1
|
Matias AA, Serviente CF, Decker ST, Erol ME, Giuriato G, Le Fur Y, Nagarajan R, Bendahan D, Layec G. Repeatability of alkaline inorganic phosphate quantification in the skeletal muscle using 31P-magnetic resonance spectroscopy at 3 T. NMR IN BIOMEDICINE 2024; 37:e5255. [PMID: 39225116 DOI: 10.1002/nbm.5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The detection of a secondary inorganic phosphate (Pi) resonance, a possible marker of mitochondrial content in vivo, using phosphorus magnetic resonance spectroscopy (31P-MRS), poses technical challenges at 3 Tesla (T). Overcoming these challenges is imperative for the integration of this biomarker into clinical research. To evaluate the repeatability and reliability of measuring resting skeletal muscle alkaline Pi (Pialk) using with 31P-MRS at 3 T. After an initial set of experiments on five subjects to optimize the sequence, resting 31P-MRS of the quadriceps muscles were acquired on two visits (~4 days apart) using an intra-subjects design, from 13 sedentary to moderately active young male and female adults (22 ± 3 years old) within a whole-body 3 T MR system. Measurement variability attributed to changes in coil position, shimming procedure, and spectral analysis were quantified. 31P-MRS data were acquired with a 31P/-proton (1H) dual-tuned surface coil positioned on the quadriceps using a pulse-acquire sequence. Test-retest absolute and relative repeatability was analyzed using the coefficient of variation (CV) and intra-class correlation coefficients (ICC), respectively. After sequence parameter optimization, Pialk demonstrated high intra-subject repeatability (CV: 10.6 ± 5.4%, ICC: 0.80). Proximo-distal change in coil position along the length of the quadriceps introduced Pialk quantitation variability (CV: 28 ± 5%), due to magnetic field inhomogeneity with more distal coil locations. In contrast, Pialk measurement variability due to repeated shims from the same muscle volume (0.40 ± 0.09mM; CV: 6.6%), and automated spectral processing (0.37 ± 0.01mM; CV: 2.3%), was minor. The quantification of Pialk in skeletal muscle via surface coil 31P-MRS at 3 T demonstrated excellent reproducibility. However, caution is advised against placing the coil at the distal part of the quadriceps to mitigate shimming inhomogeneity.
Collapse
Affiliation(s)
- Alexs A Matias
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Corinna F Serviente
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- The Institute for Applied Life Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Gaia Giuriato
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Verona, Italy
- Department of Surgical, Medical and Dental, University of Modena and Reggio Emilia, Modena, Italy
| | - Yann Le Fur
- Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rajakumar Nagarajan
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
| | - David Bendahan
- Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
| |
Collapse
|
2
|
Zhang B, Lowrance D, Sarma MK, Bartlett M, Zaha D, Nelson MD, Henning A. 3T 31P/ 1H calf muscle coil for 1H and 31P MRI/MRS integrated with NIRS data acquisition. Magn Reson Med 2024; 91:2638-2651. [PMID: 38263948 DOI: 10.1002/mrm.30025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE Our aim was to design and build a 3T 31P/1H calf coil that is capable of providing both good 31P and 1H transmit and receive performance, as well as being capable of accommodating a near-infrared spectroscopy (NIRS) device for simultaneous NIRS data and MRI/MRS acquisition. METHOD In this work, we propose a new 3T 31P/1H birdcage combination design consisting of two co-centrically positioned birdcages on the same surface to maximize transmit efficiency and sensitivity for both nuclei. The 31P birdcage is a high-pass birdcage, whereas the 1H birdcage is a low-pass one to minimize coupling. The diameter of the 31P/1H birdcage combination was designed to be large enough to accommodate a NIRS device for simultaneous NIRS data and MRI/MRS acquisition. RESULTS The one-layer coil structure of the birdcage combination significantly streamlines the mechanical design and coil assembly process. Full-wave simulation results show that the 31P and 1H are very well decoupled with each other, and the 1H and 31P SNR surpasses that of their standalone counterparts in the central area. Experiment results show that the inclusion of a NIRS device does not significantly affect the performance of the coil, thus enabling simultaneous NIRS and MRI readouts during exercise. CONCLUSION Our findings demonstrate the feasibility and effectiveness of this dual-tuned coil design for combined NIRS and MRS measurements, offering potential benefits for studying metabolic and functional changes in the skeletal muscle in vivo.
Collapse
Affiliation(s)
- Bei Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Lowrance
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Manoj Kumar Sarma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - David Zaha
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Hayden CMT, Nagarajan R, Smith ZH, Gilmore S, Kent JA. Postcontraction [acetylcarnitine] reflects interindividual variation in skeletal muscle ATP production patterns in vivo. Am J Physiol Regul Integr Comp Physiol 2024; 326:R66-R78. [PMID: 37955131 DOI: 10.1152/ajpregu.00027.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
In addition to its role in substrate selection (carbohydrate vs. fat) for oxidative metabolism in muscle, acetylcarnitine production may be an important modulator of the energetic pathway by which ATP is produced. A combination of noninvasive magnetic resonance spectroscopy measures of cytosolic acetylcarnitine and ATP production pathways was used to investigate the link between [acetylcarnitine] and energy production in vivo. Intracellular metabolites were measured in the vastus lateralis muscle of eight males (mean: 28.4 yr, range: 25-35) during 8 min of incremental, dynamic contractions (0.5 Hz, 2-min stages at 6%, 9%, 12%, and 15% maximal torque) that increased [acetylcarnitine] approximately fivefold from resting levels. ATP production via oxidative phosphorylation, glycolysis, and the creatine kinase reaction was calculated based on phosphorus metabolites and pH. Spearman rank correlations indicated that postcontraction [acetylcarnitine] was positively associated with both absolute (mM) and relative (% total ATP) glycolytic ATP production (rs = 0.95, P = 0.001; rs = 0.93, P = 0.002), and negatively associated with relative (rs = -0.81, P = 0.02) but not absolute (rs = -0.14, P = 0.75) oxidative ATP production. Thus, acetylcarnitine accumulated more when there was a greater reliance on "nonoxidative" glycolysis and a relatively lower contribution from oxidative phosphorylation, reflecting the fate of pyruvate in working skeletal muscle. Furthermore, these data indicate striking interindividual variation in responses to the energy demand of submaximal contractions. Overall, the results of this preliminary study provide novel evidence of the coupling in vivo between ATP production pathways and the carnitine system.NEW & NOTEWORTHY Production of acetylcarnitine from acetyl-CoA and free carnitine may be important for energy pathway regulation in contracting skeletal muscle. Noninvasive magnetic resonance spectroscopy was used to investigate the link between acetylcarnitine and energy production in the vastus lateralis muscle during dynamic contractions (n = 8 individuals). A positive correlation between acetylcarnitine accumulation and "nonoxidative" glycolysis and an inverse relationship with oxidative phosphorylation, provides novel evidence of the coupling between ATP production and the carnitine system in vivo.
Collapse
Affiliation(s)
- Christopher M T Hayden
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - Zoe H Smith
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Samantha Gilmore
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
4
|
Naëgel A, Ratiney H, Karkouri J, Kennouche D, Royer N, Slade JM, Morel J, Croisille P, Viallon M. Alteration of skeletal muscle energy metabolism assessed by phosphorus-31 magnetic resonance spectroscopy in clinical routine, part 1: Advanced quality control pipeline. NMR IN BIOMEDICINE 2023; 36:e5025. [PMID: 37797948 DOI: 10.1002/nbm.5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 10/07/2023]
Abstract
Implementing a standardized phosphorus-31 magnetic resonance spectroscopy (31 P-MRS) dynamic acquisition protocol to evaluate skeletal muscle energy metabolism and monitor muscle fatigability, while being compatible with various longitudinal clinical studies on diversified patient cohorts, requires a high level of technicality and expertise. Furthermore, processing data to obtain reliable results also demands a great degree of expertise from the operator. In this two-part article, we present an advanced quality control approach for data acquired using a dynamic 31 P-MRS protocol. The aim is to provide decision support to the operator to assist in data processing and obtain reliable results based on objective criteria. We present here, in part 1, an advanced data quality control (QC) approach of a dynamic 31 P-MRS protocol. Part 2 is an impact study that will demonstrate the added value of the QC approach to explore data derived from two clinical populations that experience significant fatigue, patients with coronavirus disease 2019 and multiple sclerosis. In part 1, 31 P-MRS was performed using 3-T clinical MRI in 175 subjects from clinical and healthy control populations conducted in a University Hospital. An advanced data QC score (QCS) was developed using multiple objective criteria. The criteria were based on current recommendations from the literature enriched by new proposals based on clinical experience. The QCS was designed to indicate valid and corrupt data and guide necessary objective data editing to extract as much valid physiological data as possible. Dynamic acquisitions using an MR-compatible ergometer ran over a rest (40 s), exercise (2 min), and a recovery phase (6 min). Using QCS enabled rapid identification of subjects with data anomalies, allowing the user to correct the data series or reject them partially or entirely, as well as identify fully valid datasets. Overall, the use of the QCS resulted in the automatic classification of 45% of the subjects, including 58 participants who had data with no criterion violation and 21 participants with violations that resulted in the rejection of all dynamic data. The remaining datasets were inspected manually with guidance, allowing acceptance of full datasets from an additional 80 participants and recovery phase data from an additional 16 subjects. Overall, more anomalies occurred with patient data (35% of datasets) compared with healthy controls (15% of datasets). In conclusion, the QCS ensures a standardized data rejection procedure and rigorous objective analysis of dynamic 31 P-MRS data obtained from patients. This methodology contributes to efforts made to standardize 31 P-MRS practices that have been underway for a decade, with the goal of making it an empowered tool for clinical research.
Collapse
Affiliation(s)
- Antoine Naëgel
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
| | - Hélène Ratiney
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Jabrane Karkouri
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | - Djahid Kennouche
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM - Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Nicolas Royer
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM - Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Jérôme Morel
- Anaesthetics and Intensive Care Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Pierre Croisille
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Magalie Viallon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| |
Collapse
|
5
|
Mahmud SZ, Bashir A. Repeatability assessment for simultaneous measurement of arterial blood flow, venous oxygen saturation, and muscle perfusion following dynamic exercise. NMR IN BIOMEDICINE 2023; 36:e4872. [PMID: 36349386 DOI: 10.1002/nbm.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The purpose of the present study was to demonstrate a new sequence and determine the repeatability of simultaneous dynamic measurements of blood flow, venous oxygen saturation (SvO2 ), and relative perfusion (change from resting perfusion) in calf muscle during recovery from plantar flexion exercise. The feasibility of near simultaneous measurement of bio-energetic parameters was also demonstrated. A sequence was developed to simultaneously measure arterial blood flow using flow-encoded projection, SvO2 using susceptibility-based oximetry, and relative perfusion using arterial spin labeling in combination with dynamic plantar flexion exercise. The parameters were determined at rest and during recovery from single leg plantar flexion exercise. Test-retest repeatability was analyzed using Bland-Altman analysis and intraclass correlation coefficients (ICC). The mitochondrial capacity of skeletal muscle was also measured immediately afterwards with dynamic phosphorus magnetic resonance spectroscopy. Eight healthy subjects participated in the study for test-retest repeatability. Popliteal artery blood flow at rest was 1.79 ± 0.58 ml/s and increased to 11.18 ± 3.02 ml/s immediately after exercise. Popliteal vein SvO2 decreased to 45.93% ± 6.5% from a resting value of 70.46% ± 4.76% following exercise. Relative perfusion (change from rest value) was 51.83 ± 15.00 ml/100 g/min at the cessation of exercise. The recovery of blood flow and SvO2 was modeled as a single exponential with time constants of 38.03 ± 6.91 and 71.19 ± 14.53 s, respectively. All the measured parameters exhibited good repeatability with ICC ranging from 0.8 to 0.95. Bioenergetics measurements were within normal range, demonstrating the feasibility of near simultaneous measurement of hemodynamic and energetic parameters. Clinical feasibility was assessed with Barth syndrome patients, demonstrating reduced oxygen extraction from the blood and reduced mitochondrial oxidative capacity compared with healthy controls. The proposed protocol allows rapid imaging of multiple parameters in skeletal muscle that might be affected in disease.
