1
|
Rezazadeh N, Alizadeh E, Soltani S, Davaran S, Esfandiari N. Synthesis and characterization of a magnetic bacterial cellulose-chitosan nanocomposite and evaluation of its applicability for osteogenesis. BIOIMPACTS : BI 2024; 14:30159. [PMID: 39493895 PMCID: PMC11530965 DOI: 10.34172/bi.2024.30159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 11/05/2024]
Abstract
Introduction Natural biopolymers are used for various purposes in healthcare, such as tissue engineering, drug delivery, and wound healing. Bacterial cellulose and chitosan were preferred in this study due to their non-cytotoxic, biodegradable, biocompatible, and non-inflammatory properties. The study reports the development of a magnetic bacterial cellulose-chitosan (BC-CS-Fe3O4) nanocomposite that can be used as a biocompatible scaffold for tissue engineering. Iron oxide nanoparticles were included in the composite to provide superparamagnetic properties that are useful in a variety of applications, including osteogenic differentiation, magnetic imaging, drug delivery, and thermal induction for cancer treatment. Methods The magnetic nanocomposite was prepared by immersing Fe3O4 in a mixture of bacterial cellulose-chitosan scaffold and then freeze-drying it. The resulting nanocomposite was characterized using FE-SEM and FTIR techniques. The swelling ratio and mechanical strength of the scaffolds were evaluated experimentally. The biodegradability of the scaffolds was assessed using PBS for 8 weeks at 37°C. The cytotoxicity and osteogenic differentiation of the nanocomposite were studied using human adipose-derived mesenchymal stem cells (ADSCs) and alizarin red staining. One-way ANOVA with Tukey's multiple comparisons test was used for statistical analysis. Results The FTIR spectra demonstrated the formation of bonds between functional groups of nanoparticles. FE-SEM images showed the integrity of the fibrillar network. The magnetic nanocomposite has the highest swelling ratio (2445% ± 23.34) and tensile strength (5.08 MPa). After 8 weeks, the biodegradation ratios of BC, BC-CS, and BC-CS-Fe3O4 scaffolds were 0.75% ± 0.35, 2.5% ± 0.1, and 9.5% ± 0.7, respectively. Magnetic nanocomposites have low toxicity (P < 0.0001) and higher osteogenic potential compared to other scaffolds. Conclusion Based on its high tensile strength, low water absorption, suitable degradability, low cytotoxicity, and high ability to induce an increase in calcium deposits by stem cells, the magnetic BC-CS-Fe3O4 nanocomposite scaffold can be a suitable candidate as a biomaterial for osteogenic differentiation.
Collapse
Affiliation(s)
- Nahid Rezazadeh
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Cheng HLM. A primer on in vivo cell tracking using MRI. Front Med (Lausanne) 2023; 10:1193459. [PMID: 37324153 PMCID: PMC10264782 DOI: 10.3389/fmed.2023.1193459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Cell tracking by in vivo magnetic resonance imaging (MRI) offers a collection of multiple advantages over other imaging modalities, including high spatial resolution, unlimited depth penetration, 3D visualization, lack of ionizing radiation, and the potential for long-term cell monitoring. Three decades of innovation in both contrast agent chemistry and imaging physics have built an expansive array of probes and methods to track cells non-invasively across a diverse range of applications. In this review, we describe both established and emerging MRI cell tracking approaches and the variety of mechanisms available for contrast generation. Emphasis is given to the advantages, practical limitations, and persistent challenges of each approach, incorporating quantitative comparisons where possible. Toward the end of this review, we take a deeper dive into three key application areas - tracking cancer metastasis, immunotherapy for cancer, and stem cell regeneration - and discuss the cell tracking techniques most suitable to each.
Collapse
Affiliation(s)
- Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology & Engineering Program, Toronto, ON, Canada
| |
Collapse
|
3
|
Bulte JWM, Wang C, Shakeri-Zadeh A. In Vivo Cellular Magnetic Imaging: Labeled vs. Unlabeled Cells. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2207626. [PMID: 36589903 PMCID: PMC9798832 DOI: 10.1002/adfm.202207626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Superparamagnetic iron oxide (SPIO)-labeling of cells has been applied for magnetic resonance imaging (MRI) cell tracking for over 30 years, having resulted in a dozen or so clinical trials. SPIO nanoparticles are biodegradable and can be broken down into elemental iron, and hence the tolerance of cells to magnetic labeling has been overall high. Over the years, however, single reports have accumulated demonstrating that the proliferation, migration, adhesion and differentiation of magnetically labeled cells may differ from unlabeled cells, with inhibition of chondrocytic differentiation of labeled human mesenchymal stem cells (hMSCs) as a notable example. This historical perspective provides an overview of some of the drawbacks that can be encountered with magnetic labeling. Now that magnetic particle imaging (MPI) cell tracking is emerging as a new in vivo cellular imaging modality, there has been a renaissance in the formulation of SPIO nanoparticles this time optimized for MPI. Lessons learned from the occasional past pitfalls encountered with SPIO-labeling of cells for MRI may expedite possible future clinical translation of (combined) MRI/MPI cell tracking.
Collapse
Affiliation(s)
- Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chao Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ali Shakeri-Zadeh
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Cell sorting microbeads as novel contrast agent for magnetic resonance imaging. Sci Rep 2022; 12:17640. [PMID: 36271098 PMCID: PMC9586996 DOI: 10.1038/s41598-022-21762-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
The success of several cell-based therapies and prevalent use of magnetic resonance imaging (MRI) in the clinic has fueled the development of contrast agents for specific cell tracking applications. Safe and efficient labeling of non-phagocytic cell types such as T cells nonetheless remains challenging. We developed a one-stop shop approach where the T cell sorting agent also labels the cells which can subsequently be depicted using non-invasive MRI. We compared the MR signal effects of magnetic-assisted cell sorting microbeads (CD25) to the current preclinical gold standard, ferumoxytol. We investigated in vitro labeling efficiency of regulatory T cells (Tregs) with MRI and histopathologic confirmation. Thereafter, Tregs and T cells were labeled with CD25 microbeads in vitro and delivered via intravenous injection. Liver MRIs pre- and 24 h post-injection were performed to determine in vivo tracking feasibility. We show that CD25 microbeads exhibit T2 signal decay properties similar to other iron oxide contrast agents. CD25 microbeads are readily internalized by Tregs and can be detected by non-invasive MRI with dose dependent T2 signal suppression. Systemically injected labeled Tregs can be detected in the liver 24 h post-injection, contrary to T cell control. Our CD25 microbead-based labeling method is an effective tool for Treg tagging, yielding detectable MR signal change in cell phantoms and in vivo. This novel cellular tracking method will be key in tracking the fate of Tregs in inflammatory pathologies and solid organ transplantation.
Collapse
|
5
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
6
|
Glover JC, Aswendt M, Boulland JL, Lojk J, Stamenković S, Andjus P, Fiori F, Hoehn M, Mitrecic D, Pavlin M, Cavalli S, Frati C, Quaini F. In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Mol Imaging Biol 2021; 22:1469-1488. [PMID: 31802361 DOI: 10.1007/s11307-019-01440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.
