1
|
Vejdani Afkham B, Alonso-Ortiz E. On the impact of B0 shimming algorithms on single-voxel MR spectroscopy. Magn Reson Med 2025; 93:42-50. [PMID: 39188098 DOI: 10.1002/mrm.30257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE To assess the impact of different B0 shimming algorithms on MRS. METHODS B0 field maps and single-voxel MR spectroscopy were acquired in the prefrontal cortex of five volunteers at 3 T using five different B0 shimming approaches. B0 shimming was achieved using Siemens' proprietary shim algorithm, in addition to the Pseudo-Inverse (PI), Quadratic Programming (QuadProg), Least Squares (LSq), and Gradient optimization (Grad) algorithms. The standard deviation of the shimmed B0 field, as well as the SNR and FWHM of the measured metabolites, was used to evaluate the performance of each B0 shimming algorithm. RESULTS Compared to Siemens's shim, significant reductions (p < 0.01) in the standard deviation of the B0 field distribution within the MRS voxel were observed for the PI, QuadProg, and Grad algorithms (3.8 Hz, 7.3 Hz, and 3.9 Hz respectively, compared to 11.5 Hz for Siemens), but not for the LSq (12.9 Hz) algorithm. Moreover, significantly increased SNR and reduced FWHM for the N-acetylaspartate metabolite were consistent with the improvement in B0 homogeneity for the aforementioned shimming algorithms. CONCLUSION Here, we demonstrate that the choice of B0 shimming algorithm can have a significant impact on the quality of MR spectra and that significant improvements in spectrum quality could be achieved by using alternatives to the default vendor approach.
Collapse
Affiliation(s)
- Behrouz Vejdani Afkham
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Centre de recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| |
Collapse
|
2
|
Ulrich T, Riedel M, Pruessmann KP. Servo navigators: Linear regression and feedback control for rigid-body motion correction. Magn Reson Med 2024; 91:1876-1892. [PMID: 38234052 DOI: 10.1002/mrm.29967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE Navigator-based correction of rigid-body motion reconciling high precision with minimal acquisition, minimal calibration and simple, fast processing. METHODS A short orbital navigator (2.3 ms) is inserted in a three-dimensional (3D) gradient echo sequence for human head imaging. Head rotation and translation are determined by linear regression based on a complex-valued model built either from three reference navigators or in a reference-less fashion, from the first actual navigator. Optionally, the model is expanded by global phase and field offset. Run-time scan correction on this basis establishes servo control that maintains validity of the linear picture by keeping its expansion point stable in the head frame of reference. The technique is assessed in a phantom and demonstrated by motion-corrected imaging in vivo. RESULTS The proposed approach is found to establish stable motion control both with and without reference acquisition. In a phantom, it is shown to accurately detect motion mimicked by rotation of scan geometry as well as change in global B0 . It is demonstrated to converge to accurate motion estimates after perturbation well beyond the linear signal range. In vivo, servo navigation achieved motion detection with precision in the single-digit range of micrometers and millidegrees. Involuntary and intentional motion in the range of several millimeters were successfully corrected, achieving excellent image quality. CONCLUSION The combination of linear regression and feedback control enables prospective motion correction for head imaging with high precision and accuracy, short navigator readouts, fast run-time computation, and minimal demand for reference data.
Collapse
Affiliation(s)
- Thomas Ulrich
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Malte Riedel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Parker DL, Payne A, Odéen H. A k-space-based method to measure and correct for temporal B 0 field variations in MR temperature imaging. Magn Reson Med 2022; 88:1098-1111. [PMID: 35576148 PMCID: PMC11034809 DOI: 10.1002/mrm.29275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Present a method to use change in phase in repeated Cartesian k-space measurements to monitor the change in magnetic field for dynamic MR temperature imaging. METHODS The method is applied to focused ultrasound heating experiments in a gelatin phantom and an ex vivo salt pork sample, without and with simulated respiratory motion. RESULTS In each experiment, phase variations due to B0 field drift and respiration were readily apparent in the measured phase difference. With correction, the SD of the temperature over time was reduced from 0.18°C to 0.14°C (no breathing) and from 0.81°C to 0.22°C (with breathing) for the gelatin phantom, and from 0.68°C to 0.13°C (no breathing) and from 1.06°C to 0.17°C (with breathing) for the pork sample. The accuracy in nonheated regions, assessed as the RMS error deviation from 0°C, improved from 1.70°C to 1.11°C (no breathing) and from 4.73°C to 1.47°C (with breathing) for the gelatin phantom, and from 5.95°C to 0.88°C (no breathing) and from 13.40°C to 1.73°C (with breathing) for the pork sample. The correction did not affect the temperature measurement accuracy in the heated regions. CONCLUSION This work demonstrates that phase changes resulting from variations in B0 due to drift and respiration, commonly seen in MR thermometry applications, can be measured directly from 3D Cartesian acquisition methods. The correction of temporal field variations using the presented technique improved temperature accuracy, reduced variability in nonheated regions, and did not reduce accuracy in heated regions.
Collapse
Affiliation(s)
- Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Allison Payne
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Dowdle LT, Ghose G, Chen CCC, Ugurbil K, Yacoub E, Vizioli L. Statistical power or more precise insights into neuro-temporal dynamics? Assessing the benefits of rapid temporal sampling in fMRI. Prog Neurobiol 2021; 207:102171. [PMID: 34492308 DOI: 10.1016/j.pneurobio.2021.102171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Functional magnetic resonance imaging (fMRI), a non-invasive and widely used human neuroimaging method, is most known for its spatial precision. However, there is a growing interest in its temporal sensitivity. This is despite the temporal blurring of neuronal events by the blood oxygen level dependent (BOLD) signal, the peak of which lags neuronal firing by 4-6 seconds. Given this, the goal of this review is to answer a seemingly simple question - "What are the benefits of increased temporal sampling for fMRI?". To answer this, we have combined fMRI data collected at multiple temporal scales, from 323 to 1000 milliseconds, with a review of both historical and contemporary temporal literature. After a brief discussion of technological developments that have rekindled interest in temporal research, we next consider the potential statistical and methodological benefits. Most importantly, we explore how fast fMRI can uncover previously unobserved neuro-temporal dynamics - effects that are entirely missed when sampling at conventional 1 to 2 second rates. With the intrinsic link between space and time in fMRI, this temporal renaissance also delivers improvements in spatial precision. Far from producing only statistical gains, the array of benefits suggest that the continued temporal work is worth the effort.