Collapse
Affiliation(s)
- Sultan Z Mahmud
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
6
|
Oberdier MT, AlGhatrif M, Adelnia F, Zampino M, Morrell CH, Simonsick E, Fishbein K, Lakatta EG, McDermott MM, Ferrucci L. Ankle-Brachial Index and Energy Production in People Without Peripheral Artery Disease: The BLSA. J Am Heart Assoc 2022; 11:e019014. [PMID: 35253449 PMCID: PMC9075330 DOI: 10.1161/jaha.120.019014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Background Lower ankle-brachial index (ABI) values within the 0.90 to 1.40 range are associated with poorer mitochondrial oxidative capacity of thigh muscles in cross-sectional analyses. Whether ABI decline is associated with greater declines in thigh muscle oxidative capacity with aging is unknown. Method and Results We analyzed data from 228 participants (100 men) of the BLSA (Baltimore Longitudinal Study of Aging), aged 39 to 97 years, with an ABI between 0.9 and 1.40 at baseline and at follow-up (mean follow-up period of 2.8 years). We examined mitochondrial oxidative capacity of the left thigh muscle, by measuring the postexercise phosphocreatine recovery rate constant (kPCr) from phosphorus-31 magnetic resonance spectroscopy. Greater kPCr indicated higher mitochondrial oxidative capacity. Although kPCr was available on the left leg only, ABI was measured in both legs. Longitudinal rates of change (Change) of left and right ABI and kPCr of the left thigh muscle were estimated using linear mixed effects models, and their association was analyzed by standardized multiple linear regressions. In multivariate analysis including sex, age, baseline kPCr, both left and right baseline ABI, and ABI change in both legs, (kPCr)Change was directly associated with ipsilateral (left) (ABI)Change (standardized [STD]-β=0.14; P=0.0168) but not with contralateral (right) (ABI)Change (P=0.22). Adjusting for traditional cardiovascular risk factors, this association remained significant (STD-β=0.18; P=0.0051). (kPCr)Change was steeper in White race participants (STD-β=0.16; P=0.0122) and body mass index (STD-β=0.13; P=0.0479). There was no significant association with current smoking status (P=0.63), fasting glucose (P=0.28), heart rate (P=0.67), mean blood pressure (P=0.78), and low-density lipoprotein (P=0.75), high-density lipoprotein (P=0.82), or triglycerides (P=0.15). Conclusions In people without peripheral arterial disease, greater decline in ABI over time, but not baseline ABI, was associated with faster decline in thigh mitochondrial oxidative capacity in the ipsilateral leg. Further studies are needed to examine whether early interventions that improve lower extremity muscle perfusion can improve and prevent the decline of muscle energetics.
Collapse
Affiliation(s)
- Matt T. Oberdier
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Majd AlGhatrif
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
- Department of MedicineJohns Hopkins School of MedicineBaltimoreMD
| | - Fatemeh Adelnia
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Marta Zampino
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Christopher H. Morrell
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Loyola University MarylandBaltimoreMD
| | | | - Kenneth Fishbein
- Laboratory of Clinical InvestigationNational Institute on AgingBaltimoreMD
| | - Edward G. Lakatta
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
| | - Mary M. McDermott
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Luigi Ferrucci
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| |
Collapse
|
7
|
Frise MC, Holdsworth DA, Johnson AW, Chung YJ, Curtis MK, Cox PJ, Clarke K, Tyler DJ, Roberts DJ, Ratcliffe PJ, Dorrington KL, Robbins PA. Abnormal whole-body energy metabolism in iron-deficient humans despite preserved skeletal muscle oxidative phosphorylation. Sci Rep 2022; 12:998. [PMID: 35046429 PMCID: PMC8770476 DOI: 10.1038/s41598-021-03968-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/10/2021] [Indexed: 01/01/2023] Open
Abstract
Iron deficiency impairs skeletal muscle metabolism. The underlying mechanisms are incompletely characterised, but animal and human experiments suggest the involvement of signalling pathways co-dependent upon oxygen and iron availability, including the pathway associated with hypoxia-inducible factor (HIF). We performed a prospective, case-control, clinical physiology study to explore the effects of iron deficiency on human metabolism, using exercise as a stressor. Thirteen iron-deficient (ID) individuals and thirteen iron-replete (IR) control participants each underwent 31P-magnetic resonance spectroscopy of exercising calf muscle to investigate differences in oxidative phosphorylation, followed by whole-body cardiopulmonary exercise testing. Thereafter, individuals were given an intravenous (IV) infusion, randomised to either iron or saline, and the assessments repeated ~ 1 week later. Neither baseline iron status nor IV iron significantly influenced high-energy phosphate metabolism. During submaximal cardiopulmonary exercise, the rate of decline in blood lactate concentration was diminished in the ID group (P = 0.005). Intravenous iron corrected this abnormality. Furthermore, IV iron increased lactate threshold during maximal cardiopulmonary exercise by ~ 10%, regardless of baseline iron status. These findings demonstrate abnormal whole-body energy metabolism in iron-deficient but otherwise healthy humans. Iron deficiency promotes a more glycolytic phenotype without having a detectable effect on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Matthew C Frise
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - David A Holdsworth
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Andrew W Johnson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Yu Jin Chung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Pete J Cox
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - David J Roberts
- Nuffield Department of Clinical Laboratory Sciences, National Blood Service Oxford Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9BQ, UK
| | - Peter J Ratcliffe
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford, OX3 7FZ, UK
- Francis Crick Institute, London, NW1 1AT, UK
| | - Keith L Dorrington
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
8
|
Robergs RA. Quantifying H + exchange from muscle cytosolic energy catabolism using metabolite flux and H + coefficients from multiple competitive cation binding: New evidence for consideration in established theories. Physiol Rep 2021; 9:e14728. [PMID: 33904663 PMCID: PMC8077081 DOI: 10.14814/phy2.14728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of this investigation was to present calculations of fractional H+ exchange (~H+e ) from the chemical reactions of non-mitochondrial energy catabolism. Data of muscle pH and metabolite accumulation were based on published research for intense exercise to contractile failure within ~3 min, from which capacities and time profiles were modeled. Data were obtained from prior research for multiple competitive cation dissociation constants of metabolites and the chemical reactions of non-mitochondrial energy catabolism, and pH dependent calculations of ~H+e from specific chemical reactions. Data revealed that the 3 min of intense exercise incurred a total ATP turnover of 142.5 mmol L-1 , with a total intramuscular ~H+ exchange (-'ve = release) of -187.9 mmol L-1 . Total ~H+ metabolic consumption was 130.6 mmol L-1 , revealing a net total ~H+e (~H+te ) of -57.3 mmol L-1 . Lactate production had a ~H+te of 44.2 mmol L-1 (for a peak accumulation = 45 mmol L-1 ). The net ~H+te for the sum of the CK, AK, and AMPD reactions was 36.33 mmol L-1 . The ~H+te from ATP turnover equaled -47.5 mmol L-1 . The total ~H+ release to lactate ratio was 4.3 (187.9/44). Muscle ~H+ release during intense exercise is up to ~4-fold larger than previously assumed based on the lactic acid construct.
Collapse
Affiliation(s)
- Robert A. Robergs
- School of Exercise and Nutrition SciencesFaculty of HealthQueensland University of TechnologyKelvin GroveQLDAustralia
| |
Collapse
|
9
|
Chatel B, Bernit E, Vilmen C, Michel C, Bendahan D, Messonnier LA. In vivo muscle function and energetics in women with sickle cell anemia or trait: a 31P-magnetic resonance spectroscopy study. J Appl Physiol (1985) 2020; 130:737-745. [PMID: 33300856 DOI: 10.1152/japplphysiol.00790.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sickle cell anemia (SCA) is a genetic hemoglobinopathy associated with an impaired oxygen delivery to skeletal muscle that could alter ATP production processes and increase intramuscular acidosis. These alterations have been already reported in the Townes mouse model of SCA but the corresponding changes in humans have not been documented. In the present study, we used 31-phosphorus magnetic resonance spectroscopy to investigate in vivo the metabolic changes induced by a moderate-intensity exercise in twelve SCA patients, eight sickle cell trait (SCT) carriers, and twelve controls women. The rest-exercise-recovery protocol disclosed slight differences regarding phosphocreatine (PCr) consumption and lactate accumulation between SCA patients and controls but these differences did not reach a statistical significance. On that basis, the in vivo metabolic changes associated with a moderate-intensity muscle exercise were slightly altered in SCA patients and SCT carriers but within a normal range. The present results strongly support the fact that a moderate-intensity exercise is safe and could be recommended in stable SCA patients and SCT subjects.NEW & NOTEWORTHY The main finding of the present study was that the metabolic changes associated with a moderate-intensity muscle exercise were slightly modified in stable sickle cell anemia patients and sickle cell trait carriers as compared to controls but still in the normal range. The present results strongly support the safety of a moderate-intensity exercise for stable sickle cell anemia patients and sickle cell trait carriers.
Collapse
Affiliation(s)
- Benjamin Chatel
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France.,CellMade, Le-Bourget-du-Lac, France
| | - Emmanuelle Bernit
- Service de Médecine Interne, Hôpital de la Timone, APHM, Marseille, France.,Centre de référence Antilles-Guyane pour la Drépanocytose, les Thalassémies et les maladies constitutives du Globule Rouge et de l'Erythropoïèse, Pointe à Pitre, Guadeloupe
| | | | | | - David Bendahan
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
| | - Laurent A Messonnier
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France.,Université Savoie Mont Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité EA7424, Chambéry, France
| |
Collapse
|
10
|
Kumar D, Nanga RPR, Thakuri D, Wilson N, Cember A, Martin ML, Zhu D, Shinohara RT, Qin Q, Hariharan H, Reddy R. Recovery kinetics of creatine in mild plantar flexion exercise using 3D creatine CEST imaging at 7 Tesla. Magn Reson Med 2020; 85:802-817. [PMID: 32820572 DOI: 10.1002/mrm.28463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE Two-dimensional creatine CEST (2D-CrCEST), with a slice thickness of 10-20 mm and temporal resolution (τRes ) of about 30 seconds, has previously been shown to capture the creatine-recovery kinetics in healthy controls and in patients with abnormal creatine-kinase kinetics following the mild plantar flexion exercise. Since the distribution of disease burden may vary across the muscle length for many musculoskeletal disorders, there is a need to increase coverage in the slice-encoding direction. Here, we demonstrate the feasibility of 3D-CrCEST with τRes of about 30 seconds, and propose an improved voxel-wise B 1 + -calibration approach for CrCEST. METHODS The current 7T study with enrollment of 5 volunteers involved collecting the baseline CrCEST imaging for the first 2 minutes, followed by 2 minutes of plantar flexion exercise and then 8 minutes of postexercise CrCEST imaging, to detect the temporal evolution of creatine concentration following exercise. RESULTS Very good repeatability of 3D-CrCEST findings for activated muscle groups on an intraday and interday basis was established, with coefficient of variance of creatine recovery constants (τCr ) being 7%-15.7%, 7.5%, and 5.8% for lateral gastrocnemius, medial gastrocnemius, and peroneus longus, respectively. We also established a good intraday and interday scan repeatability for 3D-CrCEST and also showed good correspondence between τCr measurements using 2D-CrCEST and 3D-CrCEST acquisitions. CONCLUSION In this study, we demonstrated for the first time the feasibility and the repeatability of the 3D-CrCEST method in calf muscle with improved B 1 + correction to measure creatine-recovery kinetics within a large 3D volume of calf muscle.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Deepa Thakuri
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil Wilson
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA
| | - Abigail Cember
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa Lynne Martin
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dan Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hari Hariharan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37:101674. [PMID: 32811789 PMCID: PMC7767752 DOI: 10.1016/j.redox.2020.101674] [Citation(s) in RCA: 604] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial electron transport chain utilizes a series of electron transfer reactions to generate cellular ATP through oxidative phosphorylation. A consequence of electron transfer is the generation of reactive oxygen species (ROS), which contributes to both homeostatic signaling as well as oxidative stress during pathology. In this graphical review we provide an overview of oxidative phosphorylation and its inter-relationship with ROS production by the electron transport chain. We also outline traditional and novel translational methodology for assessing mitochondrial energetics in health and disease.
