1
|
de las Heras J, Aldámiz-Echevarría L, Martínez-Chantar ML, Delgado TC. An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease. Expert Opin Drug Metab Toxicol 2017; 13:439-448. [PMID: 27860485 PMCID: PMC5568887 DOI: 10.1080/17425255.2017.1262843] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Ammonia-scavenging drugs, benzoate and phenylacetate (PA)/phenylbutyrate (PB), modulate hepatic nitrogen metabolism mainly by providing alternative pathways for nitrogen disposal. Areas covered: We review the major findings and potential novel applications of ammonia-scavenging drugs, focusing on urea cycle disorders and liver disease. Expert opinion: For over 40 years, ammonia-scavenging drugs have been used in the treatment of urea cycle disorders. Recently, the use of these compounds has been advocated in acute liver failure and cirrhosis for reducing hyperammonemic-induced hepatic encephalopathy. The efficacy and mechanisms underlying the antitumor effects of these ammonia-scavenging drugs in liver cancer are more controversial and are discussed in the review. Overall, as ammonia-scavenging drugs are usually safe and well tolerated among cancer patients, further studies should be instigated to explore the role of these drugs in liver cancer. Considering the relevance of glutamine metabolism to the progression and resolution of liver disease, we propose that ammonia-scavenging drugs might also be used to non-invasively probe liver glutamine metabolism in vivo. Finally, novel derivatives of classical ammonia-scavenging drugs with fewer and less severe adverse effects are currently being developed and used in clinical trials for the treatment of acute liver failure and cirrhosis.
Collapse
Affiliation(s)
- Javier de las Heras
- Division of Pediatric Metabolism, University Hospital of Cruces, Barakaldo, Bizkaia, Spain
- BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
- University of the Basque Country, Leioa, Bizkaia, Spain
| | - Luis Aldámiz-Echevarría
- Division of Pediatric Metabolism, University Hospital of Cruces, Barakaldo, Bizkaia, Spain
- BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
- University of the Basque Country, Leioa, Bizkaia, Spain
| | - María-Luz Martínez-Chantar
- University of the Basque Country, Leioa, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Teresa C. Delgado
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| |
Collapse
|
2
|
Coelho M, Valente-Silva P, Tylki-Szymanska A, Henriques T, Barosa C, Carvalho F, Jones JG. Demonstration of glucose-6-phosphate hydrogen 5 enrichment from deuterated water by transaldolase-mediated exchange alone. Magn Reson Med 2015; 75:1781-6. [PMID: 25995077 DOI: 10.1002/mrm.25749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 11/11/2022]
Abstract
PURPOSE Enrichment of glucose position 5 (H5) from deuterated water ((2)H2O) is widely used for quantifying gluconeogenesis. Exchanges of hexose and triose phosphates mediated by transaldolase have been postulated to enrich H5 independently of gluconeogenesis, but to date this mechanism has not been proven. We determined the enrichment of glucose-6-phosphate (G6P), the immediate precursor of endogenously produced glucose, from (2)H2O in erythrocyte hemolysate preparations. Here, transaldolase exchange is active but gluconeogenesis is absent. METHODS Hemolysates were prepared from human erythrocytes and incubated with a buffer containing 5% [U-(13)C]G6P, unlabeled fructose 1,6-bisphosphate, and 10% (2)H2O. G6P (2)H-enrichment and (13)C-isotopomer distributions were analyzed by (2)H and (13)C NMR following derivatization to monoacetone glucose. RESULTS (2)H NMR analysis revealed high (2)H-enrichment of G6P hydrogens 2, 4, and 5; low enrichment of hydrogen 3, and residual enrichments of hydrogens 1, 6R, and 6S. (13)C NMR isotopomer analysis revealed that [U-(13)C]G6P was converted to [1,2,3-(13)C3]G6P, a predicted product of transaldolase-mediated exchange, as well as [1,2-(13)C2]G6P and [3-(13)C]G6P, predicted products of combined transaldolase and transketolase exchanges. CONCLUSION Hydrogen 5 of G6P was enriched from (2)H2O through exchanges mediated by transaldolase. These studies prove that G6P can be enriched in hydrogen 5 by (2)H2O independently of gluconeogenesis.