Collapse
Affiliation(s)
- Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.
| | - Markus Aswendt
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Jean-Luc Boulland
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia
| | - Stefan Stamenković
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Fabrizio Fiori
- Department of Applied Physics, Università Politecnica delle Marche - Di.S.C.O., Via Brecce Bianche, 60131, Ancona, Italy
| | - Mathias Hoehn
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Stefano Cavalli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
7
|
An L, Tao Q, Wu Y, Wang N, Liu Y, Wang F, Zhang L, Shi A, Zhou X, Yu S, Zhang J. Synthesis of SPIO Nanoparticles and the Subsequent Applications in Stem Cell Labeling for Parkinson's Disease. NANOSCALE RESEARCH LETTERS 2021; 16:107. [PMID: 34128153 PMCID: PMC8203769 DOI: 10.1186/s11671-021-03540-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the midbrain, and the stem cell transplantation method provides a promising strategy for the treatment. In these studies, tracking the biological behaviors of the transplanted cells in vivo is essential for a basic understanding of stem cell function and evaluation of clinical effectiveness. In the present study, we developed a novel ultrasmall superparamagnetic iron oxide nanoparticles coating with the polyacrylic acid (PAA) and methoxypolyethylene glycol amine (PEG) by thermal decomposition method and a two-step modification. The USPIO-PAA/PEG NPs have a uniform diameter of 10.07 ± 0.55 nm and proper absorption peak of the corresponding ligands, as showed by TEM and FTIR. MTT showed that the survival of cells incubated with USPIO-PAA/PEG NPs remained above 96%. The synthesized USPIO-PAA/PEG had a good relaxation rate of 84.65 s-1 Mm-1, indicating that they could be efficiently uptake and traced by MRI. Furthermore, the primary human adipose-derived stem cells (HADSCs) were characterized, labeled with USPIO-PAA/PEG and transplanted into the striatum of 6-hydroxydopamine (6-OHDA)-induced PD rat models. The labeled cells could be traced by MRI for up to 3 weeks after the transplantation surgery; moreover, transplantation with the labeled HADSCs significantly attenuated apomorphine-induced rotations in PD models and increased the number of the dopaminergic neurons in the substania nigra. Overall, the development of USPIO-PAA/PEG NPs provides a promising tool for in vivo tracing technique of cell therapy and identifies a novel strategy to track stem cells with therapeutic potential in PD.
Collapse
Affiliation(s)
- Li An
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
| | - Qing Tao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
| | - Nana Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
| | - Yan Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Feifei Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Lixing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Aihua Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China
| | - Xiumin Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China.
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, China.
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBET, Zhengzhou, 450001, China.
- Tianjin Guokeyigong Science and Technology Development Company Limited, Tianjin, 300399, China.
| |
Collapse
|
8
|
Chauhan DS, Dhasmana A, Laskar P, Prasad R, Jain NK, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Nanotechnology synergized immunoengineering for cancer. Eur J Pharm Biopharm 2021; 163:72-101. [PMID: 33774162 PMCID: PMC8170847 DOI: 10.1016/j.ejpb.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic(s). As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, and delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies availed in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment.
Collapse
Affiliation(s)
- Deepak S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nishant K Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
9
|
A review of green methods for phyto-fabrication of hematite (α-Fe 2O 3) nanoparticles and their characterization, properties, and applications. Heliyon 2021; 7:e05806. [PMID: 33490660 PMCID: PMC7809383 DOI: 10.1016/j.heliyon.2020.e05806] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023] Open
Abstract
The aim of the current work is the introduction of a quick and simple literature survey about the bio-fabrication of the Alpha Hematite nanoparticles (α-Fe2O3) using the plant extracts green method. The survey manifested the utilities of the environmentally friendly biosynthesis methods via extracting different plant species, some of its important physicochemical properties, various instrumental analysis characterization tools, and potential applications.
Collapse
|
10
|
Wu YL. Cardiac MRI Assessment of Mouse Myocardial Infarction and Regeneration. Methods Mol Biol 2021; 2158:81-106. [PMID: 32857368 DOI: 10.1007/978-1-0716-0668-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Small animal models are indispensable for cardiac regeneration research. Studies in mouse and rat models have provided important insights into the etiology and mechanisms of cardiovascular diseases and accelerated the development of therapeutic strategies. It is vitally important to be able to evaluate the therapeutic efficacy and have reliable surrogate markers for therapeutic development for cardiac regeneration research. Magnetic resonance imaging (MRI), a versatile and noninvasive imaging modality with excellent penetration depth, tissue coverage, and soft-tissue contrast, is becoming a more important tool in both clinical settings and research arenas. Cardiac MRI (CMR) is versatile, noninvasive, and capable of measuring many different aspects of cardiac functions, and, thus, is ideally suited to evaluate therapeutic efficacy for cardiac regeneration. CMR applications include assessment of cardiac anatomy, regional wall motion, myocardial perfusion, myocardial viability, cardiac function assessment, assessment of myocardial infarction, and myocardial injury. Myocardial infarction models in mice are commonly used model systems for cardiac regeneration research. In this chapter, we discuss various CMR applications to evaluate cardiac functions and inflammation after myocardial infarction.
Collapse
Affiliation(s)
- Yijen L Wu
- Department of Developmental Biology, Rangos Research Center Animal Imaging Core, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Xie T, Chen X, Fang J, Xue W, Zhang J, Tong H, Liu H, Guo Y, Yang Y, Zhang W. Non-invasive monitoring of the kinetic infiltration and therapeutic efficacy of nanoparticle-labeled chimeric antigen receptor T cells in glioblastoma via 7.0-Tesla magnetic resonance imaging. Cytotherapy 2020; 23:211-222. [PMID: 33334686 DOI: 10.1016/j.jcyt.2020.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T-cell therapy is a promising treatment strategy in solid tumors. In vivo cell tracking techniques can help us better understand the infiltration, persistence and therapeutic efficacy of CAR T cells. In this field, magnetic resonance imaging (MRI) can achieve high-resolution images of cells by using cellular imaging probes. MRI can also provide various biological information on solid tumors. METHODS The authors adopted the amino alcohol derivatives of glucose-coated nanoparticles, ultra-small superparamagnetic particles of iron oxide (USPIOs), to label CAR T cells for non-invasive monitoring of kinetic infiltration and persistence in glioblastoma (GBM). The specific targeting CARs included anti-human epidermal growth factor receptor variant III and IL13 receptor subunit alpha 2 CARs. RESULTS When using an appropriate concentration, USPIO labeling exerted no negative effects on the biological characteristics and killing efficiency of CAR T cells. Increasing hypointensity signals could be detected in GBM models by susceptibility-weighted imaging MRI ranging from 3 days to 14 days following the injection of USPIO-labeled CAR T cells. In addition, nanoparticles and CAR T cells were found on consecutive histopathological sections. Moreover, diffusion and perfusion MRI revealed significantly increased water diffusion and decreased vascular permeability on day 3 after treatment, which was simultaneously accompanied by a significant decrease in tumor cell proliferation and increase in intercellular tight junction on immunostaining sections. CONCLUSION These results establish an effective imaging technique that can track CAR T cells in GBM models and validate their early therapeutic effects, which may guide the evaluation of CAR T-cell therapies in solid tumors.