Collapse
|
12
|
Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, Jeneson JA, Kan HE, Kent J, Layec G, Prompers JJ, Reyngoudt H, Sleigh A, Valkovič L, Kemp GJ. 31 P magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4246. [PMID: 32037688 PMCID: PMC8243949 DOI: 10.1002/nbm.4246] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/07/2023]
Abstract
Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Martin Meyerspeer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- High Field MR CenterMedical University of ViennaViennaAustria
| | - Chris Boesch
- DBMR and DIPRUniversity and InselspitalBernSwitzerland
| | - Donnie Cameron
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreLeidenthe Netherlands
| | - Monika Dezortová
- MR‐Unit, Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Sean C. Forbes
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Jeroen A.L. Jeneson
- Department of RadiologyAmsterdam University Medical Center|site AMCAmsterdamthe Netherlands
- Cognitive Neuroscience CenterUniversity Medical Center GroningenGroningenthe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreLeidenthe Netherlands
- Duchenne CenterThe Netherlands
| | - Jane Kent
- Department of KinesiologyUniversity of Massachusetts AmherstMAUSA
| | - Gwenaël Layec
- Department of KinesiologyUniversity of Massachusetts AmherstMAUSA
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstMAUSA
| | | | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of Myology AIM‐CEAParisFrance
| | - Alison Sleigh
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
- NIHR/Wellcome Trust Clinical Research FacilityCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular Medicine, BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
- Department of Imaging MethodsInstitute of Measurement Science, Slovak Academy of SciencesBratislavaSlovakia
| | - Graham J. Kemp
- Department of Musculoskeletal Biology and Liverpool Magnetic Resonance Imaging Centre (LiMRIC)University of LiverpoolLiverpoolUK
| | | |
Collapse
|
13
|
Sedivy P, Dezortova M, Rydlo J, Drobny M, Krssak M, Valkovic L, Hajek M. MR compatible ergometers for dynamic 31P MRS. J Appl Biomed 2019; 17:91-98. [PMID: 34907736 DOI: 10.32725/jab.2019.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 11/05/2022] Open
Abstract
Magnetic Resonance (MR) compatible ergometers are specialized ergometers used inside the MR scanners for the characterization of tissue metabolism changes during physical stress. They are most commonly used for dynamic phosphorous magnetic resonance spectroscopy (31P MRS), but can also be used for lactate production measurements, perfusion studies using arterial spin labelling or muscle oxygenation measurements by blood oxygen dependent contrast sequences. We will primarily discuss the importance of ergometers in the context of dynamic 31P MRS. Dynamic 31P MRS can monitor muscle fatigue and energy reserve during muscle contractions as well as the dynamics of recuperation of skeletal muscle tissue during the following recovery through signal changes of phosphocreatine (PCr), inorganic phosphate and adenosine triphosphate (ATP). Based on the measured data it is possible to calculate intracellular pH, metabolic flux of ATP through creatine-kinase reaction, anaerobic glycolysis and oxidative phosphorylation and other metabolic parameters as mitochondrial capacity. This review primarily focuses on describing various technical designs of MR compatible ergometers for dynamic 31P MRS that must be constructed with respect to the presence of magnetic field. It is also expected that the construction of ergometers will be easy for the handling and well accepted by examined subjects.
Collapse
Affiliation(s)
- Petr Sedivy
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, MR-unit, Prague, Czech Republic
| | - Monika Dezortova
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, MR-unit, Prague, Czech Republic
| | - Jan Rydlo
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, MR-unit, Prague, Czech Republic
| | - Miloslav Drobny
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, MR-unit, Prague, Czech Republic
| | - Martin Krssak
- Medical University of Vienna, Department of Internal Medicine III & High Field MR Centre, Division of Endocrinology and Metabolism, Department of Biomedical Imaging and Image guided Therapy, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging (MOLIMA), Vienna, Austria
| | - Ladislav Valkovic
- University of Oxford, RDM Cardiovascular Medicine, Oxford Centre for Clinical MR Research (OCMR), Oxford, United Kingdom.,Slovak Academy of Sciences, Institute of Measurement Science, Department of Imaging Methods, Bratislava, Slovakia
| | - Milan Hajek
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, MR-unit, Prague, Czech Republic
| |
Collapse
|
14
|
Layec G, Trinity JD, Hart CR, Le Fur Y, Zhao J, Reese V, Jeong EK, Richardson RS. Impaired Muscle Efficiency but Preserved Peripheral Hemodynamics and Mitochondrial Function With Advancing Age: Evidence From Exercise in the Young, Old, and Oldest-Old. J Gerontol A Biol Sci Med Sci 2018; 73:1303-1312. [PMID: 29584857 PMCID: PMC6132121 DOI: 10.1093/gerona/gly050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Muscle weakness in the elderly has been linked to recurrent falls and morbidity; therefore, elucidating the mechanisms contributing to the loss of muscle function and mobility with advancing age is critical. To this aim, we comprehensively examined skeletal muscle metabolic function and hemodynamics in 11 young (23 ± 2 years), 11 old (68 ± 2 years), and 10 oldest-old (84 ± 2 years) physical activity-matched participants. Specifically, oxidative stress markers, mitochondrial function, and the ATP cost of contraction as well as peripheral hemodynamics were assessed during dynamic plantar flexion exercise at 40 per cent of maximal work rate (WRmax). Both the PCr recovery time constant and the peak rate of mitochondrial ATP synthesis were not significantly different between groups. In contrast, the ATP cost of dynamic contractions (young: 1.5 ± 1.0, old: 3.4 ± 2.1, oldest-old: 6.1 ± 3.6 mM min-1 W-1) and systemic markers of oxidative stress were signficantly increased with age, with the ATP cost of contraction being negatively correlated with WRmax (r = .59, p < .05). End-of-exercise blood flow per Watt rose significantly with increasing age (young: 37 ± 20, old: 82 ± 68, oldest-old: 154 ± 93 mL min-1 W-1). These findings suggest that the progressive deterioration of muscle contractile efficiency with advancing age may play an important role in the decline in skeletal muscle functional capacity in the elderly.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Corey R Hart
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM, UMR, Marseille, France
| | - Jia Zhao
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Van Reese
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
15
|
Leung DG, Wang X, Barker PB, Carrino JA, Wagner KR. Multivoxel proton magnetic resonance spectroscopy in facioscapulohumeral muscular dystrophy. Muscle Nerve 2018; 57:958-963. [PMID: 29266323 DOI: 10.1002/mus.26048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary disorder that causes progressive muscle wasting. This study evaluates the use of proton magnetic resonance spectroscopy (1 H MRS) as a biomarker of muscle strength and function in FSHD. METHODS Thirty-six individuals with FSHD and 15 healthy controls underwent multivoxel 1 H MRS of a cross-section of the mid-thigh. Concentrations of creatine, intramyocellular and extramyocellular lipids, and trimethylamine (TMA)-containing compounds in skeletal muscle were calculated. Metabolite concentrations for individuals with FSHD were compared with those of controls. The relationship between metabolite concentrations and muscle strength was also examined. RESULTS The TMA/creatine (Cr) ratio in individuals with FSHD was reduced compared with controls. The TMA/Cr ratio in the hamstrings also showed a moderate linear correlation with muscle strength. DISCUSSION 1 H MRS offers a potential method of detecting early muscle pathology in FSHD prior to the development of fat infiltration. Muscle Nerve 57: 958-963, 2018.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 716 North Broadway, Room 411, Baltimore, Maryland, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xin Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Peter B Barker
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 716 North Broadway, Room 411, Baltimore, Maryland, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Bendahan D, Chatel B, Jue T. Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles. Am J Physiol Regul Integr Comp Physiol 2017; 313:R740-R753. [PMID: 28877871 DOI: 10.1152/ajpregu.00203.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Muscle contraction requires the physiology to adapt rapidly to meet the surge in energy demand. To investigate the shift in metabolic control, especially between oxygen and metabolism, researchers often depend on near-infrared spectroscopy (NIRS) to measure noninvasively the tissue O2 Because NIRS detects the overlapping myoglobin (Mb) and hemoglobin (Hb) signals in muscle, interpreting the data as an index of cellular or vascular O2 requires deconvoluting the relative contribution. Currently, many in the NIRS field ascribe the signal to Hb. In contrast, 1H NMR has only detected the Mb signal in contracting muscle, and comparative NIRS and NMR experiments indicate a predominant Mb contribution. The present study has examined the question of the NIRS signal origin by measuring simultaneously the 1H NMR, 31P NMR, and NIRS signals in finger flexor muscles during the transition from rest to contraction, recovery, ischemia, and reperfusion. The experiment results confirm a predominant Mb contribution to the NIRS signal from muscle. Given the NMR and NIRS corroborated changes in the intracellular O2, the analysis shows that at the onset of muscle contraction, O2 declines immediately and reaches new steady states as contraction intensity rises. Moreover, lactate formation increases even under quite aerobic condition.
