1
|
Yu Y, Liang Y. A concise continuous time random-walk diffusion model for characterization of non-exponential signal decay in magnetic resonance imaging. Magn Reson Imaging 2023; 103:84-91. [PMID: 37451520 DOI: 10.1016/j.mri.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) is a method of capturing the signal of water molecules diffusing in heterogeneous materials. Gaussian diffusion is interrupted when water mobility is hampered by obstructions in complex structures, and the dMRI signal decay does not match the single exponential decay in Brownian motion. In this study, a concise continuous time random-walk diffusion model is derived with less parameters than the continuous time random walk (CTRW) model and used to characterize the attenuation signal of brain tissue. The fitting results are compared with the CTRW model and the mono-exponential model reflecting the sub-diffusion and the long tail phenomenon of signal decay. Three sample experiments on rat brain and human brain are chosen to evaluate the validity in explaining the anomalous diffusion of water molecules in biological tissues, particularly in brain tissues in diverse directions, which also extends the applications of the concise continuous time random-walk diffusion model. Furthermore, we note that the concise continuous time random-walk diffusion model has practical advantages over the classical exponential model from the perspective of computational accuracy especially in the case of large b values, and has less parameters and is comparable to the CTRW model.
Collapse
Affiliation(s)
- Yue Yu
- College of Mechanics and Materials, Hohai University, Nanjing, China
| | - Yingjie Liang
- College of Mechanics and Materials, Hohai University, Nanjing, China; Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Yu Y, Liang Y. Fractal relaxation model with a nonlinear diffusion coefficient for fitting anomalous diffusion data in magnetic resonance imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107558. [PMID: 37741043 DOI: 10.1016/j.jmr.2023.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
In this paper a relaxation model of signal attenuation in diffusion-weighted magnetic resonance imaging (dMRI) with varying diffusion coefficient in terms of fractal derivative is proposed, in which the diffusion coefficient is a power law of the effective diffusion time. The relaxation model provides measures of diffusion constant, fractal dimension of diffusive trajectory of water molecule and the time power-law behavior of the diffusion coefficient. The proposed model was used to describe the magnetic resonance attenuation signal of the bullfrog sciatic nerve, and the corresponding spectral entropy was calculated to detect the environmental complexity in bullfrog sciatic nerve for water molecular diffusion. The results showed that the fractal derivative relaxation model (the VDC model) can accurately depict the diffusion pattern of water molecules in complex heterogeneous biological media at large b values. The VDC model provides an alternative theoretical reference for biological tissue detection based on time-dependent diffusion of water molecules.
Collapse
Affiliation(s)
- Yue Yu
- College of Mechanics and Materials, Hohai University, Nanjing, China
| | - Yingjie Liang
- College of Mechanics and Materials, Hohai University, Nanjing, China; Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Zhong Z, Ryu K, Mao J, Sun K, Dan G, Vasanawala SS, Zhou XJ. Accelerating High b-Value Diffusion-Weighted MRI Using a Convolutional Recurrent Neural Network (CRNN-DWI). Bioengineering (Basel) 2023; 10:864. [PMID: 37508891 PMCID: PMC10376839 DOI: 10.3390/bioengineering10070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE To develop a novel convolutional recurrent neural network (CRNN-DWI) and apply it to reconstruct a highly undersampled (up to six-fold) multi-b-value, multi-direction diffusion-weighted imaging (DWI) dataset. METHODS A deep neural network that combines a convolutional neural network (CNN) and recurrent neural network (RNN) was first developed by using a set of diffusion images as input. The network was then used to reconstruct a DWI dataset consisting of 14 b-values, each with three diffusion directions. For comparison, the dataset was also reconstructed with zero-padding and 3D-CNN. The experiments were performed with undersampling rates (R) of 4 and 6. Standard image quality metrics (SSIM and PSNR) were employed to provide quantitative assessments of the reconstructed image quality. Additionally, an advanced non-Gaussian diffusion model was employed to fit the reconstructed images from the different approaches, thereby generating a set of diffusion parameter maps. These diffusion parameter maps from the different approaches were then compared using SSIM as a metric. RESULTS Both the reconstructed diffusion images and diffusion parameter maps from CRNN-DWI were better than those from zero-padding or 3D-CNN. Specifically, the average SSIM and PSNR of CRNN-DWI were 0.750 ± 0.016 and 28.32 ± 0.69 (R = 4), and 0.675 ± 0.023 and 24.16 ± 0.77 (R = 6), respectively, both of which were substantially higher than those of zero-padding or 3D-CNN reconstructions. The diffusion parameter maps from CRNN-DWI also yielded higher SSIM values for R = 4 (>0.8) and for R = 6 (>0.7) than the other two approaches (for R = 4, <0.7, and for R = 6, <0.65). CONCLUSIONS CRNN-DWI is a viable approach for reconstructing highly undersampled DWI data, providing opportunities to reduce the data acquisition burden.
Collapse
Affiliation(s)
- Zheng Zhong
- Departments of Radiology, Stanford University, Stanford, CA 94305, USA
- Center for Magnetic Resonance Research, Chicago, IL 60612, USA
| | - Kanghyun Ryu
- Departments of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Mao
- Henry M. Gunn High School, Palo Alto, CA 94306, USA
| | - Kaibao Sun
- Center for Magnetic Resonance Research, Chicago, IL 60612, USA
| | - Guangyu Dan
- Center for Magnetic Resonance Research, Chicago, IL 60612, USA
| | | | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, Chicago, IL 60612, USA
- Department of Radiology, Neurosurgery and Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Zhou W, He J, Zhang C, Pan Y, Sang T, Qiu X. Fiber-specific white matter alterations in Parkinson's disease patients with freezing of gait. Brain Res 2023:148440. [PMID: 37271491 DOI: 10.1016/j.brainres.2023.148440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Freezing of gait (FOG) is a gait disorder that usually occurs in advanced stages of Parkinson's disease (PD). Understanding the underlying mechanism of FOG is important for treatment and prevention. Previous studies have investigated white matter (WM) structure to explore the pathology of FOG. However, the pathology is still unclear, possibly due to the methodological limitation in identifying specific fiber tracts. This study aimed to investigate tract-specific WM structural changes in FOG patients and their relationships with clinical characteristics. We enrolled 19 PD patients with FOG (PD-FOG), 19 without FOG (PD-woFOG) and 21 controls. Fixel-based analysis is a novel framework to avoid the effect of crossing fibers, which provides the metrics to assess WM morphology. By combining a method for segmenting fibers, we identified abnormalities in the specific fiber tracts. Compared to PD-woFOG, PD-FOG showed significant increased fiber-bundle cross-section (FC) in the corpus callosum (CC), fornix (FX), inferior longitudinal fasciculus (ILF), striato-premotor (ST_PREM), superior thalamic radiation (STR), thalamo-premotor (T_PREM), increased fiber density and cross-section (FDC) in the STR, and decreased fiber density (FD) in the CC and ILF. Additionally, the ILF was correlated with motor, cognition and memory, the CC was correlated with anxiety, and the T_PREM was also correlated with cognition. In conclusion, in addition to impairments of WM found in PD-FOG, we found enhancements in WM, which may imply compensatory mechanisms. Furthermore, multiple fiber tracts were correlated with clinical characteristics, especially the ILF, validating the involvement of transmission circuits of multiple distinct information in mechanisms of FOG.
Collapse
Affiliation(s)
- Wenyang Zhou
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Jianzhong He
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Chengzhe Zhang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Yiang Pan
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Tian Sang
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Xiang Qiu
- Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China; Department of Automation, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China.
| |
Collapse
|
5
|
Li C, Fieremans E, Novikov DS, Ge Y, Zhang J. Measuring water exchange on a preclinical MRI system using filter exchange and diffusion time dependent kurtosis imaging. Magn Reson Med 2023; 89:1441-1455. [PMID: 36404493 PMCID: PMC9892228 DOI: 10.1002/mrm.29536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Filter exchange imaging (FEXI) and diffusion time (t)-dependent diffusion kurtosis imaging (DKI(t)) are both sensitive to water exchange between tissue compartments. The restrictive effects of tissue microstructure, however, introduce bias to the exchange rate obtained by these two methods, as their interpretation conventionally rely on the Kärger model of barrier limited exchange between Gaussian compartments. Here, we investigated whether FEXI and DKI(t) can provide comparable exchange rates in ex vivo mouse brains. THEORY AND METHODS FEXI and DKI(t) data were acquired from ex vivo mouse brains on a preclinical MRI system. Phase cycling and negative slice prewinder gradients were used to minimize the interferences from imaging gradients. RESULTS In the corpus callosum, apparent exchange rate (AXR) from FEXI correlated with the exchange rate (the inverse of exchange time, 1/τex ) from DKI(t) along the radial direction. In comparison, discrepancies between FEXI and DKI(t) were found in the cortex due to low filter efficiency and confounding effects from tissue microstructure. CONCLUSION The results suggest that FEXI and DKI(t) are sensitive to the same exchange processes in white matter when separated from restrictive effects of microstructure. The complex microstructure in gray matter, with potential exchange among multiple compartments and confounding effects of microstructure, still pose a challenge for FEXI and DKI(t).
Collapse
Affiliation(s)
- Chenyang Li
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Els Fieremans
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Dmitry S. Novikov
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Jiangyang Zhang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Yao J, Tendler BC, Zhou Z, Lei H, Zhang L, Bao A, Zhong J, Miller KL, He H. Both noise-floor and tissue compartment difference in diffusivity contribute to FA dependence on b-value in diffusion MRI. Hum Brain Mapp 2023; 44:1371-1388. [PMID: 36264194 PMCID: PMC9921221 DOI: 10.1002/hbm.26121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/27/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Noninvasive diffusion magnetic resonance imaging (dMRI) has been widely employed in both clinical and research settings to investigate brain tissue microstructure. Despite the evidence that dMRI-derived fractional anisotropy (FA) correlates with white matter properties, the metric is not specific. Recent studies have reported that FA is dependent on the b-value, and its origin has primarily been attributed to either the influence of microstructure or the noise-floor effect. A systematic investigation into the inter-relationship of these two effects is however still lacking. This study aims to quantify contributions of the reported differences in intra- and extra-neurite diffusivity to the observed changes in FA, in addition to the noise in measurements. We used in-vivo and post-mortem human brain imaging, as well as numerical simulations and histological validation, for this purpose. Our investigations reveal that the percentage difference of FA between b-values (pdFA) has significant positive associations with neurite density index (NDI), which is derived from in-vivo neurite orientation dispersion and density imaging (NODDI), or Bielschowsky's silver impregnation (BIEL) staining sections of fixed post-mortem human brain samples. Furthermore, such an association is found to be varied with Signal-to-Noise Ratio (SNR) level, indicating a nonlinear interaction effect between tissue microstructure and noise. Finally, a multicompartment model simulation revealed that these findings can be driven by differing diffusivities of intra- and extra-neurite compartments in tissue, with the noise-floor further amplifying the effect. In conclusion, both the differences in intra- and extra-neurite diffusivity and noise-floor effects significantly contribute to the FA difference associated with the b-value.
