1
|
Özdemir İ, Etyemez S, Barker PB. High-field downfield MR spectroscopic imaging in the human brain. Magn Reson Med 2024; 92:890-899. [PMID: 38469953 PMCID: PMC11209804 DOI: 10.1002/mrm.30075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To investigate the feasibility of downfield MR spectroscopic imaging (DF-MRSI) in the human brain at 7T. METHODS A 7T DF-MRSI pulse sequence was implemented based on the previously described methodology at 3T, with 3D phase-encoding,1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation, and frequency selective refocusing. Data were pre-processed followed by analysis using the "LCModel" software package, and metabolite maps created from the LCModel results. Total scan time, including brain MRI and a water-reference MRSI, was 24 min. The sequence was tested in 10 normal volunteers. Estimated metabolite levels and uncertainty values (Cramer Rao lower bounds, CRLBs) for nine downfield peaks were compared between seven different brain regions, anterior cingulate cortex (ACC), centrum semiovale (CSO), corpus callosum (CC), cerebellar vermis (CV), dorsolateral prefrontal cortex (DLPFC), posterior cingulate cortex (PCC), and thalamus (Thal). RESULTS DF peaks were relatively uniformly distributed throughout the brain, with only a small number of peaks showing any significant regional variations. Most DF peaks had average CRLB<25% in most brain regions. Average SNR values were higher for the brain regions ACC and DLPFC (˜7 ± 0.95, mean ± SD) while in a range of 3.4-6.0 for other brain regions. Average linewidth (FWHM) values were greater than 35 Hz in the ACC, CV, and Thal, and 22 Hz in CC, CSO, DLPFC, and PCC. CONCLUSION High-field DF-MRSI is able to spatially map exchangeable protons in the human brain at high resolution and with near whole-brain coverage in acceptable scan times, and in the future may be used to study metabolism of brain tumors or other neuropathological disorders.
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY
- Department of Psychiatry, Weill Cornell Medicine, New York, NY
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
2
|
Putko P, Romero JA, Kazimierczuk K. A pH-enhanced resolution in benchtop NMR spectroscopy. Analyst 2024; 149:1998-2003. [PMID: 38421293 DOI: 10.1039/d3an02000b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NMR spectroscopy is one of the most potent methods in analytical chemistry. NMR titration experiments are particularly useful since they measure molecular binding affinities and other concentration-dependent effects. These experiments, however, require a long series of measurements. An alternative to these serial measurements has recently been presented, exploiting a pH (or generally - a concentration) gradient along the NMR tube. The proposed experiment, although efficient, was based on the sensitivity- and hardware-demanding chemical shift imaging (CSI) method. Thus, it is practically limited to high-resolution NMR spectrometers. This paper proposes modifying and adapting the approach to the popular and cost-efficient benchtop NMR machines. Instead of CSI, we use a device that shifts the NMR tube vertically to measure the spectra of different sample volumes, which have different pH values due to the established gradient along the tube. We demonstrate the potential of the method on the test samples of L-tyrosine and 2,6-lutidine, and two real samples from the food industry - an infant formula and an energy drink. The proposed method boosts spectral resolution and allows for the sampling of a broader range of pH values when compared to the original approach.
Collapse
Affiliation(s)
- Paulina Putko
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Javier A Romero
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | | |
Collapse
|
3
|
Özdemir İ, Ganji S, Gillen J, Etyemez S, Považan M, Barker PB. Downfield proton MRSI with whole-brain coverage at 3T. Magn Reson Med 2023; 90:814-822. [PMID: 37249071 PMCID: PMC10330175 DOI: 10.1002/mrm.29706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE To develop a 3D downfield (DF) MRSI protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. METHODS A 3D, circularly phase-encoded version of the previously developed 2D DF MRSI sequence with1 3 ‾ 3 1 ‾ $$ 1\overline{3}3\overline{1} $$ spectral-spatial excitation and frequency selective refocusing was implemented and tested in five healthy volunteers at 3T. The DF metabolite maps with a nominal spatial resolution of 0.7 cm3 were recorded in eight slices at 3T in a scan time of 22 m 40 s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine DF peaks. RESULTS LCModel analysis showed Cramer Rao lower bounds average values of 3%-4% for protein amide resonances in the three selected regions (anterior cingulate, dorsolateral prefrontal cortex, and centrum semiovale); Cramer Rao lower bounds were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between centrum semiovale and dorsolateral prefrontal cortex for peaks at 7.09 ppm (p = 0.014), 7.90 ppm (p = 0.009), 8.18 ppm (p = 0.009), combined amides (p = 0.009), and between anterior cingulate and dorsolateral prefrontal cortex for the 7.30 ppm peak (p = 0.020). Cramer Rao lower bounds values were not significantly different between brain regions for any of the DF peaks. CONCLUSION The 3D DF MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm3 .
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Joseph Gillen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, United States
| | | | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Zhao Y, Sun C, Zu Z. Assignment of molecular origins of NOE signal at -3.5 ppm in the brain. Magn Reson Med 2023; 90:673-685. [PMID: 36929814 PMCID: PMC10644915 DOI: 10.1002/mrm.29643] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE Nuclear Overhauser enhancemen mediated saturation transfer effect, termed NOE (-3.5 ppm), is a major source of CEST MRI contrasts at 3.5 ppm in the brain. Previous phantom experiments have demonstrated that both proteins and lipids, two major components in tissues, have substantial contributions to NOE (-3.5 ppm) signals. Their relative contributions in tissues are informative for the interpretation of NOE (-3.5 ppm) contrasts that could provide potential imaging biomarkers for relevant diseases, which remain incompletely understood. METHODS Experiments on homogenates and supernatants of brain tissues collected from healthy rats, that could isolate proteins from lipids, were performed to evaluate the relative contribution of lipids to NOE (-3.5 ppm) signals. On the other hand, experiments on ghost membranes with varied pH, and reconstituted phospholipids with different chemical compositions were conducted to study the dependence of NOE (-3.5 ppm) on physiological conditions. Besides, CEST imaging on rat brains bearing 9 L tumors and healthy rat brains was performed to analyze the causes of the NOE (-3.5 ppm) contrast variations between tumors and normal tissues, and between gray matter and white matter. RESULTS Our experiments reveal that lipids have dominant contributions to the NOE (-3.5 ppm) signals. Further analysis suggests that decreased NOE (-3.5 ppm) signals in tumors and higher NOE (-3.5 ppm) signals in white matter than in gray matter are mainly explained by changes in membrane lipids, rather than proteins. CONCLUSION NOE (-3.5 ppm) could be exploited as a highly sensitive MRI contrast for imaging membrane lipids in the brain.
Collapse
Affiliation(s)
- Yu Zhao
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Casey Sun
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| |
Collapse
|
5
|
Zhao Y, Sun C, Zu Z. Assignment of molecular origins of NOE signal at -3.5 ppm in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526979. [PMID: 36778370 PMCID: PMC9915742 DOI: 10.1101/2023.02.03.526979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose Nuclear Overhauser Enhancement mediated saturation transfer effect, termed NOE(-3.5 ppm), is a major source of chemical exchange saturation transfer (CEST) MRI contrasts at 3.5 ppm in the brain. Previous phantom experiments have demonstrated that both proteins and lipids, two major components in tissues, have substantial contributions to NOE(-3.5 ppm) signals. Their relative contributions in tissues are informative for the interpretation of NOE(-3.5 ppm) contrasts that could provide potential imaging biomarkers for relevant diseases, which remain incompletely understood. Methods Experiments on homogenates and supernatants of brain tissues collected from healthy rats, that could isolate proteins from lipids, were performed to evaluate the relative contribution of lipids to NOE(-3.5 ppm) signals. On the other hand, experiments on ghost membranes with varied pH, and reconstituted phospholipids with different chemical compositions were conducted to study the dependence of NOE(-3.5 ppm) on physiological conditions. Besides, CEST imaging on rat brains bearing 9L tumors and healthy rat brains was performed to analyze the causes of the NOE(-3.5 ppm) contrast variations between tumors and normal tissues, and between gray matter and white matter. Results Our experiments reveal that lipids have dominant contributions to the NOE (-3.5 ppm) signals. Further analysis suggests that decreased NOE(-3.5 ppm) signals in tumors and higher NOE(-3.5 ppm) signals in white matter than in gray matter are mainly explained by changes in membrane lipids, rather than proteins. Conclusion NOE(-3.5 ppm) could be exploited as a highly sensitive MRI contrast for imaging membrane lipids in the brain.
Collapse
|
6
|
Cui J, Sun C, Zu Z. NOE-weighted imaging in tumors using low-duty-cycle 2π-CEST. Magn Reson Med 2023; 89:636-651. [PMID: 36198015 PMCID: PMC9792266 DOI: 10.1002/mrm.29475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Nuclear Overhauser enhancement (NOE)-mediated CEST imaging at -3.5 ppm has shown clinical interest in diagnosing tumors. Multiple-pool Lorentzian fit has been used to quantify NOE, which, however, requires a long scan time. Asymmetric analysis of CEST signals could be a simple and fast method to quantify this NOE, but it has contamination from the amide proton transfer (APT) at 3.5 ppm. This work proposes a new method using an asymmetric analysis of a low-duty-cycle pulsed-CEST sequence with a flip angle of 360°, termed 2π-CEST, to reduce the contribution from APT. METHODS Simulations were used to evaluate the capability of the 2π-CEST to reduce APT. Experiments on animal tumor models were performed to show its advantages compared with the conventional asymmetric analysis. Samples of reconstituted phospholipids and proteins were used to evaluate the molecular origin of this NOE. RESULTS The 2π-CEST has reduced contribution from APT. In tumors where we show that the NOE is comparable to the APT effect, reducing the contamination from APT is crucial. The results show that the NOE signal obtained with 2π-CEST in tumor regions appears more homogeneous than that obtained with the conventional method. The phantom study showed that both phospholipids and proteins contribute to the NOE at -3.5 ppm. CONCLUSION The NOE at -3.5 ppm has a different contrast mechanism from APT and other CEST/NOE effects. The proposed 2π-CEST is more accurate than the conventional asymmetric analysis in detecting NOE, and requires much less scan time than the multiple-pool Lorentzian fit.