Collapse
Affiliation(s)
- Margarida Coelho
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | | | - Anna Tylki-Szymanska
- Department of Pediatrics, Nutrition and Metabolic Disease, The Children's Memorial Health Institute, Warsaw, Poland
| | - Tiago Henriques
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Cristina Barosa
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Filipa Carvalho
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - John G Jones
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal.,APDP-Portuguese Diabetes Association, Lisbon, Portugal
| |
Collapse
|
3
|
Jin ES, Sherry AD, Malloy CR. Interaction between the pentose phosphate pathway and gluconeogenesis from glycerol in the liver. J Biol Chem 2014; 289:32593-603. [PMID: 25288790 DOI: 10.1074/jbc.m114.577692] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After exposure to [U-(13)C3]glycerol, the liver produces primarily [1,2,3-(13)C3]- and [4,5,6-(13)C3]glucose in equal proportions through gluconeogenesis from the level of trioses. Other (13)C-labeling patterns occur as a consequence of alternative pathways for glucose production. The pentose phosphate pathway (PPP), metabolism in the citric acid cycle, incomplete equilibration by triose phosphate isomerase, or the transaldolase reaction all interact to produce complex (13)C-labeling patterns in exported glucose. Here, we investigated (13)C labeling in plasma glucose in rats given [U-(13)C3]glycerol under various nutritional conditions. Blood was drawn at multiple time points to extract glucose for NMR analysis. Because the transaldolase reaction and incomplete equilibrium by triose phosphate isomerase cannot break a (13)C-(13)C bond within the trioses contributing to glucose, the appearance of [1,2-(13)C2]-, [2,3-(13)C2]-, [5,6-(13)C2]-, and [4,5-(13)C2]glucose provides direct evidence for metabolism of glycerol in the citric acid cycle or the PPP but not an influence of either triose phosphate isomerase or the transaldolase reaction. In all animals, [1,2-(13)C2]glucose/[2,3-(13)C2]glucose was significantly greater than [5,6-(13)C2]glucose/[4,5-(13)C2]glucose, a relationship that can only arise from gluconeogenesis followed by passage of substrates through the PPP. In summary, the hepatic PPP in vivo can be detected by (13)C distribution in blood glucose after [U-(13)C3]glycerol administration.
Collapse
Affiliation(s)
- Eunsook S Jin
- From the Advanced Imaging Research Center and Departments of Internal Medicine and
| | - A Dean Sherry
- From the Advanced Imaging Research Center and Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, the Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, and
| | - Craig R Malloy
- From the Advanced Imaging Research Center and Departments of Internal Medicine and Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, the Veterans Affairs North Texas Health Care System, Dallas, Texas 75216
| |
Collapse
|
4
|
Rajpal A, Dube S, Carvalho F, Simoes AR, Figueiredo A, Basu A, Jones J, Basu R. Effects of transaldolase exchange on estimates of gluconeogenesis in type 2 diabetes. Am J Physiol Endocrinol Metab 2013; 305:E465-74. [PMID: 23736541 PMCID: PMC3891223 DOI: 10.1152/ajpendo.00245.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transaldolase (TA) exchange overestimates gluconeogenesis measured with deuterated water (²H₂O). However, it is unknown whether TA differs in people with type 2 diabetes (T2DM). ²H₂O was ingested, and [1-¹³C]acetate and [3-³H]glucose were infused in T2DM (n = 10) and healthy nondiabetic (ND; n = 8) subjects. TA was assessed from the ratio of ¹³C3 to ¹³C4 glucose enrichment (¹³C3/¹³C4) measured by ¹³C NMR. Glucose turnover was measured before (~16-h fast) and during hyperglycemic (~10 mM) moderate-dose insulin (~0.35 mU·kg⁻¹·min⁻¹) clamp. ¹³C3/¹³C4 in T2DM vs. ND was <1.0 and not different at baseline and clamp, indicating equivalent TA. To determine whether incomplete triose phosphate isomerase (TPI) exchange contributed to asymmetric ¹³C3/¹³C4, [U-¹³C]glycerol was infused in lieu of [1-¹³C]acetate during a separate visit in a subset of ND (n = 7) subjects. Ratio of ¹³C3/¹³C4 obtained following either tracer was <1.0 at baseline and during clamp, indicating that TPI exchange was essentially complete and did not contribute to asymmetric glucose enrichment. Uncorrected and corrected rates of gluconeogenesis were no different (P = not significant) in T2DM vs. ND both at baseline and during clamp. TA correction resulted in equivalent estimates of corrected gluconeogenesis in T2DM and ND that were ~25-35% lower than uncorrected gluconeogenesis both at baseline and during the clamp. The asymmetric enrichment of glucose from ¹³C-gluconeogenic tracers is attributable to TA exchange and can be utilized to correct for TA exchange. In conclusion, TA exchange does not differ between T2DM and ND under fasting or hyperglycemic clamp conditions, and the ²H₂O method continues to provide an accurate estimation of gluconeogenesis.
