1
|
Keenan KE, Tasdelen B, Javed A, Ramasawmy R, Rizzo R, Martin MN, Stupic KF, Seiberlich N, Campbell-Washburn AE, Nayak KS. T1 and T2 measurements across multiple 0.55T MRI systems using open-source vendor-neutral sequences. Magn Reson Med 2025; 93:289-300. [PMID: 39219179 PMCID: PMC11518643 DOI: 10.1002/mrm.30281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To compare T1 and T2 measurements across commercial and prototype 0.55T MRI systems in both phantom and healthy participants using the same vendor-neutral pulse sequences, reconstruction, and analysis methods. METHODS Standard spin echo measurements and abbreviated protocol measurements of T1, B1, and T2 were made on two prototype 0.55 T systems and two commercial 0.55T systems using an ISMRM/NIST system phantom. Additionally, five healthy participants were imaged at each system using the abbreviated protocol for T1, B1, and T2 measurement. The phantom measurements were compared to NMR-based reference measurements to determine accuracy, and both phantom and in vivo measurements were compared to assess reproducibility and differences between the prototype and commercial systems. RESULTS Vendor-neutral sequences were implemented across all four systems, and the code for pulse sequences and reconstruction is freely available. For participants, there was no difference in the mean T1 and T2 relaxation times between the prototype and commercial systems. In the phantom, there were no significant differences between the prototype and commercial systems for T1 and T2 measurements using the abbreviated protocol. CONCLUSION Quantitative T1 and T2 measurements at 0.55T in phantom and healthy participants are not statistically different across the prototype and commercial systems.
Collapse
Affiliation(s)
- Kathryn E Keenan
- National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Bilal Tasdelen
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Ahsan Javed
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rudy Rizzo
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michele N Martin
- National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Karl F Stupic
- National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Boğa Ç, Henning A. Bilateral orthogonality generative acquisitions method for homogeneous T 2 * images using parallel transmission at 7 T. Magn Reson Med 2024. [PMID: 39375826 DOI: 10.1002/mrm.30329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE The novel bilateral orthogonality generative acquisitions method has been developed for homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images without the effects of transmit field inhomogeneity using a parallel-transmission (pTx) system at 7 T. THEORY AND METHODS A new method has been introduced using four low-angle gradient-echo (GRE) acquisitions to obtain homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast by removing the effects of transmit field inhomogeneity in the pTx system. First, two input images are obtained in circularly polarized mode and another mode in which the first transmit channel or channel group have an additional transmit phase of π. The last two acquisitions are single-channel acquisitions for a dual-channel system or single-channel group acquisitions for more than two channels. The introduced method is demonstrated in dual-channel and eight-channel pTx systems using phantom and whole-brain in vivo experiments. Noise performance of the proposed method is also tested against the ratio of two GRE acquisitions and the TIAMO (time-interleaved acquisitions of modes) method. RESULTS Th new method results in more homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast in the final images than the compared methods, particularly in the low-intensity regions of circularly polarized-mode images for the images obtained via ratio of the two GRE acquisitions. CONCLUSION The introduced method is easy to implement, robust, and provides homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images of the whole brain using pTx systems with any number of channels, compared with the ratio of the two GRE images and the TIAMO method.
Collapse
Affiliation(s)
- Çelik Boğa
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anke Henning
- UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Pohmann R, Avdievich NI, Scheffler K. Signal-to-noise ratio versus field strength for small surface coils. NMR IN BIOMEDICINE 2024; 37:e5168. [PMID: 38716493 DOI: 10.1002/nbm.5168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 10/12/2024]
Abstract
The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T1 measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B0 1.6-2.7, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B0 2.0 dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B0 2.1. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.
Collapse
Affiliation(s)
- Rolf Pohmann
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolai I Avdievich
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Rowley CD, Nelson MC, Campbell JSW, Leppert IR, Pike GB, Tardif CL. Fast magnetization transfer saturation imaging of the brain using MP2RAGE T 1 mapping. Magn Reson Med 2024; 92:1540-1555. [PMID: 38703017 DOI: 10.1002/mrm.30143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Magnetization transfer saturation (MTsat) mapping is commonly used to examine the macromolecular content of brain tissue. This study compared variable flip angle (VFA) T1 mapping against compressed-sensing MP2RAGE (csMP2RAGE) T1 mapping for accelerating MTsat imaging. METHODS VFA, MP2RAGE, and csMP2RAGE were compared against inversion-recovery T1 in an aqueous phantom at 3 T. The same 1-mm VFA, MP2RAGE, and csMP2RAGE protocols were acquired in 4 healthy subjects to compare T1 and MTsat. Bloch-McConnell simulations were used to investigate differences between the phantom and in vivo T1 results. Ten healthy controls were imaged twice with the csMP2RAGE MTsat protocol to quantify repeatability. RESULTS The MP2RAGE and csMP2RAGE protocols were 13.7% and 32.4% faster than the VFA protocol, respectively. At these scan times, all approaches provided strong repeatability and accurate T1 times (< 5% difference) in the phantom, but T1 accuracy was more impacted by T2 for VFA than for MP2RAGE. In vivo, VFA estimated longer T1 times than MP2RAGE and csMP2RAGE. Simulations suggest that the differences in the T1 measured using VFA, MP2RAGE, and inversion recovery could be explained by the magnetization-transfer effects. In the test-retest experiment, we found that the csMP2RAGE has a minimum detectable change of 2.3% for T1 mapping and 7.8% for MTsat imaging. CONCLUSIONS We demonstrated that MP2RAGE can be used in place of VFA T1 mapping in an MTsat protocol. Furthermore, a shorter scan time and high repeatability can be achieved using the csMP2RAGE sequence.
Collapse
Affiliation(s)
- Christopher D Rowley
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Mark C Nelson
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jennifer S W Campbell
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ilana R Leppert
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - G Bruce Pike
- Department of Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christine L Tardif
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Schmidt T, Lee Y, Nagy Z. Custom integration of a magnetic-field monitoring system into a 32-channel MRI head coil. Magn Reson Med 2024. [PMID: 39344211 DOI: 10.1002/mrm.30314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Customizing a Siemens 32-channel coil for use in a Philips 3T MRI system with incorporated magnetic field probes for collecting high-quality MRI and magnetic-field monitoring data concurrently. METHODS The development process of the custom coil involved several (iterative) phases. Standard temporal SNR and B1 + data were collected with the 32-channel Siemens and for reference the 32-channel/8-channel Philips head coils before and after the custom coil was made compatible with the 3T Philips Achieva system, and magnetic field probes were installed into it along with ancillary electronics around it. Quality assurance tests were conducted in each of the build phases to ensure that the modifications did not affect MRI or field-monitoring data negatively. To test the finished custom coil, we collected high angular resolution diffusion imaging (HARDI) datasets on a spherical silicon oil phantom both with and without concurrent field monitoring and a 32-channel Philips coil without concurrent field monitoring, where the latter two served as reference scans to assess the improved performance of the custom coil with field monitoring. Similar HARDI-MRI data were also collected in vivo with the finished custom coil together with field monitoring data. RESULTS The custom coil provided excellent temporal SNR especially at the edges where cortical gray matter is expected. When using concurrent field monitoring in HARDI acquisitions, the custom coil alleviated ghosting artifacts in phantom data and provided in vivo images with 1.4-mm isotropic resolution. CONCLUSION The custom MRI coil with integrated magnetic-field monitoring probes provided improved imaging performance.
Collapse
Affiliation(s)
- Tim Schmidt
- Laboratory for Social and Neural Systems Research (SNS Lab), University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Yoojin Lee
- Laboratory for Social and Neural Systems Research (SNS Lab), University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems Research (SNS Lab), University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Samsonov AA, Yarnykh VL. Accurate actual flip angle imaging (AFI) in the presence of fat. Magn Reson Med 2024; 91:2345-2357. [PMID: 38193249 PMCID: PMC10997465 DOI: 10.1002/mrm.30000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE To investigate the effect of incomplete fat spoiling on the accuracy of B1 mapping with actual flip angle imaging (AFI) and to propose a method to minimize the errors using the chemical shift properties of fat. THEORY AND METHODS Diffusion-based dephasing is the main spoiling mechanism exploited in AFI. However, a very low diffusion in fat may make the spoiling insufficient, leading to ghosts in the B1 maps. As the errors retain the chemical-shift signature of fat, their impact can be minimized using chemical-shift-based fat signal removal from AFI acquisition modified to include multi-echo readout. The source of the errors and the proposed correction were studied in simulations and phantom and in-vivo imaging experiments. RESULTS Our results support that AFI artifacts are caused by the incomplete fat spoiling present in clinically attractive short TR acquisition regimes. The correction eliminated the ghosting and significantly improved the B1 mapping accuracy as well as the accuracy of R1 mapping performed with AFI-derived B1 maps. CONCLUSIONS The incomplete fat signal spoiling may be a source of AFI B1 mapping errors, especially in subjects with high fat content. Achieving complete fat spoiling requires longer TR, which is undesirable in clinical applications. The proposed approach based on fat signal removal can reduce errors without significant prolongation of the AFI pulse sequence. We propose that, when attaining complete fat spoiling is not feasible, AFI mapping should be performed in a multi-echo regime with appropriate fat separation or suppression to minimize these errors.
Collapse
Affiliation(s)
- Alexey A Samsonov
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Malmberg MA, Odéen H, Hofstetter LW, Hadley JR, Parker DL. Validation of single reference variable flip angle (SR-VFA) dynamic T 1 mapping with T 2 * correction using a novel rotating phantom. Magn Reson Med 2024; 91:1419-1433. [PMID: 38115639 PMCID: PMC10872756 DOI: 10.1002/mrm.29944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE To validate single reference variable flip angle (SR-VFA) dynamic T1 mapping with and without T2 * correction against inversion recovery (IR) T1 measurements. METHODS A custom cylindrical phantom with three concentric compartments was filled with variably doped agar to produce a smooth spatial gradient of the T1 relaxation rate as a function of angle across each compartment. IR T1 , VFA T1 , and B1 + measurements were made on the phantom before rotation, and multi-echo stack-of-radial dynamic images were acquired during rotation via an MRI-compatible motor. B1 + -corrected SR-VFA and SR-VFA-T2 * T1 maps were computed from the sliding window reconstructed images and compared against rotationally registered IR and VFA T1 maps to determine the percentage error. RESULTS Both VFA and SR-VFA-T2 * T1 maps fell within 10% of IR T1 measurements for a low rotational speed, with a mean accuracy of 2.3% ± 2.6% and 2.8% ± 2.6%, respectively. Increasing rotational speed was found to decrease the accuracy due to increasing temporal smoothing over ranges where the T1 change had a nonconstant slope. SR-VFA T1 mapping was found to have similar accuracy as the SR-VFA-T2 * and VFA methods at low TEs (˜<2 ms), whereas accuracy degraded strongly with later TEs. T2 * correction of the SR-VFA T1 maps was found to consistently improve accuracy and precision, especially at later TEs. CONCLUSION SR-VFA-T2 * dynamic T1 mapping was found to be accurate against reference IR T1 measurements within 10% in an agar phantom. Further validation is needed in mixed fat-water phantoms and in vivo.
