1
|
Davids M, Vendramini L, Klein V, Ferris N, Guerin B, Wald LL. Experimental validation of a PNS-optimized whole-body gradient coil. Magn Reson Med 2024; 92:1788-1803. [PMID: 38767407 PMCID: PMC11262990 DOI: 10.1002/mrm.30157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/19/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Peripheral nerve stimulation (PNS) limits the usability of state-of-the-art whole-body and head-only MRI gradient coils. We used detailed electromagnetic and neurodynamic modeling to set an explicit PNS constraint during the design of a whole-body gradient coil and constructed it to compare the predicted and experimentally measured PNS thresholds to those of a matched design without PNS constraints. METHODS We designed, constructed, and tested two actively shielded whole-body Y-axis gradient coil winding patterns: YG1 is a conventional symmetric design without PNS-optimization, whereas YG2's design used an additional constraint on the allowable PNS threshold in the head-imaging landmark, yielding an asymmetric winding pattern. We measured PNS thresholds in 18 healthy subjects at five landmark positions (head, cardiac, abdominal, pelvic, and knee). RESULTS The PNS-optimized design YG2 achieved 46% higher average experimental thresholds for a head-imaging landmark than YG1 while incurring a 15% inductance penalty. For cardiac, pelvic, and knee imaging landmarks, the PNS thresholds increased between +22% and +35%. For abdominal imaging, PNS thresholds did not change significantly between YG1 and YG2 (-3.6%). The agreement between predicted and experimental PNS thresholds was within 11.4% normalized root mean square error for both coils and all landmarks. The PNS model also produced plausible predictions of the stimulation sites when compared to the sites of perception reported by the subjects. CONCLUSION The PNS-optimization improved the PNS thresholds for the target scan landmark as well as most other studied landmarks, potentially yielding a significant improvement in image encoding performance that can be safely used in humans.
Collapse
Affiliation(s)
- Mathias Davids
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Livia Vendramini
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Valerie Klein
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Natalie Ferris
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States
| | - Bastien Guerin
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Lawrence L. Wald
- Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States
| |
Collapse
|
2
|
Ajala A, Abad N, Foo TKF, Lee SK. Retrospective correction of second-order concomitant fields in 3D axial stack-of-spirals imaging on a high-performance gradient system. Magn Reson Med 2024; 92:1128-1137. [PMID: 38650101 DOI: 10.1002/mrm.30113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE MRI using 3D stack-of-spirals (SoS) readout on a high-performance gradient system is subject to strong second-order, spatially varying concomitant fields, which can lead to signal dropout and blurring artifacts that become more significant at locations farther from the gradient isocenter. A method for compensating for second-order concomitant fields in 3D axial SoS image reconstruction is described. METHODS We retrospectively correct for second-order concomitant field-induced phase error in the 3D SoS data by slice-dependent k-space phase compensation based on the nominal spiral readout trajectories. The effectiveness of the method was demonstrated in phantom and healthy volunteer scans in which 3D pseudo-continuous arterial spin labeling imaging was performed with SoS fast spin-echo readout at 3 T. RESULTS Substantial reduction in blurring was observed with the proposed method. In phantom scans, blurring was reduced by about 53% at 98 mm from the gradient isocenter. In the in vivo 3D pseudo-continuous arterial spin labeling scans, differences of up to 10% were observed at 78 mm from the isocenter, especially around the white-matter and gray-matter interfaces, between the corrected and uncorrected proton density images, perfusion-weighted images, and cerebral blood flow maps. CONCLUSIONS The described retrospective correction method provides a means to correct erroneous phase accruals due to second-order concomitant fields in 3D axial stack-of-spirals imaging.
Collapse
Affiliation(s)
- Afis Ajala
- GE HealthCare, Technology and Innovation Center, Niskayuna, New York, USA
| | - Nastaren Abad
- GE HealthCare, Technology and Innovation Center, Niskayuna, New York, USA
| | - Thomas K F Foo
- GE HealthCare, Technology and Innovation Center, Niskayuna, New York, USA
| | - Seung-Kyun Lee
- GE HealthCare, Technology and Innovation Center, Niskayuna, New York, USA
| |
Collapse
|
3
|
Rauch J, Laun FB, Bachert P, Ladd ME, Kuder TA. Compensation of concomitant field effects in double diffusion encoding by means of added oscillating gradients. Magn Reson Imaging 2024; 105:133-141. [PMID: 37939973 DOI: 10.1016/j.mri.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Maxwell or concomitant fields imprint additional phases on the transverse magnetization. This concomitant phase may cause severe image artifacts like signal voids or distort the quantitative parameters due to the induced intravoxel dephasing. In particular, double diffusion encoding (DDE) schemes with two pairs of bipolar diffusion-weighting gradients separated by a refocusing radiofrequency (RF) pulse are prone to concomitant field-induced artifacts. In this work, a method for reducing concomitant field effects in these DDE sequences based on additional oscillating gradients is presented. These oscillating gradient pulses obtained by constrained optimization were added to the original gradient waveforms. The modified sequences reduced the accumulated concomitant phase without significant changes in the original sequence characteristics. The proposed method was applied to a DDE acquisition scheme consisting of 60 pairs of diffusion wave vectors. For phantom as well as for in vivo experiments, a considerable increase in the signal-to-noise ratio (SNR) was obtained. For phantom measurements with a diffusion weighting of b = 2000 s/mm2 for each of the gradient pairs, an SNR increase of up to 40% was observed for a transversal slice that had a distance of 5 cm from the isocenter. For equivalent slice parameters, in vivo measurements in the brain of a healthy volunteer exhibited an increase in SNR of up to 35% for b = 750 s/mm2 for each weighting. These findings are supported by corresponding simulations, which also predict a positive effect on the SNR. In summary, the presented method leads to an SNR gain without additional RF refocusing pulses.