Collapse
Affiliation(s)
- Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhang
- Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Aimin Bao
- Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Ferizi U, Müller-Oehring EM, Peterson ET, Pohl KM. The distortions of the free water model for diffusion MRI data when assuming single compartment relaxometry and proton density. Phys Med Biol 2023; 68:10.1088/1361-6560/acb30b. [PMID: 36638532 PMCID: PMC10100575 DOI: 10.1088/1361-6560/acb30b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Objective.To document the bias of thesimplifiedfree water model of diffusion MRI (dMRI) signal vis-à-vis aspecificmodel which, in addition to diffusion, incorporates compartment-specific proton density (PD), T1 recovery during repetition time (TR), and T2 decay during echo time (TE).Approach.Both models assume that volume fractionfof the total signal in any voxel arises from the free water compartment (fw) such as cerebrospinal fluid or edema, and the remainder (1-f) from hindered water (hw) which is constrained by cellular structures such as white matter (WM). Thespecificandsimplifiedmodels are compared on a synthetic dataset, using a range of PD, T1 and T2 values. We then fit the models to anin vivohealthy brain dMRI dataset. For bothsyntheticandin vivodata we use experimentally feasible TR, TE, signal-to-noise ratio (SNR) and physiologically plausible diffusion profiles.Main results.From the simulations we see that the difference between the estimatedsimplified fandspecific fis largest for mid-range ground-truthf, and it increases as SNR increases. The estimation of volume fractionfis sensitive to the choice of model,simplifiedorspecific, but the estimated diffusion parameters are robust to small perturbations in the simulation.Specific fis more accurate and precise thansimplified f. In the white matter (WM) regions of thein vivoimages,specific fis lower thansimplified f.Significance.In dMRI models for free water, accounting for compartment specific PD, T1 and T2, in addition to diffusion, improves the estimation of model parameters. This extra model specification attenuates the estimation bias of compartmental volume fraction without affecting the estimation of other diffusion parameters.
Collapse
Affiliation(s)
- Uran Ferizi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Eva M Müller-Oehring
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Eric T Peterson
- Center for Health Sciences, SRI International, Menlo Park, CA, United States of America
| | - Kilian M Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Center for Health Sciences, SRI International, Menlo Park, CA, United States of America
| |
Collapse
|
8
|
Gomolka RS, Hablitz LM, Mestre H, Giannetto M, Du T, Hauglund NL, Xie L, Peng W, Martinez PM, Nedergaard M, Mori Y. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 2023; 12:e82232. [PMID: 36757363 PMCID: PMC9995113 DOI: 10.7554/elife.82232] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
Collapse
Affiliation(s)
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- School of Pharmacy, China Medical UniversityShenyangChina
| | | | - Lulu Xie
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Yuki Mori
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
9
|
Kumar S, De Luca A, Leemans A, Saffari SE, Hartono S, Zailan FZ, Ng KP, Kandiah N. Topology of diffusion changes in corpus callosum in Alzheimer's disease: An exploratory case-control study. Front Neurol 2022; 13:1005406. [PMID: 36530616 PMCID: PMC9747939 DOI: 10.3389/fneur.2022.1005406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
AimThis study aims to assess the integrity of white matter in various segments of the corpus callosum in Alzheimer's disease (AD) by using metrics derived from diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI) and white matter tract integrity model (WMTI) and compare these findings to healthy controls (HC).MethodsThe study was approved by the institutional ethics board. 12 AD patients and 12 HC formed the study population. All AD patients were recruited from a tertiary neurology memory clinic. A standardized battery of neuropsychological assessments was administered to the study participants by a trained rater. MRI scans were performed with a Philips Ingenia 3.0T scanner equipped with a 32-channel head coil. The protocol included a T1-weighted sequence, FLAIR and a dMRI acquisition. The dMRI scan included a total of 71 volumes, 8 at b = 0 s/mm2, 15 at b = 1,000 s/mm2 and 48 at b = 2,000 s/mm2. Diffusion data fit was performed using DKI REKINDLE and WMTI models.Results and discussionWe detected changes suggesting demyelination and axonal degeneration throughout the corpus callosum of patients with AD, most prominent in the mid-anterior and mid-posterior segments of CC. Axial kurtosis was the most significantly altered metric, being reduced in AD patients in almost all segments of corpus callosum. Reduced axial kurtosis in the CC segments correlated with poor cognition scores in AD patients in the visuospatial, language and attention domains.
Collapse
Affiliation(s)
- Sumeet Kumar
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | | | - Seyed Ehsan Saffari
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Septian Hartono
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Fatin Zahra Zailan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kok Pin Ng
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Nagaendran Kandiah
| |
Collapse
|
10
|
Lee H, Ozturk B, Stringer MS, Koundal S, MacIntosh BJ, Rothman D, Benveniste H. Choroid plexus tissue perfusion and blood to CSF barrier function in rats measured with continuous arterial spin labeling. Neuroimage 2022; 261:119512. [PMID: 35882269 PMCID: PMC9969358 DOI: 10.1016/j.neuroimage.2022.119512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 02/08/2023] Open
Abstract
The choroid plexus (ChP) of the cerebral ventricles is a source of cerebrospinal fluid (CSF) production and also plays a key role in immune surveillance at the level of blood-to-CSF-barrier (BCSFB). In this study, we quantify ChP blood perfusion and BCSFB mediated water exchange from arterial blood into ventricular CSF using non-invasive continuous arterial spin labelling magnetic resonance imaging (CASL-MRI). Systemic administration of anti-diuretic hormone (vasopressin) was used to validate BCSFB water flow as a metric of choroidal CSF secretory function. To further investigate the coupling between ChP blood perfusion and BCSFB water flow, we characterized the effects of two anesthetic regimens known to have large-scale differential effects on cerebral blood flow. For quantification of ChP blood perfusion a multi-compartment perfusion model was employed, and we discovered that partial volume correction improved measurement accuracy. Vasopressin significantly reduced both ChP blood perfusion and BCSFB water flow. ChP blood perfusion was significantly higher with pure isoflurane anesthesia (2-2.5%) when compared to a balanced anesthesia with dexmedetomidine and low-dose isoflurane (1.0 %), and significant correlation between ChP blood perfusion and BCSFB water flow was observed, however there was no significant difference in BCSFB water flow. In summary, here we introduce a non-invasive, robust, and spatially resolved in vivo imaging platform to quantify ChP blood perfusion as well as BCSFB water flow which can be applied to study coupling of these two key parameters in future clinical translational studies.
Collapse
Affiliation(s)
- Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA.
| | - Burhan Ozturk
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael S Stringer
- Brain Research Imaging Centre and UK Dementia Research Institute, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Bradley J MacIntosh
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Douglas Rothman
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Xu J, Ren Y, Zhao X, Wang X, Yu X, Yao Z, Zhou Y, Feng X, Zhou XJ, Wang H. Incorporating multiple magnetic resonance diffusion models to differentiate low- and high-grade adult gliomas: a machine learning approach. Quant Imaging Med Surg 2022; 12:5171-5183. [PMID: 36330178 PMCID: PMC9622457 DOI: 10.21037/qims-22-145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/07/2022] [Indexed: 08/13/2023]
Abstract
BACKGROUND Accurate grading of gliomas is a challenge in imaging diagnosis. This study aimed to evaluate the performance of a machine learning (ML) approach based on multiparametric diffusion-weighted imaging (DWI) in differentiating low- and high-grade adult gliomas. METHODS A model was developed from an initial cohort containing 74 patients with pathology-confirmed gliomas, who underwent 3 tesla (3T) diffusion magnetic resonance imaging (MRI) with 21 b values. In all, 112 histogram features were extracted from 16 parameters derived from seven diffusion models [monoexponential, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), fractional order calculus (FROC), continuous-time random walk (CTRW), stretched-exponential, and statistical]. Feature selection and model training were performed using five randomly permuted five-fold cross-validations. An internal test set (15 cases of the primary dataset) and an external cohort (n=55) imaged on a different scanner were used to validate the model. The diagnostic performance of the model was compared with that of a single DWI model and DWI radiomics using accuracy, sensitivity, specificity, and the area under the curve (AUC). RESULTS Seven significant multiparametric DWI features (two from the stretched-exponential and FROC models, and three from the CTRW model) were selected to construct the model. The multiparametric DWI model achieved the highest AUC (0.84, versus 0.71 for the single DWI model, P<0.05), an accuracy of 0.80 in the internal test, and both AUC and accuracy of 0.76 in the external test. CONCLUSIONS Our multiparametric DWI model differentiated low- (LGG) from high-grade glioma (HGG) with better generalization performance than the established single DWI model. This result suggests that the application of an ML approach with multiple DWI models is feasible for the preoperative grading of gliomas.
Collapse
Affiliation(s)
- Junqi Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yan Ren
- Radiology Department, Hua Shan Hospital, Fudan University, Shanghai, China
| | - Xueying Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiaoqing Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuchen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhenwei Yao
- Radiology Department, Hua Shan Hospital, Fudan University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyuan Feng
- Radiology Department, Hua Shan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, Departments of Radiology, Neurosurgery, and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Wei L, Ding M, Zhang Y, Wang H. Decoding transcriptional signatures of the association between free water and macroscale organizations in healthy adolescents. Neuroimage 2022; 261:119514. [PMID: 35901916 DOI: 10.1016/j.neuroimage.2022.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
We leveraged a novel index of diffusion MRI to investigate the relationships among cortical free water, macro-organizations and gene expression in healthy adults. Few research has been conducted to investigate the role of free water in the healthy adults due to it can easily be affected also by aging diseases. High quality data of 350 subjects from Human Connectome Project were used in our study. Cortical free water was estimated by using a bi-tensor model. The free water was high in the limbic, insular and somatosensory cortex, while being lower in motor and association cortex. The negative correlation between the free water and cortical thickness has been consistently identified in almost all the cortical regions. Negative correlation between the cortical free water and structural covariance (rho=-0.38, pspin=0.005) revealed the free water was sensitive to cortical heterogeneity. Using human gene expression dataset, we found the gene expression pattern of the relationship between the free water and cortical thickness spatially coupled with primary gradient of structural covariance network (rho=0.40, pspin=0.004). Our findings indicated the free water was sensitive to the cortical cellular status. The relationship between free water and macroscale organization also reflected hierarchal structures of cerebral cortex.
Collapse
Affiliation(s)
- Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Ming Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China; Human Phenome Institute, Fudan University, Shanghai, PR China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
13
|
Simultaneous Quantification of Anisotropic Microcirculation and Microstructure in Peripheral Nerve. J Clin Med 2022; 11:jcm11113036. [PMID: 35683424 PMCID: PMC9181650 DOI: 10.3390/jcm11113036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injury is a significant public health challenge, and perfusion in the nerve is a potential biomarker for assessing the injury severity and prognostic outlook. Here, we applied a novel formalism that combined intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) to simultaneously characterize anisotropic microcirculation and microstructure in the rat sciatic nerve. Comparison to postmortem measurements revealed that the in vivo IVIM-DTI signal contained a fast compartment (2.32 ± 0.04 × 10−3 mm2/s mean diffusivity, mean ± sem, n = 6, paired t test p < 0.01) that could be attributed to microcirculation in addition to a slower compartment that had similar mean diffusivity as the postmortem nerve (1.04 ± 0.01 vs. 0.96 ± 0.05 × 10−3 mm2/s, p > 0.05). Although further investigation and technical improvement are warranted, this preliminary study demonstrates both the feasibility and potential for applying the IVIM-DTI methodology to peripheral nerves for quantifying perfusion in the presence of anisotropic tissue microstructure.