Collapse
Affiliation(s)
- David Bendahan
- Aix-Marseille Univ, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Marseille, France
| | - Benjamin Chatel
- Aix-Marseille Univ, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Marseille, France
| | - Thomas Jue
- Biochemistry and Molecular Medicine, University of California Davis, Davis, California; and
| |
Collapse
|
17
|
Khegai O, Madelin G, Brown R, Parasoglou P. Dynamic phosphocreatine imaging with unlocalized pH assessment of the human lower leg muscle following exercise at 3T. Magn Reson Med 2017; 79:974-980. [PMID: 28560829 DOI: 10.1002/mrm.26728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a high temporal resolution imaging method that measures muscle-specific phosphocreatine (PCr) resynthesis time constant (τPCr ) and pH changes in muscles of the lower leg following exercise on a clinical 3T MRI scanner. METHODS We developed a frequency-selective 3D non-Cartesian FLORET sequence to measure PCr with 17-mm nominal isotropic resolution (28 mm actual resolution) and 6-s temporal resolution to capture dynamic metabolic muscle activity. The sequence was designed to additionally collect inorganic phosphate spectra for pH quantification, which were localized using sensitivity profiles of individual coil elements. Nineteen healthy volunteers were scanned while performing a plantar flexion exercise on an in-house developed ergometer. Data were acquired with a dual-tuned multichannel coil array that enabled phosphorus imaging and proton localization for muscle segmentation. RESULTS After a 90-s plantar flexion exercise at 0.66 Hz with resistance set to 40% of the maximum voluntary contraction, τPCr was estimated at 22.9 ± 8.8 s (mean ± standard deviation) with statistical coefficient of determination r2 = 0.89 ± 0.05. The corresponding pH values after exercise were in the range of 6.9-7.1 in the gastrocnemius muscle. CONCLUSION The developed technique allows measurement of muscle-specific PCr resynthesis kinetics and pH changes following exercise, with a temporal resolution and accuracy comparable to that of single voxel 31 P-MRS sequences. Magn Reson Med 79:974-980, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Oleksandr Khegai
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, New York, USA
| | - Prodromos Parasoglou
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
18
|
Kumar V, Chang H, Reiter DA, Bradley DP, Belury M, McCormack SE, Raman SV. Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle. J Vis Exp 2017. [PMID: 28190054 DOI: 10.3791/54977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity, which is critically important in health and disease, can be measured in vivo and noninvasively in humans via phosphorus-31 magnetic resonance spectroscopy (31PMRS). However, the approach has not been widely adopted in translational and clinical research, with variations in methodology and limited guidance from the literature. Increased optimization, standardization, and dissemination of methods for in vivo 31PMRS would facilitate the development of targeted therapies to improve OXPHOS capacity and could ultimately favorably impact cardiovascular health. 31PMRS produces a noninvasive, in vivo measure of OXPHOS capacity in human skeletal muscle, as opposed to alternative measures obtained from explanted and potentially altered mitochondria via muscle biopsy. It relies upon only modest additional instrumentation beyond what is already in place on magnetic resonance scanners available for clinical and translational research at most institutions. In this work, we outline a method to measure in vivo skeletal muscle OXPHOS. The technique is demonstrated using a 1.5 Tesla whole-body MR scanner equipped with the suitable hardware and software for 31PMRS, and we explain a simple and robust protocol for in-magnet resistive exercise to rapidly fatigue the quadriceps muscle. Reproducibility and feasibility are demonstrated in volunteers as well as subjects over a wide range of functional capacities.
Collapse
Affiliation(s)
- Vidhya Kumar
- Davis Heart and Lung Research Institute, The Ohio State University
| | - Henry Chang
- Davis Heart and Lung Research Institute, The Ohio State University
| | - David A Reiter
- Laboratory of Clinical Investigation, National Institute on Aging
| | - David P Bradley
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University
| | - Martha Belury
- Department of Human Sciences, Human Nutrition, The Ohio State University
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Department of Pediatrics, University of Pennsylvania
| | - Subha V Raman
- Davis Heart and Lung Research Institute, The Ohio State University;
| |
Collapse
|
19
|
Layec G, Bringard A, Le Fur Y, Micallef JP, Vilmen C, Perrey S, Cozzone PJ, Bendahan D. Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks. Med Sci Sports Exerc 2017; 48:811-21. [PMID: 26694849 DOI: 10.1249/mss.0000000000000858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Endurance training elicits tremendous adaptations of the mitochondrial energetic capacity. Yet, the effects of training or physical fitness on mitochondrial efficiency during exercise are still unclear. Accordingly, the purpose of the present study was to examine in vivo the differences in mitochondrial efficiency and ATP cost of contraction during exercise in two groups of adults differing in their aerobic capacity. METHOD We simultaneously assessed the ATP synthesis and O2 fluxes with P-magnetic resonance spectroscopy and pulmonary gas exchange measurements in seven endurance-trained (ET, V˙O2max: 67 ± 8 mL·min⁻¹·kg⁻¹) and seven recreationally active (RA, V˙O2max: 43 ± 7 mL·min⁻¹·kg⁻¹) subjects during 6 min of dynamic moderate-intensity knee extension. RESULTS The ATP cost of dynamic contraction was not significantly different between ET and RA (P > 0.05). Similarly, end-exercise O2 consumption was not significantly different between groups (ET: 848 ± 155 mL·min⁻¹ and RA: 760 ± 131 mL·min⁻¹, P > 0.05). During the recovery period, the PCr offset time constant was significantly faster in ET compared with RA (ET: 32 ± 8 s and RA: 43 ± 10 s, P < 0.05), thus indicating an increased mitochondrial capacity for ATP synthesis in the quadriceps of ET. In contrast, the estimated mitochondrial efficiency during exercise was not significantly different (P/O, ET: 2.0 ± 1.0 and RA: 1.8 ± 0.4, P > 0.05). Consequently, the higher mitochondrial capacity for ATP synthesis in ET likely originated from an elevated mitochondrial volume density, mitochondria-specific respiratory capacity, and/or slower postexercise inactivation of oxidative phosphorylation by the parallel activation mechanism. CONCLUSION Together, these findings reveal that 1) mitochondrial and contractile efficiencies are unaltered by several years of endurance training in young adults, and 2) the training-induced improvement in mitochondrial energetic capacity appears to be independent from changes in mitochondrial coupling.
Collapse
Affiliation(s)
- Gwenael Layec
- 1Aix-Marseille University, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Unite Mixte de Recherche 7339, Marseille, FRANCE; 2Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT; 3Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT; 4Department of Anesthesiology, Pharmacology and Intensive Care and Department of Fundamental Neurosciences, University of Geneva, SWITZERLAND; 5Motricity Efficiency and Deficiency, EA 2991, Faculty of Sport Science, Unite de Formation et de Recherche en Sciences et Techniques des Activites Physiques et Sportives, Montpellier, FRANCE; 6INSERM ADR 08, Montpellier, FRANCE
| | | | | | | | | | | | | | | |
Collapse
|
20
|
A low-cost Mr compatible ergometer to assess post-exercise phosphocreatine recovery kinetics. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:281-289. [PMID: 28054143 DOI: 10.1007/s10334-016-0605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To develop a low-cost pedal ergometer compatible with ultrahigh (7 T) field MR systems to reliably quantify metabolic parameters in human lower leg muscle using phosphorus magnetic resonance spectroscopy. MATERIALS AND METHODS We constructed an MR compatible ergometer using commercially available materials and elastic bands that provide resistance to movement. We recruited ten healthy subjects (eight men and two women, mean age ± standard deviation: 32.8 ± 6.0 years, BMI: 24.1 ± 3.9 kg/m2). All subjects were scanned on a 7 T whole-body magnet. Each subject was scanned on two visits and performed a 90 s plantar flexion exercise at 40% maximum voluntary contraction during each scan. During the first visit, each subject performed the exercise twice in order for us to estimate the intra-exam repeatability, and once during the second visit in order to estimate the inter-exam repeatability of the time constant of phosphocreatine recovery kinetics. We assessed the intra and inter-exam reliability in terms of the within-subject coefficient of variation (CV). RESULTS We acquired reliable measurements of PCr recovery kinetics with an intra- and inter-exam CV of 7.9% and 5.7%, respectively. CONCLUSION We constructed a low-cost pedal ergometer compatible with ultrahigh (7 T) field MR systems, which allowed us to quantify reliably PCr recovery kinetics in lower leg muscle using 31P-MRS.
Collapse
|
21
|
Absence of calf muscle metabolism alterations in active cystic fibrosis adults with mild to moderate lung disease. J Cyst Fibros 2017; 16:98-106. [DOI: 10.1016/j.jcf.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
|
22
|
Fitzgerald LF, Christie AD, Kent JA. Heterogeneous effects of old age on human muscle oxidative capacity in vivo: a systematic review and meta-analysis. Appl Physiol Nutr Metab 2016; 41:1137-1145. [DOI: 10.1139/apnm-2016-0195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite intensive efforts to understand the extent to which skeletal muscle mitochondrial capacity changes in older humans, the answer to this important question remains unclear. To determine what the preponderance of evidence from in vivo studies suggests, we conducted a systematic review and meta-analysis of the effects of age on muscle oxidative capacity as measured noninvasively by magnetic resonance spectroscopy. A secondary aim was to examine potential moderators contributing to differences in results across studies, including muscle group, physical activity status, and sex. Candidate papers were identified from PubMed searches (n = 3561 papers) and the reference lists of relevant papers. Standardized effects (Hedges’ g) were calculated for age and each moderator using data from the 22 studies that met the inclusion criteria (n = 28 effects). Effects were coded as positive when older (age, ≥55 years) adults had higher muscle oxidative capacity than younger (age, 20–45 years) adults. The overall effect of age on oxidative capacity was positive (g = 0.171, p < 0.001), indicating modestly greater oxidative capacity in old. Notably, there was significant heterogeneity in this result (Q = 245.8, p < 0.001; I2 = ∼70%–90%). Muscle group, physical activity, and sex were all significant moderators of oxidative capacity (p ≤ 0.029). This analysis indicates that the current body of literature does not support a de facto decrease of in vivo muscle oxidative capacity in old age. The heterogeneity of study results and identification of significant moderators provide clarity regarding apparent discrepancies in the literature, and indicate the importance of accounting for these variables when examining purported age-related differences in muscle oxidative capacity.
Collapse
Affiliation(s)
- Liam F. Fitzgerald
- Department of Kinesiology, University of Massachusetts Amherst, MA 01003, USA
| | - Anita D. Christie
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
23
|
Rzanny R, Stutzig N, Hiepe P, Gussew A, Thorhauer HA, Reichenbach JR. The reproducibility of different metabolic markers for muscle fiber type distributions investigated by functional 31P-MRS during dynamic exercise. Z Med Phys 2016; 26:323-338. [PMID: 27527556 DOI: 10.1016/j.zemedi.2016.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE The objective of the study was to investigate the reproducibility of exercise induced pH-heterogeneity by splitting of the inorganic phosphate (Pi) signal in the corresponding 31P-MRS spectra and to compare results of this approach with other fiber-type related markers, like phosphocreatine/adenosine triphosphate (PCr/ATP) ratio, and PCr-recovery parameters. MATERIAL AND METHODS Subjects (N=3) with different sportive background were tested in 10 test sessions separated by at least 3 days. A MR-compatible pedal ergometer was used to perform the exercise and to induce a pH-based splitting of the Pi-signal in 31P-MR spectra of the medial gastrocnemius muscle. The PCr recovery was analyzed using a non-negative least square algorithm (NNLS) and multi-exponential regression analysis to estimate the number of non-exponential components as well as their amplitude and time constant. The reproducibility of the estimated metabolic marker and the resulting fiber-type distributions between the 10 test sessions were compared. RESULTS The reproducibility (standard deviation between measurements) based on (1) Pi components varied from 2% to 4%, (2) PCr recovery time components varied from 10% to 12% and (3) phosphate concentrations at rest varied from 8% to 11% between test sessions. Due to the sportive activity differences between the 3 subjects were expected in view of fiber type distribution. All estimated markers indicate the highest type I percentage for volunteer 3 medium for volunteer 2 and the lowest for volunteer 1. CONCLUSIONS The relative high reproducibility of pH dependent Pi components during exercise indicates a high potential of this method to estimate muscle fiber-type distributions in vivo. To make this method usable not only to detect differences in muscle fiber distributions but also to determine individual fiber-type volume contents it is therefore recommended to validate this marker by histological methods and to reveal the effects of muscle fiber recruitments and fiber-type specific Pi concentrations on the intensity ratios between the splitted Pi-components.