Collapse
Affiliation(s)
- Tian Xie
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Xiao Chen
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Wei Xue
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Junfeng Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Haipeng Tong
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yu Guo
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Yizeng Yang
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | - Weiguo Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China.
| |
Collapse
|
12
|
Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4644. [PMID: 33080937 PMCID: PMC7603130 DOI: 10.3390/ma13204644] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Iron oxides are chemical compounds which have different polymorphic forms, including γ-Fe2O3 (maghemite), Fe3O4 (magnetite), and FeO (wustite). Among them, the most studied are γ-Fe2O3 and Fe3O4, as they possess extraordinary properties at the nanoscale (such as super paramagnetism, high specific surface area, biocompatible etc.), because at this size scale, the quantum effects affect matter behavior and optical, electrical and magnetic properties. Therefore, in the nanoscale, these materials become ideal for surface functionalization and modification in various applications such as separation techniques, magnetic sorting (cells and other biomolecules etc.), drug delivery, cancer hyperthermia, sensing etc., and also for increased surface area-to-volume ratio, which allows for excellent dispersibility in the solution form. The current methods used are partially and passively mixed reactants, and, thus, every reaction has a different proportion of all factors which causes further difficulties in reproducibility. Direct active and complete mixing and automated approaches could be solutions to this size- and shape-controlled synthesis, playing a key role in its exploitation for scientific or technological purposes. An ideal synthesis method should be able to allow reliable adjustment of parameters and control over the following: fluctuation in temperature; pH, stirring rate; particle distribution; size control; concentration; and control over nanoparticle shape and composition i.e., crystallinity, purity, and rapid screening. Iron oxide nanoparticle (IONP)-based available clinical applications are RNA/DNA extraction and detection of infectious bacteria and viruses. Such technologies are important at POC (point of care) diagnosis. IONPs can play a key role in these perspectives. Although there are various methods for synthesis of IONPs, one of the most crucial goals is to control size and properties with high reproducibility to accomplish successful applications. Using multiple characterization techniques to identify and confirm the oxide phase of iron can provide better characterization capability. It is very important to understand the in-depth IONP formation mechanism, enabling better control over parameters and overall reaction and, by extension, properties of IONPs. This work provides an in-depth overview of different properties, synthesis methods, and mechanisms of iron oxide nanoparticles (IONPs) formation, and the diverse range of their applications. Different characterization factors and strategies to confirm phase purity in the IONP synthesis field are reviewed. First, properties of IONPs and various synthesis routes with their merits and demerits are described. We also describe different synthesis strategies and formation mechanisms for IONPs such as for: wustite (FeO), hematite (α-Fe2O3), maghemite (ɤ-Fe2O3) and magnetite (Fe3O4). We also describe characterization of these nanoparticles and various applications in detail. In conclusion, we present a detailed overview on the properties, size-controlled synthesis, formation mechanisms and applications of IONPs.
Collapse
Affiliation(s)
- Nene Ajinkya
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Xuefeng Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Poonam Kaithal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, SHUATS, Allahabad 211007, India;
| | - Hongrong Luo
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (X.Y.); (H.L.)
| | - Prakash Somani
- Center for Grand Challenges and Green Technologies, Applied Science Innovations Pvt. Ltd., Pune 411041, India;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore;
| |
Collapse
|
13
|
Han X, Li Y, Liu W, Chen X, Song Z, Wang X, Deng Y, Tang X, Jiang Z. The Applications of Magnetic Particle Imaging: From Cell to Body. Diagnostics (Basel) 2020; 10:E800. [PMID: 33050139 PMCID: PMC7600969 DOI: 10.3390/diagnostics10100800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetic particle imaging (MPI) is a cutting-edge imaging technique that is attracting increasing attention. This novel technique collects signals from superparamagnetic nanoparticles as its imaging tracer. It has characteristics such as linear quantitativity, positive contrast, unlimited penetration, no radiation, and no background signal from surrounding tissue. These characteristics enable various medical applications. In this paper, we first introduce the development and imaging principles of MPI. Then, we discuss the current major applications of MPI by dividing them into four categories: cell tracking, blood pool imaging, tumor imaging, and visualized magnetic hyperthermia. Even though research on MPI is still in its infancy, we hope this discussion will promote interest in the applications of MPI and encourage the design of tracers tailored for MPI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (X.H.); (Y.L.); (W.L.); (X.C.); (Z.S.); (X.W.); (Y.D.); (X.T.)
| |
Collapse
|
14
|
McCarthy CE, White JM, Viola NT, Gibson HM. In vivo Imaging Technologies to Monitor the Immune System. Front Immunol 2020; 11:1067. [PMID: 32582173 PMCID: PMC7280489 DOI: 10.3389/fimmu.2020.01067] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The past two decades have brought impressive advancements in immune modulation, particularly with the advent of both cancer immunotherapy and biologic therapeutics for inflammatory conditions. However, the dynamic nature of the immune response often complicates the assessment of therapeutic outcomes. Innovative imaging technologies are designed to bridge this gap and allow non-invasive visualization of immune cell presence and/or function in real time. A variety of anatomical and molecular imaging modalities have been applied for this purpose, with each option providing specific advantages and drawbacks. Anatomical methods including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound provide sharp tissue resolution, which can be further enhanced with contrast agents, including super paramagnetic ions (for MRI) or nanobubbles (for ultrasound). Conjugation of the contrast material to an antibody allows for specific targeting of a cell population or protein of interest. Protein platforms including antibodies, cytokines, and receptor ligands are also popular choices as molecular imaging agents for positron emission tomography (PET), single-photon emission computerized tomography (SPECT), scintigraphy, and optical imaging. These tracers are tagged with either a radioisotope or fluorescent molecule for detection of the target. During the design process for immune-monitoring imaging tracers, it is important to consider any potential downstream physiologic impact. Antibodies may deplete the target cell population, trigger or inhibit receptor signaling, or neutralize the normal function(s) of soluble proteins. Alternatively, the use of cytokines or other ligands as tracers may stimulate their respective signaling pathways, even in low concentrations. As in vivo immune imaging is still in its infancy, this review aims to describe the modalities and immunologic targets that have thus far been explored, with the goal of promoting and guiding the future development and application of novel imaging technologies.
Collapse
Affiliation(s)
- Claire E McCarthy
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Jordan M White
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Heather M Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
15
|
Wang P, Kim T, Harada M, Contag C, Huang X, Smith BR. Nano-immunoimaging. NANOSCALE HORIZONS 2020; 5:628-653. [PMID: 32226975 DOI: 10.1039/c9nh00514e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunoimaging is a rapidly growing field stoked in large part by the intriguing triumphs of immunotherapy. On the heels of immunotherapy's successes, there exists a growing need to evaluate tumor response to therapy particularly immunotherapy, stratify patients into responders vs. non-responders, identify inflammation, and better understand the fundamental roles of immune system components to improve both immunoimaging and immunotherapy. Innovative nanomaterials have begun to provide novel opportunities for immunoimaging, in part due to their sensitivity, modularity, capacity for many potentially varied ligands (high avidity), and potential for multifunctionality/multimodality imaging. This review strives to comprehensively summarize the integration of nanotechnology and immunoimaging, and the field's potential for clinical applications.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA
| | - Taeho Kim
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA
| | - Christopher Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Precision Health Program, Michigan State University, East Lansing, MI 488824, USA and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 488824, USA
| | - Xuefei Huang
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Chemistry, Michigan State University, East Lansing, MI 488824, USA
| | - Bryan Ronain Smith
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, Room #1118, East Lansing, MI 488824, USA. and Department of Biomedical Engineering, Michigan State University, East Lansing, MI 488824, USA and Department of Radiology, Stanford University, Stanford, CA 94306, USA
| |
Collapse
|
16
|
Cai Z, Wu C, Yang L, Wang D, Ai H. Assembly-Controlled Magnetic Nanoparticle Clusters as MRI Contrast Agents. ACS Biomater Sci Eng 2020; 6:2533-2542. [PMID: 33463262 DOI: 10.1021/acsbiomaterials.9b01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Changqiang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, North Sichuan Medical College, Fujiang Road 234, Nanchong, Sichuan 637000, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Dan Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Liu XL, Chen S, Zhang H, Zhou J, Fan HM, Liang XJ. Magnetic Nanomaterials for Advanced Regenerative Medicine: The Promise and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804922. [PMID: 30511746 DOI: 10.1002/adma.201804922] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/24/2018] [Indexed: 06/09/2023]
Abstract
The recent emergence of numerous nanotechnologies is expected to facilitate the development of regenerative medicine, which is a tissue regeneration technique based on the replacement/repair of diseased tissue or organs to restore the function of lost, damaged, and aging cells in the human body. In particular, the unique magnetic properties and specific dimensions of magnetic nanomaterials make them promising innovative components capable of significantly advancing the field of tissue regeneration. Their potential applications in tissue regeneration are the focus here, beginning with the fundamentals of magnetic nanomaterials. How nanomaterials-both those that are intrinsically magnetic and those that respond to an externally applied magnetic field-can enhance the efficiency of tissue regeneration is also described. Applications including magnetically controlled cargo delivery and release, real-time visualization and tracking of transplanted cells, magnetic regulation of cell proliferation/differentiation, and magnetic activation of targeted ion channels and signal pathways involved in regeneration are highlighted, and comments on the perspectives and challenges in magnetic nanomaterial-based tissue regeneration are given.