Collapse
Affiliation(s)
- Logan T Dowdle
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States; Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, United States.
| | - Geoffrey Ghose
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN, 55455, United States
| | - Clark C C Chen
- Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States
| | - Luca Vizioli
- Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St SE, Minneapolis, MN, 55455, United States; Department of Neurosurgery, University of Minnesota, 500 SE Harvard St, Minneapolis, MN, 55455, United States.
| |
Collapse
|
5
|
Gantz S, Hietschold V, Hoffmann AL. Characterization of magnetic interference and image artefacts during simultaneous in-beam MR imaging and proton pencil beam scanning. Phys Med Biol 2020; 65:215014. [PMID: 33151908 DOI: 10.1088/1361-6560/abb16f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For the first time, a low-field open magnetic resonance (MR) scanner was combined with a proton pencil beam scanning (PBS) research beamline. The aim of this study was to characterize the magnetic fringe fields produced by the PBS system and measure their effects on MR image quality during simultaneous PBS irradiation and image acquisition. A magnetic field camera measured the change in central resonance frequency (Δf res) and magnetic field homogeneity (ΔMFH) of the B0 field of the MR scanner during operation of the beam transport and scanning magnets. The beam energy was varied between 70 - 220 MeV and beam scanning was performed along the central horizontal and vertical axis of a 48 × 24 cm2 radiation field. The time structure of the scanning magnets' fringe fields was simultaneously recorded by a tri-axial Hall probe. MR imaging experiments were conducted using the ACR (American College of Radiology) Small MRI Phantom and a spoiled gradient echo pulse sequence during simultaneous volumetric irradiation. Computer simulations were performed to predict the effects of B 0 field perturbations due to PBS irradiation on MR image formation in k-space. Setting the beam transport magnets, horizontal and vertical scanning magnets resulted in a maximum Δf res of 50, 235 and 4 Hz, respectively. The ΔMFH was less than 3 parts per million for all measurements. MR images acquired during beam energy variation and vertical beam scanning showed no visual loss in image quality. However, MR images acquired during horizontal beam scanning showed severe coherent ghosting artefacts in phase encoding direction. Both simulated and measured k-space phase maps prove that these artefacts are caused by phase-offsets. This study shows first experimental evidence that simultaneous in-beam MR imaging during proton PBS irradiation is subject to severe loss of image quality in the absence of magnetic decoupling between the PBS and MR system.
Collapse
Affiliation(s)
- Sebastian Gantz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | |
Collapse
|
6
|
Dehghani H, Oghabian MA, Batouli SAH, Arab Kheradmand J, Khatibi A. Effect of Physiological Noise on Thoracolumbar Spinal Cord Functional Magnetic Resonance Imaging in 3T Magnetic Field. Basic Clin Neurosci 2020; 11:737-751. [PMID: 33850611 PMCID: PMC8019845 DOI: 10.32598/bcn.11.6.1395.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/10/2018] [Accepted: 02/19/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction: Functional Magnetic Resonance Imaging (fMRI) methods have been used to study sensorimotor processing in the spinal cord. However, these techniques confront unwanted noises to the measured signal from the physiological fluctuations. In the spinal cord imaging, most of the challenges are consequences of cardiac and respiratory movement artifacts that are considered as significant sources of noise, especially in the thoracolumbar region. In this study, we investigated the effect of each source of physiological noise and their contribution to the outcome of the analysis of the blood-oxygen-level-dependent signal in the human thoracolumbar spinal cord. Methods: Fifteen young healthy male volunteers participated in the study, and pain stimuli were delivered on the L5 dermatome between the two malleoli. Respiratory and cardiac signals were recorded during the imaging session, and the generated respiration and cardiac regressors were included in the general linear model for quantification of the effect of each of them on the task-analysis results. The sum of active voxels of the clusters was calculated in the spinal cord in three correction states (respiration correction only, cardiac correction only, and respiration and cardiac noise corrections) and analyzed with analysis of variance statistical test and receiver operating characteristic curve. Results: The results illustrated that cardiac noise correction had an effective role in increasing the active voxels (Mean±SD = 23.46±9.46) compared to other noise correction methods. Cardiac effects were higher than other physiological noise sources Conclusion: In summary, our results indicate great respiration effects on the lumbar and thoracolumbar spinal cord fMRI, and its contribution to the heartbeat effect can be a significant variable in the individual fMRI data analysis. Displacement of the spinal cord and the effects of this noise in the thoracolumbar and lumbar spinal cord fMRI results are significant and cannot be ignored.
Collapse
Affiliation(s)
- Hamed Dehghani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Science, Tehran, Iran.,Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Science, Tehran, Iran.,Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hosein Batouli
- Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Arab Kheradmand
- Shefa Neuroscience Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
An H, Shin HG, Ji S, Jung W, Oh S, Shin D, Park J, Lee J. DeepResp: Deep learning solution for respiration-induced B 0 fluctuation artifacts in multi-slice GRE. Neuroimage 2020; 224:117432. [PMID: 33038539 DOI: 10.1016/j.neuroimage.2020.117432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 11/25/2022] Open
Abstract
Respiration-induced B0 fluctuation corrupts MRI images by inducing phase errors in k-space. A few approaches such as navigator have been proposed to correct for the artifacts at the expense of sequence modification. In this study, a new deep learning method, which is referred to as DeepResp, is proposed for reducing the respiration-artifacts in multi-slice gradient echo (GRE) images. DeepResp is designed to extract the respiration-induced phase errors from a complex image using deep neural networks. Then, the network-generated phase errors are applied to the k-space data, creating an artifact-corrected image. For network training, the computer-simulated images were generated using artifact-free images and respiration data. When evaluated, both simulated images and in-vivo images of two different breathing conditions (deep breathing and natural breathing) show improvements (simulation: normalized root-mean-square error (NRMSE) from 7.8 ± 5.2% to 1.3 ± 0.6%; structural similarity (SSIM) from 0.88 ± 0.08 to 0.99 ± 0.01; ghost-to-signal-ratio (GSR) from 7.9 ± 7.2% to 0.6 ± 0.6%; deep breathing: NRMSE from 13.9 ± 4.6% to 5.8 ± 1.4%; SSIM from 0.86 ± 0.03 to 0.95 ± 0.01; GSR 20.2 ± 10.2% to 5.7 ± 2.3%; natural breathing: NRMSE from 5.2 ± 3.3% to 4.0 ± 2.5%; SSIM from 0.94 ± 0.04 to 0.97 ± 0.02; GSR 5.7 ± 5.0% to 2.8 ± 1.1%). Our approach does not require any modification of the sequence or additional hardware, and may therefore find useful applications. Furthermore, the deep neural networks extract respiration-induced phase errors, which is more interpretable and reliable than results of end-to-end trained networks.
Collapse
Affiliation(s)
- Hongjun An
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Woojin Jung
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Sehong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, South Korea
| | - Dongmyung Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Juhyung Park
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
8
|
Simultaneous feedback control for joint field and motion correction in brain MRI. Neuroimage 2020; 226:117286. [PMID: 32992003 DOI: 10.1016/j.neuroimage.2020.117286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 11/23/2022] Open
Abstract
T2*-weighted gradient-echo sequences count among the most widely used techniques in neuroimaging and offer rich magnitude and phase contrast. The susceptibility effects underlying this contrast scale with B0, making T2*-weighted imaging particularly interesting at high field. High field also benefits baseline sensitivity and thus facilitates high-resolution studies. However, enhanced susceptibility effects and high target resolution come with inherent challenges. Relying on long echo times, T2*-weighted imaging not only benefits from enhanced local susceptibility effects but also suffers from increased field fluctuations due to moving body parts and breathing. High resolution, in turn, renders neuroimaging particularly vulnerable to motion of the head. This work reports the implementation and characterization of a system that aims to jointly address these issues. It is based on the simultaneous operation of two control loops, one for field stabilization and one for motion correction. The key challenge with this approach is that the two loops both operate on the magnetic field in the imaging volume and are thus prone to mutual interference and potential instability. This issue is addressed at the levels of sensing, timing, and control parameters. Performance assessment shows the resulting system to be stable and exhibit adequate loop decoupling, precision, and bandwidth. Simultaneous field and motion control is then demonstrated in examples of T2*-weighted in vivo imaging at 7T.