Collapse
Affiliation(s)
- Reinhard Rzanny
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Germany.
| | - Norman Stutzig
- Exercise Science, Institute of Sport and Movement Science, University of Stuttgart, Germany
| | - Patrick Hiepe
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Germany
| | - Alexander Gussew
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Germany
| | | | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, Germany
| |
Collapse
|
24
|
Layec G, Gifford JR, Trinity JD, Hart CR, Garten RS, Park SY, Le Fur Y, Jeong EK, Richardson RS. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function. Am J Physiol Endocrinol Metab 2016; 311:E358-66. [PMID: 27302751 PMCID: PMC5005269 DOI: 10.1152/ajpendo.00028.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
Although theoretically sound, the accuracy and precision of (31)P-magnetic resonance spectroscopy ((31)P-MRS) approaches to quantitatively estimate mitochondrial capacity are not well documented. Therefore, employing four differing models of respiratory control [linear, kinetic, and multipoint adenosine diphosphate (ADP) and phosphorylation potential], this study sought to determine the accuracy and precision of (31)P-MRS assessments of peak mitochondrial adenosine-triphosphate (ATP) synthesis rate utilizing directly measured peak respiration (State 3) in permeabilized skeletal muscle fibers. In 23 subjects of different fitness levels, (31)P-MRS during a 24-s maximal isometric knee extension and high-resolution respirometry in muscle fibers from the vastus lateralis was performed. Although significantly correlated with State 3 respiration (r = 0.72), both the linear (45 ± 13 mM/min) and phosphorylation potential (47 ± 16 mM/min) models grossly overestimated the calculated in vitro peak ATP synthesis rate (P < 0.05). Of the ADP models, the kinetic model was well correlated with State 3 respiration (r = 0.72, P < 0.05), but moderately overestimated ATP synthesis rate (P < 0.05), while the multipoint model, although being somewhat less well correlated with State 3 respiration (r = 0.55, P < 0.05), most accurately reflected peak ATP synthesis rate. Of note, the PCr recovery time constant (τ), a qualitative index of mitochondrial capacity, exhibited the strongest correlation with State 3 respiration (r = 0.80, P < 0.05). Therefore, this study reveals that each of the (31)P-MRS data analyses, including PCr τ, exhibit precision in terms of mitochondrial capacity. As only the multipoint ADP model did not overstimate the peak skeletal muscle mitochondrial ATP synthesis, the multipoint ADP model is the only quantitative approach to exhibit both accuracy and precision.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Ryan S Garten
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Song Y Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, Centre national de la recherche scientifique, Center for Magnetic Resonance in Biology and Medicine, Unité Mixte de Recherche 7339, Marseille, France
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Li M, Chen F, Wang H, Wu W, Zhang X, Tian C, Yu H, Liu R, Zhu B, Zhang B, Dai Z. Non-invasive assessment of phosphate metabolism and oxidative capacity in working skeletal muscle in healthy young Chinese volunteers using (31)P Magnetic Resonance Spectroscopy. PeerJ 2016; 4:e2259. [PMID: 27547565 PMCID: PMC4963215 DOI: 10.7717/peerj.2259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/24/2016] [Indexed: 11/25/2022] Open
Abstract
Background. Generally, males display greater strength and muscle capacity than females while performing a task. Muscle biopsy is regarded as the reference method of evaluating muscle functions; however, it is invasive and has sampling errors, and is not practical for longitudinal studies and dynamic measurement during excise. In this study, we built an in-house force control and gauge system for quantitatively applying force to quadriceps while the subjects underwent 31P Magnetic Resonance Spectroscopy (31P-MRS); our aim was to investigate if there is a sex difference of phosphate metabolite change in working muscles in young heathy Chinese volunteers. Methods. Volunteers performed knee-extending excises using a force control and gauge system while lying prone in a Philips 3T Magnetic Resonance (MR) scanner. The 31P-MRS coil was firmly placed under the middle of the quadriceps . 31P-MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr) and adenosine triphosphate (ATP) were acquired from quadriceps while subjects were in a state of pre-, during- and post-exercise. The PCr, Pi, PCr/Pi, PCr/ATP, pH, work/energy cost ratio (WE), kPCr and oxidative capacity were compared between males and females. Results. A total of 17 volunteers underwent the study. Males: N = 10, age = 23.30 ± 1.25years; females: N = 7, age = 23.57 ± 0.79 years. In this study, males had significantly greater WE (16.33 ± 6.46 vs. 7.82 ± 2.16, p = 0.002) than females. Among PCr, Pi, PCr/Pi, PCr/ATP, pH, kPCr and oxidative capacity at different exercise status, only PCr/Pi (during-exercise, males = 5.630 ± 1.647, females = 4.014 ± 1.298, p = 0.047), PCr/ATP (during-exercise, males =1.273 ± 0.219, females = 1.523 ± 0.167, p = 0.025), and ATP (post-exercise, males = 24.469 ± 3.911 mmol/kg, females = 18.353 ± 4.818 mmol/kg, p = 0.035) had significant sex differences. Males had significantly greater PCr/Pi, but less PCr/ATP than females during exercise, suggesting males had higher energy transfer efficiency than females. At the post-exercise status, the recovery of PCr did not show sex difference. Conclusions. Our in-house force control and gauge system quantitatively applied force during the exercise for 31P-MRS experiments, and a sex difference of higher energy transfer efficiency and WE was detected in males with mild loaded exercising quadriceps. This noninvasive technology allows us to further study and understand the sex difference of high energy phosphate metabolism in the future.
Collapse
Affiliation(s)
- Ming Li
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Fei Chen
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| | - Huiting Wang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenbo Wu
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuanshuai Tian
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Haiping Yu
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Renyuan Liu
- Department of Neurology, Drum Tower Hospital, Affiliated to Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Bin Zhu
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhenyu Dai
- Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China
| |
Collapse
|
26
|
Fouré A, Duhamel G, Vilmen C, Bendahan D, Jubeau M, Gondin J. Fast measurement of the quadriceps femoris muscle transverse relaxation time at high magnetic field using segmented echo-planar imaging. J Magn Reson Imaging 2016; 45:356-368. [DOI: 10.1002/jmri.25355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alexandre Fouré
- Aix-Marseille Université, CNRS, CRMBM UMR; 7339 Marseille France
| | | | | | - David Bendahan
- Aix-Marseille Université, CNRS, CRMBM UMR; 7339 Marseille France
| | - Marc Jubeau
- Aix-Marseille Université, CNRS, CRMBM UMR; 7339 Marseille France
- Université de Nantes, Laboratoire “Motricité, Interactions, Performance,”; Nantes France
| | - Julien Gondin
- Aix-Marseille Université, CNRS, CRMBM UMR; 7339 Marseille France
| |
Collapse
|
27
|
Fouré A, Wegrzyk J, Le Fur Y, Mattei JP, Boudinet H, Vilmen C, Bendahan D, Gondin J. Impaired mitochondrial function and reduced energy cost as a result of muscle damage. Med Sci Sports Exerc 2016; 47:1135-44. [PMID: 25371171 DOI: 10.1249/mss.0000000000000523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Although it has been largely acknowledged that isometric neuromuscular electrostimulation (NMES) exercise induces larger muscle damage than voluntary contractions, the corresponding effects on muscle energetics remain to be determined. Voluntary exercise-induced muscle damage (EIMD) has been reported to have minor slight effects on muscle metabolic response to subsequent dynamic exercise, but the magnitude of muscle energetics alterations for NMES EIMD has never been documented. METHODS ³¹P magnetic resonance spectroscopy measurements were performed in 13 young healthy males during a standardized rest-exercise-recovery protocol before (D0) and 2 d (D2) and 4 d (D4) after NMES EIMD on knee extensor muscles. Changes in kinetics of phosphorylated metabolite concentrations (i.e., phosphocreatine [PCr], inorganic phosphate [Pi], and adenosine triphosphate [ATP]) and pH were assessed to investigate aerobic and anaerobic rates of ATP production and energy cost of contraction (Ec). RESULTS Resting [Pi]/[PCr] ratio increased at D2 (+39%) and D4 (+29%), mainly owing to the increased [Pi] (+43% and +32%, respectively), whereas a significant decrease in resting pH was determined (-0.04 pH unit and -0.03 pH unit, respectively). PCr recovery rate decreased at D2 (-21%) and D4 (-23%) in conjunction with a significantly decreased total rate of ATP production at D4 (-18%) mainly owing to an altered aerobic ATP production (-19%). Paradoxically, Ec was decreased at D4 (-21%). CONCLUSION Overall, NMES EIMD led to intramuscular acidosis in resting muscle and mitochondrial impairment in exercising muscle. Alterations of noncontractile processes and/or adaptive mechanisms to muscle damage might account for the decreased Ec during the dynamic exercise.
Collapse
Affiliation(s)
- Alexandre Fouré
- 1Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Unité Mixte de Recherche 7339, Marseille, FRANCE; 2Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite Hospital, Department of Rheumatology, Marseille, FRANCE; and 3APHM, La Timone Hospital, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Imaging Center, Marseille, FRANCE
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fouré A, Nosaka K, Gastaldi M, Mattei JP, Boudinet H, Guye M, Vilmen C, Le Fur Y, Bendahan D, Gondin J. Effects of branched-chain amino acids supplementation on both plasma amino acids concentration and muscle energetics changes resulting from muscle damage: A randomized placebo controlled trial. Clin Nutr 2016; 35:83-94. [PMID: 25886707 DOI: 10.1016/j.clnu.2015.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/03/2015] [Accepted: 03/24/2015] [Indexed: 01/22/2023]
|
29
|
Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using (31)P magnetic resonance spectroscopy. Sci Rep 2016; 6:19057. [PMID: 26751849 PMCID: PMC4707472 DOI: 10.1038/srep19057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 02/02/2023] Open
Abstract
The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using (31)P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.
Collapse
|
30
|
Šedivý P, Kipfelsberger MC, Dezortová M, Krššák M, Drobný M, Chmelík M, Rydlo J, Trattnig S, Hájek M, Valkovič L. Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design. Med Phys 2015; 42:1678-89. [PMID: 25832057 DOI: 10.1118/1.4914448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Dynamic phosphorus magnetic resonance spectroscopy ((31)P MRS) during and after acute exercise enables the noninvasive in vivo determination of the mitochondrial capacity of skeletal muscle. Nevertheless, the lack of standardization in experimental setups leads to significant variations in published values of maximal aerobic capacity, even in the population of healthy volunteers. Thus, in this study, we aimed to assess the impact of the ergometer type (pneumatic and mechanical resistance construction), radiofrequency (RF)-coil diameter, and different magnetic field strengths (3 and 7 T) on the metabolic parameters measured by dynamic (31)P MRS during a plantar flexion isotonic exercise protocol within the same group of healthy volunteers. METHODS Dynamic (31)P MRS measurements of the calf muscle in 11 volunteers (mean age, 36 ± 13 yrs; mean BMI, 23.5 ± 2.5 kg/m(2)), on a 3 T MR system with a custom-made mechanical ergometer in the first research laboratory (RL1) and on 3 and 7 T MR systems equipped with a commercial pneumatic ergometer in the second research laboratory (RL2), were performed at three different workloads. RF-coils differed slightly between the sites and MR systems used. The repeatability of the experimental protocol was tested in every setup. The basal concentrations of phosphocreatine (PCr), exercise-induced depletion of PCr (ΔPCr), initial PCr resynthesis rate (VPCr), and mitochondrial capacity (Qmax) were calculated and compared between the research sites and field strengths. RESULTS High repeatability of the measurement protocol was found in every experimental setup. No significant differences at any workload were found in these metabolic parameters assessed at different magnetic field strengths (3 T vs 7 T), using the same ergometer (in RL2) and a similar RF-coil. In the inter-research laboratory comparison at the same field strength (3 T), but with using different ergometers and RF-coils, differences were found in the concentration of PCr measured at rest and in the drop in PCr signal intensity. These differences translated into difference in the value of mitochondrial capacity at a workload of 15% of maximal voluntary contraction (MVC) force (0.45 ± 0.16 mM/s vs 0.31 ± 0.08 mM/s, in the RL1 and RL2, respectively). CONCLUSIONS Metabolic parameters measured during exercise challenge by dynamic (31)P MRS do not depend upon the magnetic field strength used. For multicenter studies with different ergometers, it is important to set the same workload, measurement, and evaluation protocols, especially when the effects of very mild exercise (15% MVC) are to be compared. However, a higher workload (24% MVC) decreases the influence of imperfections and intersite differences for the assessed value of maximal mitochondrial capacity.