Collapse
Affiliation(s)
- Xiao-Li Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shizhu Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jin Zhou
- Tissue Engineering Research Center of the Academy of Military Medical Sciences, No. 27, Taiping Road, Haidian District, Beijing, 100850, P. R. China
| | - Hai-Ming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019; 45:278-300. [PMID: 30985230 DOI: 10.1080/1040841x.2019.1593101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.
Collapse
Affiliation(s)
- Noreen Ashraf
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Fiaz Ahmad
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Li Da-Wei
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Ren-Bin Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - He Feng-Li
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Da-Chuan Yin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| |
Collapse
|
19
|
Molecular Imaging of the Transplanted Heart: A Mechanistic Approach to Graft Survival. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9422-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Pohland M, Glumm R, Wiekhorst F, Kiwit J, Glumm J. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia. Int J Nanomedicine 2017; 12:1577-1591. [PMID: 28280327 PMCID: PMC5339010 DOI: 10.2147/ijn.s127206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIO) are applied as contrast media for magnetic resonance imaging (MRI) and treatment of neurologic diseases despite the fact that important information concerning their local interactions is still lacking. Due to their small size, SPIO have great potential for magnetically labeling different cell populations, facilitating their MRI tracking in vivo. Before SPIO are applied, however, their effect on cell viability and tissue homoeostasis should be studied thoroughly. We have previously published data showing how citrate-coated very small superparamagnetic iron oxide particles (VSOP) affect primary microglia and neuron cell cultures as well as neuron-glia cocultures. To extend our knowledge of VSOP interactions on the three-dimensional multicellular level, we further examined the influence of two types of coated VSOP (R1 and R2) on murine organotypic hippocampal slice cultures. Our data show that 1) VSOP can penetrate deep tissue layers, 2) long-term VSOP-R2 treatment alters cell viability within the dentate gyrus, 3) during short-term incubation VSOP-R1 and VSOP-R2 comparably modify hippocampal cell viability, 4) VSOP treatment does not affect cytokine homeostasis, 5) microglial depletion decreases VSOP uptake, and 6) microglial depletion plus VSOP treatment increases hippocampal cell death during short-term incubation. These results are in line with our previous findings in cell coculture experiments regarding microglial protection of neurite branching. Thus, we have not only clarified the interaction between VSOP, slice culture, and microglia to a degree but also demonstrated that our model is a promising approach for screening nanoparticles to exclude potential cytotoxic effects.
Collapse
Affiliation(s)
- Martin Pohland
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin
| | - Robert Glumm
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin; Clinic of Neurology, Jüdisches Krankenhaus
| | - Frank Wiekhorst
- Department 8.2 Biosignals, Physikalisch-Technische Bundesanstalt
| | - Jürgen Kiwit
- Clinic of Neurosurgery, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Jana Glumm
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin; Clinic of Neurosurgery, HELIOS Klinikum Berlin Buch, Berlin, Germany
| |
Collapse
|
21
|
Meloni MM, Barton S, Xu L, Kaski JC, Song W, He T. Contrast agents for cardiovascular magnetic resonance imaging: an overview. J Mater Chem B 2017; 5:5714-5725. [DOI: 10.1039/c7tb01241a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Contrast agents for Cardiovascular Magnetic Resonance (CMR) play a major role in research and clinical cardiology.
Collapse
Affiliation(s)
- Marco M. Meloni
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- School of Pharmacy and Chemistry
| | - Stephen Barton
- School of Pharmacy and Chemistry
- Kingston University
- London
- UK
| | - Lei Xu
- Department of Radiology
- Beijing Anzhen Hospital
- Beijing
- China
| | - Juan C. Kaski
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
| | - Wenhui Song
- UCL Centre for Biomaterials
- Division of surgery & Interventional Science
- University College of London
- London
- UK
| | - Taigang He
- Molecular and Clinical Sciences Research Institute
- St George's, University of London
- London
- UK
- Royal Brompton Hospital
| |
Collapse
|
22
|
Siddiqi KS, ur Rahman A, Husen A. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application. NANOSCALE RESEARCH LETTERS 2016; 11:498. [PMID: 27837567 PMCID: PMC5106417 DOI: 10.1186/s11671-016-1714-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 05/15/2023]
Abstract
Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their cytotoxicity against microbes under aerobic/anaerobic conditions has also been discussed. The magnetic moment of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence of which their size decreases. Their biological efficacy has been found to be dependent on the shape, size, and concentration of these nanoparticles.
Collapse
Affiliation(s)
| | - Aziz ur Rahman
- Department of Saidla (Unani Pharmacy), Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box #196, Gondar, Ethiopia
| |
Collapse
|
23
|
Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications. Biochem Res Int 2016; 2016:7840161. [PMID: 27293893 PMCID: PMC4884576 DOI: 10.1155/2016/7840161] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022] Open
Abstract
In recent years, although many review articles have been presented about bioapplications of magnetic nanoparticles by some research groups with different expertise such as chemistry, biology, medicine, pharmacology, and materials science and engineering, the majority of these reviews are insufficiently comprehensive in all related topics like magnetic aspects of process. In the current review, it is attempted to carry out the inclusive surveys on importance of magnetic nanoparticles and especially magnetite ones and their required conditions for appropriate performance in bioapplications. The main attentions of this paper are focused on magnetic features which are less considered. Accordingly, the review contains essential magnetic properties and their measurement methods, synthesis techniques, surface modification processes, and applications of magnetic nanoparticles.
Collapse
|
24
|
Fox MS, Gaudet JM, Foster PJ. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging. MAGNETIC RESONANCE INSIGHTS 2016; 8:53-67. [PMID: 27042089 PMCID: PMC4807887 DOI: 10.4137/mri.s23559] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements.