Collapse
Affiliation(s)
- Julian Rauch
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; MPI for Nuclear Physics, Max-Planck-Society, Saupfercheckweg 1, 69117 Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany; Faculty of Medicine, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Tristan A Kuder
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Feinberg DA, Beckett AJS, Vu AT, Stockmann J, Huber L, Ma S, Ahn S, Setsompop K, Cao X, Park S, Liu C, Wald LL, Polimeni JR, Mareyam A, Gruber B, Stirnberg R, Liao C, Yacoub E, Davids M, Bell P, Rummert E, Koehler M, Potthast A, Gonzalez-Insua I, Stocker S, Gunamony S, Dietz P. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla. Nat Methods 2023; 20:2048-2057. [PMID: 38012321 PMCID: PMC10703687 DOI: 10.1038/s41592-023-02068-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.
Collapse
Affiliation(s)
- David A Feinberg
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Advanced MRI Technologies, Sebastopol, CA, USA.
| | - Alexander J S Beckett
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Advanced MRI Technologies, Sebastopol, CA, USA
| | - An T Vu
- Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veteran Affairs Health Care System, San Francisco, CA, USA
| | - Jason Stockmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Laurentius Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | | | - Kawin Setsompop
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Suhyung Park
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Computer Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of ICT Convergence System Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Chunlei Liu
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Jonathan R Polimeni
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Azma Mareyam
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Bernhard Gruber
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- BARNLabs, Muenzkirchen, Austria
| | | | - Congyu Liao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Mathias Davids
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Paul Bell
- Siemens Medical Solutions, Malvern, PA, USA
| | | | | | | | | | | | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
- MR CoilTech Limited, Glasgow, UK
| | | |
Collapse
|
5
|
Kang D, In MH, Jo HJ, Halverson MA, Meyer NK, Ahmed Z, Gray EM, Madhavan R, Foo TK, Fernandez B, Black DF, Welker KM, Trzasko JD, Huston J, Bernstein MA, Shu Y. Improved Resting-State Functional MRI Using Multi-Echo Echo-Planar Imaging on a Compact 3T MRI Scanner with High-Performance Gradients. SENSORS (BASEL, SWITZERLAND) 2023; 23:4329. [PMID: 37177534 PMCID: PMC10181561 DOI: 10.3390/s23094329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies. The performance of the ME-EPI was comprehensively evaluated with signal variance reduction and region-of-interest-, seed- and independent-component-analysis-based functional connectivity analyses and compared with a counterpart of single-echo EPI with the shortest TR possible. Through the multi-echo combination, the thermal noise level is reduced. Functional connectivity, as well as signal intensity, are recovered in the medial orbital sulcus and anterior transverse collateral sulcus in ME-EPI. It is demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting functional connectivity and/or brain networks in comparison with single-echo EPI. In conclusion, the high-performance gradient enabled high-spatial-temporal resolution ME-EPI would be the method of choice for RS-fMRI study on the C3T.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Hang Joon Jo
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
- Department of Physiology, Hanyang University, Seoul 04763, Republic of Korea
| | | | - Nolan K. Meyer
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zaki Ahmed
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Erin M. Gray
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | | | | | | | - David F. Black
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Kirk M. Welker
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Joshua D. Trzasko
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Matt A. Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (D.K.)
| |
Collapse
|
6
|
Abad N, Lee SK, Ajala A, In MH, Frigo LM, Bhushan C, Morris HD, Hua Y, Ho VB, Bernstein MA, Foo TKF. Calibration of concomitant field offsets using phase contrast MRI for asymmetric gradient coils. Magn Reson Med 2023; 89:262-275. [PMID: 36129000 PMCID: PMC9617788 DOI: 10.1002/mrm.29452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Asymmetric gradient coils introduce zeroth- and first-order concomitant field terms, in addition to higher-order terms common to both asymmetric and symmetric gradients. Salient to compensation strategies is the accurate calibration of the concomitant field spatial offset parameters for asymmetric coils. A method that allows for one-time calibration of the offset parameters is described. THEORY AND METHODS A modified phase contrast pulse sequence with single-sided bipolar flow encoding is proposed to calibrate the offsets for asymmetric, transverse gradient coils. By fitting the measured phase offsets to different gradient amplitudes, the spatial offsets were calculated by fitting the phase variation. This was used for calibrating real-time pre-emphasis compensation of the zeroth- and first-order concomitant fields. RESULTS Image quality improvement with the proposed corrections was demonstrated in phantom and healthy volunteers with non-Cartesian and Cartesian trajectory acquisitions. Concomitant field compensation using the calibrated offsets resulted in a residual phase error <3% at the highest gradient amplitude and demonstrated substantial reduction of image blur and slice position/selection artifacts. CONCLUSIONS The proposed implementation provides an accurate method for calibrating spatial offsets that can be used for real-time concomitant field compensation of zeroth and first-order terms, substantially reducing artifacts without retrospective correction or sequence specific waveform modifications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - H. Douglas Morris
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Yihe Hua
- GE Research, Niskayuna, NY 12309, USA
| | - Vincent B. Ho
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Uniformed Services University, Bethesda, MD 20814, USA
| | | | - Thomas K. F. Foo
- GE Research, Niskayuna, NY 12309, USA
- Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Geldschläger O, Bosch D, Henning A. OTUP workflow: target specific optimization of the transmit k-space trajectory for flexible universal parallel transmit RF pulse design. NMR IN BIOMEDICINE 2022; 35:e4728. [PMID: 35297104 DOI: 10.1002/nbm.4728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. METHODS Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. RESULTS The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. CONCLUSIONS The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Camerucci E, Campeau NG, Trzasko JD, Gray EM, Bernstein MA, Cogswell PM, Shu Y, Foo TK, Huston J. Improved Brain MR Imaging from a Compact, Lightweight 3T Scanner with High-Performance Gradients. J Magn Reson Imaging 2022; 55:166-175. [PMID: 34184362 PMCID: PMC8806246 DOI: 10.1002/jmri.27812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A low-cryogen, compact 3T (C3T) MRI scanner with high-performance gradients capable of simultaneously achieving 80 mT/m gradient amplitude and 700 T/m/second slew rate has been in use to study research patients since March 2016 but has not been implemented in the clinical practice. PURPOSE To compare head MRI examinations obtained with the C3T system and a conventional whole-body 3T (WB3T) scanner in seven parameters across five commonly used brain imaging sequences. STUDY TYPE Prospective. SUBJECTS Thirty patients with a clinically indicated head MRI. SEQUENCE 3T; T1 FLAIR, T1 MP-RAGE, 3D T2 FLAIR, T2 FSE, and DWI. ASSESSMENT All patients tolerated the scans well. Three board-certified neuroradiologists scored the comparative quality of C3T and WB3T images in blinded fashion using a five-point Likert scale in terms of: signal-to-noise ratio, lesion conspicuity, motion artifact, gray/white matter contrast, cerebellar folia, susceptibility artifact, and overall quality. STATISTICAL TEST Left-sided, right-sided, and two-sided Wilcoxon signed rank test; Fisher's method. A P value <0.05 was considered statistically significant. RESULTS The C3T system performed better than the WB3T in virtually all comparisons, except for motion artifacts for the T1 FLAIR and T1 MP-RAGE sequences, where the WB3T system was deemed better. When combining all sequences together, the C3T system outperformed the WB3T system in all image quality parameters evaluated, except for motion artifact (P = 0.13). DATA CONCLUSION The C3T scanner provided better overall image quality for all sequences, and performed better in all individual categories, except for motion artifact on the T1 FLAIR and T1 MP-RAGE. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
| | | | | | - Erin M. Gray
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Davids M, Guerin B, Wald LL. A Huygens' surface approach to rapid characterization of peripheral nerve stimulation. Magn Reson Med 2022; 87:377-393. [PMID: 34427346 PMCID: PMC8689355 DOI: 10.1002/mrm.28966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Peripheral nerve stimulation (PNS) modeling has a potential role in designing and operating MRI gradient coils but requires computationally demanding simulations of electromagnetic fields and neural responses. We demonstrate compression of an electromagnetic and neurodynamic model into a single versatile PNS matrix (P-matrix) defined on an intermediary Huygens' surface to allow fast PNS characterization of arbitrary coil geometries and body positions. METHODS The Huygens' surface approach divides PNS prediction into an extensive pre-computation phase of the electromagnetic and neurodynamic responses, which is independent of coil geometry and patient position, and a fast coil-specific linear projection step connecting this information to a specific coil geometry. We validate the Huygens' approach by performing PNS characterizations for 21 body and head gradients and comparing them with full electromagnetic-neurodynamic modeling. We demonstrate the value of Huygens' surface-based PNS modeling by characterizing PNS-optimized coil windings for a wide range of patient positions and poses in two body models. RESULTS The PNS prediction using the Huygens' P-matrix takes less than a minute (instead of hours to days) without compromising numerical accuracy (error ≤ 0.1%) compared to the full simulation. Using this tool, we demonstrate that coils optimized for PNS at the brain landmark using a male model can also improve PNS for other imaging applications (cardiac, abdominal, pelvic, and knee imaging) in both male and female models. CONCLUSION Representing PNS information on a Huygens' surface extended the approach's ability to assess PNS across body positions and models and test the robustness of PNS optimization in gradient design.
Collapse
Affiliation(s)
- Mathias Davids
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Bastien Guerin
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Roemer PB, Rutt BK. Minimum electric-field gradient coil design: Theoretical limits and practical guidelines. Magn Reson Med 2021; 86:569-580. [PMID: 33565135 PMCID: PMC8049068 DOI: 10.1002/mrm.28681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance. METHODS Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions. RESULTS For transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion. CONCLUSIONS We introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry.
Collapse
Affiliation(s)
| | - Brian K. Rutt
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
11
|
Davids M, Guerin B, Klein V, Wald LL. Optimization of MRI Gradient Coils With Explicit Peripheral Nerve Stimulation Constraints. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:129-142. [PMID: 32915730 PMCID: PMC7772273 DOI: 10.1109/tmi.2020.3023329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Peripheral Nerve Stimulation (PNS) limits the acquisition rate of Magnetic Resonance Imaging data for fast sequences employing powerful gradient systems. The PNS characteristics are currently assessed after the coil design phase in experimental stimulation studies using constructed coil prototypes. This makes it difficult to find design modifications that can reduce PNS. Here, we demonstrate a direct approach for incorporation of PNS effects into the coil optimization process. Knowledge about the interactions between the applied magnetic fields and peripheral nerves allows the optimizer to identify coil solutions that minimize PNS while satisfying the traditional engineering constraints. We compare the simulated thresholds of PNS-optimized body and head gradients to conventional designs, and find an up to 2-fold reduction in PNS propensity with moderate penalties in coil inductance and field linearity, potentially doubling the image encoding performance that can be safely used in humans. The same framework may be useful in designing and operating magneto- and electro-stimulation devices.