Collapse
Affiliation(s)
- Aman Rajpal
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Nunes PM, Jarak I, Heerschap A, Jones JG. Resolving futile glucose cycling and glycogenolytic contributions to plasma glucose levels following a glucose load. Magn Reson Med 2013; 71:1368-73. [DOI: 10.1002/mrm.24789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/15/2013] [Accepted: 04/08/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Patricia M. Nunes
- Department of Radiology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Ivana Jarak
- Intermediary Metabolism Group, Center for Neurosciences and Cell Biology; University of Coimbra; Coimbra Portugal
| | - Arend Heerschap
- Department of Radiology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - John G. Jones
- Intermediary Metabolism Group, Center for Neurosciences and Cell Biology; University of Coimbra; Coimbra Portugal
- Portuguese Diabetes Association; Lisbon Portugal
| |
Collapse
|
6
|
Jin ES, Sherry AD, Malloy CR. Evidence for transaldolase activity in the isolated heart supplied with [U-13C3]glycerol. J Biol Chem 2012; 288:2914-22. [PMID: 23235149 DOI: 10.1074/jbc.m112.409441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of glycerol metabolism in the heart have largely emphasized its role in triglyceride synthesis. However, glycerol may also be oxidized in the citric acid cycle, and glycogen synthesis from glycerol has been reported in the nonmammalian myocardium. The intent of this study was to test the hypothesis that glycerol may be metabolized to glycogen in mammalian heart. Isolated rat hearts were supplied with a mixture of substrates including glucose, lactate, pyruvate, octanoate, [U-(13)C(3)]glycerol, and (2)H(2)O to probe various metabolic pathways including glycerol oxidation, glycolysis, the pentose phosphate pathway, and carbon sources of stored glycogen. NMR analysis confirmed that glycogen production from the level of the citric acid cycle did not occur and that the glycerol contribution to oxidation in the citric acid cycle was negligible in the presence of alternative substrates. Quite unexpectedly, (13)C from [U-(13)C(3)]glycerol appeared in glycogen in carbon positions 4-6 of glucosyl units but none in positions 1-3. The extent of [4,5,6-(13)C(3)]glucosyl unit enrichment in glycogen was enhanced by insulin but decreased by H(2)O(2). Given that triose phosphate isomerase is generally assumed to fully equilibrate carbon tracers in the triose pool, the marked (13)C asymmetry in glycogen can only be attributed to conversion of [U-(13)C(3)]glycerol to [U-(13)C(3)]dihydroxyacetone phosphate and [U-(13)C(3)]glyceraldehyde 3-phosphate followed by rearrangements in the nonoxidative branch of the pentose phosphate pathway involving transaldolase that places this (13)C-enriched 3-carbon unit only in the bottom half of hexose phosphate molecules contributing to glycogen.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | |
Collapse
|
7
|
Browning JD, Burgess SC. Use of (2)H(2)O for estimating rates of gluconeogenesis: determination and correction of error due to transaldolase exchange. Am J Physiol Endocrinol Metab 2012; 303:E1304-12. [PMID: 23032685 PMCID: PMC3774082 DOI: 10.1152/ajpendo.00306.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of deuterated water as a method to measure gluconeogenesis has previously been well validated and is reflective of normal human physiology. However, there has been concern since the method was first introduced that transaldolase exchange may lead to the overestimation of gluconeogenesis. We examined the impact of transaldolase exchange on the estimation of gluconenogenesis using the deuterated water method under a variety of physiological conditions in humans by using the gluconeogenic tracer [U-(13)C]propionate, (2)H(2)O, and (2)H/(13)C nuclear magnetic resonance (NMR) spectroscopy. When [U-(13)C]propionate was used, (13)C labeling inequality occurred between the top and bottom halves of glucose in individuals fasted for 12-24 h who were weight stable (n = 18) or had lost weight via calorie restriction (n = 7), consistent with transaldolase exchange. Similar analysis of glucose standards revealed no significant difference in the total (13)C enrichment between the top and bottom halves of glucose, indicating that the differences detected were biological, not analytical, in origin. This labeling inequality was attenuated by extending the fasting period to 48 h (n = 12) as well as by dietary carbohydrate restriction (n = 7), both conditions associated with decreased glycogenolysis. These findings were consistent with a transaldolase effect; however, the resultant overestimation of gluconeogenesis in the overnight-fasted state was modest (7-12%), leading to an error of 14-24% that was easily correctable by using either a simultaneous (13)C gluconeogenic tracer or a correction nomogram generated from data in the present study.