Collapse
|
9
|
Drew PJ, Mateo C, Turner KL, Yu X, Kleinfeld D. Ultra-slow Oscillations in fMRI and Resting-State Connectivity: Neuronal and Vascular Contributions and Technical Confounds. Neuron 2020; 107:782-804. [PMID: 32791040 PMCID: PMC7886622 DOI: 10.1016/j.neuron.2020.07.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022]
Abstract
Ultra-slow, ∼0.1-Hz variations in the oxygenation level of brain blood are widely used as an fMRI-based surrogate of "resting-state" neuronal activity. The temporal correlations among these fluctuations across the brain are interpreted as "functional connections" for maps and neurological diagnostics. Ultra-slow variations in oxygenation follow a cascade. First, they closely track changes in arteriole diameter. Second, interpretable functional connections arise when the ultra-slow changes in amplitude of γ-band neuronal oscillations, which are shared across even far-flung but synaptically connected brain regions, entrain the ∼0.1-Hz vasomotor oscillation in diameter of local arterioles. Significant confounds to estimates of functional connectivity arise from residual vasomotor activity as well as arteriole dynamics driven by self-generated movements and subcortical common modulatory inputs. Last, methodological limitations of fMRI can lead to spurious functional connections. The neuronal generator of ultra-slow variations in γ-band amplitude, including that associated with self-generated movements, remains an open issue.
Collapse
Affiliation(s)
- Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
| | - Celine Mateo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Gratton C, Dworetsky A, Coalson RS, Adeyemo B, Laumann TO, Wig GS, Kong TS, Gratton G, Fabiani M, Barch DM, Tranel D, Miranda-Dominguez O, Fair DA, Dosenbach NUF, Snyder AZ, Perlmutter JS, Petersen SE, Campbell MC. Removal of high frequency contamination from motion estimates in single-band fMRI saves data without biasing functional connectivity. Neuroimage 2020; 217:116866. [PMID: 32325210 DOI: 10.1016/j.neuroimage.2020.116866] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
Denoising fMRI data requires assessment of frame-to-frame head motion and removal of the biases motion introduces. This is usually done through analysis of the parameters calculated during retrospective head motion correction (i.e., 'motion' parameters). However, it is increasingly recognized that respiration introduces factitious head motion via perturbations of the main (B0) field. This effect appears as higher-frequency fluctuations in the motion parameters (>0.1 Hz, here referred to as 'HF-motion'), primarily in the phase-encoding direction. This periodicity can sometimes be obscured in standard single-band fMRI (TR 2.0-2.5 s) due to aliasing. Here we examined (1) how prevalent HF-motion effects are in seven single-band datasets with TR from 2.0 to 2.5 s and (2) how HF-motion affects functional connectivity. We demonstrate that HF-motion is more common in older adults, those with higher body mass index, and those with lower cardiorespiratory fitness. We propose a low-pass filtering approach to remove the contamination of high frequency effects from motion summary measures, such as framewise displacement (FD). We demonstrate that in most datasets this filtering approach saves a substantial amount of data from FD-based frame censoring, while at the same time reducing motion biases in functional connectivity measures. These findings suggest that filtering motion parameters is an effective way to improve the fidelity of head motion estimates, even in single band datasets. Particularly large data savings may accrue in datasets acquired in older and less fit participants.
Collapse
Affiliation(s)
- Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Neurology, Northwestern University, Evanston, IL, USA.
| | - Ally Dworetsky
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca S Coalson
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, USA
| | - Tania S Kong
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Gabriele Gratton
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Monica Fabiani
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Deanna M Barch
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Tranel
- Department of Neurology, University of Iowa, Iowa City, IA, USA; Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Oscar Miranda-Dominguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Meghan C Campbell
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
11
|
Power JD, Lynch CJ, Silver BM, Dubin MJ, Martin A, Jones RM. Distinctions among real and apparent respiratory motions in human fMRI data. Neuroimage 2019; 201:116041. [PMID: 31344484 PMCID: PMC6765416 DOI: 10.1016/j.neuroimage.2019.116041] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 11/21/2022] Open
Abstract
Head motion estimates in functional magnetic resonance imaging (fMRI) scans appear qualitatively different with sub-second image sampling rates compared to the multi-second sampling rates common in the past. Whereas formerly the head appeared still for much of a scan with brief excursions from baseline, the head now appears to be in constant motion, and motion estimates often seem to divulge little information about what is happening in a scan. This constant motion has been attributed to respiratory oscillations that do not alias at faster sampling rates, and investigators are divided on the extent to which such motion is "real" motion or only "apparent" pseudomotion. Some investigators have abandoned the use of motion estimates entirely due to these considerations. Here we investigate the properties of motion in several fMRI datasets sampled at rates between 720 and 1160 ms, and describe 5 distinct kinds of respiratory motion: 1) constant real respiratory motion in the form of head nodding most evident in vertical position and pitch, which can be very large; 2) constant pseudomotion at the same respiratory rate as real motion, occurring only in the phase encode direction; 3) punctate real motions occurring at times of very deep breaths; 4) a low-frequency pseudomotion in only the phase encode direction at and after very deep breaths; 5) slow modulation of vertical and anterior-posterior head position by the respiratory envelope. We reformulate motion estimates in light of these considerations and obtain good concordance between motion estimates, physiologic records, image quality measures, and events evident in the fMRI signals. We demonstrate how variables describing respiration or body habitus separately scale with distinct kinds of head motion. We also note heritable aspects of respiration and motion.