Collapse
|
12
|
Kang D, Jo HJ, In MH, Yarach U, Meyer NK, Bardwell Speltz LJ, Gray EM, Trzasko JD, Huston Iii J, Bernstein MA, Shu Y. The benefit of high-performance gradients on echo planar imaging for BOLD-based resting-state functional MRI. Phys Med Biol 2020; 65:235024. [PMID: 33245051 DOI: 10.1088/1361-6560/abb2ec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Improved gradient performance in an MRI system reduces distortion in echo planar imaging (EPI), which has been a key imaging method for functional studies. A lightweight, low-cryogen compact 3T MRI scanner (C3T) is capable of achieving 80 mT m-1 gradient amplitude with 700 T m-1 s-1 slew rate, in comparison with a conventional whole-body 3T MRI scanner (WB3T, 50 mT m-1 with 200 T m-1 s-1). We investigated benefits of the high-performance gradients in a high-spatial-resolution (1.5 mm isotropic) functional MRI study. Reduced echo spacing in the EPI pulse sequence inherently leads to less severe geometric distortion, which provided higher accuracy than with WB3T for registration between EPI and anatomical images. The cortical coverage of C3T datasets was improved by more accurate signal depiction (i.e. less dropout or pile-up). Resting-state functional analysis results showed that greater magnitude and extent in functional connectivity (FC) for the C3T than the WB3T when the selected seed region is susceptible to distortions, while the FC matrix for well-known brain networks showed little difference between the two scanners. This shows that the improved quality in EPI is particularly valuable for studying certain brain regions typically obscured by severe distortion.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America. Co-first/equal authorship - these authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
OBJECTIVE. The Adaptive Image Receive (AIR) radiofrequency coil is an emergent technology that is lightweight and flexible and exhibits electrical characteristics that overcome many of the limitations of traditional rigid coil designs. The purpose of this study was to apply the AIR coil for whole-brain imaging and compare the performance of a prototype AIR coil array with the performance of conventional head coils. SUBJECTS AND METHODS. A phantom and 15 healthy adult participants were imaged. A prototype 16-channel head AIR coil was compared with conventional 8-and 32-channel head coils using clinically available MRI sequences. During consensus review, two board-certified neuroradiologists graded the AIR coil compared with an 8-channel coil and a 32-channel coil on a 5-point ordinal scale in multiple categories. One- and two-sided Wilcoxon signed rank tests were performed. Noise covariance matrices and geometry factor (g-factor) maps were calculated. RESULTS. The signal-to-noise ratio, structural sharpness, and overall image quality scores of the prototype 16-channel AIR coil were better than those of the 8-channel coil but were not as good as those of the 32-channel coil. Noise covariance matrices showed stable performance of the AIR coil across participants. The median g-factors for the 16-channel AIR coil were, overall, less than those of the 8-channel coil but were greater than those of the 32-channel coil. CONCLUSION. On average, the prototype 16-channel head AIR coil outperformed a conventional 8-channel head coil but did not perform as well as a conventional 32-channel head coil. This study shows the feasibility of the novel AIR coil technology for imaging the brain and provides insight for future coil design improvements.
Collapse
|
14
|
In MH, Shu Y, Trzasko JD, Yarach U, Kang D, Gray EM, Huston J, Bernstein MA. Reducing PNS with minimal performance penalties via simple pulse sequence modifications on a high-performance compact 3T scanner. Phys Med Biol 2020; 65:15NT02. [PMID: 32503007 DOI: 10.1088/1361-6560/ab99e2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the major concerns associated with high-performance gradients is peripheral nerve stimulation (PNS) of the subject during MRI exams. Since the installation, more than 680 volunteer subjects (patients and controls) have been scanned on a compact 3 T MRI system with high-performance gradients, capable of 80 mT m-1 gradient amplitude and 700 T m-1 s-1 slew rate simultaneously. Despite PNS concerns associated with the high-performance gradients, due to the smaller physical dimensions of the gradient coils, minimal or no PNS sensation was reported with most pulse sequences. The exception was PNS reported by only five of 252 subjects (about 2%) scanned with a specific 3D fast spin echo pulse sequence (3DFLAIR). Rather than derating the entire system performance across all pulse sequences and all gradient lobes, we addressed reported PNS effect with a simple and specific modification to the targeted lobes of the problematic pulse sequence. in addition, the PNS convolutional model was adapted to predict sequence-specific PNS threshold level and its reduction after derating. The effectiveness of the targeted pulse sequence modification was demonstrated by successfully re-scanning four of the subjects who previously reported PNS sensations without further reported PNS. The pulse sequence modification did not result in noticeable degradation of image quality or substantial increase in scan time. The results demonstrated that PNS was rarely reported on the compact 3 T, and when it was, utilizing a specific modification of the gradient waveform causing PNS was an effective strategy, rather than derating the performance of the entire gradient system.
