, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Čukić M, López V, Pavón J. Classification of Depression Through Resting-State Electroencephalogram as a Novel Practice in Psychiatry: Review. J Med Internet Res 2020; 22:e19548. [PMID: 33141088 PMCID: PMC7671839 DOI: 10.2196/19548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/19/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022] Open
Abstract
Background Machine learning applications in health care have increased considerably in the recent past, and this review focuses on an important application in psychiatry related to the detection of depression. Since the advent of computational psychiatry, research based on functional magnetic resonance imaging has yielded remarkable results, but these tools tend to be too expensive for everyday clinical use. Objective This review focuses on an affordable data-driven approach based on electroencephalographic recordings. Web-based applications via public or private cloud-based platforms would be a logical next step. We aim to compare several different approaches to the detection of depression from electroencephalographic recordings using various features and machine learning models. Methods To detect depression, we reviewed published detection studies based on resting-state electroencephalogram with final machine learning, and to predict therapy outcomes, we reviewed a set of interventional studies using some form of stimulation in their methodology. Results We reviewed 14 detection studies and 12 interventional studies published between 2008 and 2019. As direct comparison was not possible due to the large diversity of theoretical approaches and methods used, we compared them based on the steps in analysis and accuracies yielded. In addition, we compared possible drawbacks in terms of sample size, feature extraction, feature selection, classification, internal and external validation, and possible unwarranted optimism and reproducibility. In addition, we suggested desirable practices to avoid misinterpretation of results and optimism. Conclusions This review shows the need for larger data sets and more systematic procedures to improve the use of the solution for clinical diagnostics. Therefore, regulation of the pipeline and standard requirements for methodology used should become mandatory to increase the reliability and accuracy of the complete methodology for it to be translated to modern psychiatry.
Collapse
Affiliation(s)
- Milena Čukić
- HealthInc 3EGA, Amsterdam Health and Technology Institute, Amsterdam, Netherlands
| | - Victoria López
- Instituto de Tecnología del Conocimiento, Institute of Knowledge Technology, Universidad Complutense Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Juan Pavón
- Instituto de Tecnología del Conocimiento, Institute of Knowledge Technology, Universidad Complutense Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
31
|
Birle C, Slavoaca D, Balea M, Livint Popa L, Muresanu I, Stefanescu E, Vacaras V, Dina C, Strilciuc S, Popescu BO, Muresanu DF. Cognitive function: holarchy or holacracy? Neurol Sci 2020; 42:89-99. [PMID: 33070201 DOI: 10.1007/s10072-020-04737-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Cognition is the most complex function of the brain. When exploring the inner workings of cognitive processes, it is crucial to understand the complexity of the brain's dynamics. This paper aims to describe the integrated framework of the cognitive function, seen as the result of organization and interactions between several systems and subsystems. We briefly describe several organizational concepts, spanning from the reductionist hierarchical approach, up to the more dynamic theory of open complex systems. The homeostatic regulation of the mechanisms responsible for cognitive processes is showcased as a dynamic interplay between several anticorrelated mechanisms, which can be found at every level of the brain's organization, from molecular and cellular level to large-scale networks (e.g., excitation-inhibition, long-term plasticity-long-term depression, synchronization-desynchronization, segregation-integration, order-chaos). We support the hypothesis that cognitive function is the consequence of multiple network interactions, integrating intricate relationships between several systems, in addition to neural circuits.
Collapse
Affiliation(s)
- Codruta Birle
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Dana Slavoaca
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania. .,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.
| | - Maria Balea
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Livia Livint Popa
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ioana Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Emanuel Stefanescu
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Vitalie Vacaras
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Constantin Dina
- Department of Clinical Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Stefan Strilciuc
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Bogdan Ovidiu Popescu
- Department of Radiology, Faculty of Medicine, "Ovidius" University, Constanta, Romania
| | - Dafin F Muresanu
- Department of Neurosciences, "Iuliu Hatieganu" University of Medicine and Pharmacy, No. 37 Mircea Eliade Street, 400486, Cluj-Napoca, Romania.,"RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Čukić M, Stokić M, Radenković S, Ljubisavljević M, Simić S, Savić D. Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression. Int J Methods Psychiatr Res 2020; 29:e1816. [PMID: 31820528 PMCID: PMC7301286 DOI: 10.1002/mpr.1816] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Biomarkers of major depressive disorder (MDD), its phases and forms have long been sought. Objectives were to examine whether the complexity of EEG activity, measured by Higuchi's fractal dimension (HFD) and sample entropy (SampEn), differs between healthy subjects, patients in remission, and in episode phase of the recurrent depression and whether the changes are differentially distributed between hemispheres and cortical regions. METHODS Resting state EEG with eyes closed was recorded from 22 patients suffering from recurrent depression (11 in remission, 11 in the episode), and 20 age and sex-matched healthy control subjects. Artifact-free EEG epochs were analyzed by in-house developed programs running HFD and SampEn algorithms. RESULTS Depressed patients had higher HFD and SampEn complexity compared to healthy subjects. The complexity was higher in patients who were in remission than in those in the acute episode. Altered complexity was present in the frontal and centro-parietal regions when compared to control group. The complexity in frontal and parietal regions differed between the two phases of depressive disorder. CONCLUSIONS Complexity measures of EEG distinguish between the healthy controls, patients in remission and episode. Further studies are needed to establish whether these measures carry a potential to aid clinically relevant decisions about depression.
Collapse
Affiliation(s)
- Milena Čukić
- Department of General Physiology and Biophysics, School of Biology, University of Belgrade, Belgrade, Serbia
| | - Miodrag Stokić
- Cognitive Neuroscience Department, Life Activities Advancement Center, Belgrade, Serbia
| | | | - Miloš Ljubisavljević
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Slobodan Simić
- Department for Forensic Psychiatry, Institute for Mental Health, Belgrade, Serbia
| | - Danka Savić
- Laboratory of Theoretical and Condensed Matter Physics 020/2, Vinča Institute, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
33
|
Čukić M. The Reason Why rTMS and tDCS Are Efficient in Treatments of Depression. Front Psychol 2020; 10:2923. [PMID: 31998187 PMCID: PMC6970435 DOI: 10.3389/fpsyg.2019.02923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Milena Čukić
- Department for General Physiology and Biophysics, University of Belgrade, Belgrade, Serbia
- Instituto de Tecnología del Conocimiento, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|