Collapse
|
14
|
Henriksen OM, del Mar Álvarez-Torres M, Figueiredo P, Hangel G, Keil VC, Nechifor RE, Riemer F, Schmainda KM, Warnert EAH, Wiegers EC, Booth TC. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 2022; 12:810263. [PMID: 35359414 PMCID: PMC8961422 DOI: 10.3389/fonc.2022.810263] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Objective Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.
Collapse
Affiliation(s)
- Otto M. Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Patricia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gilbert Hangel
- Department of Neurosurgery, Medical University, Vienna, Austria
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University, Vienna, Austria
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ruben E. Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Evita C. Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas C. Booth
-
School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
15
|
The relationship between diffusion heterogeneity and microstructural changes in high-grade gliomas using Monte Carlo simulations. Magn Reson Imaging 2021; 85:108-120. [PMID: 34653578 DOI: 10.1016/j.mri.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE Diffusion-weighted imaging (DWI) may aid accurate tumor grading. Decreased diffusivity and increased diffusion heterogeneity measures have been observed in high-grade gliomas using the non-monoexponential models for DWI. However, DWI measures concerning tissue characteristics in terms of pathophysiological and structural changes are yet to be established. Thus, this study aims to investigate the relationship between the diffusion measurements and microstructural changes in the presence of high-grade gliomas using a three-dimensional Monte Carlo simulation with systematic changes of microstructural parameters. METHODS Water diffusion was simulated in a microenvironment along with changes associated with the presence of high-grade gliomas, including increases in cell density, nuclear volume, extracellular volume (VFex), and extracellular tortuosity (λex), and changes in membrane permeability (Pmem). DWI signals were simulated using a pulsed gradient spin-echo sequence. The sequence parameters, including the maximum gradient strength and diffusion time, were set to be comparable to those of clinical scanners and advanced human MRI systems. The DWI signals were fitted using the gamma distribution and diffusional kurtosis models with b-values up to 6000 and 2500 s/mm2, respectively. RESULTS The diffusivity measures (apparent diffusion coefficients (ADC), Dgamma of the gamma distribution model and Dapp of the diffusional kurtosis model) decreased with increases in cell density and λex, and a decrease in Pmem. These diffusivity measures increased with increases in nuclear volume and VFex. The diffusion heterogeneity measures (σgamma of the gamma distribution model and Kapp of the diffusional kurtosis model) increased with increases in cell density or nuclear volume at the low Pmem, and a decrease in Pmem. Increased σgamma was also associated with an increase in VFex. CONCLUSION Among simulated microstructural changes, only increases in cell density at low Pmem or decreases in Pmem corresponded to both the decreased diffusivity and increased diffusion heterogeneity measures. The results suggest that increases in cell density at low Pmem or decreases in Pmem may be associated with the diffusion changes observed in high-grade gliomas.
Collapse
|
16
|
Katoch N, Choi BK, Park JA, Ko IO, Kim HJ. Comparison of Five Conductivity Tensor Models and Image Reconstruction Methods Using MRI. Molecules 2021; 26:5499. [PMID: 34576970 PMCID: PMC8467711 DOI: 10.3390/molecules26185499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Imaging of the electrical conductivity distribution inside the human body has been investigated for numerous clinical applications. The conductivity tensors of biological tissue have been obtained from water diffusion tensors by applying several models, which may not cover the entire phenomenon. Recently, a new conductivity tensor imaging (CTI) method was developed through a combination of B1 mapping, and multi-b diffusion weighted imaging. In this study, we compared the most recent CTI method with the four existing models of conductivity tensors reconstruction. Two conductivity phantoms were designed to evaluate the accuracy of the models. Applied to five human brains, the conductivity tensors using the four existing models and CTI were imaged and compared with the values from the literature. The conductivity image of the phantoms by the CTI method showed relative errors between 1.10% and 5.26%. The images by the four models using DTI could not measure the effects of different ion concentrations subsequently due to prior information of the mean conductivity values. The conductivity tensor images obtained from five human brains through the CTI method were comparable to previously reported literature values. The images by the four methods using DTI were highly correlated with the diffusion tensor images, showing a coefficient of determination (R2) value of 0.65 to 1.00. However, the images by the CTI method were less correlated with the diffusion tensor images and exhibited an averaged R2 value of 0.51. The CTI method could handle the effects of different ion concentrations as well as mobilities and extracellular volume fractions by collecting and processing additional B1 map data. It is necessary to select an application-specific model taking into account the pros and cons of each model. Future studies are essential to confirm the usefulness of these conductivity tensor imaging methods in clinical applications, such as tumor characterization, EEG source imaging, and treatment planning for electrical stimulation.
Collapse
Affiliation(s)
- Nitish Katoch
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Korea; (N.K.); (B.-K.C.)
| | - Bup-Kyung Choi
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Korea; (N.K.); (B.-K.C.)
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
| | - In-Ok Ko
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
| | - Hyung-Joong Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul 02447, Korea; (N.K.); (B.-K.C.)
| |
Collapse
|
17
|
Li Y, Kim MM, Wahl DR, Lawrence TS, Parmar H, Cao Y. Survival Prediction Analysis in Glioblastoma With Diffusion Kurtosis Imaging. Front Oncol 2021; 11:690036. [PMID: 34336676 PMCID: PMC8316991 DOI: 10.3389/fonc.2021.690036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
SIMPLE SUMMARY Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Diffusion kurtosis imaging (DKI) has characterized non-Gaussian diffusion behaviors in brain normal tissue and gliomas, but there are very limited efforts in investigating treatment responses of kurtosis in GBM. This study aimed to investigate whether any parameter derived from the DKI is a significant predictor of overall survival (OS). We found that the large mean, 80 and 90 percentile kurtosis values in the contrast enhanced gross tumor volume (Gd-GTV) on post-Gd T1-weighted images pre-RT were significantly associated with reduced OS. In the multivariate Cox model, the mean kurtosis Gd-GTV pre-RT after considering effects of age, extent of surgery, and methylation were significant predictors of OS. In addition, the 80 and 90 percentile kurtosis values in Gd-GTV post RT were significantly associated with progression free survival (PFS). The DKI model demonstrates the potential to predict outcomes in the patients with GBM. PURPOSE Non-Gaussian diffusion behaviors in gliomas have been characterized by diffusion kurtosis imaging (DKI). But there are very limited efforts in investigating the kurtosis in glioblastoma (GBM) and its prognostic and predictive values. This study aimed to investigate whether any of the diffusion kurtosis parameters derived from DKI is a significant predictor of overall survival. METHODS AND MATERIALS Thirty-three patients with GBM had pre-radiation therapy (RT) and mid-RT diffusion weighted (DW) images. Kurtosis and diffusion coefficient (DC) values in the contrast enhanced gross tumor volume (Gd-GTV) on post-Gd T1 weighted images pre-RT and mid-RT were calculated. Univariate and multivariate Cox models were used to evaluate the DKI parameters and clinical factors for prediction of OS and PFS. RESULTS The large mean kurtosis values in the Gd-GTV pre-RT were significantly associated with reduced OS (p = 0.02), but the values at mid-RT were not (p > 0.8). In the multivariate Cox model, the mean kurtosis in the Gd-GTV pre-RT (p = 0.009) was still a significant predictor of OS after adjusting effects of age, O6-Methylguanine-DNA Methyl transferase (MGMT) methylation and extent of resection. In Gd-GTV post-RT, 80 and 90 percentile kurtosis values were significant predictors (p ≤ 0.05) for progression free survival (PFS). CONCLUSION The DKI model demonstrates the potential to predict OS and PFS in the patients with GBM. Further development and histopathological validation of the DKI model will warrant its role in clinical management of GBM.
Collapse
Affiliation(s)
- Yuan Li
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Michelle M. Kim
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Daniel R. Wahl
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Theodore S. Lawrence
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Hemant Parmar
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Yue Cao
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Periquito JS, Gladytz T, Millward JM, Delgado PR, Cantow K, Grosenick D, Hummel L, Anger A, Zhao K, Seeliger E, Pohlmann A, Waiczies S, Niendorf T. Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the kidney tubule system. Quant Imaging Med Surg 2021; 11:3098-3119. [PMID: 34249638 DOI: 10.21037/qims-20-1360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022]
Abstract
Background The use of rigid multi-exponential models (with a priori predefined numbers of components) is common practice for diffusion-weighted MRI (DWI) analysis of the kidney. This approach may not accurately reflect renal microstructure, as the data are forced to conform to the a priori assumptions of simplified models. This work examines the feasibility of less constrained, data-driven non-negative least squares (NNLS) continuum modelling for DWI of the kidney tubule system in simulations that include emulations of pathophysiological conditions. Methods Non-linear least squares (LS) fitting was used as reference for the simulations. For performance assessment, a threshold of 5% or 10% for the mean absolute percentage error (MAPE) of NNLS and LS results was used. As ground truth, a tri-exponential model using defined volume fractions and diffusion coefficients for each renal compartment (tubule system: Dtubules , ftubules ; renal tissue: Dtissue , ftissue ; renal blood: Dblood , fblood ;) was applied. The impact of: (I) signal-to-noise ratio (SNR) =40-1,000, (II) number of b-values (n=10-50), (III) diffusion weighting (b-rangesmall =0-800 up to b-rangelarge =0-2,180 s/mm2), and (IV) fixation of the diffusion coefficients Dtissue and Dblood was examined. NNLS was evaluated for baseline and pathophysiological conditions, namely increased tubular volume fraction (ITV) and renal fibrosis (10%: grade I, mild) and 30% (grade II, moderate). Results NNLS showed the same high degree of reliability as the non-linear LS. MAPE of the tubular volume fraction (ftubules ) decreased with increasing SNR. Increasing the number of b-values was beneficial for ftubules precision. Using the b-rangelarge led to a decrease in MAPE ftubules compared to b-rangesmall. The use of a medium b-value range of b=0-1,380 s/mm2 improved ftubules precision, and further bmax increases beyond this range yielded diminishing improvements. Fixing Dblood and Dtissue significantly reduced MAPE ftubules and provided near perfect distinction between baseline and ITV conditions. Without constraining the number of renal compartments in advance, NNLS was able to detect the (fourth) fibrotic compartment, to differentiate it from the other three diffusion components, and to distinguish between 10% vs. 30% fibrosis. Conclusions This work demonstrates the feasibility of NNLS modelling for DWI of the kidney tubule system and shows its potential for examining diffusion compartments associated with renal pathophysiology including ITV fraction and different degrees of fibrosis.
