1
|
Chen L, Xu H, Gong T, Jin J, Lin L, Zhou Y, Huang J, Chen Z. Accelerating multipool CEST MRI of Parkinson's disease using deep learning-based Z-spectral compressed sensing. Magn Reson Med 2024; 92:2616-2630. [PMID: 39044635 DOI: 10.1002/mrm.30233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE To develop a deep learning-based approach to reduce the scan time of multipool CEST MRI for Parkinson's disease (PD) while maintaining sufficient prediction accuracy. METHOD A deep learning approach based on a modified one-dimensional U-Net, termed Z-spectral compressed sensing (CS), was proposed to recover dense Z-spectra from sparse ones. The neural network was trained using simulated Z-spectra generated by the Bloch equation with various parameter settings. Its feasibility and effectiveness were validated through numerical simulations and in vivo rat brain experiments, compared with commonly used linear, pchip, and Lorentzian interpolation methods. The proposed method was applied to detect metabolism-related changes in the 6-hydroxydopamine PD model with multipool CEST MRI, including APT, CEST@2 ppm, nuclear Overhauser enhancement, direct saturation, and magnetization transfer, and the prediction performance was evaluated by area under the curve. RESULTS The numerical simulations and in vivo rat-brain experiments demonstrated that the proposed method could yield superior fidelity in retrieving dense Z-spectra compared with existing methods. Significant differences were observed in APT, CEST@2 ppm, nuclear Overhauser enhancement, and direct saturation between the striatum regions of wild-type and PD models, whereas magnetization transfer exhibited no significant difference. Receiver operating characteristic analysis demonstrated that multipool CEST achieved better predictive performance compared with individual pools. Combined with Z-spectral CS, the scan time of multipool CEST MRI can be reduced to 33% without distinctly compromising prediction accuracy. CONCLUSION The integration of Z-spectral CS with multipool CEST MRI can enhance the prediction accuracy of PD and maintain the scan time within a reasonable range.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| | - Haipeng Xu
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| | - Tao Gong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junxian Jin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Liangjie Lin
- Clinical & Technical Supports, Philips Healthcare, Beijing, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Cronin AE, Liebig P, Detombe SA, Duggal N, Bartha R. Reproducibility of 3D chemical exchange saturation transfer (CEST) contrasts in the healthy brain at 3T. Sci Rep 2024; 14:25637. [PMID: 39465319 PMCID: PMC11514173 DOI: 10.1038/s41598-024-75777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Chemical exchange saturation transfer (CEST) imaging may provide novel contrast for the diagnosis, prognosis, and monitoring of the progression or treatment of neurological applications. However, the reproducibility of prominent CEST contrasts like amide CEST and nuclear Overhauser enhancement (NOE) CEST must be characterized in healthy brain gray matter (GM) and white matter (GM) prior to clinical implementation. The objective of this study was to characterize the reproducibility of four different CEST contrasts in the healthy human brain. Using a 3T MRI scanner, two 3D CEST scans were acquired in 12 healthy subjects (7 females, mean age (± SD) 26 ± 4 years) approximately 10 days apart. Scan-rescan reproducibility was measured for four contrasts: amine/amide concentration-independent detection (AACID), Amide*, and inverse magnetization transfer ratio (MTRRex) contrast for amide and NOE. Reproducibility was evaluated between- and within-subjects using coefficients of variation (CV) and the percent difference between measurements. AACID and NOE-MTRRex contrasts demonstrated the lowest within-subject CVs (0.8-1.2% and 1.6-2.0%, respectively), between-subject CVs (1.2-2.1% and 3.4-4.2%, respectively), and percent difference (1.2-1.4% and 2.2-2.8%, respectively) for both GM and WM. AACID and NOE-MTRRex contrasts demonstrated the highest reproducibility and represented stable measurements suitable for characterizing changes in brain tissue caused by pathological processes.
Collapse
Affiliation(s)
- Alicia E Cronin
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N, London, N6A 5B7, ON, Canada
| | | | - Sarah A Detombe
- Department of Clinical Neurological Sciences, London Health Sciences Centre, University Hospital, London, ON, Canada
| | - Neil Duggal
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, University Hospital, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N, London, N6A 5B7, ON, Canada.
| |
Collapse
|
3
|
Xu X, Leforestier R, Xia D, Block KT, Feng L. MRI of GlycoNOE in the human liver using GraspNOE-Dixon. Magn Reson Med 2024. [PMID: 39367632 DOI: 10.1002/mrm.30270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE The objective of this study was to develop a new MRI technique for non-invasive, free-breathing imaging of glycogen in the human liver using the nuclear Overhauser effect (NOE). METHODS The proposed method, called GraspNOE-Dixon, uses a novel MRI sequence that combines steady-state saturation-transfer preparation with multi-echo golden-angle radial stack-of-stars sampling. Multi-echo acquisition enables fat/water-separated imaging for quantification of water-specific NOE. Image reconstruction is performed using the improved golden-angle radial sparse parallel imaging (GRASP-Pro) technique to exploit spatiotemporal correlations in dynamic images. To evaluate the proposed technique, imaging experiments were first performed on glycogen phantoms, followed by in vivo studies involving healthy volunteers and patients with fatty liver disease. In addition, a comparative assessment of signal changes before and after a 12-h fasting period was performed. RESULTS Evaluation experiments on glycogen phantoms showed a robust linear correlation between the NOE signal and glycogen concentration. In vivo experiments demonstrated motion-robust NOE-weighted images, with potential for further acceleration. In subjects with varying liver fat content, the fat/water separation approach resulted in distortion-free Z-spectra, enabling the quantification of glycogen NOE. An approximately one-third reduction in the NOE signal was observed following a 12-h fasting period, consistent with a decrease in glycogen level. CONCLUSION This study introduces a clinically feasible imaging technique, GraspNOE-Dixon, for free-breathing volumetric multi-echo imaging of hepatic glycogen at 3 T. The motion robust imaging technique developed here may also have applications in other body areas beyond liver imaging.
Collapse
Affiliation(s)
- Xiang Xu
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rodolphe Leforestier
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ding Xia
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kai Tobias Block
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Li Feng
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Zhou IY, Ji Y, Zhao Y, Malvika V, Sun PZ, Zu Z. Specific and rapid guanidinium CEST imaging using double saturation power and QUASS analysis in a rodent model of global ischemia. Magn Reson Med 2024; 91:1512-1527. [PMID: 38098305 PMCID: PMC10872646 DOI: 10.1002/mrm.29960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE Guanidinium CEST is sensitive to metabolic changes and pH variation in ischemia, and it can offer advantages over conventional pH-sensitive amide proton transfer (APT) imaging by providing hyperintense contrast in stroke lesions. However, quantifying guanidinium CEST is challenging due to multiple overlapping components and a close frequency offset from water. This study aims to evaluate the applicability of a new rapid and model-free CEST quantification method using double saturation power, termed DSP-CEST, for isolating the guanidinium CEST effect from confounding factors in ischemia. To further reduce acquisition time, the DSP-CEST was combined with a quasi-steady state (QUASS) CEST technique to process non-steady-state CEST signals. METHODS The specificity and accuracy of the DSP-CEST method in quantifying the guanidinium CEST effect were assessed by comparing simulated CEST signals with/without the contribution from confounding factors. The feasibility of this method for quantifying guanidinium CEST was evaluated in a rat model of global ischemia induced by cardiac arrest and compared to a conventional multiple-pool Lorentzian fit method. RESULTS The DSP-CEST method was successful in removing all confounding components and quantifying the guanidinium CEST signal increase in ischemia. This suggests that the DSP-CEST has the potential to provide hyperintense contrast in stroke lesions. Additionally, the DSP-CEST was shown to be a rapid method that does not require the acquisition of the entire or a portion of the CEST Z-spectrum that is required in conventional model-based fitting approaches. CONCLUSION This study highlights the potential of DSP-CEST as a valuable tool for rapid and specific detection of viable tissues.
Collapse
Affiliation(s)
- Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, US
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Viswanathan Malvika
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, US
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
5
|
Viswanathan M, Kurmi Y, Zu Z. A rapid method for phosphocreatine-weighted imaging in muscle using double saturation power-chemical exchange saturation transfer. NMR IN BIOMEDICINE 2024; 37:e5089. [PMID: 38114069 DOI: 10.1002/nbm.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
Monitoring the variation in phosphocreatine (PCr) levels following exercise provides valuable insights into muscle function. Chemical exchange saturation transfer (CEST) has emerged as a sensitive method with which to measure PCr levels in muscle, surpassing conventional MR spectroscopy. However, existing approaches for quantifying PCr CEST signals rely on time-consuming fitting methods that require the acquisition of the entire or a section of the CEST Z-spectrum. Additionally, traditional fitting methods often necessitate clear CEST peaks, which may be challenging to obtain at low magnetic fields. This paper evaluated the application of a new model-free method using double saturation power (DSP), termed DSP-CEST, to estimate the PCr CEST signal in muscle. The DSP-CEST method requires the acquisition of only two or a few CEST signals at the PCr frequency offset with two different saturation powers, enabling rapid dynamic imaging. Additionally, the DSP-CEST approach inherently eliminates confounding signals, offering enhanced robustness compared with fitting methods. Furthermore, DSP-CEST does not demand clear CEST peaks, making it suitable for low-field applications. We evaluated the capability of DSP-CEST to enhance the specificity of PCr CEST imaging through simulations and experiments on muscle tissue phantoms at 4.7 T. Furthermore, we applied DSP-CEST to animal leg muscle both before and after euthanasia and observed successful reduction of confounding signals. The DSP-CEST signal still has contaminations from a residual magnetization transfer (MT) effect and an aromatic nuclear Overhauser enhancement effect, and thus only provides a PCr-weighted imaging. The residual MT effect can be reduced by a subtraction of DSP-CEST signals at 2.6 and 5 ppm. Results show that the residual MT-corrected DSP-CEST signal at 2.6 ppm has significant variation in postmortem tissues. By contrast, both the CEST signal at 2.6 ppm and a conventional Lorentzian difference analysis of CEST signal at 2.6 ppm demonstrate no significant variation in postmortem tissues.