Collapse
Affiliation(s)
- Michael A. Malmberg
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - J. Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dennis L. Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Assländer J, Gultekin C, Mao A, Zhang X, Duchemin Q, Liu K, Charlson RW, Shepherd TM, Fernandez-Granda C, Flassbeck S. Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model. Magn Reson Med 2024; 91:1478-1497. [PMID: 38073093 DOI: 10.1002/mrm.29951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To explore efficient encoding schemes for quantitative magnetization transfer (qMT) imaging with few constraints on model parameters. THEORY AND METHODS We combine two recently proposed models in a Bloch-McConnell equation: the dynamics of the free spin pool are confined to the hybrid state, and the dynamics of the semi-solid spin pool are described by the generalized Bloch model. We numerically optimize the flip angles and durations of a train of radio frequency pulses to enhance the encoding of three qMT parameters while accounting for all eight parameters of the two-pool model. We sparsely sample each time frame along this spin dynamics with a three-dimensional radial koosh-ball trajectory, reconstruct the data with subspace modeling, and fit the qMT model with a neural network for computational efficiency. RESULTS We extracted qMT parameter maps of the whole brain with an effective resolution of 1.24 mm from a 12.6-min scan. In lesions of multiple sclerosis subjects, we observe a decreased size of the semi-solid spin pool and longer relaxation times, consistent with previous reports. CONCLUSION The encoding power of the hybrid state, combined with regularized image reconstruction, and the accuracy of the generalized Bloch model provide an excellent basis for efficient quantitative magnetization transfer imaging with few constraints on model parameters.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Cem Gultekin
- Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
| | - Andrew Mao
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, New York, USA
| | - Xiaoxia Zhang
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Quentin Duchemin
- Laboratoire d'analyse et de mathématiques appliquées, Université Gustave Eiffel, Champs-sur-Marne, France
| | - Kangning Liu
- Center for Data Science, New York University, New York, New York, USA
| | - Robert W Charlson
- Department of Neurology, NYU School of Medicine, New York, New York, USA
| | - Timothy M Shepherd
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Carlos Fernandez-Granda
- Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
- Center for Data Science, New York University, New York, New York, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Zampini MA, Sijbers J, Verhoye M, Garipov R. A preparation pulse for fast steady state approach in Actual Flip angle Imaging. Med Phys 2024; 51:306-318. [PMID: 37480220 DOI: 10.1002/mp.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Actual Flip angle Imaging (AFI) is a sequence used for B1 mapping, also embedded in the Variable flip angle with AFI for simultaneous estimation of T1 , B1 and equilibrium magnetization. PURPOSE To investigate the design of a preparation module for AFI to allow a fast approach to steady state (SS) without requiring the use of dummy acquisitions. METHODS The features of a preparation module with a B1 insensitive adiabatic pulse, spoiler gradients, and a recovery timeT r e c $T_{rec}$ were studied with simulations and validated via experiments and acquired with different k-space traveling strategies. The robustness of the flip angle of the preparation pulse on the acquired signal is studied. RESULTS When a 90° adiabatic pulse is used, the forthcomingT r e c $T_{rec}$ can be expressed as a function of repetition times and AFI flip angle only asTR 1 ( n + cos α ) / ( 1 - cos 2 α ) $\mathrm{TR_1}(n+\cos \alpha )/(1-\cos ^2\alpha )$ , where n represents the ratio between the two repetition times of AFI. The robustness of the method is demonstrated by showing that using the values further away from 90° still allows for a faster approach to SS than the use of dummy pulses. CONCLUSIONS The preparation module is particularly advantageous for low flip angles, as well as for AFI sequences that sample the center of the k-space early in the sequence, such as centric ordering acquisitions, and for ultrafast EPI-based AFI methods, thus allowing to reduce scanner overhead time.
Collapse
Affiliation(s)
- Marco Andrea Zampini
- MR Solutions Ltd., Ashbourne House, Guildford, Surrey, UK
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Jan Sijbers
- imec-Vision Lab, Department of Physics, University of Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Belgium
| | - Ruslan Garipov
- MR Solutions Ltd., Ashbourne House, Guildford, Surrey, UK
| |
Collapse
|
11
|
Jang A, Han PK, Ma C, El Fakhri G, Wang N, Samsonov A, Liu F. B 1 inhomogeneity-corrected T 1 mapping and quantitative magnetization transfer imaging via simultaneously estimating Bloch-Siegert shift and magnetization transfer effects. Magn Reson Med 2023; 90:1859-1873. [PMID: 37427533 PMCID: PMC10528411 DOI: 10.1002/mrm.29778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To introduce a method of inducing Bloch-Siegert shift and magnetization Transfer Simultaneously (BTS) and demonstrate its utilization for measuring binary spin-bath model parameters free pool spin-lattice relaxation (T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular fraction (f $$ f $$ ), magnetization exchange rate (k F $$ {k}_{\mathrm{F}} $$ ) and local transmit field (B 1 + $$ {B}_1^{+} $$ ). THEORY AND METHODS Bloch-Siegert shift and magnetization transfer is simultaneously induced through the application of off-resonance irradiation in between excitation and acquisition of an RF-spoiled gradient-echo scheme. Applying the binary spin-bath model, an analytical signal equation is derived and verified through Bloch simulations. Monte Carlo simulations were performed to analyze the method's performance. The estimation of the binary spin-bath parameters withB 1 + $$ {B}_1^{+} $$ compensation was further investigated through experiments, both ex vivo and in vivo. RESULTS Comparing BTS with existing methods, simulations showed that existing methods can significantly biasT 1 $$ {T}_1 $$ estimation when not accounting for transmitB 1 $$ {B}_1 $$ heterogeneity and MT effects that are present. Phantom experiments further showed that the degree of this bias increases with increasing macromolecular proton fraction. Multi-parameter fit results from an in vivo brain study generated values in agreement with previous literature. Based on these studies, we confirmed that BTS is a robust method for estimating the binary spin-bath parameters in macromolecule-rich environments, even in the presence ofB 1 + $$ {B}_1^{+} $$ inhomogeneity. CONCLUSION A method of estimating Bloch-Siegert shift and magnetization transfer effect has been developed and validated. Both simulations and experiments confirmed that BTS can estimate spin-bath parameters (T 1 F $$ {T}_1^{\mathrm{F}} $$ ,f $$ f $$ ,k F $$ {k}_{\mathrm{F}} $$ ) that are free fromB 1 + $$ {B}_1^{+} $$ bias.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Paul K Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Nian Wang
- Indiana University, Indianapolis, Indiana, United States
| | | | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Alsop DC, Ercan E, Girard OM, Mackay AL, Michal CA, Varma G, Vinogradov E, Duhamel G. Inhomogeneous magnetization transfer imaging: Concepts and directions for further development. NMR IN BIOMEDICINE 2023; 36:e4808. [PMID: 35916067 DOI: 10.1002/nbm.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 05/23/2023]
Abstract
Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.
Collapse
Affiliation(s)
- David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ece Ercan
- MR Clinical Science, Philips, Best, The Netherlands
| | | | - Alex L Mackay
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl A Michal
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Vinogradov
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
13
|
Seif M, Leutritz T, Schading S, Emmengger T, Curt A, Weiskopf N, Freund P. Reliability of multi-parameter mapping (MPM) in the cervical cord: A multi-center multi-vendor quantitative MRI study. Neuroimage 2022; 264:119751. [PMID: 36384206 DOI: 10.1016/j.neuroimage.2022.119751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/14/2022] Open
Abstract
MRI based multicenter studies which target neurological pathologies affecting the spinal cord and brain - including spinal cord injury (SCI) - require standardized acquisition protocols and image processing methods. We have optimized and applied a multi-parameter mapping (MPM) protocol that simultaneously covers the brain and the cervical cord within a traveling heads study across six clinical centers (Leutritz et al., 2020). The MPM protocol includes quantitative maps (magnetization transfer saturation (MT), proton density (PD), longitudinal (R1), and effective transverse (R2*) relaxation rates) sensitive to myelination, water content, iron concentration, and morphometric measures, such as cross-sectional cord area. Previously, we assessed the repeatability and reproducibility of the brain MPM data acquired in the five healthy participants who underwent two scan-rescans (Leutritz et al., 2020). This study focuses on the cervical cord MPM data derived from the same acquisitions to determine its repeatability and reproducibility in the cervical cord. MPM matrices of the cervical cord were generated and processed using the hMRI and the spinal cord toolbox. To determine reliability of the cervical MPM data, the intra-site (i.e., scan-rescan) coefficient of variation (CoV), inter-site CoV, and bias within region of interests (C1, C2 and C3 levels) were determined. The range of the mean intra- and inter-site CoV of MT, R1 and PD was between 2.5% and 12%, and between 1.1% and 4.0% for the morphometric measures. In conclusion, the cervical MPM data showed a high repeatability and reproducibility for key imaging biomarkers and hence can be employed as a standardized tool in multi-center studies, including clinical trials.
Collapse
Affiliation(s)
- Maryam Seif
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Simon Schading
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Tim Emmengger
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Faculty of Physics and Earth Sciences, Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig, Germany
| | - Patrick Freund
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| |
Collapse
|
14
|
Corrigan NM, Yarnykh VL, Huber E, Zhao TC, Kuhl PK. Brain myelination at 7 months of age predicts later language development. Neuroimage 2022; 263:119641. [PMID: 36170763 PMCID: PMC10038938 DOI: 10.1016/j.neuroimage.2022.119641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Between 6 and 12 months of age there are dramatic changes in infants' processing of language. The neurostructural underpinnings of these changes are virtually unknown. The objectives of this study were to (1) examine changes in brain myelination during this developmental period and (2) examine the relationship between myelination during this period and later language development. Macromolecular proton fraction (MPF) was used as a marker of myelination. Whole-brain MPF maps were obtained with 1.25 mm3 isotropic spatial resolution from typically developing children at 7 and 11 months of age. Effective myelin density was calculated from MPF based on a linear relationship known from the literature. Voxel-based analyses were used to identify longitudinal changes in myelin density and to calculate correlations between myelin density at these ages and later language development. Increases in myelin density were more predominant in white matter than in gray matter. A strong predictive relationship was found between myelin density at 7 months of age, language production at 24 and 30 months of age, and rate of language growth. No relationships were found between myelin density at 11 months, or change in myelin density between 7 and 11 months of age, and later language measures. Our findings suggest that critical changes in brain structure may precede periods of pronounced change in early language skills.
Collapse
Affiliation(s)
- Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| | - T Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Dynamic Contrast-Enhanced MRI in the Abdomen of Mice with High Temporal and Spatial Resolution Using Stack-of-Stars Sampling and KWIC Reconstruction. Tomography 2022; 8:2113-2128. [PMID: 36136874 PMCID: PMC9498490 DOI: 10.3390/tomography8050178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Application of quantitative dynamic contrast-enhanced (DCE) MRI in mouse models of abdominal cancer is challenging due to the effects of RF inhomogeneity, image corruption from rapid respiratory motion and the need for high spatial and temporal resolutions. Here we demonstrate a DCE protocol optimized for such applications. The method consists of three acquisitions: (1) actual flip-angle B1 mapping, (2) variable flip-angle T1 mapping and (3) acquisition of the DCE series using a motion-robust radial strategy with k-space weighted image contrast (KWIC) reconstruction. All three acquisitions employ spoiled radial imaging with stack-of-stars sampling (SoS) and golden-angle increments between the views. This scheme is shown to minimize artifacts due to respiratory motion while simultaneously facilitating view-sharing image reconstruction for the dynamic series. The method is demonstrated in a genetically engineered mouse model of pancreatic ductal adenocarcinoma and yielded mean perfusion parameters of Ktrans = 0.23 ± 0.14 min−1 and ve = 0.31 ± 0.17 (n = 22) over a wide range of tumor sizes. The SoS-sampled DCE method is shown to produce artifact-free images with good SNR leading to robust estimation of DCE parameters.