Collapse
Affiliation(s)
- Joāo S Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Experimental and Clinical Research Center, a Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Paula Ramos Delgado
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kathleen Cantow
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Luis Hummel
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Ariane Anger
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Kaixuan Zhao
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
19
|
Gyori NG, Clark CA, Alexander DC, Kaden E. On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. Neuroimage 2021; 239:118303. [PMID: 34174390 PMCID: PMC8363942 DOI: 10.1016/j.neuroimage.2021.118303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
B-tensor encoding enables estimation of spherical cellular structures in the brain. Spherical compartments may provide markers for apparent neural soma density. Model parameters can be estimated in a fast and robust way using deep learning. Practical acquisition times are achievable on widely available clinical scanners.
Diffusion MRI is a valuable tool for probing tissue microstructure in the brain noninvasively. Today, model-based techniques are widely available and used for white matter characterisation where their development is relatively mature. Conversely, tissue modelling in grey matter is more challenging, and no generally accepted models exist. With advances in measurement technology and modelling efforts, a clinically viable technique that reveals salient features of grey matter microstructure, such as the density of quasi-spherical cell bodies and quasi-cylindrical cell projections, is an exciting prospect. As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences. For the fast and robust estimation of microstructural parameters, we leverage recent advances in machine learning and replace conventional fitting techniques with an artificial neural network that fits complex biophysical models within seconds. Our results demonstrate apparent markers of spherical and cylindrical geometries in healthy human subjects, and in particular an increased volume fraction of spherical compartments in grey matter compared to white matter. We evaluate the extent to which spherical and cylindrical geometries may be interpreted as correlates of neural soma and neural projections, respectively, and quantify parameter estimation errors in the presence of various departures from the modelling assumptions. While further work is necessary to translate the ideas presented in this work to the clinic, we suggest that biomarkers focussing on quasi-spherical cellular geometries may be valuable for the enhanced assessment of neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi G Gyori
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
20
|
Merisaari H, Laakso H, Liljenbäck H, Virtanen H, Aronen HJ, Minn H, Poutanen M, Roivainen A, Liimatainen T, Jambor I. Statistical Evaluation of Different Mathematical Models for Diffusion Weighted Imaging of Prostate Cancer Xenografts in Mice. Front Oncol 2021; 11:583921. [PMID: 34123770 PMCID: PMC8188898 DOI: 10.3389/fonc.2021.583921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/23/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose To evaluate fitting quality and repeatability of four mathematical models for diffusion weighted imaging (DWI) during tumor progression in mouse xenograft model of prostate cancer. Methods Human prostate cancer cells (PC-3) were implanted subcutaneously in right hind limbs of 11 immunodeficient mice. Tumor growth was followed by weekly DWI examinations using a 7T MR scanner. Additional DWI examination was performed after repositioning following the fourth DWI examination to evaluate short term repeatability. DWI was performed using 15 and 12 b-values in the ranges of 0-500 and 0-2000 s/mm2, respectively. Corrected Akaike information criteria and F-ratio were used to evaluate fitting quality of each model (mono-exponential, stretched exponential, kurtosis, and bi-exponential). Results Significant changes were observed in DWI data during the tumor growth, indicated by ADCm, ADCs, and ADCk. Similar results were obtained using low as well as high b-values. No marked changes in model preference were present between the weeks 1−4. The parameters of the mono-exponential, stretched exponential, and kurtosis models had smaller confidence interval and coefficient of repeatability values than the parameters of the bi-exponential model. Conclusion Stretched exponential and kurtosis models showed better fit to DWI data than the mono-exponential model and presented with good repeatability.
Collapse
Affiliation(s)
- Harri Merisaari
- Department of Radiology, University of Turku, Turku, Finland.,Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Hanne Laakso
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Helena Virtanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Hannu J Aronen
- Department of Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Matti Poutanen
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Timo Liimatainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Clinical Radiology, Oulu University Hospital, Oulu, Finland.,Department of Radiology, University of Oulu, Oulu, Finland
| | - Ivan Jambor
- Department of Radiology, University of Turku, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| |
Collapse
|
21
|
Li Y, Kim M, Lawrence TS, Parmar H, Cao Y. Microstructure Modeling of High b-Value Diffusion-Weighted Images in Glioblastoma. ACTA ACUST UNITED AC 2021; 6:34-43. [PMID: 32280748 PMCID: PMC7138521 DOI: 10.18383/j.tom.2020.00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apparent diffusion coefficient has limits to differentiate solid tumor from normal tissue or edema in glioblastoma (GBM). This study investigated a microstructure model (MSM) in GBM using a clinically available diffusion imaging technique. The MSM was modified to integrate with bi-polar diffusion gradient waveforms, and applied to 30 patients with newly diagnosed GBM. Diffusion-weighted (DW) images acquired on a 3 T scanner with b-values from 0 to 2500 s/mm2 were fitted in volumes of interest (VOIs) of solid tumor to obtain the apparent restriction size of intracellular water (ARS), the fractional volume of intracellular water (Vin), and extracellular (Dex) water diffusivity. The parameters in solid tumor were compared with those of other tissue types by Students’ t test. For comparison, DW images were fitted by conventional mono-exponential and bi-exponential models. ARS, Dex, and Vin from the MSM in tumor VOIs were significantly greater than those in WM, GM, and edema (P values of .01–.001). ARS values in solid tumors (from 21.6 to 34.5 um) had absolutely no overlap with those in all other tissue types (from 0.9 to 3.5 um). Vin values showed a descending order from solid tumor (from 0.32 to 0.52) to WM, GM, and edema (from 0.05 to 0.25), consisting with the descending cellularity in these tissue types. The parameters from mono-exponential and bi-exponential models could not significantly differentiate solid tumor from all other tissue types, particularly from edema. Further development and histopathological validation of the MSM will warrant its role in clinical management of GBM.
Collapse
Affiliation(s)
- Yuan Li
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Michelle Kim
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Theodore S Lawrence
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Hemant Parmar
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| |
Collapse
|
22
|
Karaman MM, Tang L, Li Z, Sun Y, Li JZ, Zhou XJ. In vivo assessment of Lauren classification for gastric adenocarcinoma using diffusion MRI with a fractional order calculus model. Eur Radiol 2021; 31:5659-5668. [PMID: 33616764 DOI: 10.1007/s00330-021-07694-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the performance of a fractional order calculus (FROC) diffusion model for imaging-based assessment of Lauren classification in gastric adenocarcinoma. METHODS In this study, 43 patients (15 females, 28 males) with gastric adenocarcinoma underwent MRI at 1.5 T. According to pathology-based Lauren classification, 10 patients had diffuse-type, 20 had intestinal-type, and 13 had mixed-type lesions. The diffuse and mixed types were combined as diffuse-and-mixed type to be differentiated from the intestinal type using diffusion MRI. Diffusion-weighted images were acquired by using eleven b-values (0-2000 s/mm2). Three FROC model parameters comprising diffusion coefficient D, intravoxel diffusion heterogeneity β, and a microstructural quantity μ, together with a conventional apparent diffusion coefficient (ADC), were estimated. The mean parameter values in the tumour were computed by using a percentile histogram analysis. Individual or linear combinations of the mean parameters in the tumour were used to differentiate the diffuse-and-mixed type from the intestinal type using descriptive statistics and receiver operating characteristic (ROC) analyses. RESULTS Significant differences were observed between diffuse-and-mixed-type and intestinal-type lesions in D (0.99 ± 0.20 μm2/ms vs. 1.11 ± 0.23 μm2/ms; p = 0.036), β (0.37 ± 0.08 vs. 0.43 ± 0.11; p = 0.043), μ (7.92 ± 2.79 μm vs. 9.87 ± 1.52 μm; p = 0.038), and ADC (0.81 ± 0.34 μm2/ms vs. 0.96 ± 0.19 μm2/ms; p = 0.033). Among the individual parameters, μ produced the largest area under the ROC curve (0.739). The combinations of (D, β, μ) and (β and μ) produced the best overall performance with a sensitivity of 0.739, specificity of 0.750, accuracy of 0.744, and area under the curve of 0.793 (95% confidence interval: 0.657-0.929). CONCLUSION Diffusion MRI with the FROC model holds promise for non-invasive assessment of Lauren classification for gastric adenocarcinoma. KEY POINTS • High b-value diffusion MRI with a FROC model that is sensitive to tissue microstructures can differentiate the diffuse-and-mixed type from intestinal type of gastric adenocarcinoma. • The combination of FROC parameters produced the best result for distinguishing the diffuse-and-mixed type from the intestinal type with an area under the receiver operating characteristic curve of 0.793. • The FROC model parameters, individually or conjointly, hold promise for repeated, non-invasive evaluations of gastric adenocarcinoma at various time points throughout disease progression or regression to complement conventional Lauren classification.
Collapse
Affiliation(s)
- M Muge Karaman
- Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Lei Tang
- Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu Sun
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jia-Zheng Li
- Department of Radiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaohong Joe Zhou
- Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA. .,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA. .,Departments of Radiology and Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA. .,Center for Magnetic Resonance Research, University of Illinois at Chicago, 2242 West Harrison Street, Suite 103, M/C 831, Chicago, IL, 60612, USA.
| |
Collapse
|
23
|
Feasibility of intravoxel incoherent motion diffusion-weighted imaging in distinguishing adenocarcinoma originated from uterine corpus or cervix. Abdom Radiol (NY) 2021; 46:732-744. [PMID: 32671441 DOI: 10.1007/s00261-020-02586-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To prospectively assess the incremental value of intravoxel incoherent motion (IVIM) DWI in determining whether the adenocarcinoma originated from the uterine corpus or cervix. METHODS Eighty consecutive uterine adenocarcinomas from the cervix or endometrium confirmed by histopathology underwent IVIM DWI acquisition on a 3.0T MR scanner before treatment. Five morphologic features were analyzed using Fisher exact test; IVIM DWI-derived parameters, including apparent diffusion coefficient (ADC), true coefficient diffusivity (D), perfusion-related diffusivity (D*), and perfusion fraction (f) were compared using two-sample independent t-test or Mann-Whitney U test. Logistic regression analysis was used to develop different diagnosis model. The ROCs of these variables and diagnostic models were compared to evaluate the diagnostic efficiency. RESULTS Among single morphologic features, tumor location yielded the highest AUC of 0.891 in distinguishing endometrial adenocarcinoma (EAC) from cervical adenocarcinoma (CAC). Among single IVIM DWI-derived parameters, f values showed the best diagnostic performance (AUC: 0.837) at the optimal cut-off value of 0.261. Additionally, the combined diagnostic model, which consisted of tumor location, ADC and f showed the largest AUC of 0.967 with the highest sensitivity of 88.14%, highest specificity of 100.00%, and highest accuracy of 91.25%. CONCLUSION IVIM DWI-derived parameters add additional diagnostic value to conventional morphologic features. A combined diagnosis model is a promising imaging tool for predicting the origin of uterine adenocarcinoma, further contributing to therapeutic decision-making.