Collapse
Affiliation(s)
- Malvika Viswanathan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Yashwant Kurmi
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Jin T, Chung JJ. Adjustment of rotation and saturation effects (AROSE) for CEST imaging. Magn Reson Med 2024; 91:1016-1029. [PMID: 38009992 PMCID: PMC10841829 DOI: 10.1002/mrm.29938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Endogenous CEST signal usually has low specificity due to contaminations from the magnetization transfer contrast (MTC) and other labile protons with overlapping or close Larmor frequencies. We propose to improve CEST signal specificity with adjustment of rotation and saturation effects (AROSE). METHODS The AROSE approach measures the difference between CEST signals acquired with the same average irradiation power but largely different duty cycles, for example, a continuous wave or a high duty cycle pulse train versus a low duty cycle pulse train with a flip angle φ. Simulation, phantom, and in vivo rodent studies were performed to evaluate the characteristics of the AROSEφ signal. RESULTS Simulation and experimental results show that AROSE2π is a low-pass filter that can suppress fast exchanging processes (e.g., >3000 s-1 ), whereas AROSEπ is a band-pass filter suppressing both fast and slow exchange (e.g., <30 s-1 ) rates. For other φ angles, the sensitivity and the exchange-rate filtering effect of AROSEφ falls between AROSEπ and AROSE2π . AROSE can also minimize MTC and improve the Larmor frequency selectivity of the CEST signal. The linewidth of the AROSE1.5π spectrum is about 60% to 65% when compared to the CEST spectrum measured by continuous wave. Depending on the needs of an application, the sensitivity, exchange-rate filtering, and Larmor frequency selectivity can be adjusted by varying the flip angle, duty cycle, and average irradiation power. CONCLUSION Compared to conventional CEST signals, AROSE can minimize MTC and improve exchange rate filtering and Larmor frequency specificity.
Collapse
Affiliation(s)
- Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Xu J, Chung JJ, Jin T. Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues. NMR IN BIOMEDICINE 2023; 36:e4671. [PMID: 34978371 PMCID: PMC9250548 DOI: 10.1002/nbm.4671] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 05/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has become a promising technique to assay target proteins and metabolites through their exchangeable protons, noninvasively. The ubiquity of creatine (Cr) and phosphocreatine (PCr) due to their pivotal roles in energy homeostasis through the creatine phosphate pathway has made them prime targets for CEST in the diagnosis and monitoring of disease pathologies, particularly in tissues heavily dependent on the maintenance of rich energy reserves. Guanidinium CEST from protein arginine residues (i.e. arginine CEST) can also provide information about the protein profile in tissue. However, numerous obfuscating factors stand as obstacles to the specificity of arginine, Cr, and PCr imaging through CEST, such as semisolid magnetization transfer, fast chemical exchanges such as primary amines, and the effects of nuclear Overhauser enhancement from aromatic and amide protons. In this review, the specific exchange properties of protein arginine residues, Cr, and PCr, along with their validation, are discussed, including the considerations necessary to target and tune their signal effects through CEST imaging. Additionally, strategies that have been employed to enhance the specificity of these exchanges in CEST imaging are described, along with how they have opened up possible applications of protein arginine residues, Cr and PCr CEST imaging in the study and diagnosis of pathology. A clear understanding of the capabilities and caveats of using CEST to image these vital metabolites and mitigation strategies is crucial to expanding the possibilities of this promising technology.
Collapse
Affiliation(s)
- Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Knutsson L, Xu X, van Zijl PCM, Chan KWY. Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties. NMR IN BIOMEDICINE 2023; 36:e4784. [PMID: 35665547 PMCID: PMC9719573 DOI: 10.1002/nbm.4784] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 05/13/2023]
Abstract
The ability of CEST MRI to detect the presence of millimolar concentrations of non-metallic contrast agents has made it possible to study, non-invasively, important biological molecules such as proteins and sugars, as well as drugs already approved for clinical use. Here, we review efforts to use sugar and sugar polymers as exogenous contrast agents, which is possible based on the exchange of their hydroxyl protons with water protons. While this capability has raised early enthusiasm, for instance about the possibility of imaging D-glucose metabolism with MRI in a way analogous to PET, experience over the past decade has shown that this is not trivial. On the other hand, many studies have confirmed the possibility of imaging a large variety of sugar analogues, each with potentially interesting applications to assess tissue physiology. Some promising applications are the study of (i) sugar delivery and transport to assess blood-brain barrier integrity and (ii) sugar uptake by cells for their characterization (e.g., cancer versus healthy), as well as (iii) clearance of sugars to assess tissue drainage-for instance, through the glymphatic system. To judge these opportunities and their challenges, especially in the clinic, it is necessary to understand the technical aspects of detecting the presence of rapidly exchanging protons through the water signal in MRI, especially as a function of magnetic field strength. We expect that novel approaches in terms of MRI detection (both saturation transfer and relaxation based), MRI data analysis, and sugar design will push this young field forward in the next decade.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter CM van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong
- City University of Hong Kong Shenzhen Institute, Shenzhen, China
| |
Collapse
|
9
|
Heo HY, Tee YK, Harston G, Leigh R, Chappell M. Amide proton transfer imaging in stroke. NMR IN BIOMEDICINE 2023; 36:e4734. [PMID: 35322482 PMCID: PMC9761584 DOI: 10.1002/nbm.4734] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 05/23/2023]
Abstract
Amide proton transfer (APT) imaging, a variant of chemical exchange saturation transfer MRI, has shown promise in detecting ischemic tissue acidosis following impaired aerobic metabolism in animal models and in human stroke patients due to the sensitivity of the amide proton exchange rate to changes in pH within the physiological range. Recent studies have demonstrated the possibility of using APT-MRI to detect acidosis of the ischemic penumbra, enabling the assessment of stroke severity and risk of progression, monitoring of treatment progress, and prognostication of clinical outcome. This paper reviews current APT imaging methods actively used in ischemic stroke research and explores the clinical aspects of ischemic stroke and future applications for these methods.
Collapse
Affiliation(s)
- Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yee Kai Tee
- Lee Kong Chian Faculty of Engineering and Science, University Tunku Abdul Rahman, Malaysia
| | - George Harston
- Acute Stroke Programme, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Chappell
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom, UK
| |
Collapse
|
10
|
Zhou Y, Bie C, van Zijl PC, Yadav NN. The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2023; 36:e4778. [PMID: 35642102 PMCID: PMC9708952 DOI: 10.1002/nbm.4778] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/29/2022] [Indexed: 05/23/2023]
Abstract
Magnetic resonance (MR) is a powerful technique for noninvasively probing molecular species in vivo but suffers from low signal sensitivity. Saturation transfer (ST) MRI approaches, including chemical exchange saturation transfer (CEST) and conventional magnetization transfer contrast (MTC), allow imaging of low-concentration molecular components with enhanced sensitivity using indirect detection via the abundant water proton pool. Several recent studies have shown the utility of chemical exchange relayed nuclear Overhauser effect (rNOE) contrast originating from nonexchangeable carbon-bound protons in mobile macromolecules in solution. In this review, we describe the mechanisms leading to the occurrence of rNOE-based signals in the water saturation spectrum (Z-spectrum), including those from mobile and immobile molecular sources and from molecular binding. While it is becoming clear that MTC is mainly an rNOE-based signal, we continue to use the classical MTC nomenclature to separate it from the rNOE signals of mobile macromolecules, which we will refer to as rNOEs. Some emerging applications of the use of rNOEs for probing macromolecular solution components such as proteins and carbohydrates in vivo or studying the binding of small substrates are discussed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong 518055 (China)
| | - Chongxue Bie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
- Department of Information Science and Technology, Northwest University, No.1 Xuefu Avenue, Xi’an, Shanxi 710127 (China)
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| |
Collapse
|
11
|
Bie C, van Zijl P, Xu J, Song X, Yadav NN. Radiofrequency labeling strategies in chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2023; 36:e4944. [PMID: 37002814 PMCID: PMC10312378 DOI: 10.1002/nbm.4944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has generated great interest for molecular imaging applications because it can image low-concentration solute molecules in vivo with enhanced sensitivity. CEST effects are detected indirectly through a reduction in the bulk water signal after repeated perturbation of the solute proton magnetization using one or more radiofrequency (RF) irradiation pulses. The parameters used for these RF pulses-frequency offset, duration, shape, strength, phase, and interpulse spacing-determine molecular specificity and detection sensitivity, thus their judicious selection is critical for successful CEST MRI scans. This review article describes the effects of applying RF pulses on spin systems and compares conventional saturation-based RF labeling with more recent excitation-based approaches that provide spectral editing capabilities for selectively detecting molecules of interest and obtaining maximal contrast.
Collapse
Affiliation(s)
- Chongxue Bie
- Department of Information Science and Technology, Northwest University, No.1 Xuefu Avenue, Xi’an, Shaanxi 710127 (China)
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Peter van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| |
Collapse
|
12
|
Chen Z, Huang J, Lai JHC, Tse KH, Xu J, Chan KWY. Chemical exchange saturation transfer MRI detects myelin changes in cuprizone mouse model at 3T. NMR IN BIOMEDICINE 2023:e4937. [PMID: 36965064 DOI: 10.1002/nbm.4937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Chemical exchange saturation transfer (CEST) sensitively detects molecular alterations in the brain, such as relayed nuclear Overhauser effect (rNOE) CEST contrast at -3.5 ppm representing aliphatic protons in both lipids and proteins, and CEST contrast at 3.5 ppm correlating with amide proton in proteins. Myelin is rich in lipids and proteins, and therefore CEST can be explored as a biomarker for myelin pathology, which could contribute to the diagnosis and prognosis of multiple sclerosis (MS). In the current study, we investigate the specificity of aliphatic rNOE and the amide pool in myelin detection using the cuprizone (CPZ) mouse model, which recapitulates the demyelination and remyelination of MS. In this study, preclinical 3T MRI was performed in 19 male C57BL/6 mice. Mice in the normal control (NC) group (n = 9) were fed a normal diet for the whole course, while mice in the CPZ group (n = 10) were fed with CPZ for 10 weeks, followed by 4 weeks with a normal diet. The CEST contrast of rNOE (-3.5 ppm) and amide (3.5 ppm) in brain regions of the corpus callosum (CC) and the caudate putamen were compared. Statistical differences between the groups were calculated using two-way ANOVA. We observed significantly decreased rNOE (NC: 4.85% ± 0.09%/s vs. CPZ: 3.88% ± 0.18%/s, p = 0.007) and amide pool (NC: 3.20% ± 0.10%/s vs. CPZ: 2.46% ± 0.16%/s, p = 0.02) in the CC after 8 weeks on CPZ diet (p < 0.05). Moreover, the rNOE in the CPZ group recovered to a level comparable with the NC group at week 14 (p = 0.39), while amide remained at a level as low as that for the NC group (p = 0.051). Significant rNOE and amide changes, validated by immunohistochemistry results for demyelination and remyelination, demonstrate the huge potential of CEST for revealing myelin pathology, which has implications for MS identification at the clinical field strength of 3T.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Chung J, Jin T. Average saturation efficiency filter ASEF-CEST MRI of stroke rodents. Magn Reson Med 2023; 89:565-576. [PMID: 36300851 PMCID: PMC9757140 DOI: 10.1002/mrm.29463] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The average saturation efficiency filter (ASEF) is a novel method of improving the specificity of CEST; however, there is a mismatch between the magnetization transfer (MT) effect under high-duty cycle and low-duty cycle pulse trains. We explore measures of mitigation and the sensitivity and potential of ASEF imaging in phantoms and stroke rats. METHODS Simulation and nicotinamide phantoms in denatured protein were used to investigate the effect of different average saturation powers and MT pool parameters on matching coefficients used for correction as well as the ASEF ratio signal and baseline. Then, in vivo studies were performed in stroke rodents to further investigate the sensitivity and fidelity of ASEF ratio spectra. RESULTS Simulation and studies of nicotinamide phantoms show that the matching coefficient needed to correct the baseline MT mismatch is strongly dependent on the average saturation power. In vivo studies in stroke rodents show that the matching coefficient required to correct the baseline MT mismatch is different for normal versus ischemic tissue. Thus, a baseline correction was performed to further suppress the residue MT mismatch. After correction of the mismatch, ASEF ratio achieved comparable contrast at 3.6 ppm between normal and ischemic tissue when compared to the apparent amide proton transfer (APT*) approach. Moreover, contrasts for 2.0 and 2.6 ppm were also ascertainable from the same spectra. CONCLUSION ASEF can improve the CEST signal specificity of slow exchange labile protons such as amide and guanidyl, with small loss to sensitivity. It has strong potential in the CEST imaging of various diseases.