Collapse
Affiliation(s)
- Jonathan D Power
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, 1300 York Avenue, Box 140, New York, NY, 10065, USA.
| | - Charles J Lynch
- Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, Box 140, New York, NY, 10065, USA.
| | - Benjamin M Silver
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, 1300 York Avenue, Box 140, New York, NY, 10065, USA.
| | - Marc J Dubin
- Department of Psychiatry, Weill Cornell Medicine, 1300 York Avenue, Box 140, New York, NY, 10065, USA.
| | - Alex Martin
- National Institute for Mental Health, 10 Center Dr., Bethesda, MD, 20814, USA.
| | - Rebecca M Jones
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, 1300 York Avenue, Box 140, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
13
|
Liu R, Zhang H, Niu W, Lai C, Ding Q, Chen W, Liang S, Zhou J, Wu D, Zhang Y. Improved chemical exchange saturation transfer imaging with real-time frequency drift correction. Magn Reson Med 2019; 81:2915-2923. [PMID: 30697813 DOI: 10.1002/mrm.27663] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE To investigate the effects of frequency drift on chemical exchange saturation transfer (CEST) imaging at 3T, and to propose a new sequence for correcting artifacts attributed to B0 drift in real time. THEORY AND METHODS A frequency-stabilized CEST (FS-CEST) imaging sequence was proposed by adding a frequency stabilization module to the conventional non-frequency-stabilized CEST (NFS-CEST) sequence, which consisted of a small tip angle radiofrequency excitation pulse and readout of three non-phase-encoded k-space lines. Experiments were performed on an egg white phantom and 26 human subjects on a heavy-duty clinical scanner, in order to compare the difference of FS-CEST and NFS-CEST sequences for generating the z-spectrum, magnetization transfer ratio asymmetry (MTRasym ) spectrum, and amide proton transfer weighted (APTw) image. RESULTS The B0 drift in CEST imaging, if not corrected, would cause APTw images and MTRasym spectra from both the phantom and volunteers to be either significantly higher or lower than the true values, depending on the status of the scanner. The FS-CEST sequence generated substantially more stable MTRasym spectra and APTw images than the conventional NFS-CEST sequence. Quantitatively, the compartmental-average APTw signals (mean ± standard deviation) from frontal white matter regions of all 26 human subjects were -0.32% ± 2.32% for the NFS-CEST sequence and -0.14% ± 0.37% for the FS-CEST sequence. CONCLUSIONS The proposed FS-CEST sequence provides an effective approach for B0 drift correction without additional scan time and should be adopted on heavy-duty MRI scanners.
Collapse
Affiliation(s)
- Ruibin Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiming Niu
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Can Lai
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuping Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Sayuan Liang
- Clinical Research Board, Philips Research China, Shanghai, China
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
14
|
Yao J, Ruan D, Raymond C, Liau LM, Salamon N, Pope WB, Nghiemphu PL, Lai A, Cloughesy TF, Ellingson BM. Improving B 0 Correction for pH-Weighted Amine Proton Chemical Exchange Saturation Transfer (CEST) Imaging by Use of k-Means Clustering and Lorentzian Estimation. ACTA ACUST UNITED AC 2018; 4:123-137. [PMID: 30320212 PMCID: PMC6173788 DOI: 10.18383/j.tom.2018.00017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amine chemical exchange saturation transfer (CEST) echoplanar imaging (EPI) provides unique pH and amino acid MRI contrast, enabling sensitive detection of altered microenvironment properties in various diseases. However, CEST contrast is sensitive to static magnetic field (B0) inhomogeneities. Here we propose 2 new B0 correction algorithms for use in correcting pH-weighted amine CEST EPI based on k-means clustering and Lorentzian fitting of CEST data: the iterative downsampling estimation using Lorentzian fitting and the 2-stage Lorentzian estimation with 4D polynomial fitting. Higher quality images of asymmetric magnetization transfer ratio (MTRasym) at 3.0 ppm could be obtained with the proposed algorithms than with the existing B0 correction methods. In particular, the proposed methods are shown to improve the intertissue consistency, interpatient consistency, and tumor region signal-to-noise ratio of MTRasym at 3.0 ppm images, with nonexcessive computation time.
Collapse
Affiliation(s)
- Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA
| | - Dan Ruan
- Departments of Radiation Oncology
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Linda M Liau
- Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | | | | | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
15
|
Alizadeh M, Conklin CJ, Middleton DM, Shah P, Saksena S, Krisa L, Finsterbusch J, Faro SH, Mulcahey MJ, Mohamed FB. Identification of ghost artifact using texture analysis in pediatric spinal cord diffusion tensor images. Magn Reson Imaging 2017; 47:7-15. [PMID: 29154897 DOI: 10.1016/j.mri.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 01/18/2023]
Abstract
PURPOSE Ghost artifacts are a major contributor to degradation of spinal cord diffusion tensor images. A multi-stage post-processing pipeline was designed, implemented and validated to automatically remove ghost artifacts arising from reduced field of view diffusion tensor imaging (DTI) of the pediatric spinal cord. METHOD A total of 12 pediatric subjects including 7 healthy subjects (mean age=11.34years) with no evidence of spinal cord injury or pathology and 5 patients (mean age=10.96years) with cervical spinal cord injury were studied. Ghost/true cords, labeled as region of interests (ROIs), in non-diffusion weighted b0 images were segmented automatically using mathematical morphological processing. Initially, 21 texture features were extracted from each segmented ROI including 5 first-order features based on the histogram of the image (mean, variance, skewness, kurtosis and entropy) and 16s-order feature vector elements, incorporating four statistical measures (contrast, correlation, homogeneity and energy) calculated from co-occurrence matrices in directions of 0°, 45°, 90° and 135°. Next, ten features with a high value of mutual information (MI) relative to the pre-defined target class and within the features were selected as final features which were input to a trained classifier (adaptive neuro-fuzzy interface system) to separate the true cord from the ghost cord. RESULTS The implemented pipeline was successfully able to separate the ghost artifacts from true cord structures. The results obtained from the classifier showed a sensitivity of 91%, specificity of 79%, and accuracy of 84% in separating the true cord from ghost artifacts. CONCLUSION The results show that the proposed method is promising for the automatic detection of ghost cords present in DTI images of the spinal cord. This step is crucial towards development of accurate, automatic DTI spinal cord post processing pipelines.
Collapse
Affiliation(s)
- Mahdi Alizadeh
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Chris J Conklin
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Devon M Middleton
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pallav Shah
- Department of Radiology, Temple University, Philadelphia, PA, United States
| | - Sona Saksena
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Laura Krisa
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Scott H Faro
- Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - M J Mulcahey
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Svedin BT, Payne A, Bolster BD, Parker DL. Multiecho pseudo-golden angle stack of stars thermometry with high spatial and temporal resolution using k-space weighted image contrast. Magn Reson Med 2017. [PMID: 28643383 DOI: 10.1002/mrm.26797] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Implement and evaluate a 3D MRI method to measure temperature changes with high spatial and temporal resolution and large field of view. METHODS A multiecho pseudo-golden angle stack-of-stars (SOS) sequence with k-space weighted image contrast (KWIC) reconstruction was implemented to simultaneously measure multiple quantities, including temperature, initial signal magnitude M(0), transverse relaxation time ( T2*), and water/fat images. Respiration artifacts were corrected using self-navigation. KWIC artifacts were removed using a multi-baseline library. The phases of the multiple echo images were combined to improve proton resonance frequency precision. Temperature precision was tested through in vivo breast imaging (N = 5 healthy volunteers) using both coronal and sagittal orientations and with focused ultrasound (FUS) heating in a pork phantom using a breast specific MR-guided FUS system. RESULTS Temperature measurement precision was significantly improved after echo combination when compared with the no echo combination case (spatial average of the standard deviation through time of 0.3-1.0 and 0.7-1.9°C, respectively). Temperature measurement accuracy during heating was comparable to a 3D seg-EPI sequence. M(0) and T2* values showed temperature dependence during heating in pork adipose tissue. CONCLUSION A self-navigated 3D multiecho SOS sequence with dynamic KWIC reconstruction is a promising thermometry method that provides multiple temperature sensitive quantitative values. Magn Reson Med 79:1407-1419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Bryant T Svedin
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Allison Payne
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | | | - Dennis L Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Shrestha M, Mildner T, Schlumm T, Robertson SH, Möller H. Three-dimensional echo-planar cine imaging of cerebral blood supply using arterial spin labeling. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:799-810. [PMID: 27225871 PMCID: PMC5124058 DOI: 10.1007/s10334-016-0565-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Echo-planar imaging (EPI) with CYlindrical Center-out spatiaL Encoding (EPICYCLE) is introduced as a novel hybrid three-dimensional (3D) EPI technique. Its suitability for the tracking of a short bolus created by pseudo-continuous arterial spin labeling (pCASL) through the cerebral vasculature is demonstrated. MATERIALS AND METHODS EPICYCLE acquires two-dimensional planes of k-space along center-out trajectories. These "spokes" are rotated from shot to shot about a common axis to encode a k-space cylinder. To track a bolus of labeled blood, the same subset of evenly distributed spokes is acquired in a cine fashion after a short period of pCASL. This process is repeated for all subsets to fill the whole 3D k-space of each time frame. RESULTS The passage of short pCASL boluses through the vasculature of a 3D imaging slab was successfully imaged using EPICYCLE. By choosing suitable sequence parameters, the impact of slab excitation on the bolus shape could be minimized. Parametric maps of signal amplitude, transit time, and bolus width reflected typical features of blood transport in large vessels. CONCLUSION The EPICYCLE technique was successfully applied to track a short bolus of labeled arterial blood during its passage through the cerebral vasculature.