Collapse
|
16
|
Karakuzu A, Appelhoff S, Auer T, Boudreau M, Feingold F, Khan AR, Lazari A, Markiewicz C, Mulder M, Phillips C, Salo T, Stikov N, Whitaker K, de Hollander G. qMRI-BIDS: An extension to the brain imaging data structure for quantitative magnetic resonance imaging data. Sci Data 2022; 9:517. [PMID: 36002444 PMCID: PMC9402561 DOI: 10.1038/s41597-022-01571-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The Brain Imaging Data Structure (BIDS) established community consensus on the organization of data and metadata for several neuroimaging modalities. Traditionally, BIDS had a strong focus on functional magnetic resonance imaging (MRI) datasets and lacked guidance on how to store multimodal structural MRI datasets. Here, we present and describe the BIDS Extension Proposal 001 (BEP001), which adds a range of quantitative MRI (qMRI) applications to the BIDS. In general, the aim of qMRI is to characterize brain microstructure by quantifying the physical MR parameters of the tissue via computational, biophysical models. By proposing this new standard, we envision standardization of qMRI through multicenter dissemination of interoperable datasets. This way, BIDS can act as a catalyst of convergence between qMRI methods development and application-driven neuroimaging studies that can help develop quantitative biomarkers for neural tissue characterization. In conclusion, this BIDS extension offers a common ground for developers to exchange novel imaging data and tools, reducing the entrance barrier for qMRI in the field of neuroimaging.
Collapse
Affiliation(s)
- Agah Karakuzu
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada.
- Montreal Heart Institute, Montreal, QC, Canada.
| | - Stefan Appelhoff
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | - Tibor Auer
- NeuroModulation Lab, School of Psychology, University of Surrey, Guildford, UK
| | - Mathieu Boudreau
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada
- Montreal Heart Institute, Montreal, QC, Canada
| | | | - Ali R Khan
- Department of Medical Biophysics, Robarts Research Institute, University of Western Ontario, London, Canada
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Martijn Mulder
- Department of Experimental Psychology, Utrecht University, Utrecht, the Netherlands
| | - Christophe Phillips
- GIGA Cyclotron Research Centre in vivo imaging, GIGA Institute, University of Liège, Liège, Belgium
| | - Taylor Salo
- Florida International University, Miami, FL, USA
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada
- Montreal Heart Institute, Montreal, QC, Canada
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | | | - Gilles de Hollander
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland.
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Karakuzu A, Biswas L, Cohen-Adad J, Stikov N. Vendor-neutral sequences and fully transparent workflows improve inter-vendor reproducibility of quantitative MRI. Magn Reson Med 2022; 88:1212-1228. [PMID: 35657066 DOI: 10.1002/mrm.29292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE We developed an end-to-end workflow that starts with a vendor-neutral acquisition and tested the hypothesis that vendor-neutral sequences decrease inter-vendor variability of T1, magnetization transfer ratio (MTR), and magnetization transfer saturation-index (MTsat) measurements. METHODS We developed and deployed a vendor-neutral 3D spoiled gradient-echo (SPGR) sequence on three clinical scanners by two MRI vendors. We then acquired T1 maps on the ISMRM-NIST system phantom, as well as T1, MTR, and MTsat maps in three healthy participants. We performed hierarchical shift function analysis in vivo to characterize the differences between scanners when the vendor-neutral sequence is used instead of commercial vendor implementations. Inter-vendor deviations were compared for statistical significance to test the hypothesis. RESULTS In the phantom, the vendor-neutral sequence reduced inter-vendor differences from 8% to 19.4% to 0.2% to 5% with an overall accuracy improvement, reducing ground truth T1 deviations from 7% to 11% to 0.2% to 4%. In vivo, we found that the variability between vendors is significantly reduced (p = 0.015) for all maps (T1, MTR, and MTsat) using the vendor-neutral sequence. CONCLUSION We conclude that vendor-neutral workflows are feasible and compatible with clinical MRI scanners. The significant reduction of inter-vendor variability using vendor-neutral sequences has important implications for qMRI research and for the reliability of multicenter clinical trials.
Collapse
Affiliation(s)
- Agah Karakuzu
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada.,Montréal Heart Institute, Montréal, Quebec, Canada
| | - Labonny Biswas
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada.,Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Quebec, Canada.,Mila - Quebec AI Institute, Montreal, Quebec, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada.,Montréal Heart Institute, Montréal, Quebec, Canada.,Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, North Macedonia
| |
Collapse
|
18
|
Zhou R, Wang J, Weller DS, Yang Y, Mugler JP, Salerno M. Free-breathing self-gated continuous-IR spiral T1 mapping: Comparison of dual flip-angle and Bloch-Siegert B1-corrected techniques. Magn Reson Med 2022; 88:1068-1080. [PMID: 35481596 PMCID: PMC9325422 DOI: 10.1002/mrm.29269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Purpose To develop a B1‐corrrected single flip‐angle continuous acquisition strategy with free‐breathing and cardiac self‐gating for spiral T1 mapping, and compare it to a previous dual flip‐angle technique. Methods Data were continuously acquired using a spiral‐out trajectory, rotated by the golden angle in time. During the first 2 s, off‐resonance Fermi RF pulses were applied to generate a Bloch‐Siegert shift B1 map, and the subsequent data were acquired with an inversion RF pulse applied every 4 s to create a T1* map. The final T1 map was generated from the B1 and the T1* maps by using a look‐up table that accounted for slice profile effects, yielding more accurate T1 values. T1 values were compared to those from inversion recovery (IR) spin echo (phantom only), MOLLI, SAturation‐recovery single‐SHot Acquisition (SASHA), and previously proposed dual flip‐angle results. This strategy was evaluated in a phantom and 25 human subjects. Results The proposed technique showed good agreement with IR spin‐echo results in the phantom experiment. For in‐vivo studies, the proposed technique and the previously proposed dual flip‐angle method were more similar to SASHA results than to MOLLI results. Conclusions B1‐corrected single flip‐angle T1 mapping successfully acquired B1 and T1 maps in a free‐breathing, continuous‐IR spiral acquisition, providing a method with improved accuracy to measure T1 using a continuous Look‐Locker acquisition, as compared to the previously proposed dual excitation flip‐angle technique.
Collapse
Affiliation(s)
- Ruixi Zhou
- Department of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.,Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Junyu Wang
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | - Yang Yang
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John P Mugler
- Radiology & Medical Imaging, Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael Salerno
- Department of Medicine, Cardiovascular Medicine and Department of Radiology, Cardiovascular Imaging, Stanford University, Palo Alto, California, USA.,Department of Medicine, Cardiology Division, Radiology and Medical Imaging, and Biomedical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
19
|
Wenger E, Polk SE, Kleemeyer MM, Weiskopf N, Bodammer NC, Lindenberger U, Brandmaier AM. Reliability of quantitative multiparameter maps is high for magnetization transfer and proton density but attenuated for R 1 and R 2 * in healthy young adults. Hum Brain Mapp 2022; 43:3585-3603. [PMID: 35397153 PMCID: PMC9248308 DOI: 10.1002/hbm.25870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
We investigate the reliability of individual differences of four quantities measured by magnetic resonance imaging‐based multiparameter mapping (MPM): magnetization transfer saturation (MT), proton density (PD), longitudinal relaxation rate (R1), and effective transverse relaxation rate (R2*). Four MPM datasets, two on each of two consecutive days, were acquired in healthy young adults. On Day 1, no repositioning occurred and on Day 2, participants were repositioned between MPM datasets. Using intraclass correlation effect decomposition (ICED), we assessed the contributions of session‐specific, day‐specific, and residual sources of measurement error. For whole‐brain gray and white matter, all four MPM parameters showed high reproducibility and high reliability, as indexed by the coefficient of variation (CoV) and the intraclass correlation (ICC). However, MT, PD, R1, and R2* differed markedly in the extent to which reliability varied across brain regions. MT and PD showed high reliability in almost all regions. In contrast, R1 and R2* showed low reliability in some regions outside the basal ganglia, such that the sum of the measurement error estimates in our structural equation model was higher than estimates of between‐person differences. In addition, in this sample of healthy young adults, the four MPM parameters showed very little variability over four measurements but differed in how well they could assess between‐person differences. We conclude that R1 and R2* might carry only limited person‐specific information in some regions of the brain in healthy young adults, and, by implication, might be of restricted utility for studying associations to between‐person differences in behavior in those regions.
Collapse
Affiliation(s)
- Elisabeth Wenger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sarah E Polk
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Maike M Kleemeyer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Nils C Bodammer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| |
Collapse
|
20
|
Zhu D, Schär M, Qin Q. Ultrafast B1 mapping with RF-prepared 3D FLASH acquisition: Correcting the bias due to T 1 -induced k-space filtering effect. Magn Reson Med 2022; 88:757-769. [PMID: 35381114 PMCID: PMC9232926 DOI: 10.1002/mrm.29247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/25/2023]
Abstract
Purpose The traditional radiofrequency (RF)‐prepared B1 mapping technique consists of one scan with an RF preparation module for flip angle‐encoding and a second scan without this module for normalizing. To reduce the T1‐induced k‐space filtering effect, this method is limited to 2D FLASH acquisition with a two‐parameter method. A novel 3D RF‐prepared three‐parameter method for ultrafast B1‐mapping is proposed to correct the T1‐induced quantification bias. Theory The point spread function analysis of FLASH shows that the prepared longitudinal magnetization before the FLASH acquisition and the image signal obeys a linear (not proportional) relationship. The intercept of the linear function causes the quantification bias and can be captured by a third saturated scan. Methods Using the 2D double‐angle method (DAM) as the reference, a 3D RF‐prepared three‐parameter protocol with 9 s duration was compared with the two‐parameter method, as well as the saturated DAM (SDAM) method, the dual refocusing echo acquisition mode (DREAM) method, and the actual flip‐angle imaging (AFI) method, for B1 mapping of brain, breast, and abdomen with different orientations and shim settings at 3T. Results The 3D RF‐prepared three‐parameter method with complex‐subtraction delivered consistently lower RMS error, error mean, error standard deviation, and higher concordance correlation coefficients values than the two‐parameter method, the three‐parameter method with magnitude‐subtraction, the multi‐slice DREAM and the 3D AFI, and were close to the results of 2D or multi‐slice SDAM. Conclusion The proposed ultrafast 3D RF‐prepared three‐parameter method with complex‐subtraction was demonstrated with high accuracy for B1 mapping of brain, breast, and abdomen.
Collapse
Affiliation(s)
- Dan Zhu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Schär
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Nazemorroaya A, Aghaeifar A, Shiozawa T, Hirt B, Schulz H, Scheffler K, Hagberg GE. Developing formalin-based fixative agents for post mortem brain MRI at 9.4 T. Magn Reson Med 2021; 87:2481-2494. [PMID: 34931721 DOI: 10.1002/mrm.29122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop fixative agents for high-field MRI with suitable dielectric properties and measure MR properties in immersion-fixed brain tissue. METHODS Dielectric properties of formalin-based agents were assessed (100 MHz-4.5 GHz), and four candidate fixatives with/without polyvinylpyrrolidone (PVP) and different salt concentrations were formulated. B1 field and MR properties (T1 , R 2 ∗ , R2 , R 2 ' , and magnetic susceptibility [QSM]) were observed in white and gray matter of pig brain samples during 0.5-35 days of immersion fixation. The kinetics were fitted using exponential functions. The immersion time required to reach maximum R 2 ∗ values at different tissue depths was used to estimate the Medawar coefficient for fixative penetration. The effect of replacing the fixatives with Fluoroinert and phosphate-buffered saline as embedding media was also evaluated. RESULTS The dielectric properties of formalin were nonlinearly modified by increasing amounts of additives. With 5% PVP and 0.04% NaCl, the dielectric properties and B1 field reflected in vivo conditions. The highest B1 values were found in white matter with PVP and varied significantly with tissue depth and embedding media, but not with immersion time. The MR properties depended on PVP yielding lower T1 , higher R 2 ∗ , more paramagnetic QSM values, and a lower Medawar coefficient (0.9 mm / h ; without PVP: 1.5). Regardless of fixative, switching to phosphate-buffered saline as embedder caused a paramagnetic shift in QSM and decreased R 2 ∗ that progressed during 1 month of storage, whereas no differences were found with Fluorinert. CONCLUSION In vivo-like B1 fields can be achieved in formalin fixatives using PVP and a low salt concentration, yielding lower T1 , higher R 2 ∗ , and more paramagnetic QSM than without additives. The kinetics of R 2 ∗ allowed estimation of fixative tissue penetration.