Collapse
|
24
|
Abstract
AbstractLabeling in diffusion measurements by pulsed field gradient (PFG) NMR is based on the observation of the phase of nuclear spins acquired in a constant magnetic field with purposefully superimposed field gradients. This labeling does in no way affect microdynamics and provides information about the probability distribution of molecular displacements as a function of time. An introduction of the measuring principle is followed by a detailed description of the ranges of measurements and their limitation. Particular emphasis is given to an explanation of possible pitfalls in the measurements and the ways to circumvent them. Showcases presented for illustrating the wealth of information provided by PFG NMR include a survey on the various patterns of concentration dependence of intra-particle diffusion and examples of transport inhibition by additional transport resistances within the nanoporous particles and on their external surface. The latter information is attained by combination with the outcome of tracer exchange experiments, which are shown to become possible via a special formalism of PFG NMR data analysis. Further evidence provided by PFG NMR concerns diffusion enhancement in pore hierarchies, diffusion anisotropy and the impact of diffusion on chemical conversion in porous catalysts. A compilation of the specifics of PFG NMR and of the parallels with other measurement techniques concludes the paper.
Collapse
|
25
|
Ozturk BO, Monte B, Koundal S, Dai F, Benveniste H, Lee H. Disparate volumetric fluid shifts across cerebral tissue compartments with two different anesthetics. Fluids Barriers CNS 2021; 18:1. [PMID: 33407650 PMCID: PMC7788828 DOI: 10.1186/s12987-020-00236-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background Large differences in glymphatic system transport—similar in magnitude to those of the sleep/wake cycle—have been observed during anesthesia with dexmedetomidine supplemented with low dose isoflurane (DEXM-I) in comparison to isoflurane (ISO). However, the biophysical and bioenergetic tissue status underlying glymphatic transport differences between anesthetics remains undefined. To further understand biophysical characteristics underlying these differences we investigated volume status across cerebral tissue compartments, water diffusivity, and T2* values in rats anesthetized with DEXM-I in comparison to ISO. Methods Using a crossover study design, a group of 12 Sprague Dawley female rats underwent repetitive magnetic resonance imaging (MRI) under ISO and DEXM-I. Physiological parameters were continuously measured. MRI included a proton density weighted (PDW) scan to investigate cerebrospinal fluid (CSF) and parenchymal volumetric changes, a multigradient echo scan (MGE) to calculate T2* maps as a measure of ‘bioenergetics’, and a diffusion scan to quantify the apparent diffusion coefficient (ADC). Results The heart rate was lower with DEXM-I in comparison to ISO, but all other physiological variables were similar across scans and groups. The PDW images revealed a 1% parenchymal volume increase with ISO compared to DEXM-I comprising multiple focal tissue areas scattered across the forebrain. In contrast, with DEXM-I the CSF compartment was enlarged by ~ 6% in comparison to ISO at the level of the basal cisterns and peri-arterial conduits which are main CSF influx routes for glymphatic transport. The T2* maps showed brain-wide increases in T2* in ISO compared to DEXM-I rats. Diffusion-weighted images yielded no significant differences in ADCs across the two anesthesia groups. Conclusions We demonstrated CSF volume expansion with DEXM-I (in comparison to ISO) and parenchymal (GM) expansion with ISO (in comparison to DEXM-I), which may explain the differences in glymphatic transport. The T2* changes in ISO are suggestive of an increased bioenergetic state associated with excess cellular firing/bursting when compared to DEXM-I.
Collapse
Affiliation(s)
- Burhan O Ozturk
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Brittany Monte
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA. .,Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA.
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, USA
| |
Collapse
|
26
|
Wichtmann BD, Zöllner FG, Attenberger UI, Schönberg SO. Multiparametric MRI in the Diagnosis of Prostate Cancer: Physical Foundations, Limitations, and Prospective Advances of Diffusion-Weighted MRI. ROFO-FORTSCHR RONTG 2020; 193:399-409. [PMID: 33302312 DOI: 10.1055/a-1276-1773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) is an essential component of the multiparametric MRI exam for the diagnosis and assessment of prostate cancer (PCa). Over the last two decades, various models have been developed to quantitatively correlate the DWI signal with microstructural characteristics of prostate tissue. The simplest approach (ADC: apparent diffusion coefficient) - currently established as the clinical standard - describes monoexponential decay of the DWI signal. While numerous studies have shown an inverse correlation of ADC values with the Gleason score, the ADC model lacks specificity and is based on water diffusion dynamics that are not true in human tissue. This article aims to explain the biophysical limitations of the standard DWI model and to discuss the potential of more complex, advanced DWI models. METHODS This article is a review based on a selective literature review. RESULTS Four phenomenological DWI models are introduced: diffusion tensor imaging, intravoxel incoherent motion, biexponential model, and diffusion kurtosis imaging. Their parameters may potentially improve PCa diagnostics but show varying degrees of statistical significance with respect to the detection and characterization of PCa in current studies. Phenomenological model parameters lack specificity, which has motivated the development of more descriptive tissue models that directly relate microstructural features to the DWI signal. Finally, we present two of such structural models, i. e. the VERDICT (Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors) and RSI (Restriction Spectrum Imaging) model. Both have shown promising results in initial studies regarding the characterization and prognosis of PCa. CONCLUSION Recent developments in DWI techniques promise increasing accuracy and more specific statements about microstructural changes of PCa. However, further studies are necessary to establish a standardized DWI protocol for the diagnosis of PCa. KEY POINTS · DWI is paramount to the mpMRI exam for the diagnosis of PCa.. · Though of clinical value, the ADC model lacks specificity and oversimplifies tissue complexities.. · Advanced phenomenological and structural models have been developed to describe the DWI signal.. · Phenomenological models may improve diagnostics but show inconsistent results regarding PCa assessment.. · Structural models have demonstrated promising results in initial studies regarding PCa characterization.. CITATION FORMAT · Wichtmann BD, Zöllner FG, Attenberger UI et al. Multiparametric MRI in the Diagnosis of Prostate Cancer: Physical Foundations, Limitations, and Prospective Advances of Diffusion-Weighted MRI. Fortschr Röntgenstr 2021; 193: 399 - 409.
Collapse
Affiliation(s)
| | - Frank Gerrit Zöllner
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Stefan O Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Germany
| |
Collapse
|
27
|
Bonny JM, Traore A, Bouhrara M, Spencer RG, Pages G. Parsimonious discretization for characterizing multi-exponential decay in magnetic resonance. NMR IN BIOMEDICINE 2020; 33:e4366. [PMID: 32789944 PMCID: PMC9648165 DOI: 10.1002/nbm.4366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
We address the problem of analyzing noise-corrupted magnetic resonance transverse decay signals as a superposition of underlying independently decaying monoexponentials of positive amplitude. First, we indicate the manner in which this is an ill-conditioned inverse problem, rendering the analysis unstable with respect to noise. Second, we define an approach to this analysis, stabilized solely by the nonnegativity constraint without regularization. This is made possible by appropriate discretization, which is coarser than that often used in practice. Thirdly, we indicate further stabilization by inspecting the plateaus of cumulative distributions. We demonstrate our approach through analysis of simulated myelin water fraction measurements, and compare the accuracy with more conventional approaches. Finally, we apply our method to brain imaging data obtained from a human subject, showing that our approach leads to maps of the myelin water fraction which are much more stable with respect to increasing noise than those obtained with conventional approaches.
Collapse
Affiliation(s)
- Jean-Marie Bonny
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France
- AgroResonance, INRAE, 2018, Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, Saint-Genès-Champanelle, France
| | - Amidou Traore
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France
- AgroResonance, INRAE, 2018, Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, Saint-Genès-Champanelle, France
| | | | | | - Guilhem Pages
- INRAE, UR QuaPA, Saint-Genès-Champanelle, France
- AgroResonance, INRAE, 2018, Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, Saint-Genès-Champanelle, France
| |
Collapse
|
28
|
Kim D, Wisnowski JL, Nguyen CT, Haldar JP. Multidimensional correlation spectroscopic imaging of exponential decays: From theoretical principles to in vivo human applications. NMR IN BIOMEDICINE 2020; 33:e4244. [PMID: 31909534 PMCID: PMC7338241 DOI: 10.1002/nbm.4244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 11/27/2019] [Indexed: 05/02/2023]
Abstract
Multiexponential modeling of relaxation or diffusion MR signal decays is a popular approach for estimating and spatially mapping different microstructural tissue compartments. While this approach can be quite powerful, it is also limited by the fact that one-dimensional multiexponential modeling is an ill-posed inverse problem with substantial ambiguities. In this article, we present an overview of a recent multidimensional correlation spectroscopic imaging approach to this problem. This approach helps to alleviate ill-posedness by making advantageous use of multidimensional contrast encoding (e.g., 2D diffusion-relaxation encoding or 2D relaxation-relaxation encoding) combined with a regularized spatial-spectral estimation procedure. Theoretical calculations, simulations, and experimental results are used to illustrate the benefits of this approach relative to classical methods. In addition, we demonstrate an initial proof-of-principle application of this kind of approach to in vivo human MRI experiments.
Collapse
Affiliation(s)
- Daeun Kim
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, CA, USA
- Signal and Image Processing Institute, University of Southern California, CA, USA
- Correspondence Daeun Kim,
| | - Jessica L. Wisnowski
- Radiology, Children’s Hospital Los Angeles, CA, USA
- Pediatrics, Children’s Hospital Los Angeles, CA, USA
| | - Christopher T. Nguyen
- Harvard Medical School and Cardiovascular Research Center, Massachusetts General Hospital, MA, USA
- Martinos Center for Biomedical Imaging, Radiology, Massachusetts General Hospital, MA, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, CA, USA
| | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, CA, USA
- Signal and Image Processing Institute, University of Southern California, CA, USA
| |
Collapse
|
29
|
Moutal N, Grebenkov DS. The localization regime in a nutshell. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106836. [PMID: 33039913 DOI: 10.1016/j.jmr.2020.106836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
High diffusion-sensitizing magnetic field gradients have been more and more often applied nowadays to achieve a better characterization of the microstructure. As the resulting spin-echo signal significantly deviates from the conventional Gaussian form, various models have been employed to interpret these deviations and to relate them with the microstructural properties of a sample. In this paper, we argue that the non-Gaussian behavior of the signal is a generic universal feature of the Bloch-Torrey equation. We provide a simple yet rigorous description of the localization regime emerging at high extended gradients and identify its origin as a symmetry breaking at the reflecting boundary. We compare the consequent non-Gaussian signal decay to other diffusion NMR regimes such as slow-diffusion, motional-narrowing and diffusion-diffraction regimes. We emphasize limitations of conventional perturbative techniques and advocate for non-perturbative approaches which may pave a way to new imaging modalities in this field.