Collapse
Affiliation(s)
- Julius Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Jin T, Chung JJ. Average saturation efficiency filter (ASEF) for CEST imaging. Magn Reson Med 2022; 88:254-265. [PMID: 35344594 PMCID: PMC9172934 DOI: 10.1002/mrm.29211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE Endogenous CEST signal usually has low specificity due to contamination from the magnetization transfer effect and from fast exchanging labile protons with close Larmor frequencies. We propose to improve CEST signal specificity with an average saturation efficiency filter (ASEF). METHODS ASEF measures the difference between CEST signals acquired with similar average irradiation power but largely different duty cycles (DC), for example, a continuous wave or a high DC pulse train versus a low DC one. Simulation and Cr phantom studies were performed to evaluate the characteristics of ASEF for CEST. RESULTS Theoretical and simulation studies show that ASEF can suppress fast exchanging processes, with only a small loss of chemical exchange contrast for slow-to-intermediate exchange rates if the difference in DC is large. In the RF offset range of 2 to 5 ppm with an averaged saturation power of 0.8 and 1.6 microteslas, there is a mismatch of ∼0.1% to 2% in the magnetization transfer signal between saturation by continuous wave and a pulse train with DC = 15% and pulse duration of 24 ms, respectively. This mismatch can be minimized by careful selection of saturation power, pulse duration, and DC differences or by applying a small fudge factor between the 2 irradiation powers. Phantom studies of Cr confirmed that ASEF can minimize the magnetization transfer effect and reduce sensitivity to fast exchange processes. CONCLUSION ASEF can improve the specificity of slow-to-intermediate exchanging CEST signal with a relatively small loss of sensitivity.
Collapse
Affiliation(s)
- Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Wu QX, Liu HQ, Wang YJ, Chen TC, Wei ZY, Chang JH, Chen TH, Seema J, Lin EC. Chemical Exchange Saturation Transfer (CEST) Signal at −1.6 ppm and Its Application for Imaging a C6 Glioma Model. Biomedicines 2022; 10:biomedicines10061220. [PMID: 35740241 PMCID: PMC9219881 DOI: 10.3390/biomedicines10061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023] Open
Abstract
The chemical exchange saturation transfer (CEST) signal at −1.6 ppm is attributed to the choline methyl on phosphatidylcholines and results from the relayed nuclear Overhauser effect (rNOE), that is, rNOE(−1.6). The formation of rNOE(−1.6) involving the cholesterol hydroxyl is shown in liposome models. We aimed to confirm the correlation between cholesterol content and rNOE(−1.6) in cell cultures, tissues, and animals. C57BL/6 mice (N = 9) bearing the C6 glioma tumor were imaged in a 7 T MRI scanner, and their rNOE(−1.6) images were cross-validated through cholesterol staining with filipin. Cholesterol quantification was obtained using an 18.8-T NMR spectrometer from the lipid extracts of the brain tissues from another group of mice (N = 3). The cholesterol content in the cultured cells was manipulated using methyl-β-cyclodextrin and a complex of cholesterol and methyl-β-cyclodextrin. The rNOE(−1.6) of the cell homogenates and their cholesterol levels were measured using a 9.4-T NMR spectrometer. The rNOE(−1.6) signal is hypointense in the C6 tumors of mice, which matches the filipin staining results, suggesting that their tumor region is cholesterol deficient. The tissue extracts also indicate less cholesterol and phosphatidylcholine contents in tumors than in normal brain tissues. The amplitude of rNOE(−1.6) is positively correlated with the cholesterol concentration in the cholesterol-manipulated cell cultures. Our results indicate that the cholesterol dependence of rNOE(−1.6) occurs in cell cultures and solid tumors of C6 glioma. Furthermore, when the concentration of phosphatidylcholine is carefully considered, rNOE(−1.6) can be developed as a cholesterol-weighted imaging technique.
Collapse
Affiliation(s)
- Qi-Xuan Wu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Hong-Qing Liu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Yi-Jiun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
| | - Tsai-Chen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Zi-Ying Wei
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Jung-Hsuan Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
| | - Ting-Hao Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
| | - Jaya Seema
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (T.-C.C.); (J.S.)
| | - Eugene C. Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan; (Q.-X.W.); (H.-Q.L.); (Y.-J.W.); (Z.-Y.W.); (J.-H.C.); (T.-H.C.)
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 62102, Taiwan
- Correspondence: ; Tel.: +886-5-272-0411 (ext. 66418); Fax: +886-5-272-1040
| |
Collapse
|
16
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Huang J, Xu J, Lai JHC, Chen Z, Lee CY, Mak HKF, Chan KH, Chan KWY. Relayed nuclear Overhauser effect weighted (rNOEw) imaging identifies multiple sclerosis. NEUROIMAGE-CLINICAL 2021; 32:102867. [PMID: 34751151 PMCID: PMC8569719 DOI: 10.1016/j.nicl.2021.102867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system in which the immune system attacks the myelin and axons, consequently leading to demyelination and axonal injury. Magnetic resonance imaging (MRI) plays a pivotal role in the diagnosis of MS, and currently various types of MRI techniques have been used to detect the pathology of MS based on unique mechanisms. In this study, we applied the relayed nuclear Overhauser effect weighted (rNOEw) imaging to study human MS at clinical 3T. Three groups of subjects, including 20 normal control (NC) subjects, 14 neuromyelitis optica spectrum disorders (NMOSD) patients and 21 MS patients, were examined at a clinical 3T MRI scanner. Whole-brain rNOEw images of each subject were obtained by acquiring a control and a labeled image within four minutes. Significantly lower brain rNOEw contrast was detected in MS group compared to NC (P = 0.008) and NMOSD (P = 0.014) groups, while no significant difference was found between NC and NMOSD groups (P = 0.939). The lower rNOEw contrast of MS group compared to NC/NMOSD group was significant in white matter (P = 0.041/0.021), gray matter (P = 0.004/0.020) and brain parenchyma (P = 0.015/0.021). Moreover, MS lesions showed higher number and larger size but lower rNOEw contrast than NMOSD lesions (P = 0.002). Our proposed rNOEw imaging scheme has potential to serve as a new method for assisting MS diagnosis. Importantly, it may be used to identify MS from NMOSD.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Chi Yan Lee
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Henry K F Mak
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Koon Ho Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China.
| |
Collapse
|
18
|
Huang J, Lai JHC, Tse KH, Cheng GWY, Liu Y, Chen Z, Han X, Chen L, Xu J, Chan KWY. Deep neural network based CEST and AREX processing: Application in imaging a model of Alzheimer's disease at 3 T. Magn Reson Med 2021; 87:1529-1545. [PMID: 34657318 DOI: 10.1002/mrm.29044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To optimize and apply deep neural network based CEST (deepCEST) and apparent exchange dependent-relaxation (deepAREX) for imaging the mouse brain with Alzheimer's disease (AD) at 3T MRI. METHODS CEST and T1 data of central and anterior brain slices of 10 AD mice and 10 age-matched wild type (WT) mice were acquired at a 3T animal MRI scanner. The networks of deepCEST/deepAREX were optimized and trained on the WT data. The CEST/AREX contrasts of AD and WT mice predicted by the networks were analyzed and further validated by immunohistochemistry. RESULTS After optimization and training on CEST data of WT mice, deepCEST/deepAREX could rapidly (~1 s) generate precise CEST and AREX results for unseen CEST data of AD mice, indicating the accuracy and generalization of the networks. Significant lower amide weighted (3.5 ppm) signal related to amyloid β-peptide (Aβ) plaque depositions, which was validated by immunohistochemistry results, was detected in both central and anterior brain slices of AD mice compared to WT mice. Decreased magnetization transfer (MT) signal was also found in AD mice especially in the anterior slice. CONCLUSION DeepCEST/deepAREX could rapidly generate accurate CEST/AREX contrasts in animal study. The well-optimized deepCEST/deepAREX have potential for AD differentiation at 3T MRI.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald W Y Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
19
|
Saturation transfer MRI is sensitive to neurochemical changes in the rat brain due to chronic unpredictable mild stress. Sci Rep 2021; 11:19040. [PMID: 34561488 PMCID: PMC8463565 DOI: 10.1038/s41598-021-97991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) MRI was performed for the evaluation of cerebral metabolic changes in a rat model of depressive-like disease induced by chronic unpredictable mild stress (CUMS). CEST Z-spectra were acquired on a 7 T MRI with two saturation B1 amplitudes (0.5 and 0.75 µT) to measure the magnetization transfer ratio (MTR), CEST and relayed nuclear Overhauser effect (rNOE). Cerebral cortex and hippocampus were examined in two groups of animals: healthy control (n = 10) and stressed (n = 14), the latter of which was exposed to eight weeks of the CUMS protocol. The stressed group Z-spectrum parameters, primarily MTRs, were significantly lower than in controls, at all selected frequency offsets (3.5, 3.0, 2.0, - 3.2, - 3.6 ppm) in the cortex (the largest difference of ~ 3.5% at - 3.6 ppm, p = 0.0005) and the hippocampus (MTRs measured with a B1 = 0.5 µT). The hippocampal rNOE contributions decreased significantly in the stressed brains. Glutamate concentration (assessed using ELISA) and MTR at 3 ppm correlated positively in both brain regions. GABA concentration also correlated positively with CEST contributions in both cerebral areas, while such correlation with MTR was positive in hippocampus, and nonsignificant in cortex. Results indicate that CEST is sensitive to neurometabolic changes following chronic stress exposure.