Collapse
Affiliation(s)
- Azadeh Nazemorroaya
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ali Aghaeifar
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Thomas Shiozawa
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Hildegard Schulz
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Biomedical Magnetic Resonance, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Biomedical Magnetic Resonance, Eberhard Karl's University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Yarnykh VL. Data-Driven Retrospective Correction of B 1 Field Inhomogeneity in Fast Macromolecular Proton Fraction and R 1 Mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3473-3484. [PMID: 34110989 PMCID: PMC8711232 DOI: 10.1109/tmi.2021.3088258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Correction of B1 field non-uniformity is critical for many quantitative MRI methods including variable flip angle (VFA) T1 mapping and single-point macromolecular proton fraction (MPF) mapping. The latter method showed promising results as a fast and robust quantitative myelin imaging approach and involves VFA-based R1=1/T1 map reconstruction as an intermediate processing step. The need for B1 correction restricts applications of the above methods, since B1 mapping sequences increase the examination time and are not commonly available in clinics. A new algorithm was developed to enable retrospective data-driven simultaneous B1 correction in VFA R1 and single-point MPF mapping. The principle of the algorithm is based on different mathematical dependences of B1 -related errors in R1 and MPF allowing extraction of a surrogate B1 field map from uncorrected R1 and MPF maps. To validate the method, whole-brain R1 and MPF maps with isotropic 1.25 mm3 resolution were obtained on a 3 T MRI scanner from 11 volunteers. Mean parameter values in segmented brain tissues were compared between three reconstruction options including the absence of correction, actual B1 correction, and surrogate B1 correction. Surrogate B1 maps closely reproduced actual patterns of B1 inhomogeneity. Without correction, B1 non-uniformity caused highly significant biases in R1 and MPF ( ). Surrogate B1 field correction reduced the biases in both R1 and MPF to a non-significant level ( 0.1 ≤ P ≤ 0.8 ). The described algorithm obviates the use of dedicated B1 mapping sequences in fast single-point MPF mapping and provides an alternative solution for correction of B1 non-uniformities in VFA R1 mapping.
Collapse
|
23
|
Mickevicius NJ, Kim JP, Zhao J, Morris ZS, Hurst NJ, Glide-Hurst CK. Toward magnetic resonance fingerprinting for low-field MR-guided radiation therapy. Med Phys 2021; 48:6930-6940. [PMID: 34487357 DOI: 10.1002/mp.15202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The acquisition of multiparametric quantitative magnetic resonance imaging (qMRI) is becoming increasingly important for functional characterization of cancer prior to- and throughout the course of radiation therapy. The feasibility of a qMRI method known as magnetic resonance fingerprinting (MRF) for rapid T1 and T2 mapping was assessed on a low-field MR-linac system. METHODS A three-dimensional MRF sequence was implemented on a 0.35T MR-guided radiotherapy system. MRF-derived measurements of T1 and T2 were compared to those obtained with gold standard single spin echo methods, and the impacts of the radiofrequency field homogeneity and scan times ranging between 6 and 48 min were analyzed by acquiring between 1 and 8 spokes per time point in a standard quantitative system phantom. The short-term repeatability of MRF was assessed over three measurements taken over a 10-h period. To evaluate transferability, MRF measurements were acquired on two additional MR-guided radiotherapy systems. Preliminary human volunteer studies were performed. RESULTS The phantom benchmarking studies showed that MRF is capable of mapping T1 and T2 values within 8% and 10% of gold standard measures, respectively, at 0.35T. The coefficient of variation of T1 and T2 estimates over three repeated scans was < 5% over a broad range of relaxation times. The T1 and T2 times derived using a single-spoke MRF acquisition across three scanners were near unity and mean percent errors in T1 and T2 estimates using the same phantom were < 3%. The mean percent differences in T1 and T2 as a result of truncating the scan time to 6 min over the large range of relaxation times in the system phantom were 0.65% and 4.05%, respectively. CONCLUSIONS The technical feasibility and accuracy of MRF on a low-field MR-guided radiation therapy device has been demonstrated. MRF can be used to measure accurate T1 and T2 maps in three dimensions from a brief 6-min scan, offering strong potential for efficient and reproducible qMRI for future clinical trials in functional plan adaptation and tumor/normal tissue response assessment.
Collapse
Affiliation(s)
- Nikolai J Mickevicius
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua P Kim
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, Michigan, USA
| | - Jiwei Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Newton J Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carri K Glide-Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Lena B, Bos C, Ferrer CJ, Moonen CTW, Viergever MA, Bartels LW. Rapid 2D variable flip angle method for accurate and precise T 1 measurements over a wide range of T 1 values. NMR IN BIOMEDICINE 2021; 34:e4542. [PMID: 34031938 PMCID: PMC8365751 DOI: 10.1002/nbm.4542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 05/07/2023]
Abstract
PURPOSE To perform dynamic T1 mapping using a 2D variable flip angle (VFA) method, a correction for the slice profile effect is needed. In this work we investigated the impact of flip angle selection and excitation RF pulse profile on the performance of slice profile correction when applied to T1 mapping over a range of T1 values. METHODS A correction of the slice profile effect is proposed, based on Bloch simulation of steady-state signals. With this correction, Monte Carlo simulations were performed to assess the accuracy and precision of 2D VFA T1 mapping in the presence of noise, for RF pulses with time-bandwidth products of 2, 3 and 10 and with flip angle pairs in the range [1°-90°]. To evaluate its performance over a wide range of T1 , maximum errors were calculated for six T1 values between 50 ms and 1250 ms. The method was demonstrated using in vitro and in vivo experiments. RESULTS Without corrections, 2D VFA severely underestimates T1 . Slice profile errors were effectively reduced with the correction based on simulations, both in vitro and in vivo. The precision and accuracy of the method depend on the nominal T1 values, the FA pair, and the RF pulse shape. FA pairs leading to <5% errors in T1 can be identified for the common RF shapes, for T1 values between 50 ms and 1250 ms. CONCLUSIONS 2D VFA T1 mapping with Bloch-simulation-based correction can deliver T1 estimates that are accurate and precise to within 5% over a wide T1 range.
Collapse
Affiliation(s)
- Beatrice Lena
- Image Sciences Institute, Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
- Image Guided Molecular Interventions Group, Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Clemens Bos
- Image Guided Molecular Interventions Group, Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cyril J. Ferrer
- Image Guided Molecular Interventions Group, Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Chrit T. W. Moonen
- Image Guided Molecular Interventions Group, Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Max A. Viergever
- Image Sciences Institute, Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Lambertus W. Bartels
- Image Sciences Institute, Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
- Image Guided Molecular Interventions Group, Imaging and Oncology DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
25
|
Maggioni MB, Krämer M, Reichenbach JR. Optimized gradient spoiling of UTE VFA-AFI sequences for robust T 1 estimation with B 1-field correction. Magn Reson Imaging 2021; 82:1-8. [PMID: 34147596 DOI: 10.1016/j.mri.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Quantifying T1 relaxation times is a challenge because inhomogeneities of the B1 field have to be corrected to obtain proper values. It is a particular challenge in tissues with short T2⁎ values, for which conventional MRI techniques do not provide sufficient signal. Recently, a B1-field correction technique called AFI (Actual Flip angle Imaging) has been introduced that can be combined with UTE (ultra-short echo-time) sequences, which have much shorter echo times compared to conventional MRI techniques, allowing quantification of signal in short T2⁎ tissues. A disadvantage of AFI is that it requires very long relaxation delays between repetitions to minimize the influence of imperfect spoiling of transverse magnetization on signal behavior. In this work, we propose a novel spoiling scheme for the AFI sequence that efficiently provides accurate B1 correction maps with strongly reduced acquisition time. We validated the method with both phantom and preliminary in vivo results.
Collapse
Affiliation(s)
- Marta B Maggioni
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany.
| | - Martin Krämer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Germany.
| |
Collapse
|
26
|
Yee S, Fadell M. System-specific evaluation of the dual flip angle MRI technique for quantitative T 1 measurement. Med Phys 2021; 48:2790-2799. [PMID: 33772828 DOI: 10.1002/mp.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To investigate if the accuracy of the dual flip angle (DFA) technique for T1 measurement is affected by the system-specific RF excitation performance. METHODS A T1 phantom, made of 12 vials of unique T1 value ranging approximately from 200 ms to 2000 ms, was built and tested on seven different clinical scanners. For each experiment, the reference T1 of each vial was obtained by the inversion recovery-based technique, and the DFA technique was applied repeatedly with several flip angle (FA) pairs conventionally proposed as optimal. The accuracy of the DFA technique for each FA pair was then evaluated by comparing the measured T1 values for the vials to the references. Any variation of the accuracy was then evaluated across different FA pairs, and across different MRI systems. To improve accuracy with a selected FA pair, the signal ratio (SR) curve, obtained from the phantom, was utilized in a calibration strategy of the DFA technique. RESULTS When combined for all the vials, the average ratio of the measured T1 to the reference generally increased as the FA pair window gradually slid from the smaller to the larger FA values. Furthermore, among several optimal FA pairs, the pair of the best accuracy varied slightly by the MRI system. The accuracy for any FA pair could be improved when the calibration strategy was utilized. CONCLUSIONS The RF excitation performance may vary by the specific FA pair and by the specific MRI system, influencing the accuracy of the DFA technique. The system-specific evaluation, and, if needed, its calibration, would help improve the accuracy of the DFA technique.