Collapse
Affiliation(s)
- Matthew S Fox
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| |
Collapse
|
25
|
Wu C, Xu Y, Yang L, Wu J, Zhu W, Li D, Cheng Z, Xia C, Guo Y, Gong Q, Song B, Ai H. Negatively Charged Magnetite Nanoparticle Clusters as Efficient MRI Probes for Dendritic Cell Labeling and In Vivo Tracking. ADVANCED FUNCTIONAL MATERIALS 2015; 25:3581-3591. [DOI: 10.1002/adfm.201501031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell labeling and tracking via magnetic resonance imaging (MRI) has drawn much attention for its noninvasive property and longitudinal monitoring functionality. Employing of imaging probes with high labeling efficiency and good biocompatibility is one of the essential factors that determine the outcome of tracking. In this study, negatively charged superparamagnetic iron oxide (PAsp‐PCL/SPIO) nanoclusters are developed for dendritic cell (DC) labeling and tracking in vivo. PAsp‐PCL/SPIO has a diameter of 124 ± 41 nm in DLS, negatively charged surface (zeta potential = −27 mV), and presents highT2relaxivity (335.6 Fe mm−1s−1) and good DC labeling efficiency. Labeled DCs are unaffected in their viability, proliferation, and differentiation capacity, and have an excellent MR imaging sensitivity in vitro. To monitor the migration of DCs into lymphoid tissues in vivo, which will be related to the final immunotherapy results,T2‐wighted andT2‐map imaging of popliteal nodes at different points in time are acquired under a clinical 3 T scanner after subcutaneous injection of a certain number of labeled DCs at hindleg footpads of mice. The signal intensities decreasing andT2values shortening of ipsilateral popliteal nodes are significant and display a time‐ and dose‐dependence, showing DCs' migration to the draining lymph nodes.
Collapse
Affiliation(s)
- Changqiang Wu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Ye Xu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
- Department of Radiology Children's Hospital Chongqing Medical University Chongqing 400014 China
| | - Li Yang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Jun Wu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Wencheng Zhu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Danyang Li
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Zhuzhong Cheng
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Chunchao Xia
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| | - Yingkun Guo
- Department of Medical Imaging West China Second University Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| | - Bin Song
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| | - Hua Ai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
- Department of Radiology Children's Hospital Chongqing Medical University Chongqing 400014 China
| |
Collapse
|
26
|
Wang X, Low XC, Hou W, Abdullah LN, Toh TB, Mohd Abdul Rashid M, Ho D, Chow EKH. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS NANO 2014; 8:12151-66. [PMID: 25437772 PMCID: PMC4334265 DOI: 10.1021/nn503491e] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond-drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Xinyi Casuarine Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Weixin Hou
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Lissa Nurrul Abdullah
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Tan Boon Toh
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| | - Masturah Mohd Abdul Rashid
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Dean Ho
- Division of Oral Biology and Medicine, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, California NanoSystems Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Edward Kai-Hua Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Address correspondence to
| |
Collapse
|
27
|
Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 2014; 115:1106-29. [PMID: 25329814 DOI: 10.1021/cr500286d] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ilaria Tirotta
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" and ‡Fondazione Centro Europeo Nanomedicina, Politecnico di Milano , Milan 20131, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen W, Zhang Q, Kaplan BLF, Baker GL, Kaminski NE. Induced T cell cytokine production is enhanced by engineered nanoparticles. Nanotoxicology 2014; 8 Suppl 1:11-23. [PMID: 24256152 PMCID: PMC4130797 DOI: 10.3109/17435390.2013.848302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 12/21/2022]
Abstract
Engineered nanoparticles are widely used in commercial products, and yet due to the paucity of safety information, there are concerns surrounding potential adverse health effects, especially from inhaled nanoparticles and their putative contribution to allergic airway disease. The objective of this study was to investigate whether size or surface chemistry of engineered nanoparticles can influence the immune enhancing properties of these agents on antigen-specific T cell responses. Ovalbumin (OVA)-derived peptides were presented to T cells by either spleen-derived endogenous antigen presenting cells or a mouse dendritic cell (DC) line, DC2.4. In all models, interferon (IFN)-γ and interleukin (IL)-2 production by CD8(+) or CD4(+) T cells in response to peptide OVA257-264 or OVA323-339, respectively, was measured by flow cytometry. To address the study objective, silica nanoparticles (SNPs) were modified with alkyne-terminated surfaces and appended with polyethylene glycol chains via "click" chemistry. These modified SNPs were resistant to agglomerate in in vitro culture media, suggesting that their modulation of T cell responses is the result of true nanoscale-mediated effects. Under conditions of suboptimal T-cell activation, modified SNPs (up to 10 µg/ml) enhanced the proportion of CD8(+), but not CD4(+), T cells producing IFN-γ and IL-2. Various functional groups (-COOH, -NH2 and -OH) on modified SNPs enhanced IFN-γ and IL-2 production to different levels, with -COOH SNPs being the most effective. Furthermore, 51 nm -COOH SNPs exhibited a greater enhancing effect on the CD8(+) T cell response than other sized particles. Collectively, our results show that modified SNPs can enhance antigen-specific CD8(+) T cell responses, suggesting that certain modified SNPs exhibit potential adjuvant-like properties.
Collapse
Affiliation(s)
- Weimin Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Quanxuan Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Barbara L. F. Kaplan
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gregory L. Baker
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Norbert E. Kaminski
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
29
|
Borisova T, Krisanova N, Borуsov A, Sivko R, Ostapchenko L, Babic M, Horak D. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:778-88. [PMID: 24991515 PMCID: PMC4077395 DOI: 10.3762/bjnano.5.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.
Collapse
Affiliation(s)
- Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Arsenii Borуsov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
- The Biological Faculty, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, Kiev, Ukraine
| | - Roman Sivko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Ludmila Ostapchenko
- The Biological Faculty, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, Kiev, Ukraine
| | - Michal Babic
- The Department of Polymer Particles, Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horak
- The Department of Polymer Particles, Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
30
|
Borysov A, Krisanova N, Chunihin O, Ostapchenko L, Pozdnyakova N, Borisova T. A comparative study of neurotoxic potential of synthesized polysaccharide-coated and native ferritin-based magnetic nanoparticles. Croat Med J 2014; 55:195-205. [PMID: 24891278 PMCID: PMC4049204 DOI: 10.3325/cmj.2014.55.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 05/15/2014] [Indexed: 11/14/2022] Open
Abstract
AIM To analyze the neurotoxic potential of synthesized magnetite nanoparticles coated by dextran, hydroxyethyl starch, oxidized hydroxyethyl starch, and chitosan, and magnetic nanoparticles combined with ferritin as a native protein. METHODS The size of nanoparticles was analyzed using photon correlation spectroscopy, their effects on the conductance of planar lipid membrane by planar lipid bilayer technique, membrane potential and acidification of synaptic vesicles by spectrofluorimetry, and glutamate uptake and ambient level of glutamate in isolated rat brain nerve terminals (synaptosomes) by radiolabeled assay. RESULTS Uncoated synthesized magnetite nanoparticles and nanoparticles coated by different polysaccharides had no significant effect on synaptic vesicle acidification, the initial velocity of L-[(14)C]glutamate uptake, ambient level of L-[(14)C]glutamate and the potential of the plasma membrane of synaptosomes, and conductance of planar lipid membrane. Native ferritin-based magnetic nanoparticles had no effect on the membrane potential but significantly reduced L-[(14)C]glutamate transport in synaptosomes and acidification of synaptic vesicles. CONCLUSIONS Our study indicates that synthesized magnetite nanoparticles in contrast to ferritin have no effects on the functional state and glutamate transport of nerve terminals, and so ferritin cannot be used as a prototype, analogue, or model of polysaccharide-coated magnetic nanoparticle in toxicity risk assessment and manipulation of nerve terminals by external magnetic fields. Still, the ability of ferritin to change the functional state of nerve terminals in combination with its magnetic properties suggests its biotechnological potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Tatiana Borisova
- Tatiana Borisova, Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine,
| |
Collapse
|
31
|
Shapiro EM. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn Reson Med 2014; 73:376-89. [PMID: 24753150 DOI: 10.1002/mrm.25263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022]
Abstract
Metallic particles have shaped the use of magnetic resonance imaging (MRI) for molecular and cellular imaging. Although these particles have generally been developed for extracellular residence, either as blood pool contrast agents or targeted contrast agents, the coopted use of these particles for intracellular labeling has grown over the last 20 years. Coincident with this growth has been the development of metal oxide particles specifically intended for intracellular residence, and innovations in the nature of the metallic core. One promising nanoparticle construct for MRI-based cell tracking is polymer encapsulated metal oxide nanoparticles. Rather than a polymer coated metal oxide nanocrystal of the core: shell type, polymer encapsulated metal oxide nanoparticles cluster many nanocrystals within a polymer matrix. This nanoparticle composite more efficiently packages inorganic nanocrystals, affording the ability to label cells with more inorganic material. Further, for magnetic nanocrystals, the clustering of multiple magnetic nanocrystals within a single nanoparticle enhances r2 and r2* relaxivity. Methods for fabricating polymer encapsulated metal oxide nanoparticles are facile, yielding both varied compositions and synthetic approaches. This review presents a brief history into the use of metal oxide particles for MRI-based cell tracking and details the development and use of biodegradable, polymer encapsulated, metal oxide nanoparticles and microparticles for MRI-based cell tracking.