Collapse
Affiliation(s)
- Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kang D, Yarach U, In MH, Gray EM, Trzasko JD, Jo HJ, Shu Y, Huston J, Bernstein MA. The effect of spiral trajectory correction on pseudo-continuous arterial spin labeling with high-performance gradients on a compact 3T scanner. Magn Reson Med 2020; 84:192-205. [PMID: 31799747 PMCID: PMC7083700 DOI: 10.1002/mrm.28110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To demonstrate the feasibility of pseudo-continuous arterial-spin-labeled (pCASL) imaging with 3D fast-spin-echo stack-of-spirals on a compact 3T scanner (C3T), to perform trajectory correction for eddy-current-induced deviations in the spiral readout of pCASL imaging, and to assess the correction effect on perfusion-related images with high-performance gradients (80 mT/m, 700T/m/s) of the C3T. METHODS To track eddy-current-induced artifacts with Archimedean spiral readout, the spiral readout in pCASL imaging was performed with 5 different peak gradient slew rate (Smax ) values ranging from 70 to 500 T/m/s. The trajectory for each Smax was measured using a dynamic field camera and applied in a density-compensated gridding image reconstruction in addition to the nominal trajectory. The effect of the trajectory correction was assessed with perfusion-weighted (ΔM) images and proton-density-weighted images as well as cerebral blood flow (CBF) maps, obtained from 10 healthy volunteers. RESULTS Blurring artifact on ΔM images was mitigated by the trajectory correction. CBF values on the left and right calcarine cortices showed no significant difference after correction. Also, the signal-to-noise ratio of ΔM images improved, on average, by 7.6% after correction (P < .001). The greatest improvement of 12.1% on ΔM images was achieved with a spiral readout using Smax of 300~400 T/m/s. CONCLUSION Eddy currents can cause spiral trajectory deviation, which leads to deformation of the CBF map even in cases of low value Smax . The trajectory correction for spiral-readout-based pCASL produces more reliable results for perfusion imaging. These results suggest that pCASL is feasible on C3T with high-performance gradients.
Collapse
Affiliation(s)
- Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Uten Yarach
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin M. Gray
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hang Joon Jo
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
16
|
Wilm BJ, Hennel F, Roesler MB, Weiger M, Pruessmann KP. Minimizing the echo time in diffusion imaging using spiral readouts and a head gradient system. Magn Reson Med 2020; 84:3117-3127. [PMID: 32573807 DOI: 10.1002/mrm.28346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Diffusion weighted imaging (DWI) is commonly limited by low signal-to-noise ratio (SNR) as well as motion artifacts. To address this limitation, a method that allows to maximize the achievable signal yield and increase the resolution in motion robust single-shot DWI is presented. METHODS DWI was performed on a 3T scanner equipped with a recently developed gradient insert (gradient strength: 200 mT/m, slew rate: 600 T/m/s). To further shorten the echo time, Stejskal-Tanner diffusion encoding with a single-shot spiral readout was implemented. To allow non-Cartesian image reconstruction using such strong and fast gradients, the characterization of eddy current and concomitant field effects was performed based on field-camera measurements. RESULTS An echo time of only 19 ms was achieved for a b-factor of 1000 s/mm2 . An in-plane resolution of 0.68 mm was encoded by a single-shot spiral readout of 40.5 ms using 3-fold undersampling. The resulting images did not suffer from off-resonance artifacts and T 2 ∗ blurring that are common to single-shot images acquired with regular gradient systems. CONCLUSION Spiral diffusion imaging using a head gradient system, together with an accurate characterization of the encoding process allows for a substantial reduction of the echo time, and improves the achievable resolution in motion-insensitive single-shot DWI.
Collapse
Affiliation(s)
- Bertram Jakob Wilm
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Manuela Barbara Roesler
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Wilm BJ, Dietrich BE, Reber J, Vannesjo SJ, Pruessmann KP. Gradient Response Harvesting for Continuous System Characterization During MR Sequences. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:806-815. [PMID: 31425067 DOI: 10.1109/tmi.2019.2936107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MRI gradient systems are required to generate magnetic field gradient waveforms with very high fidelity. This is commonly implemented by gradient system calibration and pre-emphasis. However, a number of mechanisms, particularly thermal changes, cause variation in the gradient response over time, which cannot be addressed by calibration approaches. To overcome this limitation, we present a novel method termed gradient response harvesting, where the gradient response is continuously characterized during the course of a normal MR sequence. Snippets of field measurements are repeatedly acquired during an MR sequence, and from these multiple field measurements and the known nominal MR sequence gradients, the gradient response and gradient/field offsets are calculated. The calculation is implemented in a model-based and a model-free variant. The method is demonstrated for EPI with high gradient duty-cycle, where the continuous gradient characterization is used to obtain k-space trajectory estimates that are employed in the subsequent image reconstruction. During the course of the MR sequence, changes in both the envelope and the phase of the gradient response functions were observed, including shifts of mechanical resonances. The gradient response changes were also reflected in the calculated uninterrupted gradient waveforms and thus in the k-space trajectories. Using the updated encoding information in the image reconstruction removed ghosting artifacts, that otherwise impaired the image quality. We introduced the concept of gradient response harvesting and demonstrated its feasibility. The obtained gradient response functions may be used for quality assurance/preventive maintenance, real-time adaptation of gradient pre-emphasis or to calculate uninterrupted gradient field evolutions.
Collapse
|
18
|
Hennel F, Wilm B, Roesler MB, Weiger M, Dietrich B, Pruessmann KP. Echo-planar imaging of the human head with 100 mT/m gradients and high-order modeling of eddy current fields. Magn Reson Med 2020; 84:751-761. [PMID: 31961966 DOI: 10.1002/mrm.28168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 11/08/2022]
Abstract
PURPOSE To demonstrate the utility of a high-performance gradient insert for ultrafast MRI of the human head. METHODS EPI was used for the first time with a readout gradient amplitude of 100 mT/m, 1200 T/m/s slew rate, and nearly 1 MHz signal bandwidth for human head scanning. To avoid artefacts due to eddy currents, the magnetic field was dynamically monitored with NMR probes at multiple points, modeled by solid harmonics up to fifth order, and included in the image reconstruction. An approximation of a negligible intra-echo effect of the eddy currents was made to accelerate the high-order reconstruction. The field monitoring-based approach was compared with a recently proposed phase error estimation from separate reconstructions of even and odd echoes. RESULTS Images obtained with the gradient insert have significantly lower distortions than it is the case with the whole body 30 mT/m, 200 T/m/s gradients of the same system. However, eddy currents of high spatial order must be properly characterized and corrected for in order to avoid a persistent 2D Nyquist ghost. Multi-position monitoring proves to be a robust method to measure the eddy currents and allows higher undersampling rates than the image-based approach. The proposed approximation of the eddy currents effect allows a significant acceleration of the high-order reconstruction by a separate processing of each spatial dimension. CONCLUSION Strong gradients with adequate switching rates are highly beneficial for the quality of EPI provided that robust measures are taken to include the contribution of eddy currents to the image encoding.