Collapse
Affiliation(s)
- Seonghwan Yee
- Department of Radiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michael Fadell
- Department of Radiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.,Children's Hospital of Colorado, 13123 East 16th Avenue, Aurora, CO, 80045, USA
| |
Collapse
|
27
|
Corbin N, Callaghan MF. Imperfect spoiling in variable flip angle T 1 mapping at 7T: Quantifying and minimizing impact. Magn Reson Med 2021; 86:693-708. [PMID: 33645814 PMCID: PMC8436769 DOI: 10.1002/mrm.28720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
Purpose The variable flip angle (VFA) approach to T1 mapping assumes perfectly spoiled transverse magnetisation at the end of each repetition time (TR). Despite radiofrequency (RF) and gradient spoiling, this condition is rarely met, leading to erroneous T1 estimates (T1app). Theoretical corrections can be applied but make assumptions about tissue properties, for example, a global T2 time. Here, we investigate the effect of imperfect spoiling at 7T and the interaction between the RF and gradient spoiling conditions, additionally accounting for diffusion. We provide guidance on the optimal approach to maximise the accuracy of the T1 estimate in the context of 3D multi‐echo acquisitions. Methods The impact of the spoiling regime was investigated through numerical simulations, phantom and invivo experiments. Results The predicted dependence of T1app on tissue properties, system settings, and spoiling conditions was observed in both phantom and in vivo experiments. Diffusion effects modulated the dependence of T1app on both B1+ efficiency and T2 times. Conclusion Error in T1app can be minimized by using an RF spoiling increment and gradient spoiler moment combination that minimizes T2‐dependence and safeguards image quality. Although the diffusion effect was comparatively small at 7T, correction factors accounting for this effect are recommended. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Nadège Corbin
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Wei Z, Jang H, Bydder GM, Yang W, Ma YJ. Fast T 1 measurement of cortical bone using 3D UTE actual flip angle imaging and single-TR acquisition (3D UTE-AFI-STR). Magn Reson Med 2021; 85:3290-3298. [PMID: 33404142 DOI: 10.1002/mrm.28655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To describe a new method for accurate T1 measurement of cortical bone that fits the data sets of both 3D UTE actual flip angle imaging (UTE-AFI) and UTE with a single TR (UTE-STR) simultaneously (UTE-AFI-STR). THEORY AND METHODS To make both the constant values and longitudinal mapping functions in the signal equations for UTE-AFI and UTE-STR identical, the same RF pulses and flip angles were used. Therefore, there were three unknowns in the three equations. This was sufficient to fit the data. Numerical simulation as well as ex vivo and in vivo cortical bone studies were performed to validate the T1 measurement accuracy with the UTE-AFI-STR method. The original UTE-AFI variable TR (VTR) (ie, combined UTE-AFI and UTE with VTR) and simultaneous fitting (sf) of UTE-AFI and UTE-VTR (sf-UTE-AFI-VTR) methods were performed for comparison. RESULTS The numerical simulation study showed that the UTE-AFI-STR method provided accurate value of T1 when the SNR of the UTE-STR image was higher than 40. The ex vivo study showed that the UTE-AFI-STR method measured the T1 of cortical bone accurately, with difference ratios ranging from -5.0% to 0.4%. The in vivo study showed a mean T1 of 246 ms with the UTE-AFI-STR method, and mean difference ratios of 2.4% and 5.0%, respectively, compared with the other two methods. CONCLUSION The 3D UTE-AFI-STR method provides accurate mapping of the T1 of cortical bone with improved time efficiency compared with the UTE-AFI-VTR/sf-UTE-AFI-VTR methods.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Radiology, University of California San Diego, San Diego, California, USA
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Graeme M Bydder
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Wenhui Yang
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
29
|
Corrigan NM, Yarnykh VL, Hippe DS, Owen JP, Huber E, Zhao TC, Kuhl PK. Myelin development in cerebral gray and white matter during adolescence and late childhood. Neuroimage 2020; 227:117678. [PMID: 33359342 PMCID: PMC8214999 DOI: 10.1016/j.neuroimage.2020.117678] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023] Open
Abstract
Myelin development during adolescence is becoming an area of growing interest in view of its potential relationship to cognition, behavior, and learning. While recent investigations suggest that both white matter (WM) and gray matter (GM) undergo protracted myelination during adolescence, quantitative relations between myelin development in WM and GM have not been previously studied. We quantitatively characterized the dependence of cortical GM, WM, and subcortical myelin density across the brain on age, gender, and puberty status during adolescence with the use of a novel macromolecular proton fraction (MPF) mapping method. Whole-brain MPF maps from a cross-sectional sample of 146 adolescents (age range 9–17 years) were collected. Myelin density was calculated from MPF values in GM and WM of all brain lobes, as well as in subcortical structures. In general, myelination of cortical GM was widespread and more significantly correlated with age than that of WM. Myelination of GM in the parietal lobe was found to have a significantly stronger age dependence than that of GM in the frontal, occipital, temporal and insular lobes. Myelination of WM in the temporal lobe had the strongest association with age as compared to WM in other lobes. Myelin density was found to be higher in males as compared to females when averaged across all cortical lobes, as well as in a bilateral subcortical region. Puberty stage was significantly correlated with myelin density in several cortical areas and in the subcortical GM. These findings point to significant differences in the trajectories of myelination of GM and WM across brain regions and suggest that cortical GM myelination plays a dominant role during adolescent development.
Collapse
Affiliation(s)
- Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States.
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Julia P Owen
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| | - T Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| |
Collapse
|
30
|
Desmond KL, Xu R, Sun Y, Chavez S. A practical method for post-acquisition reduction of bias in fast, whole-brain B1-maps. Magn Reson Imaging 2020; 77:88-98. [PMID: 33338561 DOI: 10.1016/j.mri.2020.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
Large consistent differences have been observed between maps of the flip angle correction factor (commonly called "B1-maps") produced with different fast methods in the human brain. We present an empirical procedure for first-order multiplicative bias correction that can be applied when more than one B1-mapping method is available. We use a B1-map measurement in a calibration phantom as a reference and the voxel-wise histogram mode between ratios of B1-maps produced from different methods to calculate determine the bias as a multiplicative correcting scale factor. Institutional implementations of four common methods of B1-mapping were assessed: Method of Slopes, FSE and EPI double angle methods (DAM), and Bloch-Siegert. In human subjects, the multiplicative bias used to correct for each of the four methods was: Method of Slopes = 1.005, FSE-DAM = 0.956, EPI-DAM = 1.080, and Bloch-Siegert = 1.128. Scaling to remove this bias between methods produces more consistent B1-maps which enable more consistent values for any computations requiring flip angle correction. In addition, we present evidence that the corrected B1 maps, using our calibration method, are also more accurate.
Collapse
Affiliation(s)
- Kimberly L Desmond
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada.
| | - Ruiyang Xu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Yutong Sun
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| |
Collapse
|
31
|
Truong P, Kim JH, Savjani R, Sitek KR, Hagberg GE, Scheffler K, Ress D. Depth relationships and measures of tissue thickness in dorsal midbrain. Hum Brain Mapp 2020; 41:5083-5096. [PMID: 32870572 PMCID: PMC7670631 DOI: 10.1002/hbm.25185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Dorsal human midbrain contains two nuclei with clear laminar organization, the superior and inferior colliculi. These nuclei extend in depth between the superficial dorsal surface of midbrain and a deep midbrain nucleus, the periaqueductal gray matter (PAG). The PAG, in turn, surrounds the cerebral aqueduct (CA). This study examined the use of two depth metrics to characterize depth and thickness relationships within dorsal midbrain using the superficial surface of midbrain and CA as references. The first utilized nearest-neighbor Euclidean distance from one reference surface, while the second used a level-set approach that combines signed distances from both reference surfaces. Both depth methods provided similar functional depth profiles generated by saccadic eye movements in a functional MRI task, confirming their efficacy for delineating depth for superficial functional activity. Next, the boundaries of the PAG were estimated using Euclidean distance together with elliptical fitting, indicating that the PAG can be readily characterized by a smooth surface surrounding PAG. Finally, we used the level-set approach to measure tissue depth between the superficial surface and the PAG, thus characterizing the variable thickness of the colliculi. Overall, this study demonstrates depth-mapping schemes for human midbrain that enables accurate segmentation of the PAG and consistent depth and thickness estimates of the superior and inferior colliculi.
Collapse
Affiliation(s)
- Paulina Truong
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
- Department of NeuroscienceRice UniversityHoustonTexasUSA
| | - Jung Hwan Kim
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Ricky Savjani
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
- Department of Radiation OncologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Kevin R. Sitek
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Gisela E. Hagberg
- High Field Magnetic ResonanceMax Planck Institute for Biological CyberneticsTübingenGermany
- Department of Biomedical Magnetic ResonanceEberhard Karl's University of Tübingen and University HospitalTübingenGermany
| | - Klaus Scheffler
- High Field Magnetic ResonanceMax Planck Institute for Biological CyberneticsTübingenGermany
- Department of Biomedical Magnetic ResonanceEberhard Karl's University of Tübingen and University HospitalTübingenGermany
| | - David Ress
- Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
32
|
Isaacs BR, Keuken MC, Alkemade A, Temel Y, Bazin PL, Forstmann BU. Methodological Considerations for Neuroimaging in Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease Patients. J Clin Med 2020; 9:E3124. [PMID: 32992558 PMCID: PMC7600568 DOI: 10.3390/jcm9103124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus is a neurosurgical intervention for Parkinson's disease patients who no longer appropriately respond to drug treatments. A small fraction of patients will fail to respond to DBS, develop psychiatric and cognitive side-effects, or incur surgery-related complications such as infections and hemorrhagic events. In these cases, DBS may require recalibration, reimplantation, or removal. These negative responses to treatment can partly be attributed to suboptimal pre-operative planning procedures via direct targeting through low-field and low-resolution magnetic resonance imaging (MRI). One solution for increasing the success and efficacy of DBS is to optimize preoperative planning procedures via sophisticated neuroimaging techniques such as high-resolution MRI and higher field strengths to improve visualization of DBS targets and vasculature. We discuss targeting approaches, MRI acquisition, parameters, and post-acquisition analyses. Additionally, we highlight a number of approaches including the use of ultra-high field (UHF) MRI to overcome limitations of standard settings. There is a trade-off between spatial resolution, motion artifacts, and acquisition time, which could potentially be dissolved through the use of UHF-MRI. Image registration, correction, and post-processing techniques may require combined expertise of traditional radiologists, clinicians, and fundamental researchers. The optimization of pre-operative planning with MRI can therefore be best achieved through direct collaboration between researchers and clinicians.
Collapse
Affiliation(s)
- Bethany R. Isaacs
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, 1018 WS Amsterdam, The Netherlands; (A.A.); (P.-L.B.); (B.U.F.)
- Department of Experimental Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Max C. Keuken
- Municipality of Amsterdam, Services & Data, Cluster Social, 1000 AE Amsterdam, The Netherlands;
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, 1018 WS Amsterdam, The Netherlands; (A.A.); (P.-L.B.); (B.U.F.)
| | - Yasin Temel
- Department of Experimental Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Pierre-Louis Bazin
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, 1018 WS Amsterdam, The Netherlands; (A.A.); (P.-L.B.); (B.U.F.)
- Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany
| | - Birte U. Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, 1018 WS Amsterdam, The Netherlands; (A.A.); (P.-L.B.); (B.U.F.)
| |
Collapse
|
33
|
van Houdt PJ, Kallehauge JF, Tanderup K, Nout R, Zaletelj M, Tadic T, van Kesteren ZJ, van den Berg CAT, Georg D, Côté JC, Levesque IR, Swamidas J, Malinen E, Telliskivi S, Brynolfsson P, Mahmood F, van der Heide UA. Phantom-based quality assurance for multicenter quantitative MRI in locally advanced cervical cancer. Radiother Oncol 2020; 153:114-121. [PMID: 32931890 DOI: 10.1016/j.radonc.2020.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND PURPOSE A wide variation of MRI systems is a challenge in multicenter imaging biomarker studies as it adds variation in quantitative MRI values. The aim of this study was to design and test a quality assurance (QA) framework based on phantom measurements, for the quantitative MRI protocols of a multicenter imaging biomarker trial of locally advanced cervical cancer. MATERIALS AND METHODS Fifteen institutes participated (five 1.5 T and ten 3 T scanners). Each institute optimized protocols for T2, diffusion-weighted imaging, T1, and dynamic contrast-enhanced (DCE-)MRI according to system possibilities, institutional preferences and study-specific constraints. Calibration phantoms with known values were used for validation. Benchmark protocols, similar on all systems, were used to investigate whether differences resulted from variations in institutional protocols or from system variations. Bias, repeatability (%RC), and reproducibility (%RDC) were determined. Ratios were used for T2 and T1 values. RESULTS The institutional protocols showed a range in bias of 0.88-0.98 for T2 (median %RC = 1%; %RDC = 12%), -0.007 to 0.029 × 10-3 mm2/s for the apparent diffusion coefficient (median %RC = 3%; %RDC = 18%), and 0.39-1.29 for T1 (median %RC = 1%; %RDC = 33%). For DCE a nonlinear vendor-specific relation was observed between measured and true concentrations with magnitude data, whereas the relation was linear when phase data was used. CONCLUSION We designed a QA framework for quantitative MRI protocols and demonstrated for a multicenter trial for cervical cancer that measurement of consistent T2 and apparent diffusion coefficient values is feasible despite protocol differences. For DCE-MRI and T1 mapping with the variable flip angle method, this was more challenging.