Collapse
Affiliation(s)
- Jing Cui
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Casey Sun
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Chemistry, University of Florida, Gainesville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, US,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| |
Collapse
|
7
|
Özdemir İ, Ganji S, Joseph Gillen BS, Etyemez S, Považan M, Barker PB. Downfield Proton MRSI with whole-brain coverage at 3T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525726. [PMID: 36747802 PMCID: PMC9900941 DOI: 10.1101/2023.01.27.525726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose To develop a 3D downfield magnetic resonance spectroscopic imaging (DF-MRSI) protocol with whole brain coverage and post-processing pipeline for creation of metabolite maps. Methods A 3D, circularly phase-encoded version of the previously developed 2D DF-MRSI sequence with spectral-spatial excitation and frequency selective refocusing was implemented and tested in 5 healthy volunteers at 3T. Downfield metabolite maps with a nominal spatial resolution of 0.7 cm 3 were recorded in 8 slices at 3T in a scan time of 22m 40s. An MRSI post-processing pipeline was developed to create DF metabolite maps. Metabolite concentrations and uncertainty estimates were compared between region differences for nine downfield peaks. Results LCModel analysis showed CRLB average values of 3-4% for protein amide resonances in the three selected regions (anterior cingulate (ACC), dorsolateral prefrontal cortex (DLPFC), and centrum semiovale (CSO)); CRLBs were somewhat higher for individual peaks but for the most part were less than 20%. While DF concentration maps were visually quite homogeneous throughout the brain, general linear regression analysis corrected for multiple comparisons found significant differences between CSO and DLPFC for peaks at 7.09 ppm (p= 0.014), 7.90 ppm (p=0.009), 8.18 ppm (p=0.009), combined amides (p=0.009), and between ACC and DLPFC for the 7.30 ppm peak (p=0.020). CRLB values were not significantly different between brain regions for any of the DF peaks. Conclusion 3D DF-MRSI of the human brain at 3T with wide spatial coverage for the mapping of exchangeable amide and other resonances is feasible at a nominal spatial resolution of 0.7 cm 3 .
Collapse
|
8
|
Stabinska J, Müller-Lutz A, Wittsack HJ, Tell C, Rump LC, Ertas N, Antoch G, Ljimani A. Two point Dixon-based chemical exchange saturation transfer (CEST) MRI in renal transplant patients on 3 T. Magn Reson Imaging 2022; 90:61-69. [PMID: 35476934 DOI: 10.1016/j.mri.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the performance of two point (2-pt) Dixon-based chemical exchange saturation transfer (CEST) imaging for fat suppression in renal transplant patients. METHODS The 2-pt Dixon-based CEST MRI was validated in an egg-phantom and in fourteen renal transplant recipients (5 females and 9 males; age range: 23-78 years; mean age: 51 ± 16.8). All CEST experiments were performed on a 3 T clinical MRI scanner using a dual-echo CEST sequence. The 2-pt Dixon technique was applied to generate water-only CEST images at different frequency offsets, which were further used to calculate the z-spectra. The magnetization transfer ratio asymmetry (MTRasym) values in the frequency ranges of hydroxyl, amine and amide protons were estimated in the renal cortex and medulla. RESULTS Results of the in vitro experiments suggest that the 2-pt Dixon technique enables effective fat peak removal and does not introduce additional asymmetries to the z-spectrum. Accordingly, our results in vivo show that the fat-corrected amide proton transfer (APT) effect in the kidney is significantly higher compared to that obtained from the CEST data acquired close to the in-phase condition both in the renal cortex (-0.1 [0.7] vs. -0.7 [1.2], P = 0.029) and medulla (0.3 [0.8] vs. 0.01 [1.3], P = 0.049), indicating that the 2-pt Dixon-based CEST method increases the specificity of the APT contrast by correcting the fat-induced artifacts. CONCLUSION Combination of the dual-echo CEST acquisition with Dixon post-processing provides effective water-fat separation, allowing more accurate quantification of the APT CEST effect in the transplanted kidney.
Collapse
Affiliation(s)
- Julia Stabinska
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Christian Tell
- Department of Nephrology, Medical Faculty, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Lars Christian Rump
- Department of Nephrology, Medical Faculty, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Neslihan Ertas
- Department of Vascular and Endovascular Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
9
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Gonçalves SI, Simões RV, Shemesh N. Short TE downfield magnetic resonance spectroscopy in a mouse model of brain glioma. Magn Reson Med 2022; 88:524-536. [PMID: 35315536 DOI: 10.1002/mrm.29243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Enhanced cell proliferation in tumors can be associated with altered metabolic profiles and dramatic microenvironmental changes. Downfield magnetic resonance spectroscopy (MRS) has received increasing attention due to its ability to report on labile resonances of molecules not easily detected in upfield 1 H MRS. Image-selected-in-vivo-spectroscopy-relaxation enhanced MRS (iRE-MRS) was recently introduced for acquiring short echo-time (TE) spectra. Here, iRE-MRS was used to investigate in-vivo downfield spectra in glioma-bearing mice. METHODS Experiments were performed in vivo in an immunocompetent glioma mouse model at 9.4 T using a cryogenic coil. iRE-MRS spectra were acquired in N = 6 glioma-bearing mice (voxel size = 2.23 mm3 ) and N = 6 control mice. Spectra were modeled by a sum of Lorentzian peaks simulating known downfield resonances, and differences between controls and tumors were quantified using relative peak areas. RESULTS Short TE tumor spectra exhibited large qualitative differences compared to control spectra. Most peaks appeared modulated, with strong attenuation of NAA (∼7.82, 7.86 ppm) and changes in relative peak areas between 6.75 and 8.49 ppm. Peak areas tended to be smaller for DF6.83 , DF7.60 , DF8.18 and NAA; and larger for DF7.95 and DF8.24 . Differences were also detected in signals resonating above 8.5 ppm, assumed to arise from NAD+. CONCLUSIONS In-vivo downfield 1 H iRE-MRS of mouse glioma revealed differences between controls and tumor bearing mice, including in metabolites which are not easily detectable in the more commonly investigated upfield spectrum. These findings motivate future downfield MRS investigations exploring pH and exchange contributions to these differences.
Collapse
Affiliation(s)
| | - Rui V Simões
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
11
|
Plaehn NMJ, Mayer S, Jakob PM, Gutjahr FT. T 1-independent exchange rate quantification using saturation- or phase sensitive-water exchange spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 335:107141. [PMID: 35051740 DOI: 10.1016/j.jmr.2021.107141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE Water Exchange Spectroscopy (WEX) is a direct measurement of the exchange rate ksw of labile protons from a solute to water in which the exchange time is varied. However the useful information can be masked by the T1-decay of the solvent pool. We propose Saturation-WEX and Phase Sensitive WEX (PS-WEX) as an extension upon the WEX approach to reduce T1-masking. Additionally PS-WEX takes advantage of the phase information contained in the WEX signal to improve the dynamic range. METHODS By introducing an additional RF-pulse and fixing the exchange time delay the T1-dependence of the signal is reduced. By exploiting the phase sensitivity of the WEX pathway the dynamic range can be increased. This approach is validated using simulations as well as phantom measurements. RESULTS The improved dynamic range is demonstrated in measurements. The fixed exchange time reduces the influence of the T1-decay on the signal curve leading to improved fit quality. CONCLUSION Sat-WEX and PS-WEX are an extension to the well established WEX approach with a less complex fit equation and in the case of PS-WEX improved dynamic range, allowing more accurate quantification.
Collapse
Affiliation(s)
- N M J Plaehn
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany
| | - S Mayer
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstrasse 3, 06466 Gatersleben, Germany
| | - P M Jakob
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany
| | - F T Gutjahr
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
12
|
Rita AI, Monteiro AL, Albuquerque RM, Santos M, Ribeiro JC, Madeira LM, Sanches S. Unravelling the relation between processed crude oils and the composition of spent caustic effluents as well as the respective economic impact. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126629. [PMID: 34315020 DOI: 10.1016/j.jhazmat.2021.126629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Spent caustic discharges are responsible for increasing oil and grease (O&G) matter in refineries wastewater, leading to increasing treatment costs due to low water quality and environmental constraints associated with high O&G concentration discharges. As a way to settle and optimize treatment technologies for such complex effluents, more insight regarding the effluents impact and deeper characterization is necessary. The present study intends to assess the possibility of a relationship between the processed crude oils with the polar O&G concentration in naphthenic spent caustic as well as in the final wastewater; Sines refinery was considered as case-study. Also, in order to get insights about the nature of the polar O&G compounds, their structures and their prevalence in the effluent treatment system was carried out through detailed analytical characterization studies. Proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) were chosen. It was found that, for the Sines refinery, spent caustic discharges may increase the refinery effluent management cost up to 3 €/ton of processed crude oil, every time a high kerosene cut acid crude oil is processed. It was also found that the typical spent caustic O&G effluents are composed by organic contaminants with low molecular weight (MW), with aromatic and polar arrangements, like phenolic groups and naphthenic acids. This outcome is crucial for subsequently establishing the best technologies able to deal with such complex effluents.