Collapse
Affiliation(s)
- Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich, and University of Zurich, Zurich, Switzerland
| | - Bertram Wilm
- Institute for Biomedical Engineering, ETH Zurich, and University of Zurich, Zurich, Switzerland
| | - Manuela B Roesler
- Institute for Biomedical Engineering, ETH Zurich, and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich, and University of Zurich, Zurich, Switzerland
| | | | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich, and University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Foo TKF, Tan ET, Vermilyea ME, Hua Y, Fiveland EW, Piel JE, Park K, Ricci J, Thompson PS, Graziani D, Conte G, Kagan A, Bai Y, Vasil C, Tarasek M, Yeo DT, Snell F, Lee D, Dean A, DeMarco JK, Shih RY, Hood MN, Chae H, Ho VB. Highly efficient head‐only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging. Magn Reson Med 2019; 83:2356-2369. [DOI: 10.1002/mrm.28087] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Thomas K. F. Foo
- GE Global Research Niskayuna New York
- Uniformed Services University of the Health Sciences Bethesda Maryland
| | | | | | - Yihe Hua
- GE Global Research Niskayuna New York
| | | | | | | | | | | | | | | | | | - Ye Bai
- GE Global Research Niskayuna New York
| | | | | | | | | | - David Lee
- GE Healthcare Florence South Carolina
| | | | - J. Kevin DeMarco
- Uniformed Services University of the Health Sciences Bethesda Maryland
- Walter Reed National Military Medical Center Bethesda Maryland
| | - Robert Y. Shih
- Uniformed Services University of the Health Sciences Bethesda Maryland
- Walter Reed National Military Medical Center Bethesda Maryland
| | - Maureen N. Hood
- Uniformed Services University of the Health Sciences Bethesda Maryland
- Walter Reed National Military Medical Center Bethesda Maryland
| | - Heechin Chae
- Ft. Belvoir Community Hospital Ft. Belvoir Virginia
| | - Vincent B. Ho
- Uniformed Services University of the Health Sciences Bethesda Maryland
- Walter Reed National Military Medical Center Bethesda Maryland
| |
Collapse
|
20
|
In MH, Tan ET, Trzasko JD, Shu Y, Kang D, Yarach U, Tao S, Gray EM, Huston J, Bernstein MA. Distortion-free imaging: A double encoding method (DIADEM) combined with multiband imaging for rapid distortion-free high-resolution diffusion imaging on a compact 3T with high-performance gradients. J Magn Reson Imaging 2019; 51:296-310. [PMID: 31111581 DOI: 10.1002/jmri.26792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Distortion-free, high-resolution diffusion imaging using DIADEM (Distortion-free Imaging: A Double Encoding Method), proposed recently, has great potential for clinical applications. However, it can suffer from prolonged scan times and its reliability for quantitative diffusion imaging has not been evaluated. PURPOSE To investigate the clinical feasibility of DIADEM-based high-resolution diffusion imaging on a novel compact 3T (C3T) by evaluating the reliability of quantitative diffusion measurements and utilizing both the high-performance gradients (80 mT/m, 700 T/m/s) and the sequence optimization with the navigator acquisition window reduction and simultaneous multislice (multiband) imaging. STUDY TYPE Prospective feasibility study. PHANTOM/SUBJECTS Diffusion quality control phantom scans to evaluate the reliability of quantitative diffusion measurements; 36 normal control scans for B0 -field mapping; six healthy and two patient subject scans with a brain tumor for comparisons of diffusion and anatomical imaging. FIELD STRENGTH/SEQUENCE 3T; the standard single-shot echo-planar-imaging (EPI), multishot DIADEM diffusion, and anatomical (2D-FSE [fast-spin-echo], 2D-FLAIR [fluid-attenuated-inversion-recovery], and 3D-MPRAGE [magnetization prepared rapid acquisition gradient echo]) imaging. ASSESSMENT The scan time reduction, the reliability of quantitative diffusion measurements, and the clinical efficacy for high-resolution diffusion imaging in healthy control and brain tumor volunteers. STATISTICAL TEST Bland-Altman analysis. RESULTS The scan time for high in-plane (0.86 mm2 ) resolution, distortion-free, and whole brain diffusion imaging were reduced from 10 to 5 minutes with the sequence optimizations. All of the mean apparent diffusion coefficient (ADC) values in phantom were within the 95% confidence interval in the Bland-Altman plot. The proposed acquisition with a total off-resonance coverage of 597.2 Hz wider than the expected bandwidth of 500 Hz in human brain could yield a distortion-free image without foldover artifacts. Compared with EPI, therefore, this approach allowed direct image matching with the anatomical images and enabled improved delineation of the tumor boundaries. DATA CONCLUSION The proposed high-resolution diffusion imaging approach is clinically feasible on C3T due to a combination of hardware and sequence improvements. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;51:296-310.