Collapse
Affiliation(s)
- Petra J van Houdt
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | | | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Remi Nout
- Department of Radiation Oncology, Leiden University Medical Center, the Netherlands
| | - Marko Zaletelj
- Department of Radiotherapy, Institute of Oncology Ljubljana, Slovenia
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Canada
| | - Zdenko J van Kesteren
- Department of Radiation Oncology, Amsterdam University Medical Center, the Netherlands
| | | | - Dietmar Georg
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University Of Vienna, Austria
| | - Jean-Charles Côté
- Department of Radiation Oncology, Centre Hospitalier de l'Universite de Montreal, Canada
| | - Ives R Levesque
- Medical Physics Unit and Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Jamema Swamidas
- Department of Radiation Oncology, Tata Memorial Centre, Mumbai, India
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Norway
| | - Sven Telliskivi
- Department of Radiation Oncology, North-Estonia Medical Centre, Tallinn, Estonia
| | - Patrik Brynolfsson
- Department of Translational Sciences, Skåne University Hospital, Lund, Sweden
| | - Faisal Mahmood
- Department of Oncology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
34
|
Cai Z, Wei Z, Wu M, Jerban S, Jang H, Li S, Yuan X, Ma YJ. Knee osteochondral junction imaging using a fast 3D T 1-weighted ultrashort echo time cones sequence at 3T. Magn Reson Imaging 2020; 73:76-83. [PMID: 32828984 DOI: 10.1016/j.mri.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The osteochondral junction (OCJ) of the knee joint is comprised of multiple tissue components, including a portion of the deep layer cartilage, calcified cartilage, and subchondral bone. The OCJ is of increasing radiological interest as it may be relevant in the early pathogenesis of osteoarthritis (OA). Due to its short transverse relaxation, the OCJ is invisible to clinical MR sequences. The purpose of this study was to develop a fast 3D T1-weighted ultrashort echo time cones sequence with fat saturation (FS-UTE-Cones) for high resolution and high contrast imaging of the OCJ on a clinical 3T scanner. First, numerical simulations were performed to investigate how the flip angle affected the signal intensities and contrasts of both short and long T1 tissues. The results from these simulations demonstrated that higher short T1 contrast could be achieved with higher flip angle. Next, T1 relaxation was measured for the different layers of a human patellar cartilage sample, and the results showed that the deepest layer had a significantly shorter T1 value than other layers. Finally, a healthy knee joint was scanned with different flip angles and the OCJ was highlighted in the T1-weighted FS-UTE-Cones sequence using a flip angle greater than 20°. The clinical T2-weighted and proton density-weighted FSE sequences were also included for comparison, revealing a dark OCJ region. Representative T1-weighted FS-UTE-Cones images of the whole knee of a healthy volunteer showed high signal intensity bands in the OCJ regions of the patella, femur, and tibia. On the other hand, T1-weighted FS-UTE-Cones imaging of the knee joints of OA patients revealed regions with reduction or loss of these high signal intensity bands in the OCJ regions, indicating abnormal OCJ tissue composition. The proposed 3D T1-weighted FS-UTE-Cones sequence with a 3-min scan time may be very useful for demonstrating the involvement of the OCJ regions in early OA.
Collapse
Affiliation(s)
- Zhenyu Cai
- Department of Radiology, Fuwai Hospital Chinese Academy of Medical Sciences, Guangdong, China; Department of Radiology, University of California, San Diego, CA, USA
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, CA, USA
| | - Mei Wu
- Department of Radiology, University of California, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, USA
| | - Shaolin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Xuchun Yuan
- Department of Radiology, Fuwai Hospital Chinese Academy of Medical Sciences, Guangdong, China
| | - Ya-Jun Ma
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
35
|
Polsek D, Cash D, Veronese M, Ilic K, Wood TC, Milosevic M, Kalanj-Bognar S, Morrell MJ, Williams SCR, Gajovic S, Leschziner GD, Mitrecic D, Rosenzweig I. The innate immune toll-like-receptor-2 modulates the depressogenic and anorexiolytic neuroinflammatory response in obstructive sleep apnoea. Sci Rep 2020; 10:11475. [PMID: 32651433 PMCID: PMC7351955 DOI: 10.1038/s41598-020-68299-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The increased awareness of obstructive sleep apnoea’s (OSA) links to Alzheimer’s disease and major psychiatric disorders has recently directed an intensified search for their potential shared mechanisms. We hypothesised that neuroinflammation and the microglial TLR2-system may act as a core process at the intersection of their pathophysiology. Moreover, we postulated that inflammatory-response might underlie development of key behavioural and neurostructural changes in OSA. Henceforth, we set out to investigate effects of 3 weeks’ exposure to chronic intermittent hypoxia in mice with or without functional TRL2 (TLR2+/+, C57BL/6-Tyrc-Brd-Tg(Tlr2-luc/gfp)Kri/Gaj;TLR2−/−,C57BL/6-Tlr2tm1Kir). By utilising multimodal imaging in this established model of OSA, a discernible neuroinflammatory response was demonstrated for the first time. The septal nuclei and forebrain were shown as the initial key seed-sites of the inflammatory cascade that led to wider structural changes in the associated neurocircuitry. Finally, the modulatory role for the functional TLR2-system was suggested in aetiology of depressive, anxious and anorexiolytic symptoms in OSA.
Collapse
Affiliation(s)
- Dora Polsek
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Diana Cash
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,BRAIN, Department of Neuroimaging, KCL, London, UK
| | | | - Katarina Ilic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Milan Milosevic
- School of Public Health, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Svjetlana Kalanj-Bognar
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Mary J Morrell
- The National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Srecko Gajovic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Guy D Leschziner
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK.,Department of Neurology, Guy's and St Thomas' Hospital (GSTT) and Clinical Neurosciences, KCL, London, UK.,Sleep Disorders Centre, GSTT, London, UK
| | - Dinko Mitrecic
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), De Crespigny Park, Box 089, London, SE5 8AF, UK. .,Sleep Disorders Centre, GSTT, London, UK.
| |
Collapse
|
36
|
Leutritz T, Seif M, Helms G, Samson RS, Curt A, Freund P, Weiskopf N. Multiparameter mapping of relaxation (R1, R2*), proton density and magnetization transfer saturation at 3 T: A multicenter dual-vendor reproducibility and repeatability study. Hum Brain Mapp 2020; 41:4232-4247. [PMID: 32639104 PMCID: PMC7502832 DOI: 10.1002/hbm.25122] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023] Open
Abstract
Multicenter clinical and quantitative magnetic resonance imaging (qMRI) studies require a high degree of reproducibility across different sites and scanner manufacturers, as well as time points. We therefore implemented a multiparameter mapping (MPM) protocol based on vendor's product sequences and demonstrate its repeatability and reproducibility for whole‐brain coverage. Within ~20 min, four MPM metrics (magnetization transfer saturation [MT], proton density [PD], longitudinal [R1], and effective transverse [R2*] relaxation rates) were measured using an optimized 1 mm isotropic resolution protocol on six 3 T MRI scanners from two different vendors. The same five healthy participants underwent two scanning sessions, on the same scanner, at each site. MPM metrics were calculated using the hMRI‐toolbox. To account for different MT pulses used by each vendor, we linearly scaled the MT values to harmonize them across vendors. To determine longitudinal repeatability and inter‐site comparability, the intra‐site (i.e., scan‐rescan experiment) coefficient of variation (CoV), inter‐site CoV, and bias across sites were estimated. For MT, R1, and PD, the intra‐ and inter‐site CoV was between 4 and 10% across sites and scan time points for intracranial gray and white matter. A higher intra‐site CoV (16%) was observed in R2* maps. The inter‐site bias was below 5% for all parameters. In conclusion, the MPM protocol yielded reliable quantitative maps at high resolution with a short acquisition time. The high reproducibility of MPM metrics across sites and scan time points combined with its tissue microstructure sensitivity facilitates longitudinal multicenter imaging studies targeting microstructural changes, for example, as a quantitative MRI biomarker for interventional clinical trials.
Collapse
Affiliation(s)
- Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maryam Seif
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Gunther Helms
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Brain Repair & Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
37
|
Olsson H, Andersen M, Lätt J, Wirestam R, Helms G. Reducing bias in dual flip angle T
1
‐mapping in human brain at 7T. Magn Reson Med 2020; 84:1347-1358. [DOI: 10.1002/mrm.28206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Hampus Olsson
- Department of Medical Radiation Physics Clinical Sciences Lund Lund University Lund Sweden
| | | | - Jimmy Lätt
- Center for Medical Imaging and Physiology Skane University Hospital Lund Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics Clinical Sciences Lund Lund University Lund Sweden
| | - Gunther Helms
- Department of Medical Radiation Physics Clinical Sciences Lund Lund University Lund Sweden
| |
Collapse
|
38
|
Baboli M, Zhang J, Kim SG. Advances in Diffusion and Perfusion MRI for Quantitative Cancer Imaging. CURRENT PATHOBIOLOGY REPORTS 2019; 7:129-141. [PMID: 33344067 PMCID: PMC7747414 DOI: 10.1007/s40139-019-00204-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This article is to review recent technical developments and their clinical applications in cancer imaging quantitative measurement of cellular and vascular properties of the tumors. RECENT FINDINGS Rapid development of fast Magnetic Resonance Imaging (MRI) technologies over last decade brought new opportunities in quantitative MRI methods to measure both cellular and vascular properties of tumors simultaneously. SUMMARY Diffusion MRI (dMRI) and dynamic contrast enhanced (DCE)-MRI have become widely used to assess the tissue structural and vascular properties, respectively. However, the ultimate potential of these advanced imaging modalities has not been fully exploited. The dependency of dMRI on the diffusion weighting gradient strength and diffusion time can be utilized to measure tumor perfusion, cellular structure, and cellular membrane permeability. Similarly, DCE-MRI can be used to measure vascular and cellular membrane permeability along with cellular compartment volume fractions. To facilitate the understanding of these potentially important methods for quantitative cancer imaging, we discuss the basic concepts and recent developments, as well as future directions for further development.