Collapse
Affiliation(s)
- A I Rita
- Sines Refinery, Petrogal S.A., 7520-952 Sines, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LAQV, REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (UNL), 2829-516 Caparica, Portugal.
| | - A L Monteiro
- Matosinhos Refinery, Petrogal S.A., Rua Boa Nova - Leça Palmeira 4450 Matosinhos, Portugal.
| | - R M Albuquerque
- Matosinhos Refinery, Petrogal S.A., Rua Boa Nova - Leça Palmeira 4450 Matosinhos, Portugal.
| | - M Santos
- Sines Refinery, Petrogal S.A., 7520-952 Sines, Portugal.
| | - J C Ribeiro
- Matosinhos Refinery, Petrogal S.A., Rua Boa Nova - Leça Palmeira 4450 Matosinhos, Portugal.
| | - L M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - S Sanches
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-157 Oeiras, Portugal.
| |
Collapse
|
13
|
Považan M, Schär M, Gillen J, Barker PB. Magnetic resonance spectroscopic imaging of downfield proton resonances in the human brain at 3 T. Magn Reson Med 2021; 87:1661-1672. [PMID: 34971460 DOI: 10.1002/mrm.29142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop an MRSI technique capable of mapping downfield proton resonances in the human brain. METHODS A spectral-spatial excitation and frequency-selective refocusing scheme, in combination with 2D phase encoding, was developed for mapping of downfield resonances without any perturbation of the water magnetization. An alternative scheme using spectral-spatial refocusing was also investigated for simultaneous detection of both downfield and upfield resonances. The method was tested in 5 healthy human volunteers. RESULTS Downfield metabolite maps with a nominal spatial resolution of 1.5 cm3 were recorded at 3 T in a scan time of 12 minutes. Cramer-Rao lower bounds for nine different downfield peaks were 20% or less over a single supraventricular slice. Downfield spectral profiles were similar to those in the literature recorded previously using single-voxel localization methods. The same approach was also used for upfield MRSI, and simultaneous upfield and downfield acquisitions. CONCLUSION The developed MRSI pulse sequence was shown to be an efficient way of rapidly mapping downfield resonances in the human brain at 3 T, maximizing sensitivity through the relaxation enhancement effect. Because the MRSI approach is efficient in terms of data collection and can be readily implemented at short TE, somewhat higher spatial resolution can be achieved than has been reported in previous single-voxel downfield MRS studies. With this approach, nine downfield resonances could be mapped in a single slice for the first time using MRSI at 3 T.
Collapse
Affiliation(s)
- Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Gillen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Wu Y, Liu Z, Yang Q, Zou L, Zhang F, Qian L, Liu X, Zheng H, Luo D, Sun PZ. Fast and equilibrium CEST imaging of brain tumor patients at 3T. Neuroimage Clin 2021; 33:102890. [PMID: 34864285 PMCID: PMC8645967 DOI: 10.1016/j.nicl.2021.102890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/01/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI, versatile for detecting endogenous mobile proteins and tissue pH, has proved valuable in tumor imaging. However, CEST MRI scans are often performed under non-equilibrium conditions, which confound tissue characterization. This study proposed a quasi-steady-state (QUASS) CEST MRI algorithm to standardize fast and accurate tumor imaging at 3 T. The CEST signal evolution was modeled by longitudinal relaxation rate during relaxation delay (Td) and spinlock relaxation during RF saturation time (Ts), from which the QUASS CEST effect is derived. Numerical simulation and human MR imaging experiments (7 healthy volunteers and 19 tumor patients) were conducted at 3 T to compare the CEST measurements obtained under two representative experimental conditions. In addition, amide proton transfer (APT), combined magnetization transfer (MT) and nuclear overhauser enhancement (NOE) effects, and direct water saturation were isolated using a 3-pool Lorentzian fitting in white matter and gray matter of healthy volunteers and for patients in the contralateral normal-appearing white matter and tumor regions. Finally, the student's t-test was performed between conventional and QUASS CEST measurements. The routine APT and combined MT & NOE measures significantly varied with Ts and Td (P < .001) and were significantly smaller than the corresponding QUASS indices (P < .001). In contrast, the results from the QUASS reconstruction showed little dependence on the scan protocol (P > .05), indicating the accuracy and robustness of QUASS CEST MRI for tumor imaging. To summarize, the QUASS CEST reconstruction algorithm enables fast and accurate tumor CEST imaging at 3 T, promising to expedite and standardize clinical CEST MRI.
Collapse
Affiliation(s)
- Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Zhou Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Liyan Zou
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Fan Zhang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA,Corresponding author at: Department of Radiology and Imaging Sciences, Emory University School of Medicine, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| |
Collapse
|
15
|
Zhang H, Zhou J, Peng Y. Amide Proton Transfer-Weighted MR Imaging of Pediatric Central Nervous System Diseases. Magn Reson Imaging Clin N Am 2021; 29:631-641. [PMID: 34717850 DOI: 10.1016/j.mric.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amide proton transfer-weighted (APTw) imaging is a molecular MR imaging technique that can detect the concentration of the amide protons in mobile cellular proteins and peptides or a pH change in vivo. Previous studies have indicated that APTw MR imaging can be used to detect malignant brain tumors, stroke, and other neurologic diseases, although the clinical application in pediatric patients remains limited. The authors briefly introduce the basic principles of APTw imaging. Then, they review early clinical applications of this approach to pediatric central nervous system diseases, including pediatric brain development, hypoxic-ischemic encephalopathy, intracranial infection, and brain tumors.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nan Li Shi Road, Xi Cheng District, Beijing, 100045, China
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Park 336, Baltimore, MD 21287, USA
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nan Li Shi Road, Xi Cheng District, Beijing, 100045, China.
| |
Collapse
|
16
|
Hui S, Majee P, Singha DK, Daga P, Mondal SK, Mahata P. pH response of a hydroxyl-functionalized luminescent metal–organic framework based phosphor. NEW J CHEM 2021. [DOI: 10.1039/d1nj00366f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ligand sensitized Tb3+ centered emission of Tb-doped Y-based hydroxyl functionalized MOFs has been utilized for pH sensing in the visible range.
Collapse
Affiliation(s)
- Sayani Hui
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Prakash Majee
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | | | - Pooja Daga
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Sudip Kumar Mondal
- Department of Chemistry
- Siksha-Bhavana
- Visva-Bharati University
- Santiniketan-731235
- India
| | - Partha Mahata
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
17
|
Repurposing Clinical Agents for Chemical Exchange Saturation Transfer Magnetic Resonance Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2020; 14:ph14010011. [PMID: 33374213 PMCID: PMC7824058 DOI: 10.3390/ph14010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Molecular imaging is becoming an indispensable tool to pursue precision medicine. However, quickly translating newly developed magnetic resonance imaging (MRI) agents into clinical use remains a formidable challenge. Recently, Chemical Exchange Saturation Transfer (CEST) MRI is emerging as an attractive approach with the capability of directly using low concentration, exchangeable protons-containing agents for generating quantitative MRI contrast. The ability to utilize diamagnetic compounds has been extensively exploited to detect many clinical compounds, such as FDA approved drugs, X-ray/CT contrast agents, nutrients, supplements, and biopolymers. The ability to directly off-label use clinical compounds permits CEST MRI to be rapidly translated to clinical settings. In this review, the current status of CEST MRI based on clinically available compounds will be briefly introduced. The advancements and limitations of these studies are reviewed in the context of their pre-clinical or clinical applications. Finally, future directions will be briefly discussed.
Collapse
|
18
|
Demetriou E, Kujawa A, Golay X. Pulse sequences for measuring exchange rates between proton species: From unlocalised NMR spectroscopy to chemical exchange saturation transfer imaging. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:25-71. [PMID: 33198968 DOI: 10.1016/j.pnmrs.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Within the field of NMR spectroscopy, the study of chemical exchange processes through saturation transfer techniques has a long history. In the context of MRI, chemical exchange techniques have been adapted to increase the sensitivity of imaging to small fractions of exchangeable protons, including the labile protons of amines, amides and hydroxyls. The MR contrast is generated by frequency-selective irradiation of the labile protons, which results in a reduction of the water signal associated with transfer of the labile protons' saturated magnetization to the protons of the surrounding free water. The signal intensity depends on the rate of chemical exchange and the concentration of labile protons as well as on the properties of the irradiation field. This methodology is referred to as CEST (chemical exchange saturation transfer) imaging. Applications of CEST include imaging of molecules with short transverse relaxation times and mapping of physiological parameters such as pH, temperature, buffer concentration and chemical composition due to the dependency of this chemical exchange effect on all these parameters. This article aims to describe these effects both theoretically and experimentally. In depth analysis and mathematical modelling are provided for all pulse sequences designed to date to measure the chemical exchange rate. Importantly, it has become clear that the background signal from semi-solid protons and the presence of the Nuclear Overhauser Effect (NOE), either through direct dipole-dipole mechanisms or through exchange-relayed signals, complicates the analysis of CEST effects. Therefore, advanced methods to suppress these confounding factors have been developed, and these are also reviewed. Finally, the experimental work conducted both in vitro and in vivo is discussed and the progress of CEST imaging towards clinical practice is presented.