Collapse
Affiliation(s)
- Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
32
|
Clemente-Casares X, Santamaria P. Nanomedicine in autoimmunity. Immunol Lett 2014; 158:167-74. [PMID: 24406504 DOI: 10.1016/j.imlet.2013.12.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 11/15/2022]
Abstract
The application of nanotechnology to the diagnosis and therapy of human diseases is already a reality and is causing a real revolution in how we design new therapies and vaccines. In this review we focus on the applications of nanotechnology in the field of autoimmunity. First, we review scenarios in which iron oxide nanoparticles have been used in the diagnosis of autoimmune diseases, mostly through magnetic resonance imaging (MRI), both in animal models and patients. Second, we discuss the potential of nanoparticles as an immunotherapeutic platform for autoimmune diseases, for now exclusively in pre-clinical models. Finally, we discuss the potential of this field to generate the 'perfect drug' with the capacity to report on its therapeutic efficacy in real time, that is, the birth of theranostics in autoimmunity.
Collapse
Affiliation(s)
- Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada; Institut D'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
33
|
Tanaka K, Fukase K. Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans. Top Curr Chem (Cham) 2014; 367:201-30. [PMID: 25971916 DOI: 10.1007/128_2014_603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PET and noninvasive fluorescence imaging of the sialo-N-linked glycan derivatives are described. To establish the efficient labeling protocol for N-glycans and/or glycoconjugates, new labeling probes of fluorescence and ⁶⁸Ga-DOTA, as the positron emission nucleus for PET, through rapid 6π-azaelectrocyclization were designed and synthesized, (E)-ester aldehydes. The high reactivity of these probes enabled the labeling of lysine residues in peptides, proteins, and even amino groups on the cell surfaces at very low concentrations of the target molecules (~10⁻⁸ M) within a short reaction time (~5 min) to result in "selective" and "non-destructive" labeling of the more accessible amines. The first MicroPET of glycoproteins, ⁶⁸Ga-DOTA-orosomucoid and asialoorosomucoid, successfully visualized the differences in the circulatory residence of glycoproteins, in the presence or absence of sialic acids. In vivo dynamics of the new N-glycoclusters, prepared by the "self-activating" Huisgen cycloaddition reaction, could also be affected significantly by their partial structures at the non-reducing end, i.e., the presence or absence of sialic acids, and/or sialoside linkages to galactose. Azaelectrocyclization chemistry is also applicable to the engineering of the proteins and/or the cell surfaces by the oligosaccharides; lymphocytes chemically engineered by sialo-N-glycan successfully target the tumor implanted in BALB/C nude mice, detected by noninvasive fluorescence imaging.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan,
| | | |
Collapse
|
34
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
35
|
Bierry G, Dietemann JL. Imaging evaluation of inflammation in the musculoskeletal system: current concepts and perspectives. Skeletal Radiol 2013; 42:1347-59. [PMID: 23685709 DOI: 10.1007/s00256-013-1636-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 02/02/2023]
Abstract
Inflammation is the non-specific stereotyped reaction of the musculoskeletal system to various types of aggression, such as infection, tumor, autoimmune diseases, or trauma. Precise evaluation and, increasingly, reliable quantification of inflammation are now key factors for optimal patient management, as targeted therapies (e.g., anti-angiogenesis, anti-macrophages, anti-cytokines) are emerging as everyday drugs. In current practice, inflammation is evaluated mostly using MRI and US on the basis of its non-specific extracellular component due to the increased volume of free water. Inflamed tissue is described as areas of low T1 signal and high T2 signal on magnetic resonance imaging or as hypoechogenic areas on ultrasound imaging, and the evaluation of the increased tissue vascularity can be performed using gadolinium-enhanced MRI or power Doppler US. Emerging new imaging tools, regrouped under the label "cellular and molecular imaging" and defined as the in vivo characterization and measurement of biologic processes at the cellular and molecular level, demonstrate the possible shift of medical imaging from a macroscopic and non-specific level to a microscopic and targeted scale. Cellular and molecular imaging now allows the investigation of specific pathways involved in inflammation (e.g., angiogenesis, cell proliferation, and recruitment, proteases generation, metabolism, gene expression). PET and SPECT imaging are the most commonly used "molecular" imaging modalities, but recent progress in MR, US, and optical imaging has been made. In the future, those techniques might enable a detection of inflammation at its very early stage, its quantification through the definition of biomarkers, and possibly demonstrate the response to therapy at molecular and cellular levels.
Collapse
Affiliation(s)
- Guillaume Bierry
- Department of Radiology, University Hospital of Strasbourg, 10 Avenue Molière, 67098 Strasbourg, France.
| | | |
Collapse
|
36
|
Abstract
The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and ¹⁹F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo.
Collapse
|
37
|
Leech JM, Sharif-Paghaleh E, Maher J, Livieratos L, Lechler RI, Mullen GE, Lombardi G, Smyth LA. Whole-body imaging of adoptively transferred T cells using magnetic resonance imaging, single photon emission computed tomography and positron emission tomography techniques, with a focus on regulatory T cells. Clin Exp Immunol 2013; 172:169-77. [PMID: 23574314 DOI: 10.1111/cei.12087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 01/03/2023] Open
Abstract
Cell-based therapies using natural or genetically modified regulatory T cells (T(regs)) have shown significant promise as immune-based therapies. One of the main difficulties facing the further advancement of these therapies is that the fate and localization of adoptively transferred T(regs) is largely unknown. The ability to dissect the migratory pathway of these cells in a non-invasive manner is of vital importance for the further development of in-vivo cell-based immunotherapies, as this technology allows the fate of the therapeutically administered cell to be imaged in real time. In this review we will provide an overview of the current clinical imaging techniques used to track T cells and T(regs) in vivo, including magnetic resonance imaging (MRI) and positron emission tomography (PET)/single photon emission computed tomography (SPECT). In addition, we will discuss how the finding of these studies can be used, in the context of transplantation, to define the most appropriate T(reg) subset required for cellular therapy.