Collapse
Affiliation(s)
- Petr Šedivý
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Monika Christina Kipfelsberger
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| | - Monika Dezortová
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Martin Krššák
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria; and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| | - Miloslav Drobný
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Marek Chmelík
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| | - Jan Rydlo
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Siegfried Trattnig
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| | - Milan Hájek
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic
| | - Ladislav Valkovič
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava 841 04, Slovakia; and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria
| |
Collapse
|
31
|
Rowland B, Merugumala SK, Liao H, Creager MA, Balschi J, Lin AP. Spectral improvement by fourier thresholding of in vivo dynamic spectroscopy data. Magn Reson Med 2015; 76:978-85. [PMID: 26445244 DOI: 10.1002/mrm.25976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE MR spectroscopy (MRS) typically requires averaging of multiple acquisitions to achieve adequate signal-to-noise ratio (SNR). In systems undergoing dynamic changes this can compromise the temporal resolution of the measurement. One such example is (31) P MRS of exercising skeletal muscle. Spectral improvement by Fourier thresholding (SIFT) offers a way of suppressing noise without averaging. In this study, we evaluate the performance of SIFT in healthy subjects and clinical cases. METHODS (31) P MRS of the calf or thigh muscle of subjects (n = 12) was measured continuously before, during, and after exercise. The data were processed conventionally and with the addition of SIFT before quantifying peak amplitudes and frequencies. The postexercise increase in the amplitude of phosphocreatine was also characterized by fitting with an exponential function to obtain the recovery time constant. RESULTS Substantial reductions in the uncertainty of peak fitting for phosphocreatine (73%) and inorganic phosphate (60%) were observed when using SIFT relative to conventional processing alone. SIFT also reduced the phosphocreatine recovery time constant uncertainty by 38%. CONCLUSION SIFT considerably improves SNR, which improved quantification and parameter estimation. It is suitable for any type of time varying MRS and is both straightforward and fast to apply. Magn Reson Med 76:978-985, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Rowland
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sai K Merugumala
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Huijun Liao
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mark A Creager
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James Balschi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Physiological NMR Core Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Lareau-Trudel E, Le Troter A, Ghattas B, Pouget J, Attarian S, Bendahan D, Salort-Campana E. Muscle Quantitative MR Imaging and Clustering Analysis in Patients with Facioscapulohumeral Muscular Dystrophy Type 1. PLoS One 2015; 10:e0132717. [PMID: 26181385 PMCID: PMC4504465 DOI: 10.1371/journal.pone.0132717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/17/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is the third most common inherited muscular dystrophy. Considering the highly variable clinical expression and the slow disease progression, sensitive outcome measures would be of interest. METHODS AND FINDINGS Using muscle MRI, we assessed muscular fatty infiltration in the lower limbs of 35 FSHD1 patients and 22 healthy volunteers by two methods: a quantitative imaging (qMRI) combined with a dedicated automated segmentation method performed on both thighs and a standard T1-weighted four-point visual scale (visual score) on thighs and legs. Each patient had a clinical evaluation including manual muscular testing, Clinical Severity Score (CSS) scale and MFM scale. The intramuscular fat fraction measured using qMRI in the thighs was significantly higher in patients (21.9 ± 20.4%) than in volunteers (3.6 ± 2.8%) (p<0.001). In patients, the intramuscular fat fraction was significantly correlated with the muscular fatty infiltration in the thighs evaluated by the mean visual score (p<0.001). However, we observed a ceiling effect of the visual score for patients with a severe fatty infiltration clearly indicating the larger accuracy of the qMRI approach. Mean intramuscular fat fraction was significantly correlated with CSS scale (p ≤ 0.01) and was inversely correlated with MMT score, MFM subscore D1 (p ≤ 0.01) further illustrating the sensitivity of the qMRI approach. Overall, a clustering analysis disclosed three different imaging patterns of muscle involvement for the thighs and the legs which could be related to different stages of the disease and put forth muscles which could be of interest for a subtle investigation of the disease progression and/or the efficiency of any therapeutic strategy. CONCLUSION The qMRI provides a sensitive measurement of fat fraction which should also be of high interest to assess disease progression and any therapeutic strategy in FSHD1 patients.
Collapse
Affiliation(s)
- Emilie Lareau-Trudel
- Centre de référence des maladies neuromusculaires et de la SLA, Centre hospitalier universitaire la Timone, Université Aix-Marseille, Marseille, France
| | - Arnaud Le Troter
- Aix-Marseille Université, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 7339, Marseille, France
| | - Badih Ghattas
- Institut de Mathématiques de Marseille, Université Aix-Marseille, Marseille, France
| | - Jean Pouget
- Centre de référence des maladies neuromusculaires et de la SLA, Centre hospitalier universitaire la Timone, Université Aix-Marseille, Marseille, France
| | - Shahram Attarian
- Centre de référence des maladies neuromusculaires et de la SLA, Centre hospitalier universitaire la Timone, Université Aix-Marseille, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 7339, Marseille, France
| | - Emmanuelle Salort-Campana
- Centre de référence des maladies neuromusculaires et de la SLA, Centre hospitalier universitaire la Timone, Université Aix-Marseille, Marseille, France
| |
Collapse
|
33
|
Layec G, Bringard A, Le Fur Y, Micallef JP, Vilmen C, Perrey S, Cozzone PJ, Bendahan D. Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles. Am J Physiol Regul Integr Comp Physiol 2015; 308:R724-33. [PMID: 25695290 DOI: 10.1152/ajpregu.00461.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023]
Abstract
Exercise efficiency is an important determinant of exercise capacity. However, little is known about the physiological factors that can modulate muscle efficiency during exercise. We examined whether improved O2 availability would 1) impair mitochondrial efficiency and shift the energy production toward aerobic ATP synthesis and 2) reduce the ATP cost of dynamic contraction owing to an improved neuromuscular efficiency, such that 3) whole body O2 cost would remain unchanged. We used (31)P-magnetic resonance spectroscopy, surface electromyography, and pulmonary O2 consumption (V̇o2p) measurements in eight active subjects during 6 min of dynamic knee-extension exercise under different fractions of inspired O2 (FiO2 , 0.21 in normoxia and 1.0 in hyperoxia). V̇o2p (755 ± 111 ml/min in normoxia and 799 ± 188 ml/min in hyperoxia, P > 0.05) and O2 cost (P > 0.05) were not significantly different between normoxia and hyperoxia. In contrast, the total ATP synthesis rate and the ATP cost of dynamic contraction were significantly lower in hyperoxia than normoxia (P < 0.05). As a result, the ratio of the rate of oxidative ATP synthesis from the quadriceps to V̇o2p was lower in hyperoxia than normoxia but did not reach statistical significance (16 ± 3 mM/ml in normoxia and 12 ± 5 mM/ml in hyperoxia, P = 0.07). Together, these findings reveal dynamic and independent regulations of mitochondrial and contractile efficiency as a consequence of O2 availability in young active individuals. Furthermore, muscle efficiency appears to be already optimized in normoxia and is unlikely to contribute to the well-established improvement in exercise capacity induced by hyperoxia.
Collapse
Affiliation(s)
- Gwenael Layec
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France; Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Aurélien Bringard
- Département des Neurosciences Fondamentales, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Yann Le Fur
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - Jean-Paul Micallef
- Movement To Health (M2H), EuroMov, Montpellier-1 University, Montpellier, France; and Institut National de la Santé et de la Recherche Médicale ADR 08, Montpellier, France
| | - Christophe Vilmen
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - Stéphane Perrey
- Movement To Health (M2H), EuroMov, Montpellier-1 University, Montpellier, France; and
| | - Patrick J Cozzone
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| |
Collapse
|
34
|
Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol (Oxf) 2015; 213:107-44. [PMID: 24773619 DOI: 10.1111/apha.12307] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/30/2013] [Accepted: 04/23/2014] [Indexed: 12/16/2022]
Abstract
Magnetic resonance spectroscopy (MRS) can give information about cellular metabolism in vivo which is difficult to obtain in other ways. In skeletal muscle, non-invasive (31) P MRS measurements of the post-exercise recovery kinetics of pH, [PCr], [Pi] and [ADP] contain valuable information about muscle mitochondrial function and cellular pH homeostasis in vivo, but quantitative interpretation depends on understanding the underlying physiology. Here, by giving examples of the analysis of (31) P MRS recovery data, by some simple computational simulation, and by extensively comparing data from published studies using both (31) P MRS and invasive direct measurements of muscle O2 consumption in a common analytical framework, we consider what can be learnt quantitatively about mitochondrial metabolism in skeletal muscle using MRS-based methodology. We explore some technical and conceptual limitations of current methods, and point out some aspects of the physiology which are still incompletely understood.
Collapse
Affiliation(s)
- G. J. Kemp
- Department of Musculoskeletal Biology, and Magnetic Resonance and Image Analysis Research Centre; University of Liverpool; Liverpool UK
| | - R. E. Ahmad
- Department of Musculoskeletal Biology, and Magnetic Resonance and Image Analysis Research Centre; University of Liverpool; Liverpool UK
| | - K. Nicolay
- Biomedical NMR; Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | - J. J. Prompers
- Biomedical NMR; Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| |
Collapse
|
35
|
Skeletal muscle work efficiency with age: the role of non-contractile processes. Clin Sci (Lond) 2014; 128:213-23. [PMID: 25134525 DOI: 10.1042/cs20140274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although skeletal muscle work efficiency probably plays a key role in limiting mobility of the elderly, the physiological mechanisms responsible for this diminished function remain incompletely understood. Thus, in the quadriceps of young (n=9) and old (n=10) subjects, we measured the cost of muscle contraction (ATP cost) with 31P-magnetic resonance spectroscopy (31P-MRS) during (i) maximal intermittent contractions to elicit a metabolic demand from both cross-bridge cycling and ion pumping and (ii) a continuous maximal contraction to predominantly tax cross-bridge cycling. The ATP cost of the intermittent contractions was significantly greater in the old (0.30±0.22 mM·min-1·N·m-1) compared with the young (0.13±0.03 mM·min-1·N·m-1, P<0.05). In contrast, at the end of the continuous contraction protocol, the ATP cost in the old (0.10±0.07 mM·min-1·N·m-1) was not different from the young (0.06±0.02 mM·min-1·N·m-1, P=0.2). In addition, the ATP cost of the intermittent contractions correlated significantly with the single leg peak power of the knee-extensors assessed during incremental dynamic exercise (r=-0.55; P<0.05). Overall, this study reveals an age-related increase in the ATP cost of contraction, probably mediated by an excessive energy demand from ion pumping, which probably contributes to both the decline in muscle efficiency and functional capacity associated with aging.