Collapse
Affiliation(s)
- Eleni Demetriou
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Aaron Kujawa
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Xavier Golay
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| |
Collapse
|
19
|
Dziadosz M, Bogner W, Kreis R. Non-water-excitation MR spectroscopy techniques to explore exchanging protons in human brain at 3 T. Magn Reson Med 2020; 84:2352-2363. [PMID: 32602971 DOI: 10.1002/mrm.28322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. METHODS Image-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms. RESULTS The novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times. CONCLUSION Novel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.
Collapse
Affiliation(s)
- Martyna Dziadosz
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Wolfgang Bogner
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Yang Y, Qu X, Huang Y, Afsar K, Yan G, Guo G, Duan S. Preliminary application of 3.0 T magnetic resonance chemical exchange saturation transfer imaging in brain metastasis of lung cancer. BMC Med Imaging 2020; 20:4. [PMID: 31931731 PMCID: PMC6958938 DOI: 10.1186/s12880-019-0400-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background Lung cancer brain metastases are very common and one of the common causes of treatment failure. We aimed to examine the clinical use of chemical exchange saturation transfer (CEST) technology in the evaluation of brain metastases for lung cancer diagnosis and prognosis. Methods We included26 cases of lung cancer brain metastases, 15 cases of gliomas, and 20 cases with normal tests. The magnetization transfer ratio (MTR;3.5 ppm) image from the GRE-EPI-CEST sequence was analyzed using the ASSET technique and APT technology. The MTR values were measured in the lesion-parenchymal, edema, and non-focus regions, and the MTR image was compared with the conventional MRI. ANOVA and t-test were used for statistical analysis. Results The lesion-parenchymal, edema, and non-focus areas in the metastatic-tumor-group were red-yellow, yellow-green, and green-blue, and the MTR values were 3.29 ± 1.14%,1.28 ± 0.36%,and 1.26 ± 0.31%, respectively. However, in the glioma-group, the corresponding areas were red, red-yellow, and green-blue, and the MTR values were 6.29 ± 1.58%, 2.87 ± 0.65%, and 1.03 ± 0.30%, respectively. The MTR values of the corresponding areas in the normal-group were 1.07 ± 0.22%,1.04 ± 0.23%, and 1.06 ± 0.24%, respectively. Traditional MR images are in black-white contrast and no metabolic information is displayed. The MTRvalues of the three regions were significantly different among the three groups. The values were also significantly different between the parenchymal and edema areas in the metastatic-tumor-group. There were significant differences in the MTR values between the non-lesion and edema regions, but there was no significant difference between the edema and non-focus areas. In the glioma-group, there were significant differences in the MTR values between the parenchymal and edema areas, between the parenchymal and non-focus areas, and between the edema and non-focus areas. Conclusions CEST reflects the protein metabolism; therefore, early diagnosis of brain metastases and assessment of the prognosis can be achieved using molecular imaging.
Collapse
Affiliation(s)
- Yonggui Yang
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian Province, China
| | - Xiaobo Qu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian Province, China
| | - Yihui Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian Province, China
| | - Khan Afsar
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian Province, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian Province, China
| | - Gang Guo
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian Province, China.
| | - Shaoyin Duan
- Department of Radiology, Zhongshan Hospital Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
21
|
Gonçalves SI, Ligneul C, Shemesh N. Short echo time relaxation‐enhanced MR spectroscopy reveals broad downfield resonances. Magn Reson Med 2019; 82:1266-1277. [DOI: 10.1002/mrm.27806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Sónia I. Gonçalves
- Champalimaud Research Champalimaud Centre for the Unknown Lisbon Portugal
| | - Clémence Ligneul
- Champalimaud Research Champalimaud Centre for the Unknown Lisbon Portugal
| | - Noam Shemesh
- Champalimaud Research Champalimaud Centre for the Unknown Lisbon Portugal
| |
Collapse
|
22
|
Zöllner HJ, Butz M, Jördens M, Füllenbach ND, Häussinger D, Schmitt B, Wittsack HJ, Schnitzler A. Chemical exchange saturation transfer imaging in hepatic encephalopathy. NEUROIMAGE-CLINICAL 2019; 22:101743. [PMID: 30856541 PMCID: PMC6411782 DOI: 10.1016/j.nicl.2019.101743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/04/2019] [Accepted: 03/02/2019] [Indexed: 01/08/2023]
Abstract
Hepatic encephalopathy (HE) is a common complication in liver cirrhosis and associated with an invasion of ammonia into the brain through the blood-brain barrier. Resulting higher ammonia concentrations in the brain are suggested to lead to a dose-dependent gradual increase of HE severity and an associated impairment of brain function. Amide proton transfer-weighted (APTw) chemical exchange saturation transfer (CEST) imaging has been found to be sensitive to ammonia concentration. The aim of this work was to study APTw CEST imaging in patients with HE and to investigate the relationship between disease severity, critical flicker frequency (CFF), psychometric test scores, blood ammonia, and APTw signals in different brain regions. Whole-brain APTw CEST images were acquired in 34 participants (14 controls, 20 patients (10 minimal HE, 10 manifest HE)) on a 3 T clinical MRI system accompanied by T1 mapping and structural images. T1 normalized magnetization transfer ratio asymmetry analysis was performed around 3 ppm after B0 and B1 correction to create APTw images. All APTw images were spatially normalized into a cohort space to allow direct comparison. APTw images in 6 brain regions (cerebellum, occipital cortex, putamen, thalamus, caudate, white matter) were tested for group differences as well as the link to CFF, psychometric test scores, and blood ammonia. A decrease in APTw intensities was found in the cerebellum and the occipital cortex of manifest HE patients. In addition, APTw intensities in the cerebellum correlated positively with several psychometric scores, such as the fine motor performance scores MLS1 for hand steadiness / tremor (r = 0.466; p = .044) and WRT2 for motor reaction time (r = 0.523; p = .022). Moreover, a negative correlation between APTw intensities and blood ammonia was found for the cerebellum (r = −0.615; p = .007) and the occipital cortex (r = −0.478; p = .045). An increase of APTw intensities was observed in the putamen of patients with minimal HE and correlated negatively with the CFF (r = −0.423; p = .013). Our findings demonstrate that HE is associated with regional differential alterations in APTw signals. These variations are most likely a consequence of hyperammonemia or hepatocerebral degeneration processes, and develop in parallel with disease severity. Ammonia is suggested to play a key role in the emergence of HE. Increase of ammonia in HE patients might be studied with APTw CEST. HE leads to regionally decreasing APTw CEST signal. APTw CEST correlates with blood ammonia levels and psychometric test scores. APTw CEST is possibly linked to hyperammonemia or hepatocerebral degeneration.
Collapse
Affiliation(s)
- Helge Jörn Zöllner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Markus Jördens
- Department of Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Nur-Deniz Füllenbach
- Department of Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Benjamin Schmitt
- Siemens Ltd. Australia, Healthcare Sector, 160 Herring Road, Macquarie Park, NSW 2113,Australia
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
23
|
Donahue MJ, Dlamini N, Bhatia A, Jordan LC. Neuroimaging Advances in Pediatric Stroke. Stroke 2019; 50:240-248. [PMID: 30661496 PMCID: PMC6450544 DOI: 10.1161/strokeaha.118.020478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022]
Affiliation(s)
| | - Nomazulu Dlamini
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aashim Bhatia
- Radiology, Vanderbilt Medical Center, Nashville, TN, USA
| | - Lori C. Jordan
- Pediatrics–Division of Pediatric Neurology, Vanderbilt Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Zhou J, Heo HY, Knutsson L, van Zijl PCM, Jiang S. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. J Magn Reson Imaging 2019; 50:347-364. [PMID: 30663162 DOI: 10.1002/jmri.26645] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Wu Y, Chen Y, Zhao Y, Yang S, Zhao J, Zhou J, Chen Z, Sun PZ, Zheng H. Direct radiofrequency saturation corrected amide proton transfer tumor MRI at 3T. Magn Reson Med 2018; 81:2710-2719. [DOI: 10.1002/mrm.27562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China
| | - Yinsheng Chen
- Department of Neurosurgery Cancer Center, Sun Yat‐Sen University Guangzhou Guangdong China
| | - Yiying Zhao
- Department of Neurosurgery Cancer Center, Sun Yat‐Sen University Guangzhou Guangdong China
| | - Shasha Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China
| | - Jing Zhao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China
| | - Jian Zhou
- Department of Medical Imaging Cancer Center, Sun Yat‐Sen University Guangzhou Guangdong China
| | - Zhongping Chen
- Department of Neurosurgery Cancer Center, Sun Yat‐Sen University Guangzhou Guangdong China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School Charlestown Massachusetts
- Yerkes Imaging Center Yerkes National Primate Research Center, Emory University Atlanta Georgia
- Department of Radiology Emory University School of Medicine Atlanta Georgia
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China
| |
Collapse
|
26
|
Leigh R, Knutsson L, Zhou J, van Zijl PC. Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. J Cereb Blood Flow Metab 2018; 38:1500-1516. [PMID: 28345479 PMCID: PMC6125975 DOI: 10.1177/0271678x17700913] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We review the hemodynamic, metabolic and cellular parameters affected during early ischemia and their changes as a function of approximate cerebral blood flow ( CBF) thresholds. These parameters underlie the current practical definition of an ischemic penumbra, namely metabolically affected but still viable brain tissue. Such tissue is at risk of infarction under continuing conditions of reduced CBF, but can be rescued through timely intervention. This definition will be useful in clinical diagnosis only if imaging techniques exist that can rapidly, and with sufficient accuracy, visualize the existence of a mismatch between such a metabolically affected area and regions that have suffered cell depolarization. Unfortunately, clinical data show that defining the outer boundary of the penumbra based solely on perfusion-related thresholds may not be sufficiently accurate. Also, thresholds for CBF and cerebral blood volume ( CBV) differ for white and gray matter and evolve with time for both inner and outer penumbral boundaries. As such, practical penumbral imaging would involve parameters in which the physiology is immediately displayed in a manner independent of baseline CBF or CBF threshold, namely pH, oxygen extraction fraction ( OEF), diffusion constant and mean transit time ( MTT). Suitable imaging technologies will need to meet this requirement in a 10-20 min exam.