Collapse
Affiliation(s)
- Manoj Shrestha
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Toralf Mildner
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| | - Torsten Schlumm
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | | | - Harald Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
18
|
Duerst Y, Wilm BJ, Wyss M, Dietrich BE, Gross S, Schmid T, Brunner DO, Pruessmann KP. Utility of real-time field control in T2
*-Weighted head MRI at 7T. Magn Reson Med 2015; 76:430-9. [DOI: 10.1002/mrm.25838] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Yolanda Duerst
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Bertram J. Wilm
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
- Skope Magnetic Resonance Technologies; Zurich Switzerland
| | - Michael Wyss
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Benjamin E. Dietrich
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Simon Gross
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Thomas Schmid
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
| | - David O. Brunner
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering; University of Zurich and ETH Zurich; Zurich Switzerland
| |
Collapse
|
19
|
Svedin BT, Payne A, Parker DL. Respiration artifact correction in three-dimensional proton resonance frequency MR thermometry using phase navigators. Magn Reson Med 2015; 76:206-13. [PMID: 26272108 DOI: 10.1002/mrm.25860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/19/2015] [Accepted: 07/11/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop reliable three-dimensional (3D) segmented echo planar imaging (seg-EPI) proton resonance frequency (PRF) temperature monitoring in the presence of respiration-induced B0 variation. METHODS A free induction decay (FID) phase navigator was inserted into a 3D seg-EPI sequence before and after EPI readout to monitor B0 field variations. Using the field change estimates, the phase of each k-space line was adjusted to remove the additional phase from the respiratory induced off-resonance. This correction technique was evaluated while heating with MR-guided focused ultrasound (MRgFUS) in phantoms with simulated breathing and during nonheating conditions in healthy in vivo breasts. RESULTS With k-space phase correction, the standard deviation of magnitude images and PRF temperature measurements in breast from five volunteers improved by an average factor of 1.5 and 2.1, respectively. Improved accuracy of temperature estimates was observed after correction while heating with MRgFUS in phantoms. CONCLUSION Phase correction based on two FID navigators placed before and after the echo train provides promising results for implementing 3D monitoring of thermal therapy treatments in the presence of field variations due to respiration. Magn Reson Med 76:206-213, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryant T Svedin
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Allison Payne
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Andersen M, Hanson LG, Madsen KH, Wezel J, Boer V, van der Velden T, van Osch MJP, Klomp D, Webb AG, Versluis MJ. Measuring motion-induced B0 -fluctuations in the brain using field probes. Magn Reson Med 2015; 75:2020-30. [PMID: 26073175 DOI: 10.1002/mrm.25802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/04/2015] [Accepted: 05/24/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE Fluctuations of the background magnetic field (B0 ) due to body and breathing motion can lead to significant artifacts in brain imaging at ultrahigh field. Corrections based on real-time sensing using external field probes show great potential. This study evaluates different aspects of field interpolation from these probes into the brain which is implicit in such methods. Measurements and simulations were performed to quantify how well B0 -fluctuations in the brain due to body and breathing motion are reflected in external field probe measurements. METHODS Field probe measurements were compared with scanner acquired B0 -maps from experiments with breathing and shoulder movements. A realistic simulation of B0 -fluctuations caused by breathing was performed, and used for testing different sets of field probe positions. RESULTS The B0 -fluctuations were well reflected in the field probe measurements in the shoulder experiments, while the breathing experiments showed only moderate correspondence. The simulations showed the importance of the probe positions, and that performing full 3(rd) order corrections based on 16 field probes is not recommended. CONCLUSION Methods for quantitative assessment of the field interpolation problem were developed and demonstrated. Field corrections based on external field measurements show great potential, although potential pitfalls were identified.
Collapse
Affiliation(s)
- Mads Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark.,Biomedical Engineering Group, DTU Elektro, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark.,Biomedical Engineering Group, DTU Elektro, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Joep Wezel
- C.J. Gorter Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tijl van der Velden
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten J Versluis
- C.J. Gorter Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Philips Healthcare, Best, The Netherlands
| |
Collapse
|
21
|
Harkins KD, Horch RA, Does MD. Simple and robust saturation-based slice selection for ultrashort echo time MRI. Magn Reson Med 2014; 73:2204-11. [PMID: 25046136 DOI: 10.1002/mrm.25361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/06/2014] [Accepted: 06/21/2014] [Indexed: 12/23/2022]
Abstract
PURPOSE To present a new method for localizing signal within a two-dimensional (2D) slice suitable for ultrashort echo time (UTE) imaging, called saturation-based UTE (sat-UTE). The new method digitally subtracts two acquisitions that are nonselectively excited with and without selective saturation of the slice of interest. METHODS Sat-UTE was compared with half-pulse and double-half pulse excited UTE within phantoms, as well as 3D-UTE within ex vivo femur and in vivo tibia. Numerical simulations were also used to quantify the effects of slice profile broadening and signal component amplitudes for quantitative UTE. RESULTS Sat-UTE is robust to suppress out-of-slice signal, and produces short T2 signal decay curves comparable to 3D-UTE, but has a lower signal to noise ratio efficiency compared with other slice-selective methods. CONCLUSION The proposed method is useful for fast, quantitative evaluation of short T2 signals, and is insensitive to gradient performance.