Collapse
Affiliation(s)
- Nicolas Moutal
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS - Ecole Polytechnique IP Paris, 91128 Palaiseau, France
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS - Ecole Polytechnique IP Paris, 91128 Palaiseau, France; Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
30
|
Bai R, Li Z, Sun C, Hsu YC, Liang H, Basser P. Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain. Neuroimage 2020; 219:117039. [DOI: 10.1016/j.neuroimage.2020.117039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
|
31
|
Efficiency of High and Standard b Value Diffusion-Weighted Magnetic Resonance Imaging in Grading of Gliomas. JOURNAL OF ONCOLOGY 2020; 2020:6942406. [PMID: 33005190 PMCID: PMC7509551 DOI: 10.1155/2020/6942406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Background Glioma is the most common fatal malignant tumor of the CNS. Early detection of glioma grades based on diffusion-weighted imaging (DWI) properties is considered one of the most recent noninvasive promising tools in the assessment of glioma grade and could be helpful in monitoring patient prognosis and response to therapy. Aim This study aimed to investigate the accuracy of DWI at both standard and high b values (b = 1000 s/mm2 and b = 3000 s/mm2) to distinguish high-grade glioma (HGG) from low-grade glioma (LGG) in clinical practice based on histopathological results. Materials and Methods Twenty-three patients with glioma had DWI at l.5 T MR using two different b values (b = 1000 s/mm2 and b = 3000 s/mm2) at Al-Shifa Medical Complex after obtaining ethical and administrative approvals, and data were collected from March 2019 to March 2020. Minimum, maximum, and mean of apparent diffusion coefficient (ADC) values were measured through drawing region of interest (ROI) on a solid part at ADC maps. Data were analyzed by using the MedCalc analysis program, version 19.0.4, receiver operating characteristic (ROC) curve analysis was done, and optimal cutoff values for grading gliomas were determined. Sensitivity and specificity were also calculated. Results The obtained results showed the ADCmean, ADCratio, ADCmax, and ADCmin were performed to differentiate between LGG and HGG at both standard and high b values. Moreover, ADC values were inversely proportional to glioma grade, and these differences are more obvious at high b value. Minimum ADC values using standard b value were 1.13 ± 0.17 × 10−3 mm2/s, 0.89 ± 0.85 × 10−3 mm2/s, and 0.82 ± 0.17 × 10−3 mm2/s for grades II, III, and IV, respectively. Concerning high b value, ADCmin values were 0.76 ± 0.07 × 10−3 mm2/s, 0.61 ± 0.01 × 10−3 mm2/s, and 0.48 ± 0.07 × 10−3 mm2/s for grades II, III, and IV, respectively. ADC values were inversely correlated with results of glioma grades, and the correlation was stronger at ADC3000 (r = −0.722, P ≤ 0.001). The ADC3000 achieved the highest diagnostic accuracy with an area under the curve (AUC) of 0.618, 100% sensitivity, 85.7% specificity, and 85.7% accuracy for glioma grading at a cutoff point of ≤0.618 × 10−3 mm2/s. The high b value showed stronger agreement with histopathology compared with standard b value results (k = 0.89 and 0.79), respectively. Conclusion The ADC values decrease with an increase in tumor cellularity. Meanwhile, high b value provides better tissue contrast by reflecting more tissue diffusivity. Therefore, ADC-derived parameters at high b value are more useful in the grading of glioma than those obtained at standard b value. They might be a better surrogate imaging sequence in the preoperative evaluation of gliomas.
Collapse
|
32
|
Choi Y, Hwang EJ, Nam Y, Choi HS, Jang J, Jung SL, Ahn KJ, Kim BS. Analysis of Apparent Diffusion Coefficients of the Brain in Healthy Controls: A Comparison Study between Single-Shot Echo-Planar Imaging and Read-out-Segmented Echo-Planar Imaging. Korean J Radiol 2020; 20:1138-1145. [PMID: 31270977 PMCID: PMC6609426 DOI: 10.3348/kjr.2018.0899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To compare apparent diffusion coefficients (ADCs) of brain segments by using two diffusion-weighted imaging acquisition modes, single-shot echo-planar imaging (ss-EPI) and read-out-segmented echo-planar imaging (rs-EPI), and to assess their correlation and agreement in healthy controls. MATERIALS AND METHODS T2-weighted (T2W) images, rs-EPI, and ss-EPI of 30 healthy subjects were acquired using a 3T magnetic resonance scanner. The T2W images were co-registered to the rs-EPI and ss-EPI, which were then segmented into the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) to generate masking templates. ADC maps of rs-EPI and ss-EPI were also segmented into the GM, WM, and CSF by using the generated templates. ADCs of rs-EPI and ss-EPI were compared using Student's t tests and correlated using Pearson's correlation coefficients. Bland-Altman plots were used to assess the agreement between acquisitions. RESULTS ADCs of rs-EPI and ss-EPI were significantly different in the GM (p < 0.001) and WM (p < 0.001). ADCs showed high agreement and correlation in the whole brain and CSF (r > 0.988; p < 0.001). ADC of the WM showed the least correlation (r = 0.894; p < 0.001), and ADCs of the WM and GM showed poor agreement. Pearson's correlation equations for each brain segment were y = 1.1x - 59.4 (GM), y = 1.45x - 255 (WM), and y = 0.98x - 63.5 (CSF), where x and y indicated ADCs of rs-EPI and ss-EPI, respectively. CONCLUSION While ADCs of rs-EPI and ss-EPI showed high correlation and agreement in the whole brain and CSF, ADCs of the WM and GM showed significant differences and large variability, reflecting brain parenchymal inhomogeneity due to different regional microenvironments. ADCs of different acquisition methods should be interpreted carefully, especially in intra-individual comparisons.
Collapse
Affiliation(s)
- Yangsean Choi
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea
| | - Eo Jin Hwang
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea
| | - Yoonho Nam
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea
| | - Hyun Seok Choi
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea. .,Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea.
| | - So Lyung Jung
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea.
| | - Kook Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea.
| | - Bum Soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, Seoul, Korea.
| |
Collapse
|
33
|
Takeishi Y, Takayasu T, Kolakshyapati M, Yonezawa U, Amatya VJ, Takano M, Taguchi A, Takeshima Y, Sugiyama K, Kurisu K, Yamasaki F. Advantage of high b value diffusion-weighted imaging for differentiation of common pediatric brain tumors in posterior fossa. Eur J Radiol 2020; 128:108983. [PMID: 32438259 DOI: 10.1016/j.ejrad.2020.108983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE The pediatric posterior fossa (PF) brain tumors with higher frequencies are embryonal tumors (ET), ependymal tumors (EPN) and pilocytic astrocytomas (PA), however, it is often difficult to make a differential diagnosis among them with conventional MRI. The ADC calculated from DWI could be beneficial for diagnostic work up. METHOD We acquired DWI at b = 1000 and 4000(s/mm2). The relationship between ADC and the three types of brain tumors was evaluated with Mann-Whitney U test. We also performed simple linear regression analysis to evaluate the relationship between ADC and cellularity, and implemented receiver operating characteristic curve (ROC curve) to test the diagnostic performance among tumors. RESULTS The highest ADC (b1000/b4000 × 10-3 mm2/s) was observed in PA (1.02-1.91/0.73-1.28), followed by PF-EPN (0.83-1.28/0.60-0.79) and the lowest was ET (0.41-0.75/0.29-0.47). There was significant difference among the groups in both ADC value (b-1000/b-4000: ET vs. PF-EPN p < 0.0001/0.0001, ET vs. PA p < 0.0001/0.0001, PF-EPN vs. PA p < 0.0001/0.0001). ROC analysis revealed that ADC in both b-values showed complete separation between ET and PF-EPN. And it also revealed that ADC at b-4000 could differentiate PF-EPN and PA (96.0%) better than ADC at b-1000 (90.1%). The stronger negative correlation was observed between the ADC and cellularity at b-4000 than at b-1000 (R2 = 0.7415 vs.0.7070) CONCLUSIONS: ADC of ET was significantly lower than the other two groups, and ADC of PA was significantly higher than the other two groups in both b-1000 and b-4000. Our results showed that ADC at b-4000 was more useful than ADC at b-1000 especially for differentiation between PF-EPN and PA.
Collapse
Affiliation(s)
- Yusuke Takeishi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Takeshi Takayasu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | | | - Ushio Yonezawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Motoki Takano
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology and Neuro-oncology Program, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Minami-ku, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
34
|
Gao J, Jiang M, Magin RL, Gatto RG, Morfini G, Larson AC, Li W. Multicomponent diffusion analysis reveals microstructural alterations in spinal cord of a mouse model of amyotrophic lateral sclerosis ex vivo. PLoS One 2020; 15:e0231598. [PMID: 32310954 PMCID: PMC7170503 DOI: 10.1371/journal.pone.0231598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
The microstructure changes associated with degeneration of spinal axons in amyotrophic lateral sclerosis (ALS) may be reflected in altered water diffusion properties, potentially detectable with diffusion-weighted (DW) MRI. Prior work revealed the classical mono-exponential model fails to precisely depict decay in DW signal at high b-values. In this study, we aim to investigate signal decay behaviors at ultra-high b-values for non-invasive assessment of spinal cord alterations in the transgenic SOD1G93A mouse model of ALS. A multiexponential diffusion analysis using regularized non-negative least squares (rNNLS) algorithm was applied to a series of thirty DW MR images with b-values ranging from 0 to 858,022 s/mm2 on ex vivo spinal cords of transgenic SOD1G93A and age-matched control mice. We compared the distributions of measured diffusion coefficient fractions between the groups. The measured diffusion weighted signals in log-scale showed non-linear decay behaviors with increased b-values. Faster signal decays were observed with diffusion gradients applied parallel to the long axis of the spinal cord compared to when oriented in the transverse direction. Multiexponential analysis at the lumbar level in the spinal cord identified ten subintervals. A significant decrease of diffusion coefficient fractions was found in the ranges of [1.63×10−8,3.70×10−6] mm2/s (P = 0.0002) and of [6.01×10−6,4.20×10−5] mm2/s (P = 0.0388) in SOD1G93A mice. Anisotropic diffusion signals persisted at ultra-high b-value DWIs of the mouse spinal cord and multiexponential diffusion analysis offers the potential to evaluate microstructural alterations of ALS-affected spinal cord non-invasively.