Collapse
Affiliation(s)
- Richard Leigh
- 1 National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Linda Knutsson
- 2 Department of Medical Radiation Physics, Lund University, Lund, Sweden.,3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jinyuan Zhou
- 3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.,4 F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter Cm van Zijl
- 3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.,4 F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
27
|
Zheng Y, Wang X. The Applicability of Amide Proton Transfer Imaging in the Nervous System: Focus on Hypoxic-Ischemic Encephalopathy in the Neonate. Cell Mol Neurobiol 2018; 38:797-807. [PMID: 28942555 DOI: 10.1007/s10571-017-0552-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/16/2017] [Indexed: 12/29/2022]
Abstract
In recent years, magnetic resonance imaging (MRI) has become more widely used in neonatal hypoxic-ischemic encephalopathy (HIE), involving, for example, evaluation of cerebral edema, white matter fiber bundle tracking, cerebral perfusion status, and assessment of brain metabolites. MRI has many imaging modalities. However, its application for assessing changes in the internal environment at the tissue and cellular level after hypoxia-ischemia remains a challenge and is currently the focus of intense research. Based on the exchange between amide protons of proteins and polypeptides and free water protons, amide proton transfer (APT) imaging can display changes in pH and protein concentrations in vivo. This paper is a review of the principles of APT imaging, with a focus on the potential application of APT imaging for neonatal HIE.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Xiaoming Wang
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
28
|
Zhou IY, Wang E, Cheung JS, Lu D, Ji Y, Zhang X, Fulci G, Sun PZ. Direct saturation-corrected chemical exchange saturation transfer MRI of glioma: Simplified decoupling of amide proton transfer and nuclear overhauser effect contrasts. Magn Reson Med 2017; 78:2307-2314. [PMID: 29030880 PMCID: PMC5744877 DOI: 10.1002/mrm.26959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) MRI has shown promise in tissue characterization in diseases like stroke and tumor. However, in vivo CEST imaging such as amide proton transfer (APT) MRI is challenging because of concomitant factors such as direct water saturation, macromolecular magnetization transfer, and nuclear overhauser effect (NOE), which lead to a complex contrast in the commonly used asymmetry analysis (MTRasym). Here, we propose a direct saturation-corrected CEST (DISC-CEST) analysis for simplified decoupling and quantification of in vivo CEST effects. METHODS CEST MRI and relaxation measurements were carried out on a classical 2-pool creatine-gel CEST phantom and normal rat brains (N = 6) and a rat model of glioma (N = 8) at 4.7T. The proposed DISC-CEST quantification was carried out and compared with conventional MTRasym and the original three-offset method. RESULTS We demonstrated that the DISC-CEST contrast in the phantom had much stronger correlation with MTRasym than the three-offset method, which showed substantial underestimation. In normal rat brains, the DISC-CEST approach revealed significantly stronger APT effect in gray matter and higher NOE effect in white matter. Furthermore, the APT and NOE maps derived from DISC-CEST showed significantly higher APT effect in the tumors than contralateral normal tissue but no apparent difference in NOE. CONCLUSION The proposed DISC-CEST method, by correction of nonlinear direct water saturation effect, serves as a promising alternative to both the commonly used MTRasym and the simplistic three-offset analyses. It provides simple yet reliable in vivo CEST quantification such as APT and NOE mapping in brain tumor, which is promising for clinical translation. Magn Reson Med 78:2307-2314, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Enfeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Radiology, 3 Affiliated Hospital, Zhengzhou University, Henan, China
| | - Jerry S Cheung
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Dongshuang Lu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xiaoan Zhang
- Department of Radiology, 3 Affiliated Hospital, Zhengzhou University, Henan, China
| | - Giulia Fulci
- Molecular Neuro-oncology Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02124, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
29
|
Jin T, Wang P, Hitchens TK, Kim SG. Enhancing sensitivity of pH-weighted MRI with combination of amide and guanidyl CEST. Neuroimage 2017; 157:341-350. [PMID: 28602944 DOI: 10.1016/j.neuroimage.2017.06.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022] Open
Abstract
Amide-proton-transfer weighted (APTw) MRI has emerged as a non-invasive pH-weighted imaging technique for studies of several diseases such as ischemic stroke. However, its pH-sensitivity is relatively low, limiting its capability to detect small pH changes. In this work, computer simulations, protamine phantom experiments, and in vivo gas challenge and experimental stroke in rats showed that, with judicious selection of the saturation pulse power, the amide-CEST at 3.6ppm and guanidyl-CEST signals at 2.0ppm changed in opposite directions with decreased pH. Thus, the difference between amide-CEST and guanidyl-CEST can enhance the pH measurement sensitivity, and is dubbed as pHenh. Acidification induced a negative contrast in APTw, but a positive contrast in pHenh. In vivo experiments showed that pHenh can detect hypercapnia-induced acidosis with about 3-times higher sensitivity than APTw. Also, pHenh slightly reduced gray and white matter contrast compared to APTw. In stroke animals, the CEST contrast between the ipsilateral ischemic core and contralateral normal tissue was -1.85 ± 0.42% for APTw and 3.04 ± 0.61% (n = 5) for pHenh, and the contrast to noise was 2.9 times higher for pHenh than APTw. Our results suggest that pHenh can be a useful tool for non-invasive pH-weighted imaging.
Collapse
Affiliation(s)
- Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
30
|
Cai K, Tain RW, Zhou XJ, Damen FC, Scotti AM, Hariharan H, Poptani H, Reddy R. Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness. Mol Imaging Biol 2017; 19:225-232. [PMID: 27541025 PMCID: PMC5824619 DOI: 10.1007/s11307-016-0995-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Creatine (Cr) is a major metabolite in the bioenergetic system. Measurement of Cr using conventional MR spectroscopy (MRS) suffers from low spatial resolution and relatively long acquisition times. Creatine chemical exchange saturation transfer (CrCEST) magnetic resonance imaging (MRI) is an emerging molecular imaging method for tissue Cr measurements. Our previous study showed that the CrCEST contrast, obtained through multicomponent Z-spectral fitting, was lower in tumors compared to normal brain, which further reduced with tumor progression. The current study was aimed to investigate if CrCEST MRI can also be useful for differentiating gliomas with different degrees of aggressiveness. PROCEDURES Intracranial 9L gliosarcoma and F98 glioma bearing rats with matched tumor size were scanned with a 9.4 T MRI scanner at two time points. CEST Z-spectra were collected using a customized sequence with a frequency-selective rectangular saturation pulse (B1 = 50 Hz, duration = 3 s) followed by a single-shot readout. Z spectral data were fitted pixel-wise with five Lorentzian functions, and maps of CrCEST peak amplitude, linewidth, and integral were produced. For comparison, single-voxel proton MR spectroscopy (1H-MRS) was performed to quantify and compare the total Cr concentration in the tumor. RESULTS CrCEST contrasts decreased with tumor progression from weeks 3 to 4 in both 9L and F98 phenotypes. More importantly, F98 tumors had significantly lower CrCEST integral compared to 9L tumors. On the other hand, integrals of other Z-spectral components were unable to differentiate both tumor progression and phenotype with limited sample size. CONCLUSIONS Given that F98 is a more aggressive tumor than 9L, this study suggests that CrCEST MRI may help differentiate gliomas with different aggressiveness.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Rong-Wen Tain
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Frederick C Damen
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro M Scotti
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Hari Hariharan
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Ravinder Reddy
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Qi Z, Chen Y. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity. Biosens Bioelectron 2017; 87:236-241. [DOI: 10.1016/j.bios.2016.08.052] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
|
32
|
Zhou IY, Fuss TL, Igarashi T, Jiang W, Zhou X, Cheng LL, Sun PZ. Tissue Characterization with Quantitative High-Resolution Magic Angle Spinning Chemical Exchange Saturation Transfer Z-Spectroscopy. Anal Chem 2016; 88:10379-10383. [PMID: 27709896 PMCID: PMC5441684 DOI: 10.1021/acs.analchem.6b03137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.