Collapse
Affiliation(s)
- J M Leech
- Medical Research Council, Centre for Transplantation, King's College London, King's Health Partners, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tanaka K, Moriwaki K, Yokoi S, Koyama K, Miyoshi E, Fukase K. Whole-body imaging of tumor cells by azaelectrocyclization: visualization of metastasis dependence on glycan structure. Bioorg Med Chem 2013; 21:1074-1077. [PMID: 23375093 DOI: 10.1016/j.bmc.2013.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
Abstract
Noninvasive imaging of cancer metastasis through the efficient cell labeling constitutes a major technological breakthrough for cancer research and patient monitoring post-surgery. In the current work, we expanded our cell surface labeling technique on the whole-body fluorescence imaging of tumor metastasis in BALB/c nude mice. Four kinds of human cancer cells (two cancer cell lines, MKN45 and HCT116, and their transfected versions expressing surface glycan-related genes, MKN45-GnT-V and HCT116-GMDS) were labeled by azaelectrocyclization with Hilyte Fluor 750 for 10 min and without affecting cell viability. Fluorescence-labeled cancer cells were injected into the abdominal cavities of BALB/c mice and whole-body scans were performed with an eXplore Optix device. In accordance with previous findings, the fluorescence imaging clearly showed that tumor metastasis was dependent upon the cell surface glycans: A larger polylactosamine structure or the loss of fucosylation on the cancer cell surfaces, respectively, enhanced the metastatic potential of the tumor cells. Our noninvasive technique provides the landmark opportunity for sensitively monitoring the dynamics of the cancer cells depending on their surface structures and/or the host environments, thus impacts on the cancer prognosis and the therapeutic applications.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Concurrent dual contrast for cellular magnetic resonance imaging using gadolinium oxide and iron oxide nanoparticles. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2012; 2012:230942. [PMID: 22919479 PMCID: PMC3419425 DOI: 10.1155/2012/230942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/15/2012] [Indexed: 11/25/2022]
Abstract
Rationale and Objectives. Concurrent visualization of differential targets in cellular and molecular imaging is valuable for resolving processes spatially and temporally, as in monitoring different cell subtypes. The purpose of this study was to demonstrate concurrent, dual (positive and negative) contrast visualization on magnetic resonance imaging (MRI) of two colocalized cell populations labeled with Gadolinium “Gd” oxide and iron “Fe” oxide nanoparticles. Materials and Methods. Human aortic endothelial cells (EC) and smooth muscle cells (SMC) were labeled with various concentrations of Gd oxide and Fe oxide, respectively. MRI on single- or mixed-cell samples was performed at 7 tesla. Proper cell phenotype expressions, cell uptake of contrast agents, and the effect of labeling on cell viability and proliferation were also determined. Results. Both contrast agents were efficiently taken up by cells, with viability and proliferation largely unaffected. On MRI, the positive contrast associated with Gd oxide-labeled EC and negative contrast associated with Fe oxide-labeled SMC discriminated the presence of each cell type, whether it existed alone or colocalized in a mixed-cell sample. Conclusion. It is feasible to use Gd oxide and Fe oxide for dual contrast and concurrent discrimination of two colocalized cell populations on MRI at 7 tesla.
Collapse
|
40
|
Kaminski M, Bechmann I, Kiwit J, Glumm J. Migration of monocytes after intracerebral injection. Cell Adh Migr 2012; 6:164-7. [PMID: 22568987 DOI: 10.4161/cam.20281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, we monitored green fluorescent protein (GFP)-expressing monocytes after injection at the entorhinal cortex lesion (ECL) site in mice. We followed their migration out of the central nervous system (CNS) along olfactory nerve fibers penetrating the lamina cribrosa, within the nasal mucosa, and their subsequent appearance within the deep cervical lymph nodes (CLN), with numbers peaking at day 7. This is the same route activated T cells use for reaching the CLN, as we have shown before. Interestingly, GFP cells injected into the brain and subsequently found in the CLN exhibited ramified morphologies, which are typical of microglia and dendritic cells. To gain more insight into immunity and regeneration within the CNS we want to monitor injected monocytes using magnetic resonance imaging (MRI) after labeling with very small superparamagnetic iron oxide particles (VSOP). Due to their small size, nanoparticles have huge potential for magnetic labeling of different cell populations and their MRI tracking in vivo. So far we have verified that incubation with VSOP particles does not alter their migration pattern after ECL.
Collapse
Affiliation(s)
- Miriam Kaminski
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Liu L, Ye Q, Wu Y, Hsieh WY, Chen CL, Shen HH, Wang SJ, Zhang H, Hitchens TK, Ho C. Tracking T-cells in vivo with a new nano-sized MRI contrast agent. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1345-54. [PMID: 22406186 DOI: 10.1016/j.nano.2012.02.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/24/2012] [Accepted: 02/19/2012] [Indexed: 12/24/2022]
Abstract
UNLABELLED Non-invasive in vivo tracking of T-cells by magnetic resonance imaging (MRI) can lead to a better understanding of many pathophysiological situations, including AIDS, cancer, diabetes, graft rejection. However, an efficient MRI contrast agent and a reliable technique to track non-phagocytic T-cells are needed. We report a novel superparamagnetic nano-sized iron-oxide particle, IOPC-NH2 series particles, coated with polyethylene glycol (PEG), with high transverse relaxivity (250 s(-1) mM(-1)), thus useful for MRI studies. IOPC-NH2 particles are the first reported magnetic particles that can label rat and human T-cells with over 90% efficiency, without using transfection agents, HIV-1 transactivator peptide, or electroporation. IOPC-NH2 particles do not cause any measurable effects on T-cell properties. Infiltration of IOPC-NH2-labeled T-cells can be detected in a rat model of heart-lung transplantation by in vivo MRI. IOPC-NH2 is potentially valuable contrast agents for labeling a variety of cells for basic and clinical cellular MRI studies, e.g., cellular therapy. FROM THE CLINICAL EDITOR In this study, a novel PEG coated superparamagnetic nano-sized iron-oxide particle was investigated as a T-cell labeling agent for MRI studies. The reported particles can label T-cells with over 90% efficiency, without using transfection agents, HIV-1 transactivator peptide, or electroporation, therefore may enable more convenient preclinical call labeling studies.
Collapse
Affiliation(s)
- Li Liu
- Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging. Mol Imaging Biol 2012; 13:825-39. [PMID: 20862612 DOI: 10.1007/s11307-010-0430-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE In this study, we investigated the labeling efficiency and magnetic resonance imaging (MRI) signal sensitivity of a newly synthesized, nano-sized iron oxide particle (IOP) coated with polyethylene glycol (PEG), designed by Industrial Technology Research Institute (ITRI). PROCEDURES Macrophages, bone-marrow-derived dendritic cells, and mesenchymal stem cells (MSCs) were isolated from rats and labeled by incubating with ITRI-IOP, along with three other iron oxide particles in different sizes and coatings as reference. These labeled cells were characterized with transmission electron microscopy (TEM), light and fluorescence microscopy, phantom MRI, and finally in vivo MRI and ex vivo magnetic resonance microscopy (MRM) of transplanted hearts in rats infused with labeled macrophages. RESULTS The longitudinal (r (1)) and transverse (r (2)) relaxivities of ITRI-IOP are 22.71 and 319.2 s(-1) mM(-1), respectively. TEM and microscopic images indicate the uptake of multiple ITRI-IOP particles per cell for all cell types. ITRI-IOP provides sensitivity comparable or higher than the other three particles shown in phantom MRI. In vivo MRI and ex vivo MRM detect punctate spots of hypointensity in rejecting hearts, most likely caused by the accumulation of macrophages labeled by ITRI-IOP. CONCLUSION ITRI-IOP, the nano-sized iron oxide particle, shows high efficiency in cell labeling, including both phagocytic and non-phagocytic cells. Furthermore, it provides excellent sensitivity in T(2)*-weighted MRI, and thus can serve as a promising contrast agent for in vivo cellular MRI.