Collapse
Affiliation(s)
- Mehran Baboli
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jin Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sungheon Gene Kim
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
39
|
Yarnykh VL, Kisel AA, Khodanovich MY. Scan-Rescan Repeatability and Impact of B 0 and B 1 Field Nonuniformity Corrections in Single-Point Whole-Brain Macromolecular Proton Fraction Mapping. J Magn Reson Imaging 2019; 51:1789-1798. [PMID: 31737961 DOI: 10.1002/jmri.26998] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/26/2019] [Accepted: 10/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Single-point macromolecular proton fraction (MPF) mapping is a recent quantitative MRI method for fast assessment of brain myelination. Information about reproducibility and sensitivity of MPF mapping to magnetic field nonuniformity is important for clinical applications. PURPOSE To assess scan-rescan repeatability and a value of B0 and B1 field inhomogeneity corrections in single-point synthetic-reference MPF mapping. STUDY TYPE Prospective. POPULATION Eight healthy adult volunteers underwent two scans with 11.5 ± 2.3 months interval. FIELD STRENGTH/SEQUENCE 3T; whole-brain 3D MPF mapping protocol included three spoiled gradient-echo sequences providing T1 , proton density, and magnetization transfer contrasts with 1.25 × 1.25 × 1.25 mm3 resolution and B0 and B1 mapping sequences. ASSESSMENT MPF maps were reconstructed with B0 and B1 field nonuniformity correction, B0 - and B1 -only corrections, and without corrections. Mean MPF values were measured in automatically segmented white matter (WM) and gray matter (GM). STATISTICAL TESTS Within-subject coefficient of variation (CV), intraclass correlation coefficient (ICC), Bland-Altman plots, and paired t-tests to assess scan-rescan repeatability. Repeated-measures analysis of variance (ANOVA) to compare field corrections. RESULTS Maximal relative local MPF errors without correction in the areas of largest field nonuniformities were about 5% and 27% for B0 and B1 , respectively. The effect of B0 correction was insignificant for whole-brain WM (P > 0.25) and GM (P > 0.98) MPF. The absence of B1 correction caused a positive relative bias of 4-5% (P < 0.001) in both tissues. Scan-rescan agreement was similar for all field correction options with ICCs 0.80-0.81 for WM and 0.89-0.92 for GM. CVs were 1.6-1.7% for WM and 0.7-1.0% for GM. DATA CONCLUSION The single-point method enables high repeatability of MPF maps obtained with the same equipment. Correction of B0 inhomogeneity may be disregarded to shorten the examination time. B1 nonuniformity correction improves accuracy of MPF measurements at 3T. Reliability of whole-brain MPF measurements in WM and GM is not affected by B0 and B1 field corrections. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1789-1798.
Collapse
Affiliation(s)
- Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, USA.,Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Alena A Kisel
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Marina Y Khodanovich
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
40
|
Bouhrara M, Rejimon AC, Cortina LE, Khattar N, Spencer RG. Four-angle method for practical ultra-high-resolution magnetic resonance mapping of brain longitudinal relaxation time and apparent proton density. Magn Reson Imaging 2019; 66:57-68. [PMID: 31730882 DOI: 10.1016/j.mri.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
Abstract
Changes in longitudinal relaxation time (T1) and proton density (PD) are sensitive indicators of microstructural alterations associated with various central nervous system diseases as well as brain maturation and aging. In this work, we introduce a new approach for rapid and accurate high-resolution (HR) or ultra HR (UHR) mapping of T1 and apparent PD (APD) of the brain with correction of radiofrequency field, B1, inhomogeneities. The four-angle method (FAM) uses four spoiled-gradient recalled-echo (SPGR) images acquired at different flip angles (FA) and short repetition times (TRs). The first two SPGR images are acquired at low-spatial resolution and used to accurately map the active B1+ field with the recently introduced steady-state double angle method (SS-DAM). The estimated B1+ map is used in conjunction with the two other SPGR images, acquired at HR or UHR, to map T1 and APD. The method is evaluated with numerical, phantom, and in-vivo imaging measurements. Furthermore, we investigated imaging acceleration methods to further shorten the acquisition time. Our results indicate that FAM provides an accurate method for simultaneous HR or UHR mapping of T1 and APD in human brain in clinical high-field MRI. Derived parameter maps without B1+correction suffer from large inaccuracies, but this issue is well-corrected through use of the SS-DAM. Furthermore, the use of SPGR imaging with short TR and phased-array coil acquisition permits substantial imaging acceleration and enables robust HR or UHR T1 and APD mapping in a clinically acceptable time frame, with whole brain coverage obtained in less than 2 min or 5 min, respectively. The method exhibits high reproducibility and benefits from the use of the conventional SPGR sequence, available in all preclinical and clinical MRI machines, and very simple modeling to address a critical outstanding issue in neuroimaging.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
41
|
Khodanovich M, Pishchelko A, Glazacheva V, Pan E, Akulov A, Svetlik M, Tyumentseva Y, Anan'ina T, Yarnykh V. Quantitative Imaging of White and Gray Matter Remyelination in the Cuprizone Demyelination Model Using the Macromolecular Proton Fraction. Cells 2019; 8:cells8101204. [PMID: 31590363 PMCID: PMC6830095 DOI: 10.3390/cells8101204] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Macromolecular proton fraction (MPF) has been established as a quantitative clinically-targeted MRI myelin biomarker based on recent demyelination studies. This study aimed to assess the capability of MPF to quantify remyelination using the murine cuprizone-induced reversible demyelination model. MPF was measured in vivo using the fast single-point method in three animal groups (control, cuprizone-induced demyelination, and remyelination after cuprizone withdrawal) and compared to quantitative immunohistochemistry for myelin basic protein (MBP), myelinating oligodendrocytes (CNP-positive cells), and oligodendrocyte precursor cells (OPC, NG2-positive cells) in the corpus callosum, caudate putamen, hippocampus, and cortex. In the demyelination group, MPF, MBP-stained area, and oligodendrocyte count were significantly reduced, while OPC count was significantly increased as compared to both control and remyelination groups in all anatomic structures (p < 0.05). All variables were similar in the control and remyelination groups. MPF and MBP-stained area strongly correlated in each anatomic structure (Pearson’s correlation coefficients, r = 0.80–0.90, p < 0.001). MPF and MBP correlated positively with oligodendrocyte count (r = 0.70–0.84, p < 0.01 for MPF; r = 0.81–0.92, p < 0.001 for MBP) and negatively with OPC count (r = −0.69–−0.77, p < 0.01 for MPF; r = −0.72–−0.89, p < 0.01 for MBP). This study provides immunohistological validation of fast MPF mapping as a non-invasive tool for quantitative assessment of de- and remyelination in white and gray matter and indicates the feasibility of using MPF as a surrogate marker of reparative processes in demyelinating diseases.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Anna Pishchelko
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Valentina Glazacheva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Edgar Pan
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Andrey Akulov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Yana Tyumentseva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Tatyana Anan'ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Vasily Yarnykh
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
42
|
Knight SP, Meaney JF, Fagan AJ. DCE‐MRI protocol for constraining absolute pharmacokinetic modeling errors within specific accuracy limits. Med Phys 2019; 46:3592-3602. [DOI: 10.1002/mp.13635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Silvin P. Knight
- School of Medicine Trinity College University of Dublin Dublin Ireland
- National Centre for Advanced Medical Imaging (CAMI) St James's Hospital Dublin Ireland
| | - James F. Meaney
- School of Medicine Trinity College University of Dublin Dublin Ireland
- National Centre for Advanced Medical Imaging (CAMI) St James's Hospital Dublin Ireland
| | | |
Collapse
|
43
|
Tabelow K, Balteau E, Ashburner J, Callaghan MF, Draganski B, Helms G, Kherif F, Leutritz T, Lutti A, Phillips C, Reimer E, Ruthotto L, Seif M, Weiskopf N, Ziegler G, Mohammadi S. hMRI - A toolbox for quantitative MRI in neuroscience and clinical research. Neuroimage 2019; 194:191-210. [PMID: 30677501 PMCID: PMC6547054 DOI: 10.1016/j.neuroimage.2019.01.029] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroscience and clinical researchers are increasingly interested in quantitative magnetic resonance imaging (qMRI) due to its sensitivity to micro-structural properties of brain tissue such as axon, myelin, iron and water concentration. We introduce the hMRI-toolbox, an open-source, easy-to-use tool available on GitHub, for qMRI data handling and processing, presented together with a tutorial and example dataset. This toolbox allows the estimation of high-quality multi-parameter qMRI maps (longitudinal and effective transverse relaxation rates R1 and R2⋆, proton density PD and magnetisation transfer MT saturation) that can be used for quantitative parameter analysis and accurate delineation of subcortical brain structures. The qMRI maps generated by the toolbox are key input parameters for biophysical models designed to estimate tissue microstructure properties such as the MR g-ratio and to derive standard and novel MRI biomarkers. Thus, the current version of the toolbox is a first step towards in vivo histology using MRI (hMRI) and is being extended further in this direction. Embedded in the Statistical Parametric Mapping (SPM) framework, it benefits from the extensive range of established SPM tools for high-accuracy spatial registration and statistical inferences and can be readily combined with existing SPM toolboxes for estimating diffusion MRI parameter maps. From a user's perspective, the hMRI-toolbox is an efficient, robust and simple framework for investigating qMRI data in neuroscience and clinical research.
Collapse
Affiliation(s)
| | | | | | | | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gunther Helms
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Switzerland
| | | | - Enrico Reimer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Ziegler
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany
| | | |
Collapse
|
44
|
Bouhrara M, Spencer RG. Steady-state double-angle method for rapid B 1 mapping. Magn Reson Med 2019; 82:189-201. [PMID: 30828871 DOI: 10.1002/mrm.27708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/07/2019] [Accepted: 02/02/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To introduce an accurate, rapid, and practical method for active B1 field mapping based on the double-angle method (DAM) in the steady-state (SS) signal regime. METHODS We introduced and evaluated the performance of the SS-DAM approach to map the B1 field and compared the results to those calculated from the conventional DAM approach. Similar to DAM, SS-DAM uses the signal intensity ratio of 2 magnitude images acquired with different flip angles using the spoiled gradient recalled echo sequence. However, unlike DAM, in SS-DAM, these 2 spoiled gradient recalled echo images are acquired with very short TR, which allows substantially reduced acquisition time. Numerical, phantom, and in vivo brain imaging analyses, representing a wide range of T1 s and large B1 variation, were conducted. Methods for further accelerating acquisition were also investigated. RESULTS Our results demonstrate the potential of the SS-DAM approach to be applied widely in the clinical setting. B1 maps derived from SS-DAM were demonstrated to be quantitatively comparable to those derived from DAM but were derived much more rapidly. Large-volume B1 maps were obtained at a field strength of 3 tesla within clinically acceptable acquisition times. CONCLUSION SS-DAM permits accurate B1 mapping in the clinical setting, with whole-brain coverage in less than 1 min.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
45
|
Ma YJ, Zhao W, Wan L, Guo T, Searleman A, Jang H, Chang EY, Du J. Whole knee joint T 1 values measured in vivo at 3T by combined 3D ultrashort echo time cones actual flip angle and variable flip angle methods. Magn Reson Med 2019; 81:1634-1644. [PMID: 30443925 PMCID: PMC6347520 DOI: 10.1002/mrm.27510] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To measure T1 relaxations for the major tissues in whole knee joints on a clinical 3T scanner. METHODS The 3D UTE-Cones actual flip angle imaging (AFI) method was used to map the transmission radiofrequency field (B1 ) in both short and long T2 tissues, which was then used to correct the 3D UTE-Cones variable flip angle (VFA) fitting to generate accurate T1 maps. Numerical simulation was carried out to investigate the accuracy of T1 measurement for a range of T2 values, excitation pulse durations, and B1 errors. Then, the 3D UTE-Cones AFI-VFA method was applied to healthy volunteers (N = 16) to quantify the T1 of knee tissues including cartilage, meniscus, quadriceps tendon, patellar tendon, anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), marrow, and muscles at 3T. RESULTS Numerical simulation showed that the 3D UTE-Cones AFI-VFA technique can provide accurate T1 measurements (error <1%) when the tissue T2 is longer than 1 ms and a 150 μs excitation RF pulse is used and therefore is suitable for most knee joint tissues. The proposed 3D UTE-Cones AFI-VFA method showed an average T1 of 1098 ± 67 ms for cartilage, 833 ± 47 ms for meniscus, 800 ± 66 ms for quadriceps tendon, 656 ± 43 ms for patellar tendon, 873 ± 38 ms for ACL, 832 ± 49 ms for PCL, 379 ± 18 ms for marrow, and 1393 ± 46 ms for muscles. CONCLUSION The 3D UTE-Cones AFI-VFA method allows volumetric T1 measurement of the major tissues in whole knee joints on a clinical 3T scanner.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, CA
| | - Wei Zhao
- Department of Radiology, University of California, San Diego, CA
| | - Lidi Wan
- Department of Radiology, University of California, San Diego, CA
| | - Tan Guo
- Department of Radiology, University of California, San Diego, CA
| | - Adam Searleman
- Department of Radiology, University of California, San Diego, CA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
| |
Collapse
|
46
|
Klawer EME, van Houdt PJ, Simonis FFJ, van den Berg CAT, Pos FJ, Heijmink SWTPJ, Isebaert S, Haustermans K, van der Heide UA. Improved repeatability of dynamic contrast-enhanced MRI using the complex MRI signal to derive arterial input functions: a test-retest study in prostate cancer patients. Magn Reson Med 2019; 81:3358-3369. [PMID: 30656738 PMCID: PMC6590420 DOI: 10.1002/mrm.27646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
Purpose The arterial input function (AIF) is a major source of uncertainty in tracer kinetic (TK) analysis of dynamic contrast‐enhanced (DCE)‐MRI data. The aim of this study was to investigate the repeatability of AIFs extracted from the complex signal and of the resulting TK parameters in prostate cancer patients. Methods Twenty‐two patients with biopsy‐proven prostate cancer underwent a 3T MRI exam twice. DCE‐MRI data were acquired with a 3D spoiled gradient echo sequence. AIFs were extracted from the magnitude of the signal (AIFMAGN), phase (AIFPHASE), and complex signal (AIFCOMPLEX). The Tofts model was applied to extract Ktrans, kep and ve. Repeatability of AIF curve characteristics and TK parameters was assessed with the within‐subject coefficient of variation (wCV). Results The wCV for peak height and full width at half maximum for AIFCOMPLEX (7% and 8%) indicated an improved repeatability compared to AIFMAGN (12% and 12%) and AIFPHASE (12% and 7%). This translated in lower wCV values for Ktrans (11%) with AIFCOMPLEX in comparison to AIFMAGN (24%) and AIFPHASE (15%). For kep, the wCV was 16% with AIFMAGN, 13% with AIFPHASE, and 13% with AIFCOMPLEX. Conclusion Repeatability of AIFPHASE and AIFCOMPLEX is higher than for AIFMAGN, resulting in a better repeatability of TK parameters. Thus, use of either AIFPHASE or AIFCOMPLEX improves the robustness of quantitative analysis of DCE‐MRI in prostate cancer.