Collapse
|
20
|
Schmitz-Abecassis B, Vinogradov E, Wijnen JP, van Harten T, Wiegers EC, Hoogduin H, van Osch MJP, Ercan E. The use of variable delay multipulse chemical exchange saturation transfer for separately assessing different CEST pools in the human brain at 7T. Magn Reson Med 2021; 87:872-883. [PMID: 34520077 PMCID: PMC9290048 DOI: 10.1002/mrm.29005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Current challenges of in vivo CEST imaging include overlapping signals from different pools. The overlap arises from closely resonating pools and/or the broad magnetization transfer contrast (MTC) from macromolecules. This study aimed to evaluate the feasibility of variable delay multipulse (VDMP) CEST to separately assess solute pools with different chemical exchange rates in the human brain in vivo, while mitigating the MTC. METHODS VDMP saturation buildup curves were simulated for amines, amides, and relayed nuclear Overhauser effect. VDMP data were acquired from glutamate and bovine serum albumin phantoms, and from six healthy volunteers at 7T. For the in vivo data, MTC removal was performed via a three-pool Lorentzian fitting. Different B1 amplitudes and mixing times were used to evaluate CEST pools with different exchange rates. RESULTS The results show the importance of removing MTC when applying VDMP in vivo and the influence of B1 for distinguishing different pools. Finally, the optimal B1 and mixing times to effectively saturate slow- and fast-exchanging components are also reported. Slow-exchanging amides and rNOE components could be distinguished when using B1 = 1 μT and tmix = 10 ms and 40 ms, respectively. Fast-exchanging components reached the highest saturation when using a B1 = 2.8 μT and tmix = 0 ms. CONCLUSION VDMP is a powerful CEST-editing tool, exploiting chemical exchange-rate differences. After MTC removal, it allows separate assessment of slow- and fast-exchanging solute pools in in vivo human brain.
Collapse
Affiliation(s)
- Bárbara Schmitz-Abecassis
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Vinogradov
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jannie P Wijnen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs van Harten
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Evita C Wiegers
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Hoogduin
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ece Ercan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Sui R, Chen L, Li Y, Huang J, Chan KWY, Xu X, van Zijl PCM, Xu J. Whole-brain amide CEST imaging at 3T with a steady-state radial MRI acquisition. Magn Reson Med 2021; 86:893-906. [PMID: 33772859 PMCID: PMC8076068 DOI: 10.1002/mrm.28770] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a steady-state saturation with radial readout chemical exchange saturation transfer (starCEST) for acquiring CEST images at 3 Tesla (T). The polynomial Lorentzian line-shape fitting approach was further developed for extracting amideCEST intensities at this field. METHOD StarCEST MRI using periodically rotated overlapping parallel lines with enhanced reconstruction-based spatial sampling was implemented to acquire Z-spectra that are robust to brain motion. Multi-linear singular value decomposition postprocessing was applied to enhance the CEST SNR. The egg white phantom studies were performed at 3T to reveal the contributions to the 3.5 ppm CEST signal. Based on the phantom validation, the amideCEST peak was quantified using the polynomial Lorentzian line-shape fitting, which exploits the inverse relationship between Z-spectral intensity and the longitudinal relaxation rate in the rotating frame. The 3D turbo spin echo CEST was also performed to compare with the starCEST method. RESULTS The amideCEST peak showed a negligible peak B1 dependence between 1.2 µT and 2.4 µT. The amideCEST images acquired with starCEST showed much improved image quality, SNR, and motion robustness compared to the conventional 3D turbo spin echo CEST method with the same scan time. The amideCEST contrast extracted by the polynomial Lorentzian line-shape fitting method trended toward a stronger gray matter signal (1.32% ± 0.30%) than white matter (0.92% ± 0.08%; P = .02, n = 5). When calculating the magnetization transfer contrast and T1 -corrected rotating frame relaxation rate maps, amideCEST again was not significantly different for white matter and gray matter. CONCLUSION Rapid multi-slice amideCEST mapping can be achieved by the starCEST method (< 5 min) at 3T by combing with the polynomial Lorentzian line-shape fitting method.
Collapse
Affiliation(s)
- Ran Sui
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kannie W. Y. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Dai Z, Kalra S, Mah D, Seres P, Sun H, Wu R, Wilman AH. Amide signal intensities may be reduced in the motor cortex and the corticospinal tract of ALS patients. Eur Radiol 2021; 31:1401-1409. [PMID: 32909054 DOI: 10.1007/s00330-020-07243-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study is to assess amide concentration changes in ALS patients compared with healthy controls by using quantitative amide proton transfer (APT) and multiparameter magnetic resonance imaging, and testing its correlation with clinical scores. METHODS Sixteen ALS patients and sixteen healthy controls were recruited as part of the Canadian ALS Neuroimaging Consortium, and multimodal magnetic resonance imaging was performed at 3 T, including APT and diffusion imaging. Lorentz fitting was used to quantify the amide effect. Clinical disability was evaluated using the revised ALS functional rating scale (ALSFRS-R), and its correlation with image characteristics was assessed. The diagnostic performance of different imaging parameters was evaluated with receiver operating characteristic analysis. RESULTS Our results showed that the amide peak was significantly different between the motor cortex and other gray matter territories within the brain of ALS patients (p < 0.001). Compared with controls, amide signal intensities in ALS were significantly reduced in the motor cortex (p < 0.001) and corticospinal tract (p = 0.046), while abnormalities were not detected using routine imaging methods. There was no significant correlation between amide and ALSFRS-R score. The diagnostic accuracy of the amide peak was superior to that of diffusion imaging. CONCLUSIONS This study demonstrated changes of amide signal intensities in the motor cortex and corticospinal tract of ALS patients. KEY POINTS • The neurodegenerative disease amyotrophic lateral sclerosis (ALS) has a lack of objective imaging indicators for diagnosis and assessment. • Analysis of amide proton transfer imaging revealed changes in the motor cortex and corticospinal tract of ALS patients that were not visible on standard magnetic resonance imaging. • The diagnostic accuracy of the amide peak was superior to that of diffusion imaging.
Collapse
Affiliation(s)
- Zhuozhi Dai
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Sanjay Kalra
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Dennell Mah
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Hongfu Sun
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Renhua Wu
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada.
| |
Collapse
|
23
|
Demetriou E, Kujawa A, Golay X. Pulse sequences for measuring exchange rates between proton species: From unlocalised NMR spectroscopy to chemical exchange saturation transfer imaging. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:25-71. [PMID: 33198968 DOI: 10.1016/j.pnmrs.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Within the field of NMR spectroscopy, the study of chemical exchange processes through saturation transfer techniques has a long history. In the context of MRI, chemical exchange techniques have been adapted to increase the sensitivity of imaging to small fractions of exchangeable protons, including the labile protons of amines, amides and hydroxyls. The MR contrast is generated by frequency-selective irradiation of the labile protons, which results in a reduction of the water signal associated with transfer of the labile protons' saturated magnetization to the protons of the surrounding free water. The signal intensity depends on the rate of chemical exchange and the concentration of labile protons as well as on the properties of the irradiation field. This methodology is referred to as CEST (chemical exchange saturation transfer) imaging. Applications of CEST include imaging of molecules with short transverse relaxation times and mapping of physiological parameters such as pH, temperature, buffer concentration and chemical composition due to the dependency of this chemical exchange effect on all these parameters. This article aims to describe these effects both theoretically and experimentally. In depth analysis and mathematical modelling are provided for all pulse sequences designed to date to measure the chemical exchange rate. Importantly, it has become clear that the background signal from semi-solid protons and the presence of the Nuclear Overhauser Effect (NOE), either through direct dipole-dipole mechanisms or through exchange-relayed signals, complicates the analysis of CEST effects. Therefore, advanced methods to suppress these confounding factors have been developed, and these are also reviewed. Finally, the experimental work conducted both in vitro and in vivo is discussed and the progress of CEST imaging towards clinical practice is presented.
Collapse
Affiliation(s)
- Eleni Demetriou
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Aaron Kujawa
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Xavier Golay
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| |
Collapse
|
24
|
Chang YC, Liu HQ, Chang JH, Chang YY, Lin EC. Role of the cholesterol hydroxyl group in the chemical exchange saturation transfer signal at -1.6 ppm. NMR IN BIOMEDICINE 2020; 33:e4356. [PMID: 32575161 DOI: 10.1002/nbm.4356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/10/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) can provide metabolite-weighted images in the clinical setting; therefore, understanding the origin of each CEST signal is essential to revealing the changes in diseases at the molecular level, which would provide further insight for diagnoses and treatments. The CEST signal at -1.6 ppm is attributed to the choline methyl group of phosphatidylcholines. The methyl groups have no exchangeable protons, so the corresponding CEST signals must result from the relayed nuclear Overhauser effect (rNOE); however, the detailed mechanism remains unclear. Cholesterol is a major component of biological membranes, and its content is closely related to the dynamics and phases of these lipids. However, cholesterol has a hydroxyl group, which could participate in proton exchange to complete the rNOE process. In this study, we used liposomes containing cholesterol and its analogs (5α-cholestane and progesterone), which presumably have similar capabilities of influencing lipid bilayers, and found that the steroid hydroxyl group is the key to inducing the rNOE at -1.6 ppm. Our results suggest that the origin of the rNOE at -1.6 ppm likely requires an intermolecular NOE between the proton of the choline methyl group and that of the cholesterol hydroxyl group, and a chemical exchange between the cholesterol hydroxyl group and bulk water. However, the phenomenon in which the rNOE at -1.6 ppm appears when the cholesterol concentration is high seems to contradict the in vivo results, suggesting a more complicated mechanism associated with the rNOE at -1.6 ppm in biological membranes.