Collapse
Affiliation(s)
- Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Research Resource Center, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mingchen Jiang
- Department of Physiology, Northwestern University, Chicago, IL, United States of America
| | - Richard L. Magin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Rodolfo G. Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Andrew C. Larson
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
| | - Weiguo Li
- Research Resource Center, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ogura A, Sotome H, Asai A, Fuju A. Evaluation of capillary blood volume in the lower limb muscles after exercise by intravoxel incoherent motion. Radiol Med 2020; 125:474-480. [DOI: 10.1007/s11547-020-01163-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
|
36
|
Afzali M, Aja-Fernández S, Jones DK. Direction-averaged diffusion-weighted MRI signal using different axisymmetric B-tensor encoding schemes. Magn Reson Med 2020; 84:1579-1591. [PMID: 32080890 PMCID: PMC7318161 DOI: 10.1002/mrm.28191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Purpose It has been shown, theoretically and in vivo, that using the Stejskal‐Tanner pulsed‐gradient, or linear tensor encoding (LTE), and in tissue exhibiting a “stick‐like” diffusion geometry, the direction‐averaged diffusion‐weighted MRI signal at high b‐values (
7000<b<10000s/mm2) follows a power‐law, decaying as
1/b. It has also been shown, theoretically, that for planar tensor encoding (PTE), the direction‐averaged diffusion‐weighted MRI signal decays as 1/b. We aimed to confirm this theoretical prediction in vivo. We then considered the direction‐averaged signal for arbitrary b‐tensor shapes and different tissue substrates to look for other conditions under which a power‐law exists. Methods We considered the signal decay for high b‐values for encoding geometries ranging from 2‐dimensional PTE, through isotropic or spherical tensor encoding to LTE. When a power‐law behavior was suggested, this was tested using in silico simulations and, when appropriate, in vivo using ultra‐strong (300 mT/m) gradients. Results Our in vivo results confirmed the predicted 1/b power law for PTE. Moreover, our analysis showed that using an axisymmetric b‐tensor a power‐law only exists under very specific conditions: (a) “stick‐like” tissue geometry and purely LTE or purely PTE waveforms; and (b) "pancake‐like" tissue geometry and a purely LTE waveform. Conclusions A complete analysis of the power‐law dependencies of the diffusion‐weighted signal at high b‐values has been performed. Only three specific forms of encoding result in a power‐law dependency, pure linear and pure PTE when the tissue geometry is “stick‐like” and pure LTE when the tissue geometry is "pancake‐like". The different exponents of these encodings could be used to provide independent validation of the presence of different tissue geometries in vivo.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Santiago Aja-Fernández
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.,Laboratorio de Procesado de Imagen, ETSI Telecomunicación Edificio de las Nuevas Tecnologías, Universidad de Valladolid, Valladolid, Spain
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.,Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Vidić I, Egnell L, Jerome NP, White NS, Karunamuni R, Rakow-Penner R, Dale AM, Bathen TF, Goa PE. Modeling the diffusion-weighted imaging signal for breast lesions in the b = 200 to 3000 s/mm 2 range: quality of fit and classification accuracy for different representations. Magn Reson Med 2020; 84:1011-1023. [PMID: 31975448 DOI: 10.1002/mrm.28161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE To evaluate different non-Gaussian representations for the diffusion-weighted imaging (DWI) signal in the b-value range 200 to 3000 s/mm2 in benign and malignant breast lesions. METHODS Forty-three patients diagnosed with benign (n = 18) or malignant (n = 25) tumors of the breast underwent DWI (b-values 200, 600, 1200, 1800, 2400, and 3000 s/mm2 ). Six different representations were fit to the average signal from regions of interest (ROIs) at different b-value ranges. Quality of fit was assessed by the corrected Akaike information criterion (AICc), and the Friedman test was used for assessing representation ranks. The area under the curve (AUC) of receiver operating characteristic curves were used to evaluate the power of derived parameters to differentiate between malignant and benign lesions. The lesion ROI was divided in central and peripheral parts to assess potential effect of heterogeneity. Sensitivity to noise-floor correction was also evaluated. RESULTS The Padé exponent was ranked as the best based on AICc, whereas 3 models (kurtosis, fractional, and biexponential) achieved the highest AUC = 0.99 for lesion differentiation. The monoexponential model at bmax = 600 s/mm2 already provides AUC = 0.96, with considerably shorter acquisition time and simpler analysis. Significant differences between central and peripheral parts of lesions were found in malignant lesions. The mono- and biexponential models were most stable against varying degrees of noise-floor correction. CONCLUSION Non-Gaussian representations are required for fitting of the DWI curve at high b-values in breast lesions. However, the added clinical value from the high b-value data for differentiation of benign and malignant lesions is not clear.
Collapse
Affiliation(s)
- Igor Vidić
- Department of Physics, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Egnell
- Department of Physics, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Neil P Jerome
- Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nathan S White
- Department of Radiology, University of California San Diego, La Jolla, California.,Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California.,HealthLytix Inc., San Diego, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, California.,Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Tone F Bathen
- Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pål Erik Goa
- Department of Physics, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
38
|
Diffusion-weighted Renal MRI at 9.4 Tesla Using RARE to Improve Anatomical Integrity. Sci Rep 2019; 9:19723. [PMID: 31873155 PMCID: PMC6928203 DOI: 10.1038/s41598-019-56184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B0 inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease.
Collapse
|
39
|
Baboli M, Zhang J, Kim SG. Advances in Diffusion and Perfusion MRI for Quantitative Cancer Imaging. CURRENT PATHOBIOLOGY REPORTS 2019; 7:129-141. [PMID: 33344067 PMCID: PMC7747414 DOI: 10.1007/s40139-019-00204-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This article is to review recent technical developments and their clinical applications in cancer imaging quantitative measurement of cellular and vascular properties of the tumors. RECENT FINDINGS Rapid development of fast Magnetic Resonance Imaging (MRI) technologies over last decade brought new opportunities in quantitative MRI methods to measure both cellular and vascular properties of tumors simultaneously. SUMMARY Diffusion MRI (dMRI) and dynamic contrast enhanced (DCE)-MRI have become widely used to assess the tissue structural and vascular properties, respectively. However, the ultimate potential of these advanced imaging modalities has not been fully exploited. The dependency of dMRI on the diffusion weighting gradient strength and diffusion time can be utilized to measure tumor perfusion, cellular structure, and cellular membrane permeability. Similarly, DCE-MRI can be used to measure vascular and cellular membrane permeability along with cellular compartment volume fractions. To facilitate the understanding of these potentially important methods for quantitative cancer imaging, we discuss the basic concepts and recent developments, as well as future directions for further development.
Collapse
Affiliation(s)
- Mehran Baboli
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jin Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sungheon Gene Kim
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
40
|
Wáng YXJ, Wang X, Wu P, Wang Y, Chen W, Chen H, Li J. Topics on quantitative liver magnetic resonance imaging. Quant Imaging Med Surg 2019; 9:1840-1890. [PMID: 31867237 DOI: 10.21037/qims.2019.09.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver magnetic resonance imaging (MRI) is subject to continuous technical innovations through advances in hardware, sequence and novel contrast agent development. In order to utilize the abilities of liver MR to its full extent and perform high-quality efficient exams, it is mandatory to use the best imaging protocol, to minimize artifacts and to select the most adequate type of contrast agent. In this article, we review the routine clinical MR techniques applied currently and some latest developments of liver imaging techniques to help radiologists and technologists to better understand how to choose and optimize liver MRI protocols that can be used in clinical practice. This article covers topics on (I) fat signal suppression; (II) diffusion weighted imaging (DWI) and intravoxel incoherent motion (IVIM) analysis; (III) dynamic contrast-enhanced (DCE) MR imaging; (IV) liver fat quantification; (V) liver iron quantification; and (VI) scan speed acceleration.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | | | - Peng Wu
- Philips Healthcare (Suzhou) Co., Ltd., Suzhou 215024, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China.,Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
41
|
Ling C, Shi F, Zhang J, Jiang B, Dong F, Zeng Q. In vivo measurement of cytoplasmic organelle water fraction using diffusion-weighted imaging: Application in the malignant grading and differential diagnosis of gliomas. Medicine (Baltimore) 2019; 98:e17949. [PMID: 31725652 PMCID: PMC6867796 DOI: 10.1097/md.0000000000017949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recently, we have proposed a theoretical modified tri-exponential model for multi-b-value diffusion-weighted imaging (DWI) to measure the cytoplasmic organelle water fraction (COWF). This study aims to investigate whether COWF maps are effective in evaluating the malignant degree of gliomas and distinguishing primary central nervous system lymphomas (PCNSL) from gliomas.We performed this retrospective study based on our prospectively collected data. All patients underwent preoperative multi-b-value DWI. Parametric maps were derived from multi-b-value DWI maps using the modified tri-exponential model. Receiver operating characteristic analyses were used to assess the diagnostic accuracy of the parameter maps. Pearson correlation coefficients were calculated to investigate the correlations between the parameters and the Ki-67 proliferation index.A total of 66 patients were enrolled, including 16 low-grade gliomas (LGG), 45 high-grade gliomas (HGG), and 5 PCNSL. The mean COWF values were significantly different among LGG (3.1 ± 1.4%), HGG (6.9 ± 2.8%), and PCNSL (14.0 ± 2.2%) (P < .001). The areas under the curves of the mean COWF value in distinguishing HGG from LGG and distinguishing PCNSL from gliomas were 0.899 and 0.980, respectively. The mean COWF value had a moderate correlation with the Ki-67 proliferation index (r = 0.647).The COWF map is useful in malignant grading of gliomas, and may be helpful in distinguishing PCNSL from gliomas.
Collapse
Affiliation(s)
| | | | | | - Biao Jiang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Dong
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | |
Collapse
|
42
|
Duchêne G, Abarca‐Quinones J, Leclercq I, Duprez T, Peeters F. Insights into tissue microstructure using a double diffusion encoding sequence on a clinical scanner: Validation and application to experimental tumor models. Magn Reson Med 2019; 83:1263-1276. [DOI: 10.1002/mrm.28012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
| | - Jorge Abarca‐Quinones
- Université Catholique de Louvain Brussels Belgium
- Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Isabelle Leclercq
- Université Catholique de Louvain Brussels Belgium
- Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Thierry Duprez
- Université Catholique de Louvain Brussels Belgium
- Cliniques Universitaires Saint‐Luc Brussels Belgium
| | | |
Collapse
|
43
|
Karunamuni RA, White NS, Fromm A, Moen G, Renate Grüner E, Dale AM, Oltedal L. Improved characterization of cerebral infarction using combined tissue T2 and high b-value diffusion MRI in post-thrombectomy patients: a feasibility study. Acta Radiol 2019; 60:1294-1300. [PMID: 30626210 DOI: 10.1177/0284185118820063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Roshan A Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Nathan S White
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Annette Fromm
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Moen
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Eli Renate Grüner
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Leif Oltedal
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
44
|
Effect of intravoxel incoherent motion on diffusion parameters in normal brain. Neuroimage 2019; 204:116228. [PMID: 31580945 DOI: 10.1016/j.neuroimage.2019.116228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/15/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
At very low diffusion weighting the diffusion MRI signal is affected by intravoxel incoherent motion (IVIM) caused by dephasing of magnetization due to incoherent blood flow in capillaries or other sources of microcirculation. While IVIM measurements at low diffusion weightings have been frequently used to investigate perfusion in the body as well as in malignant tissue, the effect and origin of IVIM in normal brain tissue is not completely established. We investigated the IVIM effect on the brain diffusion MRI signal in a cohort of 137 radiologically-normal patients (62 male; mean age = 50.2 ± 17.8, range = 18 to 94). We compared the diffusion tensor parameters estimated from a mono-exponential fit at b = 0 and 1000 s/mm2 versus at b = 250 and 1000 s/mm2. The asymptotic fitting method allowed for quantitative assessment of the IVIM signal fraction f* in specific brain tissue and regions. Our results show a mean (median) percent difference in the mean diffusivity of about 4.5 (4.9)% in white matter (WM), about 7.8 (8.7)% in cortical gray matter (GM), and 4.3 (4.2)% in thalamus. Corresponding perfusion fraction f* was estimated to be 0.033 (0.032) in WM, 0.066 (0.065) in cortical GM, and 0.033 (0.030) in the thalamus. The effect of f* with respect to age was found to be significant in cortical GM (Pearson correlation ρ = 0.35, p = 3*10-5) and the thalamus (Pearson correlation ρ = 0.20, p = 0.022) with an average increase in f* of 5.17*10-4/year and 3.61*10-4/year, respectively. Significant correlations between f* and age were not observed for WM, and corollary analysis revealed no effect of gender on f*. Possible origins of the IVIM effect in normal brain tissue are discussed.