Collapse
Affiliation(s)
- Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Uten Yarach
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin M Gray
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
21
|
Frankel J, Hansson Mild K, Olsrud J, Wilén J. EMF exposure variation among MRI sequences from pediatric examination protocols. Bioelectromagnetics 2019; 40:3-15. [PMID: 30500987 PMCID: PMC6587721 DOI: 10.1002/bem.22159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022]
Abstract
The magnetic resonance imaging (MRI) exposure environment is unique due to the mixture and intensity of magnetic fields involved. Current safety regulations are based on well-known acute effects of heating and neuroexcitation while the scientific grounds for possible long-term effects from MRI exposure are lacking. Epidemiological research requires careful exposure characterization, and as a first step toward improved exposure assessment we set out to characterize the MRI-patient exposure environment. Seven MRI sequences were run on a 3-Tesla scanner while the radiofrequency and gradient magnetic fields were measured inside the scanner bore. The sequences were compared in terms of 14 different exposure parameters. To study within-sequence variability, we varied sequence settings such as flip angle and slice thickness one at a time, to determine if they had any impact on exposure endpoints. There were significant differences between two or more sequences for all fourteen exposure parameters. Within-sequence differences were up to 60% of the corresponding between-sequence differences, and a 5-8 fold exposure increase was caused by variations in flip angle, slice spacing, and field of view. MRI exposure is therefore not only sequence-specific but also patient- and examination occurrence-specific, a complexity that requires careful consideration for an MRI exposure assessment in epidemiological studies to be meaningful. Bioelectromagnetics. 40:3-15, 2019. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer Frankel
- Department of Radiation SciencesRadiation PhysicsUmeå UniversityUmeåSweden
| | - Kjell Hansson Mild
- Department of Radiation SciencesRadiation PhysicsUmeå UniversityUmeåSweden
| | - Johan Olsrud
- Center for Medical Imaging and PhysiologySkåne University HospitalLundSweden
| | - Jonna Wilén
- Department of Radiation SciencesRadiation PhysicsUmeå UniversityUmeåSweden
| |
Collapse
|
22
|
Tao AT, Shu Y, Tan ET, Trzasko JD, Tao S, Reid R, Weavers P, Huston J, Bernstein MA. Improving apparent diffusion coefficient accuracy on a compact 3T MRI scanner using gradient nonlinearity correction. J Magn Reson Imaging 2018; 48:1498-1507. [PMID: 30255963 PMCID: PMC6263730 DOI: 10.1002/jmri.26201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gradient nonlinearity (GNL) leads to biased apparent diffusion coefficients (ADCs) in diffusion-weighted imaging. A gradient nonlinearity correction (GNLC) method has been developed for whole body systems, but is yet to be tested for the new compact 3T (C3T) scanner, which exhibits more complex GNL due to its asymmetrical design. PURPOSE To assess the improvement of ADC quantification with GNLC for the C3T scanner. STUDY TYPE Phantom measurements and retrospective analysis of patient data. PHANTOM/SUBJECTS A diffusion quality control phantom with vials containing 0-30% polyvinylpyrrolidone in water was used. For in vivo data, 12 patient exams were analyzed (median age, 33). FIELD STRENGTH/SEQUENCE Imaging was performed on the C3T and two commercial 3T scanners. A clinical DWI (repetition time [TR] = 10,000 msec, echo time [TE] = minimum, b = 1000 s/mm2 ) sequence was used for phantom imaging and 10 patient cases and a clinical DTI (TR = 6000-10,000 msec, TE = minimum, b = 1000 s/mm2 ) sequence was used for two patient cases. ASSESSMENT The 0% vial was measured along three orthogonal axes, and at two different temperatures. The ADC for each concentration was compared between the C3T and two whole-body scanners. Cerebrospinal fluid and white matter ADCs were quantified for each patient and compared to values in literature. STATISTICAL TESTS Paired t-test and two-way analysis of variance (ANOVA). RESULTS For all PVP concentrations, the corrected ADC was within 2.5% of the reference ADC. On average, the ADC of cerebrospinal fluid and white matter post-GNLC were within 1% and 6%, respectively, of values reported in the literature and were significantly different from the uncorrected data (P < 0.05). DATA CONCLUSION This study demonstrated that GNL effects were more severe for the C3T due to the asymmetric gradient design, but our implementation of a GNLC compensated for these effects, resulting in ADC values that are in good agreement with values from the literature. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1498-1507.
Collapse
Affiliation(s)
- Ashley T. Tao
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ek T. Tan
- GE Global Research, Niskayuna, NY, USA
| | | | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Robert Reid
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Paul Weavers
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
23
|
Jones DK, Alexander DC, Bowtell R, Cercignani M, Dell'Acqua F, McHugh DJ, Miller KL, Palombo M, Parker GJM, Rudrapatna US, Tax CMW. Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage 2018; 182:8-38. [PMID: 29793061 DOI: 10.1016/j.neuroimage.2018.05.047] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'.