Collapse
Affiliation(s)
- Kevin D Harkins
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - R Adam Horch
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Mark D Does
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Krämer M, Reichenbach JR. High resolution T2*-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI. Z Med Phys 2014; 24:164-73. [DOI: 10.1016/j.zemedi.2013.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/24/2022]
|
23
|
Phase errors in FSE signals due to low frequency electromagnetic interference. Magn Reson Imaging 2013; 31:1384-9. [PMID: 23796899 DOI: 10.1016/j.mri.2013.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To quantitatively evaluate induced phase errors in fast spin echo (FSE) signals due to low frequency electromagnetic inference (EMI). METHODS Specific form of Bloch equation is numerically solved in time domain for two different FSE pulse sequences (ETL=8) with two different bandwidths. A single spin is modeled at x=10cm, EMI frequencies are simulated from 1 to 1000Hz and phase errors at different echo times are calculated. RESULTS Phase errors in the received echo signals induced by EMI are significantly higher at low frequencies (<200Hz) than at high frequencies and the phase errors at low frequencies can be effectively reduced by using high receiving bandwidth. CONCLUSION Pulse sequence bandwidth can be used to control the phase errors in the FSE signals due to low frequency EMI.
Collapse
|
24
|
Zeller M, Kraus P, Müller A, Bley TA, Köstler H. Respiration impacts phase difference-based field maps in echo planar imaging. Magn Reson Med 2013; 72:446-51. [PMID: 24018714 DOI: 10.1002/mrm.24938] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the influence of respiration on field maps for geometric distortion correction derived from two rapidly acquired consecutive echo planar images. METHODS Displacement maps of the brains of seven healthy volunteers were acquired under breath hold and free breathing for a 64 × 64 pixel image matrix using phase labeling for additional coordinate encoding (PLACE). The maps were transformed into undistorted gradient echo space and analyzed with regard to standard deviation and absolute deviation from an accurate reference field map derived from a multiecho reference scan. RESULTS Standard deviations between PLACE field maps and absolute difference from the reference field map are a factor of about 3 higher under free breathing than under breath hold. The mean deviation decreases from 3 pixels in the slice closest to the lung to 1 pixel in the most superior slice under free breathing and from 1 to <0.5 pixels under breath hold. CONCLUSION Maps obtained under free breathing can significantly impact the field map and thus corrupt the geometric distortion correction. The effect can be greatly reduced by acquiring the field map data under breath hold. Data acquired under free breathing can be improved with retrospective phase correction or by averaging several field maps.
Collapse
Affiliation(s)
- Mario Zeller
- University of Würzburg, University Clinic, Department of Radiology, Würzburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Tal A, Gonen O. Localization errors in MR spectroscopic imaging due to the drift of the main magnetic field and their correction. Magn Reson Med 2012; 70:895-904. [PMID: 23165750 DOI: 10.1002/mrm.24536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 11/06/2022]
Abstract
PURPOSE To analyze the effect of B0 field drift on multivoxel MR spectroscopic imaging and to propose an approach for its correction. THEORY AND METHODS It is shown, both theoretically and in a phantom, that for ∼30 min acquisitions a linear B0 drift (∼0.1 ppm/h) will cause localization errors that can reach several voxels (centimeters) in the slower varying phase encoding directions. An efficient and unbiased estimator is proposed for tracking the drift by interleaving short (∼ T2*), nonlocalized acquisitions on the nonsuppressed water each pulse repetition time, as shown in 10 volunteers at 1.5 and 3 T. RESULTS The drift is shown to be predominantly linear in both the phantom and volunteers at both fields. The localization errors are observed and quantified in both phantom and volunteers. The unbiased estimator is shown to reliably track the instantaneous frequency in vivo despite only using a small portion of the FID. CONCLUSION Contrary to single-voxel MR spectroscopy, where it leads to line broadening, field drift can lead to localization errors in the longer chemical shift imaging experiments. Fortunately, this drift can be obtained at a negligible cost to sequence timing, and corrected for in post processing.
Collapse
Affiliation(s)
- Assaf Tal
- Department of Radiology, New York University School of Medicine, 660 First Avenue, New York, New York, USA
| | | |
Collapse
|
26
|
Modeling and suppression of respiration induced B0-fluctuations in non-balanced steady-state free precession sequences at 7 Tesla. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 26:377-87. [PMID: 23008017 DOI: 10.1007/s10334-012-0343-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
OBJECT To develop and evaluate a model for describing the S1 (S+) and S2 (S-) phase in the presence of off-resonance frequency fluctuations, and to evaluate the performance of a novel interleaved navigator echo scheme. MATERIALS AND METHODS Using the extended phase graph model, a linear phase term was added to the evolution of transverse states. An approximation for the total S2 phase was derived with one fit parameter τl, which serves as an effective lifetime of the S2 signal. The model was evaluated using synthetic and in vivo phase evolution data. In addition, a novel interleaved phase correction scheme for the nb-SSFP sequence was applied to BOLD-fMRI data, and the number of activated voxels before and after phase correction was determined. RESULTS The phases of S1 and S2 signals are significantly different from each other. The proposed nb-SSFP phase model provided a good description of the measured phase evolution data, and the approximate model for the S2 phase provided both at good fit to the data, as well as an effective lifetime of the S2 signal. In some subjects the phase contribution from older pathways was underestimated. In the BOLD-fMRI data, a twofold increase of the number of activated voxels for the S2 signal was observed, compared to no correction and a conventional navigator echo method. CONCLUSION The different phase evolution of S1 and S2 signals can be qualitatively described by the proposed model, and detrimental phase history effects are significant at 7 Tesla when not appropriately corrected.
Collapse
|
27
|
Versluis MJ, Sutton BP, de Bruin PW, Börnert P, Webb AG, van Osch MJ. Retrospective image correction in the presence of nonlinear temporal magnetic field changes using multichannel navigator echoes. Magn Reson Med 2012; 68:1836-45. [PMID: 22362637 DOI: 10.1002/mrm.24202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 11/07/2022]
Abstract
Spatio-temporal magnetic field changes in the brain caused by breathing or body movements can lead to image artifacts. This is especially a problem in T(2)(*)-weighted sequences. With the acquisition of an extra echo (navigator), it is possible to measure the magnetic field change induced frequency offset for a given slice during image acquisition. However, substantial local variation across a slice can occur. This work describes an extension of the conventional navigator technique that improves the estimation of the magnetic field distribution in the brain during strong field fluctuations. This is done using the combination of signals from multiple coil elements, the coil sensitivity profiles, and frequency encoding: termed sensitivity-encoded navigator echoes. In vivo validation was performed in subjects who performed normal breathing, nose touching, and deep breathing during scanning. The sensitivity-encoded navigator technique leads to an error reduction in estimating the field distribution in the brain of 73% ± 16% compared with 56% ± 14% for conventional estimation. Image quality can be improved via incorporating this navigator information appropriately into the image reconstruction. When the sensitivity-encoded navigator technique was applied to a T(2)(*)-weighted sequence at 7 T, a ghosting reduction of 47% ± 13% was measured during nose touching experiments compared with no correction.