Collapse
Affiliation(s)
- Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Taylor L. Fuss
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Weiping Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Leo L. Cheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
33
|
Fichtner ND, Henning A, Zoelch N, Boesch C, Kreis R. Elucidation of the downfield spectrum of human brain at 7 T using multiple inversion recovery delays and echo times. Magn Reson Med 2016; 78:11-19. [DOI: 10.1002/mrm.26343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Nicole D. Fichtner
- Department of Radiology, Neuroradiology, and Nuclear Medicine; University of Bern; Bern Switzerland
- Department of Clinical Research; University of Bern; Bern Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Bern Switzerland
- Institute for Biomedical Engineering, UZH and ETH Zurich; Zurich Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, UZH and ETH Zurich; Zurich Switzerland
- Max Planck Institute for Biological Cybernetics; Tübingen Germany
| | - Niklaus Zoelch
- Institute for Biomedical Engineering, UZH and ETH Zurich; Zurich Switzerland
| | - Chris Boesch
- Department of Radiology, Neuroradiology, and Nuclear Medicine; University of Bern; Bern Switzerland
- Department of Clinical Research; University of Bern; Bern Switzerland
| | - Roland Kreis
- Department of Radiology, Neuroradiology, and Nuclear Medicine; University of Bern; Bern Switzerland
- Department of Clinical Research; University of Bern; Bern Switzerland
| |
Collapse
|
34
|
Watanabe T, Frahm J, Michaelis T. Amide proton signals as pH indicator for in vivo MRS and MRI of the brain-Responses to hypercapnia and hypothermia. Neuroimage 2016; 133:390-398. [PMID: 26975553 DOI: 10.1016/j.neuroimage.2016.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/24/2022] Open
Abstract
Using proton MRS and MRI of mouse brain at 9.4T, this work provides the first in vivo evidence of pH-dependent concurrent changes of three amide signals and related metabolic responses to hypercapnia and hypothermia. During hypercapnia, amide proton MRS signals of glutamine at 6.8-6.9ppm and 7.6ppm as well as of unspecific compounds at 8.1-8.3ppm increase by at least 50% both at 37°C and 22°C. These changes reflect a reduced proton exchange with water. They are strongly correlated with intracellular pH which ranges from 6.75±0.10 to 7.13±0.06 as determined from a shift in creatine phosphokinase equilibrium. In MRI, saturation transfer from aliphatic as well as aromatic and/or amide protons alters slightly during hypercapnia and significantly during hypothermia. The asymmetry in magnetization transfer ratios decreased slightly during hypercapnia and hypothermia. Regardless of pH or temperature, saturation transfer from aliphatic protons between -2 and -4ppm frequency offset to water protons is significantly greater than that from aromatic/amide protons at corresponding offsets between +2 and +4ppm. Irradiation of aliphatic compounds at -3.5ppm frequency offset from water predominantly saturates lipids and water associated with myelin. Taken together, the results indicate that, for the B1 power used in this study, dipolar coupling between aliphatic and water protons rather than proton exchange is the dominant factor in Z-spectra and magnetization transfer ratio asymmetry of the brain in vivo.
Collapse
Affiliation(s)
- Takashi Watanabe
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Thomas Michaelis
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| |
Collapse
|
35
|
Heo HY, Jones CK, Hua J, Yadav N, Agarwal S, Zhou J, van Zijl PCM, Pillai JJ. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging 2015; 44:41-50. [PMID: 26663561 DOI: 10.1002/jmri.25108] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/14/2015] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To explore the relationship of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) signal intensities with respect to different World Health Organization (WHO) brain tumor grades (II to IV) at 7T. MATERIALS AND METHODS APT-based and NOE-based signals at 7T using low-power steady-state chemical exchange saturation transfer (CEST) were compared among de novo primary gliomas of different WHO grades (II to IV). The quantitative APT and NOE signals, calculated by fitting approach using extrapolated semisolid MT reference (EMR) signals, were compared with the magnetization transfer ratio asymmetry (MTRasym ) analysis, commonly used in APT-weighted MRI. RESULTS The observed NOE signals of all glioma grades were significantly lower than normal brain tissue (P < 0.01). NOE signals significantly differed between low-grade (II) gliomas and high-grade (III, IV) gliomas (P < 0.05). APT signals showed no difference between the tumor regions for any glioma grades (M = 3.08%, 2.64%, and 3.10%, 95% confidence interval [CI] = 2.81% ∼ 3.33%, 2.36% ∼ 2.91%, and 2.85% ∼ 3.36% for grade II, III, and IV, respectively), and between normal brain tissue and all glioma grades (P = 0.08, M = 4.29% and 2.94%, 95% CI = 3.57% ∼ 4.99% and 2.47% ∼ 3.41% for normal and average grade II, III, and IV), while MTRasym differed significantly between normal tissue and all glioma grades (P < 0.05). CONCLUSION NOE contributes substantially to APT-weighted MRI at 7T at low RF saturation power and provides a promising biomarker for glioma grading.J. Magn. Reson. Imaging 2016;44:41-50.
Collapse
Affiliation(s)
- Hye-Young Heo
- Division of MR Research, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Craig K Jones
- Division of MR Research, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jun Hua
- Division of MR Research, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Nirbhay Yadav
- Division of MR Research, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shruti Agarwal
- Division of Neuroradiology, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Division of MR Research, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- Division of MR Research, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jay J Pillai
- Division of Neuroradiology, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Cai K, Singh A, Poptani H, Li W, Yang S, Lu Y, Hariharan H, Zhou XJ, Reddy R. CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR IN BIOMEDICINE 2015; 28:1-8. [PMID: 25295758 PMCID: PMC4257884 DOI: 10.1002/nbm.3216] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 05/03/2023]
Abstract
In general, multiple components such as water direct saturation, magnetization transfer (MT), chemical exchange saturation transfer (CEST) and aliphatic nuclear Overhauser effect (NOE) contribute to the Z-spectrum. The conventional CEST quantification method based on asymmetrical analysis may lead to quantification errors due to the semi-solid MT asymmetry and the aliphatic NOE located on a single side of the Z-spectrum. Fitting individual contributors to the Z-spectrum may improve the quantification of each component. In this study, we aim to characterize the multiple exchangeable components from an intracranial tumor model using a simplified Z-spectral fitting method. In this method, the Z-spectrum acquired at low saturation RF amplitude (50 Hz) was modeled as the summation of five Lorentzian functions that correspond to NOE, MT effect, bulk water, amide proton transfer (APT) effect and a CEST peak located at +2 ppm, called CEST@2ppm. With the pixel-wise fitting, the regional variations of these five components in the brain tumor and the normal brain tissue were quantified and summarized. Increased APT effect, decreased NOE and reduced CEST@2ppm were observed in the brain tumor compared with the normal brain tissue. Additionally, CEST@2ppm decreased with tumor progression. CEST@2ppm was found to correlate with the creatine concentration quantified with proton MRS. Based on the correlation curve, the creatine contribution to CEST@2ppm was quantified. The CEST@2ppm signal could be a novel imaging surrogate for in vivo creatine, the important bioenergetics marker. Given its noninvasive nature, this CEST MRI method may have broad applications in cancer bioenergetics.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Anup Singh
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Molecular Imaging Labs, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Weiguo Li
- Research Resource Center, Department of Bioengineering, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Shaolin Yang
- Department of Psychiatry and Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yang Lu
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaohong J. Zhou
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Barrett HH, Kupinski MA, Müeller S, Halpern HJ, Morris JC, Dwyer R. Objective assessment of image quality VI: imaging in radiation therapy. Phys Med Biol 2014; 58:8197-213. [PMID: 24200954 DOI: 10.1088/0031-9155/58/22/8197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Earlier work on objective assessment of image quality (OAIQ) focused largely on estimation or classification tasks in which the desired outcome of imaging is accurate diagnosis. This paper develops a general framework for assessing imaging quality on the basis of therapeutic outcomes rather than diagnostic performance. By analogy to receiver operating characteristic (ROC) curves and their variants as used in diagnostic OAIQ, the method proposed here utilizes the therapy operating characteristic or TOC curves, which are plots of the probability of tumor control versus the probability of normal-tissue complications as the overall dose level of a radiotherapy treatment is varied. The proposed figure of merit is the area under the TOC curve, denoted AUTOC. This paper reviews an earlier exposition of the theory of TOC and AUTOC, which was specific to the assessment of image-segmentation algorithms, and extends it to other applications of imaging in external-beam radiation treatment as well as in treatment with internal radioactive sources. For each application, a methodology for computing the TOC is presented. A key difference between ROC and TOC is that the latter can be defined for a single patient rather than a population of patients.
Collapse
|
38
|
Scheidegger R, Wong ET, Alsop DC. Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla. Neuroimage 2014; 99:256-68. [PMID: 24857712 DOI: 10.1016/j.neuroimage.2014.05.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 11/26/2022] Open
Abstract
Off-resonance saturation transfer images have shown intriguing differences in intensity in glioma compared to normal brain tissues. Interpretation of these differences is complicated, however, by the presence of multiple sources of exchanging magnetization including amide, amine, and hydroxyl protons, asymmetric magnetization transfer contrast (MTC) from macromolecules, and various protons with resonances in the aliphatic spectral region. We report a study targeted at separating these components and identifying their relative contributions to contrast in glioma. Off-resonance z-spectra at several saturation powers and durations were obtained from 6 healthy controls and 8 patients with high grade glioma. Results indicate that broad macromolecular MTC in normal brain tissue is responsible for the majority of contrast with glioma. Amide exchange could be detected with lower saturation power than has previously been reported in glioma, but it was a weak signal source with no detectable contrast from normal brain tissue. At higher saturation powers, amine proton exchange was a major contributor to the observed signal but showed no significant difference from normal brain. Robust acquisition strategies that effectively isolate the contributions of broad macromolecular MTC asymmetry from amine exchange were demonstrated that may provide improved contrast between glioma and normal tissue.