Collapse
Affiliation(s)
- Yu-Chi Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Hong-Qing Liu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Jung-Hsuan Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Yu-Yen Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| | - Eugene C Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
25
|
Huang J, Han X, Chen L, Xu X, Xu J, Chan KWY. Relayed nuclear Overhauser enhancement imaging with magnetization transfer contrast suppression at 3 T. Magn Reson Med 2020; 85:254-267. [PMID: 32738080 DOI: 10.1002/mrm.28433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop a pulsed CEST magnetization-transfer method for rapidly acquiring relayed nuclear Overhauser enhancement (rNOE)-weighted images with magnetic transfer contrast (MTC) suppression at clinical field strength (3 T). METHODS Using a pulsed CEST magnetization-transfer method with low saturation powers (B1 ) and long mixing time (tmix ) to suppress contributions due to strong MTC from solid-like macromolecules, a low B1 also minimized direct water saturation. These MTC contributions were further reduced by subtracting the Z-spectral signals at two or three offsets by assuming that the residual MTC is a linear function between -3.5 ppm and -12.5 ppm. RESULTS Phantom studies of a lactic acid (Lac) solution mixed with cross-linked bovine serum albumin show that strong MTC interference has a significant impact on the optimum B1 for detecting rNOEs, due to lactate binding. The MTC could be effectively suppressed using a pulse train with a B1 of 0.8 μT, a pulse duration (tp ) of 40 ms, a tmix of 60 ms, and a pulse number (N) of 30, while rNOE signal was well maintained. As a proof of concept, we applied the method in mouse brain with injected hydrogel and a cell-hydrogel phantom. Results showed that rNOE-weighted images could provide good contrast between brain/cell and hydrogel. CONCLUSION The developed pulsed CEST magnetization-transfer method can achieve MTC suppression while preserving most of the rNOE signal at 3 T, which indicates the potential for translation of this technique to clinical applications related to mobile proteins/lipids change.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiang Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
26
|
Einarsson E, Peterson P, Önnerfjord P, Gottschalk M, Xu X, Knutsson L, Dahlberg LE, Struglics A, Svensson J. The role of cartilage glycosaminoglycan structure in gagCEST. NMR IN BIOMEDICINE 2020; 33:e4259. [PMID: 31999387 DOI: 10.1002/nbm.4259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Glycosaminoglycan (GAG) chemical exchange saturation transfer (gagCEST) is a potential method for cartilage quality assessment. The aim of this study was to investigate how the gagCEST effect depends on the types and molecular organization of GAG typically found in articular cartilage. gagCEST was performed on different concentrations of GAG in various forms: free chains of chondroitin sulfate (CS) of different types (-A and -C) and GAG bound to protein in aggregated and nonaggregated aggrecan extracted from calf articular cartilage. The measured magnetization transfer ratio asymmetry (MTRasym ) was compared with known GAG concentrations or GAG concentrations determined through biochemical analysis. The gagCEST effect was assessed through the linear regression coefficient with 95% confidence interval of MTRasym per GAG concentration. We observed a lower gagCEST effect in phantoms containing a mixture of CS-A and CS-C compared with phantoms containing mainly CS-A. The difference in response corresponds well to the difference in CS-A concentration. GAG bound in aggrecan from calf articular cartilage, where CS-A is assumed to be the major type of GAG, produed a similar gagCEST effect as that observed for free CS-A. The effect was also similar for aggregated (ie, bound to hyaluronic acid) and nonaggregated aggrecan. In conclusion, our results indicate that the aggrecan structure in itself does not impact the gagCEST effect, but that the effect is strongly dependent on GAG type. In phantoms, the current implementation of gagCEST is sensitive to CS-A while for CS-C, the main GAG component in mature human articular cartilage, the sensitivity is limited. This difference in gagCEST sensitivity between GAG types detected in phantoms is a strong motivation to also explore the possibility of a similar effect in vivo.
Collapse
Affiliation(s)
- Emma Einarsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Radiation Physics, Department of Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Leif E Dahlberg
- Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - André Struglics
- Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
27
|
Zhang Z, Zhang C, Yao J, Gao F, Gong T, Jiang S, Chen W, Zhou J, Wang G. Amide proton transfer-weighted magnetic resonance imaging of human brain aging at 3 Tesla. Quant Imaging Med Surg 2020; 10:727-742. [PMID: 32269932 DOI: 10.21037/qims.2020.02.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Amide proton transfer-weighted (APTw) imaging has been revealed to hold great potential in the diagnosis of several brain diseases. The purpose of this proof-of-concept study was to evaluate the feasibility and value of APTw magnetic resonance imaging (MRI) in characterizing normal brain aging. Methods A total of 106 healthy subjects were recruited and scanned at 3.0 Tesla, with APTw and conventional magnetization transfer (MT) sequences. Quantitative image analyses were performed in 12 regions of interest (ROIs) for each subject. The APTw or MT ratio (MTR) signal differences among five age groups (young, mature, middle-aged, young-old, and middle-old) were assessed using the one-way analysis of variance, with the Benjamini-Hochberg correction for multiple comparisons. The relationship between APTw and MTR signals and the age dependencies of APTw and MTR signals were assessed using the Pearson correlation and non-linear regression. Results There were no significant differences between the APTw or MTR values for males and females in any of the 12 ROIs analyzed. Among the five age groups, there were significant differences in the three white matter regions in the temporal, occipital, and frontal lobes. Overall, the mean APTw values in the older group were higher than those in the younger group. Positive correlations were observed in relation to age in most brain regions, including four with significant positive correlations (r=0.2065-0.4182) and five with increasing trends. As a comparison, the mean MTR values did not appear to be significantly different among the five age groups. In addition, the mean APTw and MTR values revealed significant positive correlations in 10 ROIs (r=0.2214-0.7269) and a significant negative correlation in one ROI (entorhinal cortex, r=-0.2141). Conclusions Our early results show that the APTw signal can be used as a promising and complementary imaging biomarker with which normal brain aging can be evaluated at the molecular level.
Collapse
Affiliation(s)
- Zewen Zhang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China.,Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Caiqing Zhang
- Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Jian Yao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Fei Gao
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Tao Gong
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Maryland, USA
| | - Guangbin Wang
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan 250021, China
| |
Collapse
|
28
|
Smith AK, Ray KJ, Larkin JR, Craig M, Smith SA, Chappell MA. Does the magnetization transfer effect bias chemical exchange saturation transfer effects? Quantifying chemical exchange saturation transfer in the presence of magnetization transfer. Magn Reson Med 2020; 84:1359-1375. [PMID: 32072677 PMCID: PMC7317383 DOI: 10.1002/mrm.28212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Purpose Chemical exchange saturation transfer (CEST) is an MRI technique sensitive to the presence of low‐concentration solute protons exchanging with water. However, magnetization transfer (MT) effects also arise when large semisolid molecules interact with water, which biases CEST parameter estimates if quantitative models do not account for macromolecular effects. This study establishes under what conditions this bias is significant and demonstrates how using an appropriate model provides more accurate quantitative CEST measurements. Methods CEST and MT data were acquired in phantoms containing bovine serum albumin and agarose. Several quantitative CEST and MT models were used with the phantom data to demonstrate how underfitting can influence estimates of the CEST effect. CEST and MT data were acquired in healthy volunteers, and a two‐pool model was fit in vivo and in vitro, whereas removing increasing amounts of CEST data to show biases in the CEST analysis also corrupts MT parameter estimates. Results When all significant CEST/MT effects were included, the derived parameter estimates for each CEST/MT pool significantly correlated (P < .05) with bovine serum albumin/agarose concentration; minimal or negative correlations were found with underfitted data. Additionally, a bootstrap analysis demonstrated that significant biases occur in MT parameter estimates (P < .001) when unmodeled CEST data are included in the analysis. Conclusions These results indicate that current practices of simultaneously fitting both CEST and MT effects in model‐based analyses can lead to significant bias in all parameter estimates unless a sufficiently detailed model is utilized. Therefore, care must be taken when quantifying CEST and MT effects in vivo by properly modeling data to minimize these biases.
Collapse
Affiliation(s)
- Alex K Smith
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Kevin J Ray
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Martin Craig
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael A Chappell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Protein-based amide proton transfer-weighted MR imaging of amnestic mild cognitive impairment. NEUROIMAGE-CLINICAL 2019; 25:102153. [PMID: 31901792 PMCID: PMC6948365 DOI: 10.1016/j.nicl.2019.102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/07/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Amide proton transfer-weighted (APTw) MRI is a novel molecular imaging technique that can noninvasively detect endogenous cellular proteins and peptides in tissue. Here, we demonstrate the feasibility of protein-based APTw MRI in characterizing amnestic mild cognitive impairment (aMCI). Eighteen patients with confirmed aMCI and 18 matched normal controls were scanned at 3 Tesla. The APTw, as well as conventional magnetization transfer ratio (MTR), signal differences between aMCI and normal groups were assessed by the independent samples t-test, and the receiver-operator-characteristic analysis was used to assess the diagnostic performance of APTw. When comparing the normal control group, aMCI brains typically had relatively higher APTw signals. Quantitatively, APTw intensity values were significantly higher in nine of 12 regions of interest in aMCI patients than in normal controls. The largest areas under the receiver-operator-characteristic curves were 0.88 (gray matter in occipital lobe) and 0.82 (gray matter in temporal lobe, white matter in occipital lobe) in diagnosing aMCI patients. On the contrary, MTR intensity values were significantly higher in only three of 12 regions of interest in the aMCI group. Additionally, the age dependency analyses revealed that these cross-sectional APTw/MTR signals had an increasing trend with age in most brain regions for normal controls, but a decreasing trend with age in most brain regions for aMCI patients. Our early results show the potential of the APTw signal as a new imaging biomarker for the noninvasive molecular diagnosis of aMCI.
Collapse
|
30
|
Thomas AM, Xu J, Calabresi PA, van Zijl PCM, Bulte JWM. Monitoring diffuse injury during disease progression in experimental autoimmune encephalomyelitis with on resonance variable delay multiple pulse (onVDMP) CEST MRI. Neuroimage 2019; 204:116245. [PMID: 31605825 DOI: 10.1016/j.neuroimage.2019.116245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder that targets myelin proteins and results in extensive damage in the central nervous system in the form of focal lesions as well as diffuse molecular changes. Lesions are currently detected using T1-weighted, T2-weighted, and gadolinium-enhanced magnetic resonance imaging (MRI); however, monitoring such lesions has been shown to be a poor predictor of disease progression. Chemical exchange saturation transfer (CEST) MRI is sensitive to many of the biomolecules in the central nervous system altered in MS that cannot be detected using conventional MRI. We monitored disease progression in an experimental autoimmune encephalomyelitis (EAE) model of MS using on resonance variable delay multiple pulse (onVDMP) CEST MRI. Alterations in onVDMP signal were observed in regions responsible for hindlimb function throughout the central nervous system. Histological analysis revealed glial activation in areas highlighted in onVDMP CEST MRI. onVDMP signal changes in the 3rd ventricle preceded paralysis onset that could not be observed with conventional MRI techniques. Hence, the onVDMP CEST MRI signal has potential as a novel imaging biomarker and predictor of disease progression in MS.
Collapse
Affiliation(s)
- Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Wang R, Wang C, Dai Z, Chen Y, Shen Z, Xiao G, Chen Y, Zhou JN, Zhuang Z, Wu R. An Amyloid-β Targeting Chemical Exchange Saturation Transfer Probe for In Vivo Detection of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3859-3867. [PMID: 31343167 DOI: 10.1021/acschemneuro.9b00334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A reliable and reproducible detection of Aβ deposits would be beneficial for the early diagnosis of Alzheimer's disease (AD). In the present study, the feasibility of applying chemical exchange saturation transfer (CEST) for Aβ deposit detection using angiopep-2 as a probe was evaluated, and it was demonstrated that CEST could detect angiopep-2 and Aβ-angiopep-2 aggregates in vitro. Furthermore, APP/PS1 mice injected with angiopep-2 exhibited a significantly higher in vivo CEST effect when compared with controls. The distribution of Aβ deposits detected by CEST imaging was consistent with the histological staining results. The present study is the first to report a reliable exogenous CEST probe to noninvasively evaluate Aβ deposits in APP/PS1 mice. Furthermore, these results demonstrate the potential for clinical AD diagnosis and Aβ-targeted drug therapy assessment using CEST imaging with the angiopep-2 probe.