Collapse
Affiliation(s)
- Jeffrey D Browning
- The Advanced Imaging Research Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | |
Collapse
|
8
|
Barosa C, Silva C, Fagulha A, Barros L, Caldeira MM, Carvalheiro M, Jones JG. Sources of hepatic glycogen synthesis following a milk-containing breakfast meal in healthy subjects. Metabolism 2012; 61:250-4. [PMID: 21862086 DOI: 10.1016/j.metabol.2011.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/08/2011] [Accepted: 06/26/2011] [Indexed: 11/20/2022]
Abstract
During feeding, dietary galactose is a potential source of hepatic glycogen synthesis; but its contribution has not been measured to date. In the presence of deuterated water ((2)H(2)O), uridine diphosphate (UDP)-glucose derived from galactose is not enriched, whereas the remainder derived from glucose-6-phosphate (G6P) is enriched in position 2 to the same level as body water, assuming complete G6P-fructose-6-phosphate (F6P) exchange. Hence, the difference between UDP-glucose position 2 and body water enrichments reflects the contribution of galactose to glycogen synthesis relative to all other sources. In study 1, G6P-F6P exchange in 6 healthy subjects was quantified by supplementing a milk-containing breakfast meal with 10 g of [U-(2)H(7)]glucose and quantifying the depletion of position 2 enrichment in urinary menthol glucuronide. In study 2, another 6 subjects ingested (2)H(2)O and acetaminophen followed by an identical breakfast meal with 10 g of [1-(13)C]glucose to resolve direct/indirect pathways and galactose contributions to glycogen synthesis. Metabolite enrichments were determined by (2)H and (13)C nuclear magnetic resonance. In study 1, G6P-F6P exchange approached completion; therefore, the difference between position 2 and body water enrichments in study 2 (0.20% ± 0.03% vs 0.27% ± 0.03%, P < .005) was attributed to galactose glycogenesis. Dietary galactose contributed 19% ± 3% to glycogen synthesis. Of the remainder, 58% ± 5% was derived from the direct pathway and 22% ± 4% via the indirect pathway. The contribution of galactose to hepatic glycogen synthesis was resolved from that of direct and indirect pathways using a combination of (2)H(2)O and [1-(13)C]glucose tracers.
Collapse
Affiliation(s)
- Cristina Barosa
- Biophysics and Biomedical NMR, Center for Neurosciences and Cell Biology, University of Coimbra, 3001-401 Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
9
|
Basu R, Barosa C, Basu A, Pattan V, Saad A, Jones J, Rizza R. Transaldolase exchange and its effects on measurements of gluconeogenesis in humans. Am J Physiol Endocrinol Metab 2011; 300:E296-303. [PMID: 21062960 PMCID: PMC3043622 DOI: 10.1152/ajpendo.00403.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deuterated water method is used extensively to measure gluconeogenesis in humans. This method assumes negligible exchange of the lower three carbons of fructose 6-phsophate via transaldolase exchange since this exchange will result in enrichment of carbon 5 of glucose in the absence of net gluconeogenesis. The present studies tested this assumption. ²H₂O and acetaminophen were ingested and [1-¹³C]acetate infused in 11 nondiabetic subjects after a 16-h fast. Plasma and urinary glucuronide enrichments were measured using nuclear magnetic resonance spectroscopy before and during a 0.35 mU·kg FFM⁻¹·min⁻¹ insulin infusion. Rates of endogenous glucose production measured with [3-³H]- and [6,6-²H₂]glucose did not differ either before (14.0 ± 0.7 vs. 13.8 ± 0.7 μmol·kg⁻¹·min⁻¹) or during the clamp (10.4 ± 0.9 vs. 10.9 ± 0.7 μmol·kg⁻¹·min⁻¹), consistent with equilibration and quantitative removal of tritium during triose isomerase exchange. Plasma [3-¹³C] glucose-to-[4-¹³C]glucose and urinary [3-¹³C] glucuronide-to-[4-¹³C]glucuronide ratios were <1.0 (P < 0.001) in all subjects both before (0.66 ± 0.04 and 0.60 ± 0.04) and during (059 ± 0.05 and 0.56 ± 0.06) the insulin infusion, respectively, indicating that ∼35-45% of the labeling of the 5th carbon of glucose by deuterium was due to transaldolase exchange rather than gluconeogenesis. When corrected for transaldolase exchange, rates of gluconeogenesis were lower (P < 0.001) and glycogenolysis higher (P < 0.001) than uncorrected rates both before and during the insulin infusion. In conclusion, assuming negligible dilution by glycerol and near-complete triose isomerase equilibration, these data provide strong experimental evidence that transaldolase exchange occurs in humans, resulting in an overestimate of gluconeogenesis and an underestimate of glycogenolysis when measured with the ²H₂O method. Use of appropriate ¹³C tracers provides a means of correcting for transaldolase exchange.