Collapse
|
43
|
Ogawa M, Kataoka H, Nitahara S, Fujimoto H, Aoki H, Ito S, Narazaki M, Matsuda T. Water-Soluble Fluorinated Polymer Nanoparticle as 19F MRI Contrast Agent Prepared by Living Random Copolymerization from Dendrimer Initiator. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Michihiro Ogawa
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Hiromasa Kataoka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Satoshi Nitahara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Hiroyuki Fujimoto
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Hiroyuki Aoki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Shinzaburo Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Michiko Narazaki
- Department of Systems Science, Graduate School of Informatics, Kyoto University
| | - Tetsuya Matsuda
- Department of Systems Science, Graduate School of Informatics, Kyoto University
| |
Collapse
|
44
|
Koretsky AP. Early development of arterial spin labeling to measure regional brain blood flow by MRI. Neuroimage 2012; 62:602-7. [PMID: 22245338 DOI: 10.1016/j.neuroimage.2012.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/16/2011] [Accepted: 01/01/2012] [Indexed: 12/31/2022] Open
Abstract
Two major avenues of work converged in the late 1980's and early 1990's to give rise to brain perfusion MRI. The development of anatomical brain MRI quickly had as a major goal the generation of angiograms using tricks to label flowing blood in macroscopic vessels. These ideas were aimed at getting information about microcirculatory flow as well. Over the same time course the development of in vivo magnetic resonance spectroscopy had as its primary goal the assessment of tissue function and in particular, tissue energetics. For this the measurement of the delivery of water to tissue was critical for assessing tissue oxygenation and viability. The measurement of the washin/washout of "freely" diffusible tracers by spectroscopic based techniques pointed the way for quantitative approaches to measure regional blood flow by MRI. These two avenues came together in the development of arterial spin labeling (ASL) MRI techniques to measure regional cerebral blood flow. The early use of ASL to measure brain activation to help verify BOLD fMRI led to a rapid development of ASL based perfusion MRI. Today development and applications of regional brain blood flow measurements with ASL continues to be a major area of activity.
Collapse
Affiliation(s)
- Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Tanaka K, Fukase K. Development of Azaelectrocyclization-Based Labeling and Application to Noninvasive Imaging and Targeting Using N-Glycan Derivatives—In Pursuit of N-Glycan Functions on Proteins, Dendrimers, and Living Cells—. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Tanaka K, Yokoi S, Morimoto K, Iwata T, Nakamoto Y, Nakayama K, Koyama K, Fujiwara T, Fukase K. Cell surface biotinylation by azaelectrocyclization: easy-handling and versatile approach for living cell labeling. Bioorg Med Chem 2011; 20:1865-8. [PMID: 22257530 DOI: 10.1016/j.bmc.2011.12.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
Versatile method for living cell labeling has been established. Cell surfaces are initially biotinylated by azaelectrocyclization, and then treated with the fluorescence-labeled avidin or the anti-biotin antibody.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
De M, Chou SS, Joshi HM, Dravid VP. Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv Drug Deliv Rev 2011; 63:1282-99. [PMID: 21851844 DOI: 10.1016/j.addr.2011.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/29/2011] [Accepted: 07/02/2011] [Indexed: 12/13/2022]
Abstract
The development of MRI contrast agents has experienced its version of the gilded age over the past decade, thanks largely to the rapid advances in nanotechnology. In addition to progress in single mode contrast agents, which ushered in unprecedented R(1) or R(2) sensitivities, there has also been a boon in the development of agents covering more than one mode of detection. These include T(1)-PET, T(2)-PET T(1)-optical, T(2)-optical, T(1)-T(2) agents and many others. In this review, we describe four areas which we feel have experienced particular growth due to nanotechnology, specifically T(2) magnetic nanostructure development, T(1)/T(2)-optical dual mode agents, and most recently the T(1)-T(2) hybrid imaging systems. In each of these systems, we describe applications including in vitro, in vivo usage and assay development. In all, while the benefits and drawbacks of most MRI contrast agents depend on the application at hand, the recent development in multimodal nanohybrids may curtail the shortcomings of single mode agents in diagnostic and clinical settings by synergistically incorporating functionality. It is hoped that as nanotechnology advances over the next decade, it will produce agents with increased diagnostics and assay relevant capabilities in streamlined packages that can meaningfully improve patient care and prognostics. In this review article, we focus on T(2) materials, its surface functionalization and coupling with optical and/or T(1) agents.
Collapse
|
48
|
Duyn JH, Koretsky AP. Novel frontiers in ultra-structural and molecular MRI of the brain. Curr Opin Neurol 2011; 24:386-93. [PMID: 21734576 DOI: 10.1097/wco.0b013e328348972a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Recent developments in the MRI of the brain continue to expand its use in basic and clinical neuroscience. This review highlights some areas of recent progress. RECENT FINDINGS Higher magnetic field strengths and improved signal detectors have allowed improved visualization of the various properties of the brain, facilitating the anatomical definition of function-specific areas and their connections. For example, by sensitizing the MRI signal to the magnetic susceptibility of tissue, it is starting to become possible to reveal the laminar structure of the cortex and identify millimeter-scale fiber bundles. Using exogenous contrast agents, and innovative ways to manipulate contrast, it is becoming possible to highlight specific fiber tracts and cell populations. These techniques are bringing us closer to understanding the evolutionary blueprint of the brain, improving the detection and characterization of disease, and help to guide treatment. SUMMARY Recent MRI techniques are leading to more detailed and more specific contrast in the study of the brain.
Collapse
Affiliation(s)
- Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institutes of Health, Bethesda, Maryland 20892-1060, USA.
| | | |
Collapse
|
49
|
Mehrmohamamdi M, Qu M, Ma LL, Romanovicz DK, Johnston KP, Sokolov KV, Emelianov SY. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles. NANOTECHNOLOGY 2011; 22:415105. [PMID: 21926454 PMCID: PMC3471148 DOI: 10.1088/0957-4484/22/41/415105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular accumulation of nanoparticles-an important part of cell-nanoparticle interaction-has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique-pulsed magneto-motive ultrasound (pMMUS)-to identify intracellular accumulation of endocytosed magnetic nanoparticles. In pMMUS imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to the signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular accumulation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular accumulation non-invasively and in real-time.
Collapse
Affiliation(s)
| | - Min Qu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Li L. Ma
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Dwight K. Romanovicz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Keith P. Johnston
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Konstantin V. Sokolov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Yang CY, Tai MF, Lin CP, Lu CW, Wang JL, Hsiao JK, Liu HM. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology. PLoS One 2011; 6:e25524. [PMID: 21991395 PMCID: PMC3182225 DOI: 10.1371/journal.pone.0025524] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/07/2011] [Indexed: 12/11/2022] Open
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45–60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R2 = 0. 8048). For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.
Collapse
Affiliation(s)
- Chung-Yi Yang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Ming-Fong Tai
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Peng Lin
- Department of Anesthesiology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chen-Wen Lu
- Department of Medical Imaging, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jaw-Lin Wang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jong-Kai Hsiao
- Department of Medical Imaging, Buddhist Tzu-Chi General Hospital, Taipei Branch, New Taipei City, Taiwan
| | - Hon-Man Liu
- Department of Medical Imaging, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- * E-mail:
| |
Collapse
|