Collapse
Affiliation(s)
- Rachel Scheidegger
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Ave E25, Cambridge, MA 02139, USA; Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Eric T Wong
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA; Neurology, Harvard Medical School, Boston, MA 02115, USA.
| | - David C Alsop
- Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA; Radiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Tietze A, Blicher J, Mikkelsen IK, Østergaard L, Strother MK, Smith SA, Donahue MJ. Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. NMR IN BIOMEDICINE 2014; 27:163-74. [PMID: 24288260 PMCID: PMC4019439 DOI: 10.1002/nbm.3048] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 05/08/2023]
Abstract
Chemical exchange saturation transfer (CEST)-derived, pH-weighted, amide proton transfer (APT) MRI has shown promise in animal studies for the prediction of infarction risk in ischemic tissue. Here, APT MRI was translated to patients with acute stroke (1-24 h post-symptom onset), and assessments of APT contrast, perfusion, diffusion, disability and final infarct volume (23-92 days post-stroke) are reported. Healthy volunteers (n = 5) and patients (n = 10) with acute onset of symptoms (0-4 h, n = 7; uncertain onset <24 h, n = 3) were scanned with diffusion- and perfusion-weighted MRI, fluid-attenuated inversion recovery (FLAIR) and CEST. Traditional asymmetry and a Lorentzian-based APT index were calculated in the infarct core, at-risk tissue (time-to-peak, TTP; lengthening) and final infarct volume. On average (mean ± standard deviation), control white matter APT values (asymmetry, 0.019 ± 0.005; Lorentzian, 0.045 ± 0.006) were not significantly different (p > 0.05) from APT values in normal-appearing white matter (NAWM) of patients (asymmetry, 0.022 ± 0.003; Lorentzian, 0.048 ± 0.003); however, ischemic regions in patients showed reduced (p = 0.03) APT effects compared with NAWM. Representative cases are presented, whereby the APT contrast is compared quantitatively with contrast from other imaging modalities. The findings vary between patients; in some patients, a trend for a reduction in the APT signal in the final infarct region compared with at-risk tissue was observed, consistent with tissue acidosis. However, in other patients, no relationship was observed in the infarct core and final infarct volume. Larger clinical studies, in combination with focused efforts on sequence development at clinically available field strengths (e.g. 3.0 T), are necessary to fully understand the potential of APT imaging for guiding the hyperacute management of patients.
Collapse
Affiliation(s)
- Anna Tietze
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
- Corresponding Author: Anna Tietze, tel.: +45 78469953, fax: +45 78463360, , Dept. of Neuroradiology, Nørrebrogade, bldg. 10, 8000 Aarhus C, Denmark
| | - Jakob Blicher
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
- Hammel Neurorehabilitation and Research Center, Aarhus University Hospital, Hammel, Denmark
| | - Irene Klærke Mikkelsen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Leif Østergaard
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Megan K. Strother
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN
| | - Seth A. Smith
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN
- Physics and Astronomy, Vanderbilt University School of Medicine, Nashville, TN
| | - Manus J. Donahue
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN
- Physics and Astronomy, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
40
|
Abstract
It has been proposed that the spatial mismatch between deficits on perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) in MRI can be used to decide regarding thrombolytic treatment in acute stroke. However, uncertainty remains about the meaning and reversibility of the perfusion deficit and even part of the diffusion deficit. Thus, there remains a need for continued development of imaging technology that can better define a potentially salvageable ischemic area at risk of infarction. Amide proton transfer (APT) imaging is a novel MRI method that can map tissue pH changes, thus providing the potential to separate the PWI/DWI mismatch into an acidosis-based penumbra and a zone of benign oligemia. In this totally noninvasive method, the pH dependence of the chemical exchange between amide protons in endogenous proteins and peptides and water protons is exploited. Early results in animal models of ischemia show promise to derive an acidosis penumbra. Possible translation to the clinic and hurdles standing in the way of achieving this are discussed.
Collapse
|
41
|
Shemesh N, Dumez JN, Frydman L. Longitudinal relaxation enhancement in 1H NMR spectroscopy of tissue metabolites via spectrally selective excitation. Chemistry 2013; 19:13002-8. [PMID: 24038462 DOI: 10.1002/chem.201300955] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Indexed: 12/25/2022]
Abstract
Nuclear magnetic resonance spectroscopy is governed by longitudinal (T1) relaxation. For protein and nucleic acid experiments in solutions, it is well established that apparent T1 values can be enhanced by selective excitation of targeted resonances. The present study explores such longitudinal relaxation enhancement (LRE) effects for molecules residing in biological tissues. The longitudinal relaxation recovery of tissue resonances positioned both down- and upfield of the water peak were measured by spectrally selective excitation/refocusing pulses, and compared with conventional water-suppressed, broadband-excited counterparts at 9.4 T. Marked LRE effects with up to threefold reductions in apparent T1 values were observed as expected for resonances in the 6-9 ppm region; remarkably, statistically significant LRE effects were also found for several non-exchanging metabolite resonances in the 1-4 ppm region, encompassing 30-50 % decreases in apparent T1 values. These LRE effects suggest a novel means of increasing the sensitivity of tissue-oriented experiments, and open new vistas to investigate the nature of interactions among metabolites, water and macromolecules at a molecular level.
Collapse
Affiliation(s)
- Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)
| | | | | |
Collapse
|
42
|
Yadav NN, Chan KWY, Jones CK, McMahon MT, van Zijl PCM. Time domain removal of irrelevant magnetization in chemical exchange saturation transfer Z-spectra. Magn Reson Med 2013; 70:547-55. [PMID: 23798323 PMCID: PMC3742390 DOI: 10.1002/mrm.24812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/02/2013] [Accepted: 04/26/2013] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate the possibility of processing Z-spectra using time domain analysis. METHODS An inverse Fourier transform (IFT) is applied on Z-spectra, thus transforming the chemical exchange saturation transfer (CEST) data into the time domain. Here, large interfering signals from solvent and semisolid magnetization transfer can be fit and filtered out. The method is demonstrated on a range of phantoms (creatine, a para-CEST agent, and hen egg white) and also in vivo on a mouse brain. RESULTS Using time domain analysis, signal components in Z-spectra could be fit very well, thus enabling irreverent or nuisance components to be removed. The method worked equally well for samples in a solution or a gel where the large contribution from conventional magnetization transfer contrast (MTC) was easily separated out. Results from egg white and mouse brain in vivo data showed that the large water resonance could easily be removed thus allowing the remaining signal to be analyzed without interference from direct water saturation. CONCLUSIONS This method successfully filtered out the large nuisance signals from bulk water and MTC in Z-spectra in a large variety of phantom types and also in vivo. It is expected to be a potentially powerful tool for CEST studies without needing asymmetry analysis.
Collapse
Affiliation(s)
- Nirbhay N. Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Kannie W. Y. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig K. Jones
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| |
Collapse
|
43
|
Xu J, Yadav NN, Bar-Shir A, Jones CK, Chan KWY, Zhang J, Walczak P, McMahon MT, van Zijl PCM. Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI. Magn Reson Med 2013; 71:1798-812. [PMID: 23813483 DOI: 10.1002/mrm.24850] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/25/2013] [Accepted: 05/27/2013] [Indexed: 12/14/2022]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. METHODS The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. RESULTS When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100-150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. CONCLUSIONS VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis.
Collapse
Affiliation(s)
- Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jones CK, Huang A, Xu J, Edden RAE, Schär M, Hua J, Oskolkov N, Zacà D, Zhou J, McMahon MT, Pillai JJ, van Zijl PCM. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 2013; 77:114-24. [PMID: 23567889 DOI: 10.1016/j.neuroimage.2013.03.047] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/31/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) is a magnetization transfer (MT) technique to indirectly detect pools of exchangeable protons through the water signal. CEST MRI has focused predominantly on signals from exchangeable protons downfield (higher frequency) from water in the CEST spectrum. Low power radiofrequency (RF) pulses can slowly saturate protons with minimal interference of conventional semi-solid based MT contrast (MTC). When doing so, saturation-transfer signals are revealed upfield from water, which is the frequency range of non-exchangeable aliphatic and olefinic protons. The visibility of such signals indicates the presence of a relayed transfer mechanism to the water signal, while their finite width reflects that these signals are likely due to mobile solutes. It is shown here in protein phantoms and the human brain that these signals build up slower than conventional CEST, at a rate typical for intramolecular nuclear Overhauser enhancement (NOE) effects in mobile macromolecules such as proteins/peptides and lipids. These NOE-based saturation transfer signals show a pH dependence, suggesting that this process is the inverse of the well-known exchange-relayed NOEs in high resolution NMR protein studies, thus a relayed-NOE CEST process. When studying 6 normal volunteers with a low-power pulsed CEST approach, the relayed-NOE CEST effect was about twice as large as the CEST effects downfield and larger in white matter than gray matter. This NOE contrast upfield from water provides a way to study mobile macromolecules in tissue. First data on a tumor patient show reduction in both relayed NOE and CEST amide proton signals leading to an increase in magnetization transfer ratio asymmetry, providing insight into previously reported amide proton transfer (APT) effects in tumors.