Collapse
Affiliation(s)
- Rita Basu
- Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Delgado TC, Silva C, Fernandes I, Caldeira M, Bastos M, Baptista C, Carvalheiro M, Geraldes CFGC, Jones JG. Sources of hepatic glycogen synthesis during an oral glucose tolerance test: Effect of transaldolase exchange on flux estimates. Magn Reson Med 2010; 62:1120-8. [PMID: 19780152 DOI: 10.1002/mrm.22107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sources of hepatic glycogen synthesis during an oral glucose tolerance test were evaluated in six healthy subjects by enrichment of a 75-g glucose load with 6.67% [U-(13)C]glucose and 3.33% [U-(2)H(7)]glucose and analysis of plasma glucose and hepatic uridine diphosphate-glucose enrichments (sampled as urinary menthol glucuronide) by (2)H and (13)C nuclear magnetic resonance. The direct pathway contribution, as estimated from the dilution of [U-(13)C]glucose between plasma glucose and glucuronide, was unexpectedly low (36 +/- 5%). With [U-(2)H(7)]glucose, direct pathway estimates based on the dilution of position 3 (2)H-enrichment between plasma glucose and glucuronide were significantly higher (51 +/- 6%, P = 0.05). These differences reflect the exchange of the carbon 4, 5, and 6 moiety of fructose-6-phosphate and glyceraldehyde-3-phosphate catalyzed by transaldolase. As further evidence of this exchange, (2)H-enrichments in glucuronide positions 4 and 5 were inferior to those of position 3. From the difference in glucuronide positions 5 and 3 enrichments, the fraction of direct pathway carbons that experienced transaldolase exchange was estimated at 21 +/- 4%. In conclusion, the direct pathway contributes only half of hepatic glycogen synthesis during an oral glucose tolerance test. Glucose tracers labeled in positions 4, 5, or 6 will give significant underestimates of direct pathway activity because of transaldolase exchange.
Collapse
Affiliation(s)
- Teresa C Delgado
- NMR Laboratory, Center for Neurosciences and Cell Biology, Coimbra University, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Basu R, Chandramouli V, Schumann W, Basu A, Landau BR, Rizza RA. Additional evidence that transaldolase exchange, isotope discrimination during the triose-isomerase reaction, or both occur in humans: effects of type 2 diabetes. Diabetes 2009; 58:1539-43. [PMID: 19366865 PMCID: PMC2699876 DOI: 10.2337/db08-1300] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To determine whether deuterium enrichment on carbons 5 and 3 (C5/C3) in plasma glucose is influenced by processes other than gluconeogenesis and, if so, whether these processes are altered by type 2 diabetes. RESEARCH DESIGN AND METHODS In this study, 10 obese diabetic and 10 obese nondiabetic subjects were infused intravenously with [3,5-(2)H(2)] galactose enriched at a C5-to-C3 ratio of 1.0 as well as the enrichment of deuterium on C5 and C3 of plasma glucose, measured with nuclear magnetic resonance using the acetaminophen glucuronide method. RESULTS The ratio of deuterium enrichment on C5 and C3 of glucose was <1 (P < 0.001) in all of the diabetic and nondiabetic subjects, resulting in a means +/- SE C5-to-C3 ratio that did not differ between groups (0.81 +/- 0.01 vs. 0.79 +/- 0.01, respectively). CONCLUSIONS That the C5-to-C3 glucose ratio is <1 indicates that transaldolase exchange, selective retention of deuterium at the level of the triose-isomerase reaction, or both occur in humans. This also indicates that the net effect of these processes on the C5-to-C3 ratio is the same in people with and without type 2 diabetes. The possible effects of transaldolase exchange or selective retention of deuterium (or tritium) at the level of the triose-isomerase reaction on tracee labeling and tracer metabolism should be considered when the deuterated water method is used to measure gluconeogenesis or [3-(3)H] glucose is used to measure glucose turnover in humans.
Collapse
Affiliation(s)
- Rita Basu
- Division of Endocrinology, Diabetes, Metabolism & Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Visvanthan Chandramouli
- Division of Clinical and Molecular Endocrinology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - William Schumann
- Division of Clinical and Molecular Endocrinology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ananda Basu
- Division of Endocrinology, Diabetes, Metabolism & Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Bernard R. Landau
- Division of Clinical and Molecular Endocrinology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert A. Rizza
- Division of Endocrinology, Diabetes, Metabolism & Nutrition, Mayo Clinic College of Medicine, Rochester, Minnesota
- Corresponding author: Robert A. Rizza,
| |
Collapse
|