Collapse
Affiliation(s)
- Runrun Wang
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Chenwei Wang
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230000 , P. R. China
| | - Zhuozhi Dai
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Yanzi Chen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Zhiwei Shen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Gang Xiao
- Department of Mathematics and Statistics , Hanshan Normal University , Chaozhou 515000 , P. R. China
| | - Yuanfeng Chen
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230000 , P. R. China
- Center for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Zerui Zhuang
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| | - Renhua Wu
- Department of Medical Imaging, Second Affiliated Hospital , Shantou University Medical College , Shantou , Guangdong 515000 , P. R. China
| |
Collapse
|
32
|
Yang W, Lee JS, Leninger M, Windschuh J, Traaseth NJ, Jerschow A. Magnetization transfer in liposome and proteoliposome samples that mimic the protein and lipid composition of myelin. NMR IN BIOMEDICINE 2019; 32:e4097. [PMID: 31058381 PMCID: PMC6581629 DOI: 10.1002/nbm.4097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/02/2019] [Accepted: 02/24/2019] [Indexed: 05/08/2023]
Abstract
Although magnetization transfer (MT) has been widely used in brain MRI, for example in brain inflammation and multiple sclerosis, the detailed molecular origin of MT effects and the role that proteins play in MT remain unclear. In this work, a proteoliposome model system was used to mimic the myelin environment and to examine the roles of protein, cholesterol, brain cerebrosides, and sphingomyelin embedded in the liposome matrix. Exchange parameters were determined using a double-quantum filter experiment. The goal was to determine the relative contributions to exchange and MT of cerebrosides, sphingomyelin, cholesterol, and proteins in 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers. The main finding was that cerebrosides produced the strongest exchange effects, and that these were even more pronounced than those found for proteins. Sphingomyelin (which also has exchangeable groups at the head of the fatty acid chains, albeit closer to the lipid acyl chains) and cholesterol showed only minimal transfer. Overall, the extracted exchange rates appeared much smaller than commonly assumed for -OH and -NH groups.
Collapse
Affiliation(s)
- Weiqi Yang
- Department of Chemistry, New York University, New York, NY, United States
| | - Jae-Seung Lee
- Department of Chemistry, New York University, New York, NY, United States
- Department of Radiology, New York University Langone Medical Center, New York, NY, United States
| | - Maureen Leninger
- Department of Chemistry, New York University, New York, NY, United States
| | - Johannes Windschuh
- Department of Radiology, New York University Langone Medical Center, New York, NY, United States
| | | | - Alexej Jerschow
- Department of Chemistry, New York University, New York, NY, United States
- Corresponding Author Alexej Jerschow:
| |
Collapse
|
33
|
Zhao Y, Yan X, Zhang Z, Zhao W, Liu Z, Li J. Self-adapting multi-peak water-fat reconstruction for the removal of lipid artifacts in chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 2019; 82:1700-1712. [PMID: 31241219 DOI: 10.1002/mrm.27859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/23/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Artifacts caused by strong lipid signals pose challenges in body chemical exchange saturation transfer (CEST) imaging. This study aimed to develop an accurate water-fat reconstruction method based on the multi-echo Dixon technique to remove lipid artifacts in CEST imaging. THEORY AND METHODS It is well known that fat has multiple spectral peaks. Furthermore, RF pulses in CEST preparation saturate each fat peak at different levels, complicating fat modeling. Therefore, a self-adapting multi-peak model (SMPM) is proposed to update relative amplitudes of fat peaks using numerical calculation. With the SMPM-based updating, nonlinear least-squares fitting combined with IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation) algorithms was used for water-fat reconstruction and B0 mapping. The proposed method was compared with the reported 3-point Dixon method and the fixed multi-peak model in a phantom study using a fat-free Z-spectrum obtained from MR spectroscopy acquisition as the ground truth. This method was also validated by in vivo experiments on human breast. RESULTS In the phantom experiments, the Z-spectrum from the SMPM-based method agreed well with the fat-free Z-spectrum from CEST-PRESS (point-resolved spectroscopy), validating the effective removal of lipid artifacts, while a decrease or a rise that appeared at -3.5 ppm was observed in the Z-spectrum from the 3-point method and the FMPM-based method, respectively. In the in vivo experiments, no lipid artifacts were observed in the Z-spectrum or the amide CEST map from the SMPM-based method in the fibro-glandular region of the breast with high fat fractions. CONCLUSION The SMPM-based method successfully removes lipid artifacts and significantly improves the accuracy of CEST contrast.
Collapse
Affiliation(s)
- Yu Zhao
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Xu Yan
- MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China
| | | | - Weiwei Zhao
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Zhenzhi Liu
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, California
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, China
| |
Collapse
|
34
|
Sartoretti T, Sartoretti E, Wyss M, Schwenk Á, Najafi A, Binkert C, Reischauer C, Zhou J, Jiang S, Becker AS, Sartoretti-Schefer S. Amide Proton Transfer Contrast Distribution in Different Brain Regions in Young Healthy Subjects. Front Neurosci 2019; 13:520. [PMID: 31178687 PMCID: PMC6538817 DOI: 10.3389/fnins.2019.00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives To define normal signal intensity values of amide proton transfer-weighted (APTw) magnetic resonance (MR) imaging in different brain regions. Materials and Methods Twenty healthy subjects (9 females, mean age 29 years, range 19 - 37 years) underwent MR imaging at 3 Tesla. 3D APTw (RF saturation B1,rms = 2 μT, duration 2 s, 100% duty cycle) and 2D T2-weighted turbo spin echo (TSE) images were acquired. Postprocessing (image fusion, ROI measurements of APTw intensity values in 22 different brain regions) was performed and controlled by two independent neuroradiologists. Values were measured separately for each brain hemisphere. A subject was scanned both in prone and supine position to investigate differences between hemispheres. A mixed model on a 5% significance level was used to assess the effect of gender, brain region and side on APTw intensity values. Results Mean APTw intensity values in the hippocampus and amygdala varied between 1.13 and 1.57%, in the deep subcortical nuclei (putamen, globus pallidus, head of caudate nucleus, thalamus, red nucleus, substantia nigra) between 0.73 and 1.84%, in the frontal, occipital and parietal cortex between 0.56 and 1.03%; in the insular cortex between 1.11 and 1.15%, in the temporal cortex between 1.22 and 1.37%, in the frontal, occipital and parietal white matter between 0.32 and 0.54% and in the temporal white matter between 0.83 and 0.89%. APTw intensity values were significantly impacted both by brain region (p < 0.001) and by side (p < 0.001), whereby overall values on the left side were higher than on the right side (1.13 vs. 0.9%). Gender did not significantly impact APTw intensity values (p = 0.24). APTw intensity values between the left and the right side were partially reversed after changing the position of one subject from supine to prone. Conclusion We determined normal baseline APTw intensity values in different anatomical localizations in healthy subjects. APTw intensity values differed both between anatomical regions and between left and right brain hemisphere.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elisabeth Sartoretti
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Wyss
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Philips Health Systems, Zurich, Switzerland
| | - Árpád Schwenk
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Arash Najafi
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Christoph Binkert
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carolin Reischauer
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Jinyuan Zhou
- Department of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shanshan Jiang
- Department of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
| | - Anton S Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sabine Sartoretti-Schefer
- Institute of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Liebert A, Zaiss M, Gumbrecht R, Tkotz K, Linz P, Schmitt B, Laun FB, Doerfler A, Uder M, Nagel AM. Multiple interleaved mode saturation (MIMOSA) for B
1
+
inhomogeneity mitigation in chemical exchange saturation transfer. Magn Reson Med 2019; 82:693-705. [DOI: 10.1002/mrm.27762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Andrzej Liebert
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Germany
| | - Moritz Zaiss
- High‐Field Magnetic Resonance Center Max Planck Institute for Biological Cybernetics Tuebingen Germany
| | | | - Katharina Tkotz
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Germany
| | - Peter Linz
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Germany
| | | | - Frederik B. Laun
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Germany
| | - Arnd Doerfler
- Department of Neuroradiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Germany
| | - Michael Uder
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Germany
| | - Armin M. Nagel
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Germany
- Institute of Medical Physics University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Germany
- Division of Medical Physics in Radiology German Cancer Research Centre (DKFZ) Heidelberg Germany
| |
Collapse
|
36
|
Cai J, Wu J, Guo C, Cai S, Cai C. Ultrafast multi-slice chemical exchange saturation transfer imaging scheme based on segmented spatiotemporal encoding. Magn Reson Imaging 2019; 60:122-129. [PMID: 30953697 DOI: 10.1016/j.mri.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
Abstract
Chemical exchange saturation transfer (CEST) imaging is an important magnetic resonance molecular imaging technology. However, long acquisition time limits its clinical application, especially when multi-slice CEST imaging is needed. Though single-shot EPI can be used to accelerate CEST imaging, images are often distorted under inhomogeneous magnetic fields. In this work, we propose a new method called CEST-SeSPEN for ultrafast multi-slice CEST imaging based on segmented spatiotemporally encoded (SeSPEN) MRI. Experiments were performed on creatine phantom and hen egg. The results show that CEST-SeSPEN can provide good CEST contrast images. Its acquisition time is much shorter than other multi-slice CEST methods currently available. It may be used in challenging situation where high temporal resolution and robustness to field inhomogeneity are vital.