Collapse
Affiliation(s)
- Edzo M E Klawer
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra J van Houdt
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank F J Simonis
- Department of Radiation Oncology, Imaging Division, University Medical Center, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiation Oncology, Imaging Division, University Medical Center, Utrecht, The Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Sofie Isebaert
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Karin Haustermans
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Heule R, Pfeuffer J, Meyer CH, Bieri O. Simultaneous B
1
and T
1
mapping using spiral multislice variable flip angle acquisitions for whole‐brain coverage in less than one minute. Magn Reson Med 2018; 81:1876-1889. [DOI: 10.1002/mrm.27544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Rahel Heule
- Division of Radiological Physics, Department of Radiology University Hospital Basel, University of Basel Basel Switzerland
- Department of Biomedical Engineering University of Basel Basel Switzerland
- High Field Magnetic Resonance Max Planck Institute for Biological Cybernetics Tübingen Germany
| | - Josef Pfeuffer
- Siemens Healthcare, Application Development Erlangen Germany
| | - Craig H. Meyer
- Department of Biomedical Engineering University of Virginia Charlottesville Virginia
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology University Hospital Basel, University of Basel Basel Switzerland
- Department of Biomedical Engineering University of Basel Basel Switzerland
| |
Collapse
|
48
|
Ma YJ, Lu X, Carl M, Zhu Y, Szeverenyi NM, Bydder GM, Chang EY, Du J. Accurate T 1 mapping of short T 2 tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-Cones AFI-VTR) method. Magn Reson Med 2018; 80:598-608. [PMID: 29314235 PMCID: PMC5912804 DOI: 10.1002/mrm.27066] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE To develop an accurate T1 measurement method for short T2 tissues using a combination of a 3-dimensional ultrashort echo time cones actual flip angle imaging technique and a variable repetition time technique (3D UTE-Cones AFI-VTR) on a clinical 3T scanner. METHODS First, the longitudinal magnetization mapping function of the excitation pulse was obtained with the 3D UTE-Cones AFI method, which provided information about excitation efficiency and B1 inhomogeneity. Then, the derived mapping function was substituted into the VTR fitting to generate accurate T1 maps. Numerical simulation and phantom studies were carried out to compare the AFI-VTR method with a B1 -uncorrected VTR method, a B1 -uncorrected variable flip angle (VFA) method, and a B1 -corrected VFA method. Finally, the 3D UTE-Cones AFI-VTR method was applied to bovine bone samples (N = 6) and healthy volunteers (N = 3) to quantify the T1 of cortical bone. RESULTS Numerical simulation and phantom studies showed that the 3D UTE-Cones AFI-VTR technique provides more accurate measurement of the T1 of short T2 tissues than the B1 -uncorrected VTR and VFA methods or the B1 -corrected VFA method. The proposed 3D UTE-Cones AFI-VTR method showed a mean T1 of 240 ± 25 ms for bovine cortical bone and 218 ± 10 ms for the tibial midshaft of human volunteers, respectively, at 3 T. CONCLUSION The 3D UTE-Cones AFI-VTR method can provide accurate T1 measurements of short T2 tissues such as cortical bone. Magn Reson Med 80:598-608, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, CA
| | - Xing Lu
- Department of Radiology, University of California, San Diego, CA
| | | | - Yanchun Zhu
- Department of Radiology, University of California, San Diego, CA
| | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, CA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
| |
Collapse
|
49
|
Yarnykh VL, Prihod'ko IY, Savelov AA, Korostyshevskaya AM. Quantitative Assessment of Normal Fetal Brain Myelination Using Fast Macromolecular Proton Fraction Mapping. AJNR Am J Neuroradiol 2018; 39:1341-1348. [PMID: 29748201 DOI: 10.3174/ajnr.a5668] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Fast macromolecular proton fraction mapping is a recently emerged MRI method for quantitative myelin imaging. Our aim was to develop a clinically targeted technique for macromolecular proton fraction mapping of the fetal brain and test its capability to characterize normal prenatal myelination. MATERIALS AND METHODS This prospective study included 41 pregnant women (gestational age range, 18-38 weeks) without abnormal findings on fetal brain MR imaging performed for clinical indications. A fast fetal brain macromolecular proton fraction mapping protocol was implemented on a clinical 1.5T MR imaging scanner without software modifications and was performed after a clinical examination with an additional scan time of <5 minutes. 3D macromolecular proton fraction maps were reconstructed from magnetization transfer-weighted, T1-weighted, and proton density-weighted images by the single-point method. Mean macromolecular proton fraction in the brain stem, cerebellum, and thalamus and frontal, temporal, and occipital WM was compared between structures and pregnancy trimesters using analysis of variance. Gestational age dependence of the macromolecular proton fraction was assessed using the Pearson correlation coefficient (r). RESULTS The mean macromolecular proton fraction in the fetal brain structures varied between 2.3% and 4.3%, being 5-fold lower than macromolecular proton fraction in adult WM. The macromolecular proton fraction in the third trimester was higher compared with the second trimester in the brain stem, cerebellum, and thalamus. The highest macromolecular proton fraction was observed in the brain stem, followed by the thalamus, cerebellum, and cerebral WM. The macromolecular proton fraction in the brain stem, cerebellum, and thalamus strongly correlated with gestational age (r = 0.88, 0.80, and 0.73; P < .001). No significant correlations were found for cerebral WM regions. CONCLUSIONS Myelin is the main factor determining macromolecular proton fraction in brain tissues. Macromolecular proton fraction mapping is sensitive to the earliest stages of the fetal brain myelination and can be implemented in a clinical setting.
Collapse
Affiliation(s)
- V L Yarnykh
- From the Department of Radiology (V.L.Y.), University of Washington, Seattle, Washington .,Research Institute of Biology and Biophysics (V.L.Y.), Tomsk State University, Tomsk, Russian Federation
| | - I Y Prihod'ko
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences (I.Y.P., A.A.S., A.M.K.), Novosibirsk, Russian Federation
| | - A A Savelov
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences (I.Y.P., A.A.S., A.M.K.), Novosibirsk, Russian Federation
| | - A M Korostyshevskaya
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences (I.Y.P., A.A.S., A.M.K.), Novosibirsk, Russian Federation
| |
Collapse
|
50
|
Yarnykh VL, Krutenkova EP, Aitmagambetova G, Repovic P, Mayadev A, Qian P, Jung Henson LK, Gangadharan B, Bowen JD. Iron-Insensitive Quantitative Assessment of Subcortical Gray Matter Demyelination in Multiple Sclerosis Using the Macromolecular Proton Fraction. AJNR Am J Neuroradiol 2018; 39:618-625. [PMID: 29439122 DOI: 10.3174/ajnr.a5542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Fast macromolecular proton fraction mapping is a recent quantitative MR imaging method for myelin assessment. The objectives of this study were to evaluate the macromolecular proton fraction as a measure of demyelination in subcortical GM structures in multiple sclerosis and assess a potential relationship between demyelination and excess iron deposition using the macromolecular proton fraction and T2* mapping. MATERIALS AND METHODS Macromolecular proton fraction and T2* maps were obtained from 12 healthy controls, 18 patients with relapsing-remitting MS, and 12 patients with secondary-progressive MS using 3T MR imaging. Parameter values in the caudate nucleus, globus pallidus, putamen, substantia nigra, and thalamus were compared between groups and correlated to clinical data. RESULTS The macromolecular proton fraction in all subcortical structures and T2* in the globus pallidus, putamen, and caudate nucleus demonstrated a significant monotonic decrease from controls to patients with relapsing-remitting MS and from those with relapsing-remitting MS to patients with secondary-progressive MS. The macromolecular proton fraction in all subcortical structures significantly correlated with the Expanded Disability Status Scale and MS Functional Composite scores with absolute Pearson correlation coefficient (r) values in a range of 0.4-0.6. Significant correlations (r = -0.4 to -0.6) were also identified between the macromolecular proton fraction and the 9-Hole Peg Test, indicating a potential relationship with nigrostriatal pathway damage. Among T2* values, weak significant correlations with clinical variables were found only in the putamen. The macromolecular proton fraction did not correlate with T2* in any of the studied anatomic structures. CONCLUSIONS The macromolecular proton fraction provides an iron-insensitive measure of demyelination. Myelin loss in subcortical GM structures in MS is unrelated to excess iron deposition. Subcortical GM demyelination is more closely associated with the disease phenotype and disability than iron overload.
Collapse
Affiliation(s)
- V L Yarnykh
- From the Department of Radiology (V.L.Y.), University of Washington, Seattle, Washington .,Research Institute of Biology and Biophysics (E.P.K., G.A., V.L.Y.), Tomsk State University, Tomsk, Russian Federation
| | - E P Krutenkova
- Research Institute of Biology and Biophysics (E.P.K., G.A., V.L.Y.), Tomsk State University, Tomsk, Russian Federation
| | - G Aitmagambetova
- Research Institute of Biology and Biophysics (E.P.K., G.A., V.L.Y.), Tomsk State University, Tomsk, Russian Federation
| | - P Repovic
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| | - A Mayadev
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| | - P Qian
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| | - L K Jung Henson
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington.,Piedmont Henry Hospital (L.K.J.H.), Stockbridge, Georgia
| | - B Gangadharan
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| | - J D Bowen
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| |
Collapse
|