Collapse
Affiliation(s)
- M J Versluis
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Afacan O, Hoge WS, Janoos F, Brooks DH, Morocz IA. Rapid full-brain fMRI with an accelerated multi shot 3D EPI sequence using both UNFOLD and GRAPPA. Magn Reson Med 2011; 67:1266-74. [PMID: 22095768 DOI: 10.1002/mrm.23106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 11/06/2022]
Abstract
The desire to understand complex mental processes using functional MRI drives development of imaging techniques that scan the whole human brain at a high spatial and temporal resolution. In this work, an accelerated multishot three-dimensional echo-planar imaging sequence is proposed to increase the temporal resolution of these studies. A combination of two modern acceleration techniques, UNFOLD and GRAPPA is used in the secondary phase encoding direction to reduce the scan time effectively. The sequence (repetition time of 1.02 s) was compared with standard two-dimensional echo-planar imaging (3 s) and multishot three-dimensional echo-planar imaging (3 s) sequences with both block design and event-related functional MRI paradigms. With the same experimental setup and imaging time, the temporal resolution improvement with our sequence yields similar activation regions in the block design functional MRI paradigm with slightly increased t-scores. Moreover, additional information on the timing of rapid dynamic changes was extracted from accelerated images for the case of the event related complex mental paradigm.
Collapse
Affiliation(s)
- Onur Afacan
- Department of Electrical & Computer Engineering, Center for Digital Signal Processing, Northeastern University, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
29
|
Versluis MJ, Peeters JM, van Rooden S, van der Grond J, van Buchem MA, Webb AG, van Osch MJP. Origin and reduction of motion and f0 artifacts in high resolution T2*-weighted magnetic resonance imaging: application in Alzheimer's disease patients. Neuroimage 2010; 51:1082-8. [PMID: 20338252 DOI: 10.1016/j.neuroimage.2010.03.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/22/2010] [Accepted: 03/16/2010] [Indexed: 11/26/2022] Open
Abstract
The altered iron concentration in many neurodegenerative diseases such as Alzheimer's disease (AD) has led to the development of MRI sequences that are sensitive to the accompanying changes in the transverse relaxation rate. Heavily T(2)*-weighted imaging sequences at high magnetic field strength (7T and above), in particular, show potential for detecting small changes in iron concentration. However, these sequences require a long echo time in combination with a long scanning time for high resolution and are therefore prone to image artifacts caused by physiological fluctuations, patient motion or system instabilities. Many groups have found that the high image quality that was obtained using high resolution T(2)*-weighted sequences at 7T in healthy volunteers, could not be obtained in AD patients. In this study the source of the image artifacts was investigated in phantom and in healthy volunteer experiments by incorporating movement parameters and resonance frequency (f0) variations which were measured in AD patients. It was found that image degradation caused by typical f0 variations was a factor-of-four times larger than artifacts caused by movement characteristic of AD patients in the scanner. In addition to respiratory induced f0 variations, large jumps in the f0 were observed in AD patients. By implementing a navigator echo technique to correct for f0 variations, the image quality of high resolution T(2)*-weighted images increased considerably. This technique was successfully applied in five AD patients and in five subjective memory complainers. Visual scoring showed improvements in image quality in 9 out of 10 subjects. Ghosting levels were reduced by 24+/-13%.
Collapse
Affiliation(s)
- M J Versluis
- Department of Radiology, CJ Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Image correction during large and rapid B0 variations in an open MRI system with permanent magnets using navigator echoes and phase compensation. Magn Reson Imaging 2009; 27:988-93. [DOI: 10.1016/j.mri.2009.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/16/2009] [Accepted: 01/31/2009] [Indexed: 11/21/2022]
|
31
|
Barry RL, Williams JM, Klassen LM, Gallivan JP, Culham JC, Menon RS. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI. Magn Reson Imaging 2009; 28:235-44. [PMID: 19695810 DOI: 10.1016/j.mri.2009.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/26/2009] [Accepted: 07/04/2009] [Indexed: 11/15/2022]
Abstract
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (DeltaB(0)) caused by normal subject respiration and, in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of DeltaB(0) during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate DeltaB(0) caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing and reduced the noise and false activations in regions where no legitimate effects would occur.
Collapse
Affiliation(s)
- Robert L Barry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Gassert R, Burdet E, Chinzei K. Opportunities and Challenges in MR-Compatible Robotics. ACTA ACUST UNITED AC 2008; 27:15-22. [DOI: 10.1109/emb.2007.910265] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Wu ML, Wu PH, Huang TY, Shih YY, Chou MC, Liu HS, Chung HW, Chen CY. Frequency stabilization using infinite impulse response filtering for SSFP fMRI at 3T. Magn Reson Med 2007; 57:369-79. [PMID: 17260379 DOI: 10.1002/mrm.21138] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The steady-state free precession (SSFP) method has been shown to exhibit strong potential for distortion-free functional magnetic resonance imaging (fMRI). One major challenge of SSFP fMRI is that the frequency band corresponding to the highest functional sensitivity is extremely narrow, leading to substantial loss of functional contrast in the presence of magnetic field drifts. In this study we propose a frequency stabilization scheme whereby an RF pulse with small flip angle is applied before each image scan, and the initial phase of the free induction decay (FID) signals is extracted to reflect temporal field drifts. A simple infinite impulse response (IIR) filter is further employed to obtain a low-pass-filtered estimate of the central reference frequency for the upcoming scan. Experimental results suggest that the proposed scheme can stabilize the frequency settings in accordance with field drifts, with oscillation amplitudes of <0.5 Hz. Phantom studies showed that both slow drifts and fast fluctuations were prominently reduced, resulting in less than 5% signal variations. Visual fMRI at submillimeter in-plane resolution further demonstrated 15% activation signals that were nicely registered in the microvessels within the sulci. It is concluded that the IIR-filtered frequency stabilization is an effective technique for achieving reliable SSFP fMR images at high field strengths.
Collapse
Affiliation(s)
- Ming-Long Wu
- Department of Electrical Engineering, National Taiwan University of Science and Technology, and Department of Radiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lamberton F, Delcroix N, Grenier D, Mazoyer B, Joliot M. A new EPI-based dynamic field mapping method: Application to retrospective geometrical distortion corrections. J Magn Reson Imaging 2007; 26:747-55. [PMID: 17729370 DOI: 10.1002/jmri.21039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To retrospectively correct for geometrical distortions, a new dynamic field mapping method suitable for dynamic single-shot gradient-echo type echo-planar imaging (GRE-EPI) is proposed. MATERIALS AND METHODS The method requires a single volume additional acquisition and allows the extraction of a field map from each phase volume, assuming invariance across time of the echo time-independent phase component. Performances of the method are assessed using three sets of experiments: the first tests the prerequisite and the modeling; the second tests the method with time-dependent geometrical distortions; and the third presents a comparison with two other methods. RESULTS Our results legitimize the modeling procedure and demonstrate that the dynamic method is less sensitive to noise than the other methods. A theoretical explanation for this is proposed in the discussion section. CONCLUSION Given the minor increase in the acquisition time, this method is well suited for functional magnetic resonance imaging; prospective direction.