Collapse
|
36
|
Valkovič L, Chmelík M, Just Kukurová I, Jakubová M, Kipfelsberger MC, Krumpolec P, Tušek Jelenc M, Bogner W, Meyerspeer M, Ukropec J, Frollo I, Ukropcová B, Trattnig S, Krššák M. Depth-resolved surface coil MRS (DRESS)-localized dynamic (31) P-MRS of the exercising human gastrocnemius muscle at 7 T. NMR IN BIOMEDICINE 2014; 27:1346-1352. [PMID: 25199902 DOI: 10.1002/nbm.3196] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/04/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Dynamic (31) P-MRS with sufficiently high temporal resolution enables the non-invasive evaluation of oxidative muscle metabolism through the measurement of phosphocreatine (PCr) recovery after exercise. Recently, single-voxel localized (31) P-MRS was compared with surface coil localization in a dynamic fashion, and was shown to provide higher anatomical and physiological specificity. However, the relatively long TE needed for the single-voxel localization scheme with adiabatic pulses limits the quantification of J-coupled spin systems [e.g. adenosine triphosphate (ATP)]. Therefore, the aim of this study was to evaluate depth-resolved surface coil MRS (DRESS) as an alternative localization method capable of free induction decay (FID) acquisition for dynamic (31) P-MRS at 7 T. The localization performance of the DRESS sequence was tested in a phantom. Subsequently, two dynamic examinations of plantar flexions at 25% of maximum voluntary contraction were conducted in 10 volunteers, one examination with and one without spatial localization. The DRESS slab was positioned obliquely over the gastrocnemius medialis muscle, avoiding other calf muscles. Under the same load, significant differences in PCr signal drop (31.2 ± 16.0% versus 43.3 ± 23.4%), end exercise pH (7.06 ± 0.02 versus 6.96 ± 0.11), initial recovery rate (0.24 ± 0.13 mm/s versus 0.35 ± 0.18 mm/s) and maximum oxidative flux (0.41 ± 0.14 mm/s versus 0.54 ± 0.16 mm/s) were found between the non-localized and DRESS-localized data, respectively. Splitting of the inorganic phosphate (Pi) signal was observed in several non-localized datasets, but in none of the DRESS-localized datasets. Our results suggest that the application of the DRESS localization scheme yielded good spatial selection, and provided muscle-specific insight into oxidative metabolism, even at a relatively low exercise load. In addition, the non-echo-based FID acquisition allowed for reliable detection of ATP resonances, and therefore calculation of the specific maximum oxidative flux, in the gastrocnemius medialis using standard assumptions about resting ATP concentration in skeletal muscle.
Collapse
Affiliation(s)
- Ladislav Valkovič
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; High Field MR Center, Medical University of Vienna, Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ryan TE, Erickson ML, Verma A, Chavez J, Rivner MH, Mccully KK. Skeletal muscle oxidative capacity in amyotrophic lateral sclerosis. Muscle Nerve 2014; 50:767-74. [DOI: 10.1002/mus.24223] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Terence E. Ryan
- Department of Kinesiology; University of Georgia; Athens Georgia USA
| | | | - Ajay Verma
- Experimental Medicine, Biogen Idec; Cambridge Massachusetts USA
| | - Juan Chavez
- Experimental Medicine, Biogen Idec; Cambridge Massachusetts USA
| | - Michael H. Rivner
- Department of Neurology; Georgia Regents University; Augusta Georgia USA
| | - Kevin K. Mccully
- Department of Kinesiology; University of Georgia; Athens Georgia USA
| |
Collapse
|
38
|
Decorte N, Lamalle L, Carlier P, Giacomini E, Guinot M, Levy P, Verges S, Wuyam B. Impact of salbutamol on muscle metabolism assessed by31P NMR spectroscopy. Scand J Med Sci Sports 2014; 25:e267-73. [DOI: 10.1111/sms.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- N. Decorte
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
| | - L. Lamalle
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- INSERM US017; CNRS; UMS 3552; IRMaGe; CHU Grenoble; Grenoble France
| | - P.G. Carlier
- Institute of Myology; NMR Laboratory Paris France
- CEA; I BM; MIRCen; NMR Laboratory; Paris France
| | - E. Giacomini
- Institute of Myology; NMR Laboratory Paris France
- CEA; I BM; MIRCen; NMR Laboratory; Paris France
| | - M. Guinot
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
- Institute for Doping Prevention; Grenoble France
| | - P. Levy
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
| | - S. Verges
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
| | - B. Wuyam
- HP2 Laboratory; Grenoble-Alpes University; Grenoble France
- U1042; INSERM; Grenoble France
| |
Collapse
|
39
|
Gondin J, Vilmen C, Cozzone PJ, Bendahan D, Duhamel G. High-field (11.75T) multimodal MR imaging of exercising hindlimb mouse muscles using a non-invasive combined stimulation and force measurement device. NMR IN BIOMEDICINE 2014; 27:870-879. [PMID: 24890578 DOI: 10.1002/nbm.3122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
We have designed and constructed an experimental set-up allowing electrical stimulation of hindlimb mouse muscles and the corresponding force measurements at high-field (11.75T). We performed high-resolution multimodal MRI (including T2 -weighted imaging, angiography and diffusion) and analysed the corresponding MRI changes in response to a stimulation protocol. Mice were tested twice over a 1-week period to investigate the reliability of mechanical measurements and T2 changes associated with the stimulation protocol. Additionally, angiographic images were obtained before and immediately after the stimulation protocol. Finally, multislice diffusion imaging was performed before, during and immediately after the stimulation session. Apparent diffusion coefficient (ADC) maps were calculated on the basis of diffusion weighted images (DWI). Both force production and T2 values were highly reproducible as illustrated by the low coefficient of variation (<8%) and high intraclass correlation coefficient (≥0.75) values. Maximum intensity projection angiographic images clearly showed a strong vascular effect resulting from the stimulation protocol. Although a motion sensitive imaging sequence was used (echo planar imaging) and in spite of the strong muscle contractions, motion artifacts were minimal for DWI recorded under exercising conditions, thereby underlining the robustness of the measurements. Mean ADC values increased under exercising conditions and were higher during the recovery period as compared with the corresponding control values. The proposed experimental approach demonstrates accurate high-field multimodal MRI muscle investigations at a preclinical level which is of interest for monitoring the severity and/or the progression of neuromuscular diseases but also for assessing the efficacy of potential therapeutic interventions.
Collapse
Affiliation(s)
- Julien Gondin
- Aix-Marseille University, CNRS, CRMBM UMR 7339, Marseille, France
| | | | | | | | | |
Collapse
|
40
|
Schmidt TM, Wang ZJ, Keller S, Heinemann A, Acar S, Graessner J, Schoennagel BP, Adam G, Fischer R, Yamamura J. Postmortem 31P magnetic resonance spectroscopy of the skeletal muscle: α-ATP/Pi ratio as a forensic tool? Forensic Sci Int 2014; 242:172-176. [PMID: 25062532 DOI: 10.1016/j.forsciint.2014.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 01/28/2023]
Abstract
PURPOSE Phosphor magnetic resonance spectroscopy ((31)P MRS) is an established method for metabolic examinations of resting and exercising skeletal muscle. So far, there are few MRS investigations of human corpses. The aim of this study was to investigate the temporal postmortem pattern of phosphor metabolites in the adductor magnus muscle and to check the value of MRS as a forensic tool, especially for the determination of the time of death. MATERIAL AND METHODS Eight corpses, died of natural cause, were examined (5 males, 3 females; age: 73±7 y, weight 65.8±15.9 kg). A control group of 3 subjects (2 males, 1 female, mean age: 51±24 y, range: 24-69 y, mean body weight: 84.0±16.5 kg) was examined at a single time point as well. (31)P MRS was performed on a 1.5 T MRI (TR 700 ms, TE 0.35 ms, averages 256, flip angle 90°). A standard (31)P/(1)H heart/liver coil was employed (receiver coil diameter 12 cm). The (31)P MRS scans were repeated in intervals of 1 h over a period from 4.5 to 24 h postmortem (p.m.). The core temperature was rectally measured throughout the MRI examination. RESULTS The mean core temperature decreased from 36.0°C to 25.7°C. In vivo and ex vivo spectra showed characteristic differences, especially the PCr metabolite was no longer detectable after 10 h p.m. The α-ATP/Pi ratio decreased with time from 0.445 to 0.032 over 24 h p.m. CONCLUSION There is a characteristic postmortem time pattern of the phosphor metabolites. Especially the acquired α-ATP/Pi ratio could be described by a significant exponential time course (r(2)=0.92, p<0.001). (31)P MRS might be added to the postmortem imaging methods.
Collapse
Affiliation(s)
- Tony M Schmidt
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Zhiyue J Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Keller
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Heinemann
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Suzan Acar
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Bjoern P Schoennagel
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Fischer
- Children's Hospital & Research Center Oakland, Oakland, CA, USA; Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
In vivo evidence of an age-related increase in ATP cost of contraction in the plantar flexor muscles. Clin Sci (Lond) 2014; 126:581-92. [PMID: 24224517 DOI: 10.1042/cs20130442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Impaired skeletal muscle efficiency potentially contributes to the age-related decline in exercise capacity and may explain the altered haemodynamic response to exercise in the elderly. Thus we examined whether (i) the ATP cost of contraction increases with age, and (ii) this results in altered convective O(2) delivery to maintain microvascular oxygenation in the calf muscle. To this aim, we used an integrative experimental approach combining (31)P-MRS (magnetic resonance spectroscopy), Doppler ultrasound imaging and NIRS (near-IR spectroscopy) during dynamic plantar flexion exercise at 40% of WR(max) (maximal power output) in 20 healthy young and 20 older subjects matched for physical activity. The ATP cost of contraction was significantly higher in the old (7.2±4.1 mM/min per W) compared with the young (2.4±1.9 mM/min per W; P<0.05) and this was only significantly correlated with the plantar flexion WR(max) value in the old subjects (r=-0.52; P<0.05). Even when differences in power output were taken into account, end-exercise blood flow (old, 259±168 ml/min per W and young, 134±40 ml/min per W; P<0.05) and convective O(2) delivery (old, 0.048±0.031 l/min per W and young, 0.026±0.008 l/min per W; P<0.05) were greater in the old in comparison with the young subjects. In contrast, the NIRS oxyhaemoglobin, deoxyhaemoglobin and microvascular oxygenation indices were not significantly different between the groups (P>0.05). Therefore the present study reveals that, although the peripheral haemodynamic responses to plantar flexion exercise appear to be appropriate, the elevated energy cost of contraction and associated reduction in the WR(max) value in this muscle group may play a role in limiting exercise capacity with age.