Collapse
|
45
|
Natali F, Dolce C, Peters J, Stelletta C, Demé B, Ollivier J, Boehm M, Leduc G, Piazza I, Cupane A, Barbier EL. Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation. J R Soc Interface 2019; 16:20190186. [PMID: 31409238 PMCID: PMC6731513 DOI: 10.1098/rsif.2019.0186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Water diffusion is an optimal tool for investigating the architecture of brain tissue on which modern medical diagnostic imaging techniques rely. However, intrinsic tissue heterogeneity causes systematic deviations from pure free-water diffusion behaviour. To date, numerous theoretical and empirical approaches have been proposed to explain the non-Gaussian profile of this process. The aim of this work is to shed light on the physics piloting water diffusion in brain tissue at the micrometre-to-atomic scale. Combined diffusion magnetic resonance imaging and first pioneering neutron scattering experiments on bovine brain tissue have been performed in order to probe diffusion distances up to macromolecular separation. The coexistence of free-like and confined water populations in brain tissue extracted from a bovine right hemisphere has been revealed at the micrometre and atomic scale. The results are relevant for improving the modelling of the physics driving intra- and extracellular water diffusion in brain, with evident benefit for the diffusion magnetic resonance imaging technique, nowadays widely used to diagnose, at the micrometre scale, brain diseases such as ischemia and tumours.
Collapse
Affiliation(s)
- F. Natali
- Institut Laue-Langevin, Grenoble Cedex 9, France
- CNR-IOM, OGG, Grenoble Cedex 9, France
| | - C. Dolce
- Institut Laue-Langevin, Grenoble Cedex 9, France
- CNRS, Univ. Grenoble Alpes, LIPhy, 38000 Grenoble, France
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - J. Peters
- Institut Laue-Langevin, Grenoble Cedex 9, France
- CNRS, Univ. Grenoble Alpes, LIPhy, 38000 Grenoble, France
| | - C. Stelletta
- Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy
| | - B. Demé
- Institut Laue-Langevin, Grenoble Cedex 9, France
| | - J. Ollivier
- Institut Laue-Langevin, Grenoble Cedex 9, France
| | - M. Boehm
- Institut Laue-Langevin, Grenoble Cedex 9, France
| | - G. Leduc
- Biomedical Facility, ESRF, Grenoble, France
| | - I. Piazza
- Institut Laue-Langevin, Grenoble Cedex 9, France
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - A. Cupane
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - E. L. Barbier
- Grenoble Institut Neurosciences, University of Grenoble Alpes, Inserm, U1216, 38000 Grenoble, France
| |
Collapse
|
46
|
Moutal N, Demberg K, Grebenkov DS, Kuder TA. Localization regime in diffusion NMR: Theory and experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:162-174. [PMID: 31295631 DOI: 10.1016/j.jmr.2019.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 05/08/2023]
Abstract
In this work we investigate the emergence of the localization regime for diffusion NMR in various geometries: inside slabs, inside cylinders and outside rods arranged on a square array. At high gradients, the transverse magnetization is strongly attenuated in the bulk, whereas the macroscopic signal is formed by the remaining magnetization localized near boundaries of the sample. As a consequence, the signal is particularly sensitive to the microstructure. The theoretical analysis relies on recent mathematical advances on the study of the Bloch-Torrey equation. Experiments were conducted with hyperpolarized xenon-129 gas in 3D-printed phantoms and show an excellent agreement with numerical simulations and theoretical predictions. Our mathematical arguments and experimental evidence indicate that the localization regime with a stretched-exponential decay of the macroscopic signal is a generic feature of diffusion NMR that can be observed at moderately high gradients in most NMR scanners.
Collapse
Affiliation(s)
- Nicolas Moutal
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Kerstin Demberg
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Denis S Grebenkov
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Tristan Anselm Kuder
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
47
|
Lundell H, Nilsson M, Dyrby TB, Parker GJM, Cristinacce PLH, Zhou FL, Topgaard D, Lasič S. Multidimensional diffusion MRI with spectrally modulated gradients reveals unprecedented microstructural detail. Sci Rep 2019; 9:9026. [PMID: 31227745 PMCID: PMC6588609 DOI: 10.1038/s41598-019-45235-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Characterization of porous media is essential in a wide range of biomedical and industrial applications. Microstructural features can be probed non-invasively by diffusion magnetic resonance imaging (dMRI). However, diffusion encoding in conventional dMRI may yield similar signatures for very different microstructures, which represents a significant limitation for disentangling individual microstructural features in heterogeneous materials. To solve this problem, we propose an augmented multidimensional diffusion encoding (MDE) framework, which unlocks a novel encoding dimension to assess time-dependent diffusion specific to structures with different microscopic anisotropies. Our approach relies on spectral analysis of complex but experimentally efficient MDE waveforms. Two independent contrasts to differentiate features such as cell shape and size can be generated directly by signal subtraction from only three types of measurements. Analytical calculations and simulations support our experimental observations. Proof-of-concept experiments were applied on samples with known and distinctly different microstructures. We further demonstrate substantially different contrasts in different tissue types of a post mortem brain. Our simultaneous assessment of restriction size and shape may be instrumental in studies of a wide range of porous materials, enable new insights into the microstructure of biological tissues or be of great value in diagnostics.
Collapse
Affiliation(s)
- H Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - M Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| | - T B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - G J M Parker
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Bioxydyn Limited, Manchester, United Kingdom
| | - P L Hubbard Cristinacce
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - F-L Zhou
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - D Topgaard
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - S Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Random Walk Imaging AB, Lund, Sweden
| |
Collapse
|
48
|
Lampinen B, Szczepankiewicz F, Novén M, van Westen D, Hansson O, Englund E, Mårtensson J, Westin C, Nilsson M. Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling. Hum Brain Mapp 2019; 40:2529-2545. [PMID: 30802367 PMCID: PMC6503974 DOI: 10.1002/hbm.24542] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/17/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
In vivo mapping of the neurite density with diffusion MRI (dMRI) is a high but challenging aim. First, it is unknown whether all neurites exhibit completely anisotropic ("stick-like") diffusion. Second, the "density" of tissue components may be confounded by non-diffusion properties such as T2 relaxation. Third, the domain of validity for the estimated parameters to serve as indices of neurite density is incompletely explored. We investigated these challenges by acquiring data with "b-tensor encoding" and multiple echo times in brain regions with low orientation coherence and in white matter lesions. Results showed that microscopic anisotropy from b-tensor data is associated with myelinated axons but not with dendrites. Furthermore, b-tensor data together with data acquired for multiple echo times showed that unbiased density estimates in white matter lesions require data-driven estimates of compartment-specific T2 values. Finally, the "stick" fractions of different biophysical models could generally not serve as neurite density indices across the healthy brain and white matter lesions, where outcomes of comparisons depended on the choice of constraints. In particular, constraining compartment-specific T2 values was ambiguous in the healthy brain and had a large impact on estimated values. In summary, estimating neurite density generally requires accounting for different diffusion and/or T2 properties between axons and dendrites. Constrained "index" parameters could be valid within limited domains that should be delineated by future studies.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Medical Radiation PhysicsLund UniversityLundSweden
| | - Filip Szczepankiewicz
- Clinical Sciences Lund, Medical Radiation PhysicsLund UniversityLundSweden
- Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUS
| | - Mikael Novén
- Centre for Languages and LiteratureLund UniversityLundSweden
| | | | - Oskar Hansson
- Clinical Sciences Malmö, Clinical Memory Research UnitLund UniversityLundSweden
| | - Elisabet Englund
- Clinical Sciences Lund, Oncology and PathologyLund UniversityLundSweden
| | - Johan Mårtensson
- Clinical Sciences Lund, Department of Logopedics, Phoniatrics and AudiologyLund UniversityLundSweden
| | | | - Markus Nilsson
- Clinical Sciences Lund, RadiologyLund UniversityLundSweden
| |
Collapse
|
49
|
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR IN BIOMEDICINE 2019; 32:e3841. [PMID: 29193413 DOI: 10.1002/nbm.3841] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/09/2017] [Accepted: 09/11/2017] [Indexed: 05/22/2023]
Abstract
This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term.
Collapse
Affiliation(s)
- Daniel C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Markus Nilsson
- Clinical Sciences Lund, Department of Radiology, Lund University, Lund, Sweden
| | - Hui Zhang
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| |
Collapse
|
50
|
Hernandez-Fernandez M, Reguly I, Jbabdi S, Giles M, Smith S, Sotiropoulos SN. Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes. Neuroimage 2019; 188:598-615. [PMID: 30537563 PMCID: PMC6614035 DOI: 10.1016/j.neuroimage.2018.12.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
The great potential of computational diffusion MRI (dMRI) relies on indirect inference of tissue microstructure and brain connections, since modelling and tractography frameworks map diffusion measurements to neuroanatomical features. This mapping however can be computationally highly expensive, particularly given the trend of increasing dataset sizes and the complexity in biophysical modelling. Limitations on computing resources can restrict data exploration and methodology development. A step forward is to take advantage of the computational power offered by recent parallel computing architectures, especially Graphics Processing Units (GPUs). GPUs are massive parallel processors that offer trillions of floating point operations per second, and have made possible the solution of computationally-intensive scientific problems that were intractable before. However, they are not inherently suited for all problems. Here, we present two different frameworks for accelerating dMRI computations using GPUs that cover the most typical dMRI applications: a framework for performing biophysical modelling and microstructure estimation, and a second framework for performing tractography and long-range connectivity estimation. The former provides a front-end and automatically generates a GPU executable file from a user-specified biophysical model, allowing accelerated non-linear model fitting in both deterministic and stochastic ways (Bayesian inference). The latter performs probabilistic tractography, can generate whole-brain connectomes and supports new functionality for imposing anatomical constraints, such as inherent consideration of surface meshes (GIFTI files) along with volumetric images. We validate the frameworks against well-established CPU-based implementations and we show that despite the very different challenges for parallelising these problems, a single GPU achieves better performance than 200 CPU cores thanks to our parallel designs.
Collapse
Affiliation(s)
- Moises Hernandez-Fernandez
- Wellcome Centre for Integrative Neuroimaging - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom; Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Istvan Reguly
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Mike Giles
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Stephen Smith
- Wellcome Centre for Integrative Neuroimaging - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Stamatios N Sotiropoulos
- Wellcome Centre for Integrative Neuroimaging - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|