Collapse
Affiliation(s)
- Franck Lamberton
- Unité Mixte de Recherche (UMR)6194 Centre National de Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique (CEA), Université de Caen et Paris 5, Caen, France
| | | | | | | | | |
Collapse
|
35
|
Schmidt MA. Assessment of environmental disturbances to the static magnetic field in magnetic resonance installations. Br J Radiol 2006; 79:432-6. [PMID: 16632625 DOI: 10.1259/bjr/76396327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The static magnetic field of MRI scanners can be affected by environmental factors. Magnetic resonance spectroscopy and functional imaging with single-shot echo-planar imaging (EPI) are particularly vulnerable to the movement of lifts, vehicles, trains and other large metallic masses in the vicinity. This work investigates the sensitivity of two different imaging techniques to assess disturbances of the static magnetic field: (i) phase changes in gradient-echo images of a uniform test object; and (ii) image displacement along the phase encoding direction in single-shot EPI images. For the latter a hexane sample was used, and the separation between CH2 and CH3 signals was taken as a reference. Both techniques were evaluated in a site known to be free of any significant environmental disturbances and validated by inducing a magnetic field disturbance. Both techniques provide valuable information in acceptance tests, allowing MRI users to evaluate and manage the environmental conditions surrounding a scanner. The single-shot EPI technique was found to be highly sensitive, being expected to detect magnetic field fluctuations down to 0.005 parts per million (ppm). The phase images method was found to be less sensitive (0.02 ppm) but is more easily available. The single-shot EPI technique was used in acceptance tests and environmental disturbances to the magnetic field of the order of 0.04 ppm were measured at the isocentre on two separate occasions.
Collapse
Affiliation(s)
- M A Schmidt
- Department of Medical Physics, St George's Hospital, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
36
|
Foerster BU, Tomasi D, Caparelli EC. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magn Reson Med 2006; 54:1261-7. [PMID: 16215962 PMCID: PMC2408718 DOI: 10.1002/mrm.20695] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI.
Collapse
Affiliation(s)
- Bernd U Foerster
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | | | |
Collapse
|
37
|
Benner T, van der Kouwe AJW, Kirsch JE, Sorensen AG. Real-time RF pulse adjustment forB0 drift correction. Magn Reson Med 2006; 56:204-9. [PMID: 16767763 DOI: 10.1002/mrm.20936] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the magnetic field of an MR scanner is very stable under little or no load, it can become less stable under heavy-duty cycle conditions, such as in diffusion tensor imaging (DTI). Uncorrected, such field drifts lead to an apparent image shift along the phase-encoding direction and decreasing effectiveness of fat saturation pulses. A method is presented to adjust the center frequency of all RF pulses and the receiver in real time during the acquisition. No data postprocessing or changes to the sequence timing are necessary. In vivo acquisitions were performed to assess the prolonged effectiveness of fat saturation. Field drifts of approximately 2.5 Hz/min were measured and corrected during DTI acquisitions at b-values of up to 3000 s/mm2. The effectiveness of fat saturation diminished over the duration of an 18-min acquisition when the drift was left uncorrected. The proposed method corrects for apparent image shift and ensures continuously effective fat saturation over the duration of an acquisition.
Collapse
Affiliation(s)
- Thomas Benner
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
38
|
Roopchansingh V, Cox RW, Jesmanowicz A, Ward BD, Hyde JS. Single-shot magnetic field mapping embedded in echo-planar time-course imaging. Magn Reson Med 2004; 50:839-43. [PMID: 14523971 DOI: 10.1002/mrm.10587] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A technique for acquiring magnetic field maps simultaneously with gradient-recalled echo-planar time-course data is described. This technique uses a trajectory in which the central part of k-space is collected twice. For a 64 x 64 image acquired with a 125-kHz bandwidth, a field map suitable for geometric correction can be collected simultaneously with the echo-planar time-course data in <70 ms. The field maps generated by this technique are registered with the magnitude images because they are calculated using the same data. They do not suffer from errors due to subject motion, or from different geometric distortions that can result from using different pulse sequences. In addition to correcting geometric distortions that resulted from dynamic magnetic field perturbations, this method was used to measure field shifts arising from respiration and jaw motion across five subjects. Values ranged from 0.035 to 0.165 parts per million (ppm).
Collapse
Affiliation(s)
- Vinai Roopchansingh
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509, USA.
| | | | | | | | | |
Collapse
|
39
|
Van de Moortele PF, Pfeuffer J, Glover GH, Ugurbil K, Hu X. Respiration-induced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla. Magn Reson Med 2002; 47:888-95. [PMID: 11979567 DOI: 10.1002/mrm.10145] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In functional magnetic resonance imaging (fMRI), it is known that physiological influences such as cardiac pulsation, respiration, and brain motion can induce fluctuations in signal intensity and phase. Some of the mechanisms potentially involved in those phenomena are expected to be amplified at higher magnetic fields. This study addresses the issue of B(0) fluctuations induced by susceptibility changes during respiration attributed to movements of chest and diaphragm, and variations in the oxygen concentration. It is demonstrated that respiration-induced resonance offsets (RIROs) are significant at 7T. Data were acquired with an RF pulse (no gradients), multislice echo-planar imaging (EPI), and dynamic 3D fast low-angle shot (3D- FLASH) imaging. Three main observations summarize the experimental findings. First, in FIDs measured after a single RF pulse, a RIRO with a large amplitude was consistently detected, although the average amplitude varied between subjects from 1.45 Hz to 4 Hz. Second, in transverse EPI images obtained in the occipital lobe, the RIRO amplitude showed a monotonic increase along the z axis toward the lungs. Third, a more detailed spatial analysis with 3D-FLASH phase maps revealed that a previously published analytical model can accurately describe the spatial distribution of RIRO. Consequential apparent motions in the EPI series, as well as the implications of slice orientation for correction strategies are discussed.
Collapse
Affiliation(s)
- Pierre-François Van de Moortele
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | | | | | |
Collapse
|
40
|
Pfeuffer J, Van de Moortele PF, Ugurbil K, Hu X, Glover GH. Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magn Reson Med 2002; 47:344-53. [PMID: 11810679 DOI: 10.1002/mrm.10065] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In functional magnetic resonance imaging, a rapid method such as echo-planar (EPI) or spiral is used to collect a dynamic series of images. These techniques are sensitive to changes in resonance frequency which can arise from respiration and are more significant at high magnetic fields. To decrease the noise from respiration-induced phase and frequency fluctuations, a simple correction of the "dynamic off-resonance in k-space" (DORK) was developed. The correction uses phase information from the center of k-space and a navigator echo and is illustrated with dynamic scans of single-shot and segmented EPI and, for the first time, spiral imaging of the human brain at 7 T. Image noise in the respiratory spectrum was measured with an edge operator. The DORK correction significantly reduced respiration-induced noise (image shift for EPI, blurring for spiral, ghosting for segmented acquisition). While spiral imaging was found to exhibit less noise than EPI before correction, the residual noise after the DORK correction was comparable. The correction is simple to apply and can correct for other sources of frequency drift and fluctuations in dynamic imaging.
Collapse
Affiliation(s)
- Josef Pfeuffer
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| | | | | | | | | |
Collapse
|