Collapse
|
42
|
Brizendine JT, Ryan TE, Larson RD, McCully KK. Skeletal muscle metabolism in endurance athletes with near-infrared spectroscopy. Med Sci Sports Exerc 2014; 45:869-75. [PMID: 23247709 DOI: 10.1249/mss.0b013e31827e0eb6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To determine whether near-infrared spectroscopy (NIRS) measurements of muscle mitochondrial function could detect the expected differences between endurance-trained athletes (n = 8) and inactive subjects (n = 8). METHODS Muscle oxygen consumption (mV˙O2) of the vastus lateralis was measured with continuous-wave NIRS using transient arterial occlusions. The recovery rate of mV˙O2 after electrical stimulation was fit to an exponential curve, with the time constant (Tc) used as an index of mitochondrial capacity. Whole-body peak oxygen uptake was determined by indirect calorimetry during a continuous ramp protocol on a cycle ergometer. RESULTS Whole-body peak oxygen uptake values for endurance-trained and inactive controls were 73.5 ± 9.1 and 33.7 ± 5.9 mL·kg·min, respectively (P < 0.001). The recovery rates of mV˙O2 after exercise for endurance training were 18.4 ± 3.2 and 18.8 ± 2.5 s, whereas those for inactive controls were 32.4 ± 5.2 and 34.9 ± 5.9 s for the shallow and deep channels, respectively (P < 0.001 for comparison between groups). Resting mV˙O2 was 0.52%·s ± 0.22%·s for endurance athletes and 0.77%·s ± 0.82%·s for inactive controls (P = 0.42). CONCLUSIONS The recovery rates of mV˙O2 after exercise in endurance athletes were almost twofold faster than inactive subjects measured with NIRS, consistent with previous studies using muscle biopsies and magnetic resonance spectroscopy. Our results support the use of NIRS measurements of the recovery of oxygen consumption to assess muscle oxidative capacity.
Collapse
|
43
|
Urbanik A. Phosphorus Spectroscopy of Calf Muscles before and after Exercise. Pol J Radiol 2014; 79:328-32. [PMID: 25276259 PMCID: PMC4173860 DOI: 10.12659/pjr.890601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/08/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Jagiellonian University Collegium Medicum, Cracow, Poland
| |
Collapse
|
44
|
Valkovič L, Ukropcová B, Chmelík M, Baláž M, Bogner W, Schmid AI, Frollo I, Zemková E, Klimeš I, Ukropec J, Trattnig S, Krššák M. Interrelation of 31P-MRS metabolism measurements in resting and exercised quadriceps muscle of overweight-to-obese sedentary individuals. NMR IN BIOMEDICINE 2013; 26:1714-1722. [PMID: 23949699 DOI: 10.1002/nbm.3008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/24/2013] [Accepted: 07/06/2013] [Indexed: 06/02/2023]
Abstract
Phosphorus magnetic resonance spectroscopy ((31)P-MRS) enables the non-invasive evaluation of muscle metabolism. Resting Pi-to-ATP flux can be assessed through magnetization transfer (MT) techniques, and maximal oxidative flux (Q(max)) can be calculated by monitoring of phosphocreatine (PCr) recovery after exercise. In this study, the muscle metabolism parameters of 13 overweight-to-obese sedentary individuals were measured with both MT and dynamic PCr recovery measurements, and the interrelation between these measurements was investigated. In the dynamic experiments, knee extensions were performed at a workload of 30% of maximal voluntary capacity, and the consecutive PCr recovery was measured in a quadriceps muscle with a time resolution of 2 s with non-localized (31)P-MRS at 3 T. Resting skeletal muscle metabolism was assessed through MT measurements of the same muscle group at 7 T. Significant linear correlations between the Q(max) and the MT parameters k(ATP) (r = 0.77, P = 0.002) and F(ATP) (r = 0.62, P = 0.023) were found in the study population. This would imply that the MT technique can possibly be used as an alternative method to assess muscle metabolism when necessary (e.g. in individuals after stroke or in uncooperative patients).
Collapse
Affiliation(s)
- Ladislav Valkovič
- MR Centre of Excellence, Department of Radiology, Medical University of Vienna, Vienna, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Layec G, Malucelli E, Le Fur Y, Manners D, Yashiro K, Testa C, Cozzone PJ, Iotti S, Bendahan D. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR IN BIOMEDICINE 2013; 26:1403-1411. [PMID: 23703831 DOI: 10.1002/nbm.2966] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Little is known about the metabolic differences that exist among different muscle groups within the same subjects. Therefore, we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to investigate muscle oxidative capacity and the potential effects of pH on PCr recovery kinetics between muscles of different phenotypes (quadriceps (Q), finger (FF) and plantar flexors (PF)) in the same cohort of 16 untrained adults. The estimated muscle oxidative capacity was lower in Q (29 ± 12 mM min(-1), CV(inter-subject) = 42%) as compared with PF (46 ± 20 mM min(-1), CV(inter-subject) = 44%) and tended to be higher in FF (43 ± 35 mM min(-1), CV(inter-subject) = 80%). The coefficient of variation (CV) of oxidative capacity between muscles within the group was 59 ± 24%. PCr recovery time constant was correlated with end-exercise pH in Q (p < 0.01), FF (p < 0.05) and PF (p < 0.05) as well as proton efflux rate in FF (p < 0.01), PF (p < 0.01) and Q (p = 0.12). We also observed a steeper slope of the relationship between end-exercise acidosis and PCr recovery kinetics in FF compared with either PF or Q muscles. Overall, this study supports the concept of skeletal muscle heterogeneity by revealing a comparable inter- and intra-individual variability in oxidative capacity across three skeletal muscles in untrained individuals. These findings also indicate that the sensitivity of mitochondrial respiration to the inhibition associated with cytosolic acidosis is greater in the finger flexor muscles compared with locomotor muscles, which might be related to differences in permeability in the mitochondrial membrane and, to some extent, to proton efflux rates.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France; Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Noninvasive monitoring of training induced muscle adaptation with 31P-MRS: fibre type shifts correlate with metabolic changes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:417901. [PMID: 23998123 PMCID: PMC3749530 DOI: 10.1155/2013/417901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/02/2013] [Accepted: 06/11/2013] [Indexed: 11/23/2022]
Abstract
Purpose. To evaluate training induced metabolic changes noninvasively with 31P magnetic resonance spectroscopy (31P-MRS) for measuring muscle fibre type adaptation.
Methods. Eleven volunteers underwent a 24-week training, consisting of speed-strength, endurance, and detraining (each 8 weeks). Prior to and following each training period, needle biopsies and 31P-MRS of the resting gastrocnemius muscle were performed. Fibre type distribution was analyzed histologically and tested for correlation with the ratios of high energy phosphates ([PCr]/[Pi], [PCr]/[βATP] and [PCr + Pi]/[βATP]). The correlation between the changes of the 31P-MRS parameters during training and the resulting changes in fibre composition were also analysed. Results. We observed an increased type-II-fibre proportion after speed-strength and detraining. After endurance training the percentage of fast-twitch fibres was reduced. The progression of the [PCr]/[Pi]-ratio was similar to that of the fast-twitch fibres during the training. We found a correlation between the type-II-fibre proportion and [PCr]/[Pi] (r = 0.70, P < 0.01) or [PCr]/[βATP] (r = 0.69, P < 0.01); the correlations between its changes (delta) and the fibre-shift were significant as well (delta[PCr]/[Pi] r = 0.66, delta[PCr]/[βATP] r = 0.55, P < 0.01). Conclusion. Shifts in fibre type composition and high energy phosphate metabolite content covary in human gastrocnemius muscle. Therefore 31P-MRS might be a feasible method for noninvasive monitoring of exercise-induced fibre type transformation.
Collapse
|
47
|
Kappenstein J, Ferrauti A, Runkel B, Fernandez-Fernandez J, Müller K, Zange J. Changes in phosphocreatine concentration of skeletal muscle during high-intensity intermittent exercise in children and adults. Eur J Appl Physiol 2013; 113:2769-79. [PMID: 23995672 DOI: 10.1007/s00421-013-2712-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of the present study was to test the hypotheses that a greater oxidative capacity in children results in a lower phosphocreatine (PCr) depletion, a faster PCr resynthesis and a lower muscle acidification during high-intensity intermittent exercise compared to adults. METHODS Sixteen children (9.4 ± 0.5 years) and 16 adults (26.1 ± 0.3 years) completed a protocol consisting of a dynamic plantar flexion (10 bouts of 30-s exercise at 25 % of one repetition maximum separated by 20-s recovery), followed by 10 min of passive recovery. Changes of PCr, ATP, inorganic phosphate, and phosphomonoesters were measured by means of (31)Phosphorous-magnetic resonance spectroscopy during and post-exercise. RESULTS Average PCr (percentage of [PCr] at initial rest (%[PCr]i)) at the end of the exercise (adults 17 ± 12 %[PCr]i, children 38 ± 17 %[PCr]i, P < 0.01) and recovery periods (adults 37 ± 14 %[PCr]i, children 57 ± 17 %[PCr]i, P < 0.01) was significantly lower in adults compared to children, induced by a stronger PCr decrease during the first exercise interval (adults -73 ± 10 %[PCr]i, children -55 ± 15 %[PCr]i, P < 0.01). End-exercise pH was significantly higher in children compared to adults (children 6.90 + 0.20, -0.14; adults 6.67 + 0.23, -0.15, P < 0.05). CONCLUSIONS From our results we suggest relatively higher rates of oxidative ATP formation in children's muscle for covering the ATP demand of high-intensity intermittent exercise compared to adults, enabling children to begin each exercise interval with significantly higher PCr concentrations and leading to an overall lower muscle acidification.
Collapse
Affiliation(s)
- J Kappenstein
- Department of Training and Exercise Science, Faculty of Sport Science, Ruhr-University Bochum, Gesundheitscampus Nord Haus Nr. 10, 44780, Bochum, Germany,
| | | | | | | | | | | |
Collapse
|
48
|
Layec G, Haseler LJ, Richardson RS. Reduced muscle oxidative capacity is independent of O2 availability in elderly people. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1183-1192. [PMID: 22760857 PMCID: PMC3705121 DOI: 10.1007/s11357-012-9442-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Impaired O2 transport to skeletal muscle potentially contributes to the decline in aerobic capacity with aging. Thus, we examined whether (1) skeletal muscle oxidative capacity decreases with age and (2) O2 availability or mitochondrial capacity limits the maximal rate of mitochondrial ATP synthesis in vivo in sedentary elderly individuals. We used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to examine the PCr recovery kinetics in six young (26 ± 10 years) and six older (69 ± 3 years) sedentary subjects following 4 min of dynamic plantar flexion exercise under different fractions of inspired O2 (FiO2, normoxia 0.2; hyperoxia 1.0). End-exercise pH was not significantly different between old (7.04 ± 0.10) and young (7.05 ± 0.04) and was not affected by breathing hyperoxia (old 7.08 ± 0.08, P > 0.05 and young 7.05 ± 0.03). Likewise, end-exercise PCr was not significantly different between old (19 ± 4 mM) and young (24 ± 5 mM) and was not changed in hyperoxia. The PCr recovery time constant was significantly longer in the old (36 ± 9 s) compared to the young in normoxia (23 ± 8 s, P < 0.05) and was not significantly altered by breathing hyperoxia in both the old (35 ± 9 s) and young (29 ± 10 s) groups. Therefore, this study reveals that the muscle oxidative capacity of both sedentary young and old individuals is independent of O2 availability and that the decline in oxidative capacity with age is most likely due to limited mitochondrial content and/or mitochondrial dysfunction and not O2 availability.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.
| | | | | |
Collapse
|
49
|
Exertional muscle pain in familial Mediterranean fever patients evaluated by MRI and 31P magnetic resonance spectroscopy. Clin Radiol 2013; 68:371-5. [DOI: 10.1016/j.crad.2012.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022]
|
50
|
Abstract
A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes.
Collapse
Affiliation(s)
- Christopher G R Perry
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|