Collapse
Affiliation(s)
- Jizhou Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Chenlu Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| |
Collapse
|
37
|
Chen L, Wei Z, Chan K, Cai S, Liu G, Lu H, Wong PC, van Zijl PCM, Li T, Xu J. Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. Neuroimage 2019; 188:380-390. [PMID: 30553917 PMCID: PMC6401270 DOI: 10.1016/j.neuroimage.2018.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to develop a molecular biomarker for the detection of protein aggregation involved in Alzheimer's disease (AD) by exploiting the features of the water saturation transfer spectrum (Z-spectrum), the CEST signal of which is sensitive to the molecular configuration of proteins. A radial-sampling steady-state sequence based ultrashort echo time (UTE) readout was implemented to image the Z-spectrum in the mouse brain, especially the contributions from mobile proteins at the frequency offsets for the composite protein amide proton (+3.6 ppm) and aliphatic proton (-3.6 ppm) signals. Using a relatively weak radiofrequency (RF) saturation amplitude, contributions due to strong magnetization transfer contrast (MTC) from solid-like macromolecules and direct water saturation (DS) were minimized. For practical measure of the changes in the mobile protein configuration, we defined a saturation transfer difference (ΔST) by subtracting the Z-spectral signals at ±3.6 ppm from a control signal at 8 ppm. Phantom studies of glutamate solution, protein (egg white) and hair conditioner show the capability of the proposed scheme to minimize the contributions from amine protons, DS, and MTC, respectively. The ST signal at ±3.6 ppm of the cross-linked bovine serum albumin (BSA) solutions demonstrated that the ΔST signal can be used to monitor the aggregation process of the mobile proteins. High-resolution ΔST images of AD mouse brains at ±3.6 ppm of mouse brains showed significantly reduced ΔST (-3.6) signal compared to the age-matched wild-type (WT) mice. Thus, this signal has potential to serve as a molecular biomarker for monitoring protein aggregation in AD.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Wang E, Wu Y, Cheung JS, Igarashi T, Wu L, Zhang X, Sun PZ. Mapping tissue pH in an experimental model of acute stroke - Determination of graded regional tissue pH changes with non-invasive quantitative amide proton transfer MRI. Neuroimage 2019; 191:610-617. [PMID: 30753926 DOI: 10.1016/j.neuroimage.2019.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
pH-weighted amide proton transfer (APT) MRI is sensitive to tissue pH change during acute ischemia, complementing conventional perfusion and diffusion stroke imaging. However, the currently used pH-weighted magnetization transfer (MT) ratio asymmetry (MTRasym) analysis is of limited pH specificity. To overcome this, MT and relaxation normalized APT (MRAPT) analysis has been developed that to homogenize the background signal, thus providing highly pH conspicuous measurement. Our study aimed to calibrate MRAPT MRI toward absolute tissue pH mapping and determine regional pH changes during acute stroke. Using middle cerebral artery occlusion (MCAO) rats, we performed lactate MR spectroscopy and multi-parametric MRI. MRAPT MRI was calibrated against a region of interest (ROI)-based pH spectroscopy measurement (R2 = 0.70, P < 0.001), showing noticeably higher correlation coefficient than the simplistic MTRasym index. Capitalizing on this, we mapped brain tissue pH and semi-automatically segmented pH lesion, in addition to routine perfusion and diffusion lesions. Tissue pH from regions of the contralateral normal, perfusion/diffusion lesion mismatch and diffusion lesion was found to be 7.03 ± 0.04, 6.84 ± 0.10, 6.52 ± 0.19, respectively. Most importantly, we delineated the heterogeneous perfusion/diffusion lesion mismatch into perfusion/pH and pH/diffusion lesion mismatches, with their pH being 7.01 ± 0.04 and 6.71 ± 0.12, respectively (P < 0.05). To summarize, our study calibrated pH-sensitive MRAPT MRI toward absolute tissue pH mapping, semi-automatically segmented and determined graded tissue pH changes in ischemic tissue and demonstrated its feasibility for refined demarcation of heterogeneous metabolic disruption following acute stroke.
Collapse
Affiliation(s)
- Enfeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University, Henan, China
| | - Yin Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jerry S Cheung
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Limin Wu
- Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xiaoan Zhang
- Department of Radiology, 3rd Affiliated Hospital, Zhengzhou University, Henan, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
39
|
Kim B, So S, Park H. Optimization of steady-state pulsed CEST imaging for amide proton transfer at 3T MRI. Magn Reson Med 2019; 81:3616-3627. [DOI: 10.1002/mrm.27674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Byungjai Kim
- Department of Electrical Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Seohee So
- Department of Electrical Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Hyunwook Park
- Department of Electrical Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
40
|
Heo HY, Han Z, Jiang S, Schär M, van Zijl PCM, Zhou J. Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain. Neuroimage 2019; 189:202-213. [PMID: 30654175 DOI: 10.1016/j.neuroimage.2019.01.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/31/2022] Open
Abstract
Current chemical exchange saturation transfer (CEST) neuroimaging protocols typically acquire CEST-weighted images, and, as such, do not essentially provide quantitative proton-specific exchange rates (or brain pH) and concentrations. We developed a dictionary-free MR fingerprinting (MRF) technique to allow CEST parameter quantification with a reduced data set. This was accomplished by subgrouping proton exchange models (SPEM), taking amide proton transfer (APT) as an example, into two-pool (water and semisolid macromolecules) and three-pool (water, semisolid macromolecules, and amide protons) models. A variable radiofrequency saturation scheme was used to generate unique signal evolutions for different tissues, reflecting their CEST parameters. The proposed MRF-SPEM method was validated using Bloch-McConnell equation-based digital phantoms with known ground-truth, which showed that MRF-SPEM can achieve a high degree of accuracy and precision for absolute CEST parameter quantification and CEST phantoms. For in-vivo studies at 3 T, using the same model as in the simulations, synthetic Z-spectra were generated using rates and concentrations estimated from the MRF-SPEM reconstruction and compared with experimentally measured Z-spectra as the standard for optimization. The MRF-SPEM technique can provide rapid and quantitative human brain CEST mapping.
Collapse
Affiliation(s)
- Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Zheng Han
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Schär
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
41
|
Wang R, Chen P, Shen Z, Lin G, Xiao G, Dai Z, Zhang B, Chen Y, Lai L, Zong X, Li Y, Tang Y, Wu R. Brain Amide Proton Transfer Imaging of Rat With Alzheimer's Disease Using Saturation With Frequency Alternating RF Irradiation Method. Front Aging Neurosci 2019; 11:217. [PMID: 31507405 PMCID: PMC6713910 DOI: 10.3389/fnagi.2019.00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023] Open
Abstract
Amyloid-β (Aβ) deposits and some proteins play essential roles in the pathogenesis of Alzheimer's disease (AD). Amide proton transfer (APT) imaging, as an imaging modality to detect tissue protein, has shown promising features for the diagnosis of AD disease. In this study, we chose 10 AD model rats as the experimental group and 10 sham-operated rats as the control group. All the rats underwent a Y-maze test before APT image acquisition, using saturation with frequency alternating RF irradiation (APTSAFARI) method on a 7.0 T animal MRI scanner. Compared with the control group, APT (3.5 ppm) values of brain were significantly reduced in AD models (p < 0.002). The APTSAFARI imaging is more significant than APT imaging (p < 0.0001). AD model mice showed spatial learning and memory loss in the Y-maze experiment. In addition, there was significant neuronal loss in the hippocampal CA1 region and cortex compared with sham-operated rats. In conclusion, we demonstrated that APT imaging could potentially provide molecular biomarkers for the non-invasive diagnosis of AD. APTSAFARI MRI could be used as an effective tool to improve the accuracy of diagnosis of AD compared with conventional APT imaging.
Collapse
Affiliation(s)
- Runrun Wang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Peidong Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Philips Healthcare, Shantou, China
| | - Guisen Lin
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Gang Xiao
- Department of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Bingna Zhang
- Translational Medicine, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanfeng Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lihua Lai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xiaodan Zong
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yan Li
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yanyan Tang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Renhua Wu,
| |
Collapse
|
42
|
Lin EC, Li H, Zu Z, Louie EA, Lankford CL, Dortch RD, Does MD, Gore JC, Gochberg DF. Chemical exchange rotation transfer (CERT) on human brain at 3 Tesla. Magn Reson Med 2018; 80:2609-2617. [PMID: 29802641 PMCID: PMC6252284 DOI: 10.1002/mrm.27365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/23/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To test the ability of a novel pulse sequence applied in vivo at 3 Tesla to separate the contributions to the water signal from amide proton transfer (APT) and relayed nuclear Overhauser enhancement (rNOE) from background direct water saturation and semisolid magnetization transfer (MT). The lack of such signal source isolation has confounded conventional chemical exchange saturation transfer (CEST) imaging. METHODS We quantified APT and rNOE signals using a chemical exchange rotation transfer (CERT) metric, MTRdouble . A range of duty cycles and average irradiation powers were applied, and results were compared with conventional CEST analyses using asymmetry (MTRasym ) and extrapolated magnetization transfer (EMR). RESULTS Our results indicate that MTRdouble is more specific than MTRasym and, because it requires as few as 3 data points, is more rapid than methods requiring a complete Z-spectrum, such as EMR. In white matter, APT (1.5 ± 0.5%) and rNOE (2.1 ± 0.7%) were quantified by using MTRdouble with a 30% duty cycle and a 0.5-µT average power. In addition, our results suggest that MTRdouble is insensitive to B0 inhomogeneity, further magnifying its speed advantage over CEST metrics that require a separate B0 measurement. However, MTRdouble still has nontrivial sensitivity to B1 inhomogeneities. CONCLUSION We demonstrated that MTRdouble is an alternative metric to evaluate APT and rNOE, which is fast, robust to B0 inhomogeneity, and easy to process.
Collapse
Affiliation(s)
- Eugene C. Lin
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
| | - Hua Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
| | - Elizabeth A. Louie
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
| | - Chris L. Lankford
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
| | - Richard D. Dortch
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Mark D. Does
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Deparment of Physics and Astronomy, Vanderbilt University, Nashville, TN
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel F. Gochberg
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
- Deparment of Physics and Astronomy, Vanderbilt University, Nashville, TN
| |
Collapse
|
43
|
Knutsson L, Xu J, Ahlgren A, van Zijl P. CEST, ASL, and magnetization transfer contrast: How similar pulse sequences detect different phenomena. Magn Reson Med 2018; 80:1320-1340. [PMID: 29845640 PMCID: PMC6097930 DOI: 10.1002/mrm.27341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
Chemical exchange saturation transfer (CEST), arterial spin labeling (ASL), and magnetization transfer contrast (MTC) methods generate different contrasts for MRI. However, they share many similarities in terms of pulse sequences and mechanistic principles. They all use RF pulse preparation schemes to label the longitudinal magnetization of certain proton pools and follow the delivery and transfer of this magnetic label to a water proton pool in a tissue region of interest, where it accumulates and can be detected using any imaging sequence. Due to the versatility of MRI, differences in spectral, spatial or motional selectivity of these schemes can be exploited to achieve pool specificity, such as for arterial water protons in ASL, protons on solute molecules in CEST, and protons on semi-solid cell structures in MTC. Timing of these sequences can be used to optimize for the rate of a particular delivery and/or exchange transfer process, for instance, between different tissue compartments (ASL) or between tissue molecules (CEST/MTC). In this review, magnetic labeling strategies for ASL and the corresponding CEST and MTC pulse sequences are compared, including continuous labeling, single-pulse labeling, and multi-pulse labeling. Insight into the similarities and differences among these techniques is important not only to comprehend the mechanisms and confounds of the contrasts they generate, but also to stimulate the development of new MRI techniques to improve these contrasts or to reduce their interference. This, in turn, should benefit many possible applications in the fields of physiological and molecular imaging and spectroscopy.
Collapse
Affiliation(s)
- L Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - J Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - A Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - P.C.M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
44
|
Xu X, Xu J, Chan KWY, Liu J, Liu H, Li Y, Chen L, Liu G, van Zijl PCM. GlucoCEST imaging with on-resonance variable delay multiple pulse (onVDMP) MRI. Magn Reson Med 2018; 81:47-56. [PMID: 30058240 DOI: 10.1002/mrm.27364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To examine the detection sensitivity for the rapidly exchanging hydroxyl protons of D-glucose using the recently developed on-resonance variable delay multi-pulse (onVDMP) chemical exchange saturation transfer (CEST) technique. METHODS The onVDMP method was applied for the detection of water signal changes upon venous D-glucose infusion in mice with 9L glioma xenografts. The effect size of onVDMP MRI during infusion was compared with that of conventional continuous wave (CW) CEST MRI. RESULTS Both methods highlighted the tumor and the blood vessels on D-glucose infusion. In interleaved studies, the mean signal changes detected by onVDMP were found to be 1.8 times higher than those by CW-CEST, attributed to its high labeling efficiency for fast exchanging protons and the labeling of the OH protons over a larger frequency range. CONCLUSIONS The onVDMP method is a more sensitive technique for the detection of exogenous CEST agents with fast-exchanging protons compared to CW-CEST MRI.