Collapse
Affiliation(s)
- Craig K Jones
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zong X, Wang P, Kim SG, Jin T. Sensitivity and source of amine-proton exchange and amide-proton transfer magnetic resonance imaging in cerebral ischemia. Magn Reson Med 2013; 71:118-32. [PMID: 23401310 DOI: 10.1002/mrm.24639] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 12/25/2022]
Abstract
PURPOSE Amide-proton transfer (APT) and amine-water proton exchange (APEX) MRI can be viable to map pH-decreasing ischemic regions. However, their exact contributions are unclear. METHODS We measured APEX- and APT-weighted magnetization transfer ratio asymmetry (denoted as APEXw and APTw), apparent diffusion coefficient, T2 , and T1 images and localized proton spectra in rats with permanent middle cerebral artery occlusion at 9.4 T. Phantoms and theoretical studies were also performed. RESULTS Within 1-h postocclusion, APEXw and APTw maps showed hyperintensity (3.1% of M0 ) and hypointensity (-1.8%), respectively, in regions with decreased apparent diffusion coefficient. Ischemia increased lactate and gamma aminobutyric acid concentrations, but decreased glutamate and taurine concentrations. Over time, the APEXw contrast decreased with glutamate, taurine, and creatine, whereas the APTw contrast and lactate level were similar. Phantom and theoretical studies suggest that the source of APEXw signal is mainly from proteins at normal pH, whereas at decreased pH, gamma aminobutyric acid and glutamate contributions increase, inducing the positive APEXw contrast in ischemic regions. The APTw contrast is sensitive to lactate concentration and pH, but contaminated from contributions of the faster APEX processes. CONCLUSION Positive APEXw contrast is more sensitive to ischemia than negative APTw contrast. They may provide complementary tissue metabolic information.
Collapse
Affiliation(s)
- Xiaopeng Zong
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
46
|
Liu D, Zhou J, Xue R, Zuo Z, An J, Wang DJJ. Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 tesla. Magn Reson Med 2012; 70:1070-81. [PMID: 23238951 DOI: 10.1002/mrm.24560] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 10/24/2012] [Indexed: 12/27/2022]
Abstract
PURPOSE This study aimed to quantitatively investigate two main magnetization transfer effects at low B1: the nuclear Overhauser enhancement (NOE) and amide proton transfer in the human brain at 7 T. METHODS The magnetization transfer effects in the human brain were characterized using a four-pool proton model, which consisted of bulk water, macromolecules, an amide group of mobile proteins and peptides, and NOE-related protons resonating upfield. The pool sizes, exchange rates, and relaxation times of these proton pools were investigated quantitatively by fitting, and the net signals of amide proton transfer and NOE were simulated based on the fitted parameters. RESULTS The results showed that the four-pool model fitted the experimental data quite well, and the NOE effects in human brain at 7 T had a broad spectrum distribution. The NOE effects peaked at a B1 of ∼ 1-1.4 μT and were significantly stronger in the white matter than in the gray matter, corresponding to a pool-size ratio ∼ 2:1. As the amide proton transfer effect was relatively small compared with the NOE effects, magnetization transfer asymmetry analysis yielded an NOE-dominated contrast in the healthy human brain in this range of B1. CONCLUSION These findings are important to identify the source of NOE effects and to quantify amide proton transfer effects in human brain at 7 T.
Collapse
Affiliation(s)
- Dapeng Liu
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; UCLA-Beijing Joint Center for Advanced Brain Imaging, Beijing, China and Los Angeles, California, USA; Graduate University, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
47
|
MacMillan EL, Boesch C, Kreis R. Magnetization exchange observed in human skeletal muscle by non-water-suppressed proton magnetic resonance spectroscopy. Magn Reson Med 2012; 70:916-24. [PMID: 23172828 DOI: 10.1002/mrm.24537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/14/2012] [Accepted: 10/01/2012] [Indexed: 11/12/2022]
Abstract
Many metabolites in the proton magnetic resonance spectrum undergo magnetization exchange with water, such as those in the downfield region (6.0-8.5 ppm) and the upfield peaks of creatine, which can be measured to reveal additional information about the molecular environment. In addition, these resonances are attenuated by conventional water suppression techniques complicating detection and quantification. To characterize these metabolites in human skeletal muscle in vivo at 3 T, metabolite cycled non-water-suppressed spectroscopy was used to conduct a water inversion transfer experiment in both the soleus and tibialis anterior muscles. Resulting median exchange-independent T1 times for the creatine methylene resonances were 1.26 and 1.15 s, and for the methyl resonances were 1.57 and 1.74 s, for soleus and tibialis anterior muscles, respectively. Magnetization transfer rates from water to the creatine methylene resonances were 0.56 and 0.28 s(-1), and for the methyl resonances were 0.39 and 0.30 s(-1), with the soleus exhibiting faster transfer rates for both resonances, allowing speculation about possible influences of either muscle fibre orientation or muscle composition on the magnetization transfer process. These water magnetization transfer rates observed without water suppression are in good agreement with earlier reports that used either postexcitation water suppression in rats, or short CHESS sequences in human brain and skeletal muscle.
Collapse
Affiliation(s)
- Erin L MacMillan
- Department of Clinical Research and Institute of Diagnostic, Interventional and Pediatric Radiology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
48
|
Jin T, Wang P, Zong X, Kim SG. MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T. Magn Reson Med 2012; 69:760-70. [PMID: 22577042 DOI: 10.1002/mrm.24315] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/17/2012] [Accepted: 04/06/2012] [Indexed: 12/27/2022]
Abstract
The amide proton transfer (APT) effect has emerged as a unique endogenous molecular imaging contrast mechanism with great clinical potentials. However, in vivo quantitative mapping of APT using the conventional asymmetry analysis is difficult due to the confounding nuclear Overhauser effect (NOE) and the asymmetry of the magnetization transfer effect. Here, we showed that the asymmetry of magnetization transfer contrast from immobile macromolecules is highly significant, and the wide spectral separation associated with a high magnetic field of 9.4 T delineates APT and NOE peaks in a Z-spectrum. Therefore, high-resolution apparent APT and NOE maps can be obtained from measurements at three offsets. The apparent APT value was greater in gray matter compared to white matter in normal rat brain and was sensitive to tissue acidosis and correlated well with apparent diffusion coefficient in the rat focal ischemic brain. In contrast, no ischemia-induced contrast was observed in the apparent NOE map. The concentration dependence and the pH insensitivity of NOE were confirmed in phantom experiments. Our results demonstrate that in vivo apparent APT and NOE maps can be easily obtained at high magnetic fields and the pH-insensitive NOE may be a useful indicator of mobile macromolecular contents.
Collapse
Affiliation(s)
- Tao Jin
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15203, USA.
| | | | | | | |
Collapse
|
49
|
Takayama Y, Yoshiura T, Nishie A, Nakayama T, Hatakenaka M, Kato N, Yoshise S, Keupp J, Burdinski D, Honda H. Ytterbium-based PARACEST agent: feasibility of CEST imaging on a clinical MR scanner. Magn Reson Med Sci 2012; 11:35-41. [PMID: 22450385 DOI: 10.2463/mrms.11.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE We investigated the feasibility of performing chemical exchange saturation transfer (CEST) imaging using ytterbium-based paramagnetic CEST (PARACEST) agents on a clinical magnetic resonance (MR) scanner. MATERIALS AND METHODS We prepared solutions of 3 different ytterbium-based PARACEST agents at concentrations of 5, 10, 20, and 50 mM at a pH of 7.4 and at a concentration of 50 mM at pHs of 3.0, 5.0, 7.4, and 9.5. We acquired images with a turbo spin echo technique using a quadrature head coil and a clinical 3.0-tesla MR system in accordance with the safety limits of the specific absorption rate (SAR). We acquired CEST images with presaturation offset frequencies from -5,000 Hz (-39.1 ppm) to 5,000 Hz (39.1 ppm) with an interval of 500 Hz (3.9 ppm) for each condition. We repeated each scan 3 times and then calculated the mean and standard deviations of the magnitude of the CEST effect at different concentrations and pH values for each agent. We used one-way analysis of variance and Tukey's honestly significant difference post hoc test to compare mean values of the magnitude of the CEST effect obtained at different concentrations and pH values. P < 0.05 was considered significant. RESULTS PARACEST agents showed a strong CEST effect at their specific presaturation offset frequencies. For each agent, the CEST effect showed significant concentration dependency (P < 0.05), increasing with agent concentration, and significant pH dependency (P < 0.05), with strong effect near physiological pH. CONCLUSION CEST imaging using ytterbium-based PARACEST agents might be feasible on a clinical MR scanner with further modifications, such as adjustments of the presaturation radiofrequency pulse and imaging protocols.
Collapse
Affiliation(s)
- Yukihisa Takayama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gerigk L, Schmitt B, Stieltjes B, Röder F, Essig M, Bock M, Schlemmer HP, Röthke M. 7 tesla imaging of cerebral radiation necrosis after arteriovenous malformations treatment using amide proton transfer (APT) imaging. J Magn Reson Imaging 2012; 35:1207-9. [DOI: 10.1002/jmri.23534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/11/2011] [Indexed: 11/06/2022] Open
|