Collapse
Affiliation(s)
- Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jing Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Radiology Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huanling Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Ultrasound, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
45
|
Goerke S, Breitling J, Zaiss M, Windschuh J, Kunz P, Schuenke P, Paech D, Longo DL, Klika KD, Ladd ME, Bachert P. Dual-frequency irradiation CEST-MRI of endogenous bulk mobile proteins. NMR IN BIOMEDICINE 2018; 31:e3920. [PMID: 29672976 DOI: 10.1002/nbm.3920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
A novel MRI contrast is proposed which enables the selective detection of endogenous bulk mobile proteins in vivo. Such a non-invasive imaging technique may be of particular interest for many diseases associated with pathological alterations of protein expression, such as cancer and neurodegenerative disorders. Specificity to mobile proteins was achieved by the selective measurement of intramolecular spin diffusion and the removal of semi-solid macromolecular signal components by a correction procedure. For this purpose, the approach of chemical exchange saturation transfer (CEST) was extended to a radiofrequency (RF) irradiation scheme at two different frequency offsets (dualCEST). Using protein model solutions, it was demonstrated that the dualCEST technique allows the calculation of an image contrast which is exclusively sensitive to changes in concentration, molecular size and the folding state of mobile proteins. With respect to application in humans, dualCEST overcomes the selectivity limitations at relatively low magnetic field strengths, and thus enables examinations on clinical MR scanners. The feasibility of dualCEST examinations in humans was verified by a proof-of-principle examination of a brain tumor patient at 3 T. With its specificity for the mobile fraction of the proteome, its comparable sensitivity to conventional water proton MRI and its applicability to clinical MR scanners, this technique represents a further step towards the non-invasive imaging of proteomic changes in humans.
Collapse
Affiliation(s)
- Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Zaiss
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of High-field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Johannes Windschuh
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Kunz
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Schuenke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dario L Longo
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), Torino, Italy
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Zu Z, Afzal A, Li H, Xie J, Gore JC. Spin-lock imaging of early tissue pH changes in ischemic rat brain. NMR IN BIOMEDICINE 2018; 31:e3893. [PMID: 29424463 PMCID: PMC5854549 DOI: 10.1002/nbm.3893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 05/03/2023]
Abstract
We have previously reported that the dispersion of spin-lattice relaxation rates in the rotating frame (R1ρ ) of tissue water protons at high field can be dominated by chemical exchange contributions. Ischemia in brain causes changes in tissue pH, which in turn may affect proton exchange rates. Amide proton transfer (APT, a form of chemical exchange saturation transfer) has been shown to be sensitive to chemical exchange rates and able to detect pH changes non-invasively following ischemic stroke. However, the specificity of APT to pH changes is decreased because of the influence of several other factors that affect magnetization transfer. R1ρ is less influenced by such confounding factors and thus may be more specific for detecting variations in pH. Here, we applied a spin-locking sequence to detect ischemic stroke in animal models. Although R1ρ images acquired with a single spin-locking amplitude (ω1 ) have previously been used to assess stroke, here we use ΔR1ρ , which is the difference in R1ρ values acquired with two different locking fields to emphasize selectively the contribution of chemical exchange effects. Numerical simulations with different exchange rates and measurements of tissue homogenates with different pH were performed to evaluate the specificity of ΔR1ρ to detect tissue acidosis. Spin-lock and APT data were acquired on five rat brains after ischemic strokes induced via middle cerebral artery occlusions. Correlations between these data were analyzed at different time points after the onset of stroke. The results show that ΔR1ρ (but not R1ρ acquired with a single ω1 ) was significantly correlated with APT metrics consistent with ΔR1ρ varying with pH.
Collapse
Affiliation(s)
- Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Aqeela Afzal
- Department of Neurological Surgery, Vanderbilt University, Nashville, Tennessee, USA
| | - Hua Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jingping Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Deparment of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Chen L, Xu X, Zeng H, Chan KWY, Yadav N, Cai S, Schunke KJ, Faraday N, van Zijl PCM, Xu J. Separating fast and slow exchange transfer and magnetization transfer using off-resonance variable-delay multiple-pulse (VDMP) MRI. Magn Reson Med 2018; 80:1568-1576. [PMID: 29405374 DOI: 10.1002/mrm.27111] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop a method that can separate and quantify the fast (>1 kHz) and slow exchange transfer and magnetization transfer components in Z-spectra. METHODS Z-spectra were recorded as a function of mixing time using a train of selective pulses providing variable-delay multipulse build-up curves. Fast and slow transfer components in the Z-spectra were separated and quantified on a voxel-by-voxel basis by fitting the mixing time-dependent CEST signal using a 3-pool model. RESULTS Phantom studies of glutamate solution, bovine serum albumin solution, and hair conditioner showed the capability of the proposed method to separate fast and slow transfer components. In vivo mouse brain studies showed a strong contrast between white matter and gray matter in the slow-transferring map, corresponding to an asymmetric component of the conventional semisolid magnetization transfer contrast. In addition, a fast-transferring proton map was found that was homogeneous across the brain and attributed to the total contributions of the fast-exchanging protons from proteins, metabolites, and a symmetric magnetization transfer contrast component. CONCLUSIONS This new method provides a simple way to extract fast and slow transfer components from the Z-spectrum, leading to novel MRI contrasts, and providing insight into the different magnetization transfer contrast contributions.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Haifeng Zeng
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Nirbhay Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Kathryn J Schunke
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nauder Faraday
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Chen L, Zeng H, Xu X, Yadav NN, Cai S, Puts NA, Barker PB, Li T, Weiss RG, van Zijl PCM, Xu J. Investigation of the contribution of total creatine to the CEST Z-spectrum of brain using a knockout mouse model. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3834. [PMID: 28961344 PMCID: PMC5685917 DOI: 10.1002/nbm.3834] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 05/08/2023]
Abstract
The current study aims to assign and estimate the total creatine (tCr) signal contribution to the Z-spectrum in mouse brain at 11.7 T. Creatine (Cr), phosphocreatine (PCr) and protein phantoms were used to confirm the presence of a guanidinium resonance at this field strength. Wild-type (WT) and knockout mice with guanidinoacetate N-methyltransferase deficiency (GAMT-/-), which have low Cr and PCr concentrations in the brain, were used to assign the tCr contribution to the Z-spectrum. To estimate the total guanidinium concentrations, two pools for the Z-spectrum around 2 ppm were assumed: (i) a Lorentzian function representing the guanidinium chemical exchange saturation transfer (CEST) at 1.95 ppm in the 11.7-T Z-spectrum; and (ii) a background signal that can be fitted by a polynomial function. Comparison between the WT and GAMT-/- mice provided strong evidence for three types of contribution to the peak in the Z-spectrum at 1.95 ppm, namely proteins, Cr and PCr, the latter fitted as tCr. A ratio of 20 ± 7% (protein) and 80 ± 7% tCr was found in brain at 2 μT and 2 s saturation. Based on phantom experiments, the tCr peak was estimated to consist of about 83 ± 5% Cr and 17 ± 5% PCr. Maps for tCr of mouse brain were generated based on the peak at 1.95 ppm after concentration calibration with in vivo magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Haifeng Zeng
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Nirbhay N. Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Nicolaas A. Puts
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Corresponding Author: Jiadi Xu, Ph.D. Kennedy Krieger Institute, Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD, 21205, , Tel: 443-923-9572, Fax: 443-923-9505
| |
Collapse
|
49
|
The z-spectrum from human blood at 7T. Neuroimage 2017; 167:31-40. [PMID: 29111410 PMCID: PMC5854271 DOI: 10.1016/j.neuroimage.2017.10.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/01/2023] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) has been used to assess healthy and pathological tissue in both animals and humans. However, the CEST signal from blood has not been fully assessed. This paper presents the CEST and nuclear Overhauser enhancement (NOE) signals detected in human blood measured via z-spectrum analysis. We assessed the effects of blood oxygenation levels, haematocrit, cell structure and pH upon the z-spectrum in ex vivo human blood for different saturation powers at 7T. The data were analysed using Lorentzian difference (LD) model fitting and AREX (to compensate for changes in T1), which have been successfully used to study CEST effects in vivo. Full Bloch-McConnell fitting was also performed to provide an initial estimate of exchange rates and transverse relaxation rates of the various pools. CEST and NOE signals were observed at 3.5 ppm, −1.7 ppm and −3.5 ppm and were found to originate primarily from the red blood cells (RBCs), although the amide proton transfer (APT) CEST effect, and NOEs showed no dependence upon oxygenation levels. Upon lysing, the APT and NOE signals fell significantly. Different pH levels in blood resulted in changes in both the APT and NOE (at −3.5 ppm), which suggests that this NOE signal is in part an exchange relayed process. These results will be important for assessing in vivo z-spectra.
Collapse
|
50
|
Chung JJ, Choi W, Jin T, Lee JH, Kim SG. Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T. NMR IN BIOMEDICINE 2017; 30:e3740. [PMID: 28544035 DOI: 10.1002/nbm.3740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Chemical exchange (CE)-sensitive MRI benefits greatly from stronger magnetic fields; however, field effects on CE-sensitive imaging have not yet been studied well in vivo. We have compared CE-sensitive Z-spectra and maps obtained at the fields of 9.4 T and 15.2 T in phantoms and rats with off-resonance chemical-exchange-sensitive spin lock (CESL), which is similar to conventional chemical exchange saturation transfer. At higher fields, the background peak at water resonance has less spread and the exchange rate relative to chemical shift decreases, thus CESL intensity is dependent on B0 . For the in vivo amide and nuclear Overhauser enhancement (NOE) composite resonances of rat brains, intensities were similar for both magnetic fields, but effective amide proton transfer and NOE values obtained with three-point quantification or a curve fitting method were larger at 15.2 T due to the reduced spread of attenuation at the direct water resonance. When using intermediate exchange-sensitive irradiation parameters, the amine proton signal was 65% higher at 15.2 T than at 9.4 T due to a reduced ratio of exchange rate to chemical shift. In summary, increasing magnetic field provides enhancements to CE-sensitive signals in the intermediate exchange regime and reduces contamination from background signals in the slow exchange regime. Consequently, ultrahigh magnetic field is advantageous for CE-sensitive MRI, especially for amine and hydroxyl protons.
Collapse
Affiliation(s)
- Julius Juhyun Chung
- Center for Neuroscience Imaging Research, Institute for Basic Science(IBS), Suwon, South Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Wonmin Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science(IBS), Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Seoul, South Korea
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jung Hee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science(IBS), Suwon, South Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Seoul, South Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science(IBS), Suwon, South Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|