Collapse
Affiliation(s)
- D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, 3065, Australia.
| | - D C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK; Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - M Cercignani
- Department of Psychiatry, Brighton and Sussex Medical School, Brighton, UK
| | - F Dell'Acqua
- Natbrainlab, Department of Neuroimaging, King's College London, London, UK
| | - D J McHugh
- Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK; CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and Manchester, UK
| | - K L Miller
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - M Palombo
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - G J M Parker
- Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK; CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and Manchester, UK; Bioxydyn Ltd., Manchester, UK
| | - U S Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
24
|
Yin Z, Sui Y, Trzasko JD, Rossman PJ, Manduca A, Ehman RL, Huston J. In vivo characterization of 3D skull and brain motion during dynamic head vibration using magnetic resonance elastography. Magn Reson Med 2018; 80:2573-2585. [PMID: 29774594 DOI: 10.1002/mrm.27347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE To introduce newly developed MR elastography (MRE)-based dual-saturation imaging and dual-sensitivity motion encoding schemes to directly measure in vivo skull-brain motion, and to study the skull-brain coupling in volunteers with these approaches. METHODS Six volunteers were scanned with a high-performance compact 3T-MRI scanner. The skull-brain MRE images were obtained with a dual-saturation imaging where the skull and brain motion were acquired with fat- and water-suppression scans, respectively. A dual-sensitivity motion encoding scheme was applied to estimate the heavily wrapped phase in skull by the simultaneous acquisition of both low- and high-sensitivity phase during a single MRE exam. The low-sensitivity phase was used to guide unwrapping of the high-sensitivity phase. The amplitude and temporal phase delay of the rigid-body motion between the skull and brain was measured, and the skull-brain interface was visualized by slip interface imaging (SII). RESULTS Both skull and brain motion can be successfully acquired and unwrapped. The skull-brain motion analysis demonstrated the motion transmission from the skull to the brain is attenuated in amplitude and delayed. However, this attenuation (%) and delay (rad) were considerably greater with rotation (59 ± 7%, 0.68 ± 0.14 rad) than with translation (92 ± 5%, 0.04 ± 0.02 rad). With SII the skull-brain slip interface was not completely evident, and the slip pattern was spatially heterogeneous. CONCLUSION This study provides a framework for acquiring in vivo voxel-based skull and brain displacement using MRE that can be used to characterize the skull-brain coupling system for understanding of mechanical brain protection mechanisms, which has potential to facilitate risk management for future injury.
Collapse
Affiliation(s)
- Ziying Yin
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yi Sui
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joshua D Trzasko
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Phillip J Rossman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - John Huston
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
25
|
Foo TKF, Laskaris E, Vermilyea M, Xu M, Thompson P, Conte G, Van Epps C, Immer C, Lee SK, Tan ET, Graziani D, Mathieu JB, Hardy CJ, Schenck JF, Fiveland E, Stautner W, Ricci J, Piel J, Park K, Hua Y, Bai Y, Kagan A, Stanley D, Weavers PT, Gray E, Shu Y, Frick MA, Campeau NG, Trzasko J, Huston J, Bernstein MA. Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities. Magn Reson Med 2018. [PMID: 29536587 DOI: 10.1002/mrm.27175] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To build and evaluate a small-footprint, lightweight, high-performance 3T MRI scanner for advanced brain imaging with image quality that is equal to or better than conventional whole-body clinical 3T MRI scanners, while achieving substantial reductions in installation costs. METHODS A conduction-cooled magnet was developed that uses less than 12 liters of liquid helium in a gas-charged sealed system, and standard NbTi wire, and weighs approximately 2000 kg. A 42-cm inner-diameter gradient coil with asymmetric transverse axes was developed to provide patient access for head and extremity exams, while minimizing magnet-gradient interactions that adversely affect image quality. The gradient coil was designed to achieve simultaneous operation of 80-mT/m peak gradient amplitude at a slew rate of 700 T/m/s on each gradient axis using readily available 1-MVA gradient drivers. RESULTS In a comparison of anatomical imaging in 16 patients using T2 -weighted 3D fluid-attenuated inversion recovery (FLAIR) between the compact 3T and whole-body 3T, image quality was assessed as equivalent to or better across several metrics. The ability to fully use a high slew rate of 700 T/m/s simultaneously with 80-mT/m maximum gradient amplitude resulted in improvements in image quality across EPI, DWI, and anatomical imaging of the brain. CONCLUSIONS The compact 3T MRI system has been in continuous operation at the Mayo Clinic since March 2016. To date, over 200 patient studies have been completed, including 96 comparison studies with a clinical 3T whole-body MRI. The increased gradient performance has reliably resulted in consistently improved image quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seung-Kyun Lee
- GE Global Research, Niskayuna, New York.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Ek T Tan
- GE Global Research, Niskayuna, New York
| | | | | | | | | | | | | | | | | | | | - Yihe Hua
- GE Global Research, Niskayuna, New York
| | - Ye Bai
- GE Global Research, Niskayuna, New York
| | | | | | - Paul T Weavers
- Department of Radiology, Mayo Clinic, Rochester, Minnesota.,GE Healthcare, Waukesha, Wisconsin
| | - Erin Gray
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Joshua Trzasko
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
26
|
Tao S, Weavers PT, Trzasko JD, Huston J, Shu Y, Gray EM, Foo TK, Bernstein MA. The effect of concomitant fields in fast spin echo acquisition on asymmetric MRI gradient systems. Magn Reson Med 2018; 79:1354-1364. [PMID: 28643408 PMCID: PMC5741528 DOI: 10.1002/mrm.26789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/10/2022]
Abstract
PURPOSE To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. METHODS After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. RESULTS It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. CONCLUSIONS We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. Magn Reson Med 79:1354-1364, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Shengzhen Tao
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul T. Weavers
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin M. Gray
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
27
|
Weiger M, Overweg J, Rösler MB, Froidevaux R, Hennel F, Wilm BJ, Penn A, Sturzenegger U, Schuth W, Mathlener M, Borgo M, Börnert P, Leussler C, Luechinger R, Dietrich BE, Reber J, Brunner DO, Schmid T, Vionnet L, Pruessmann KP. A high-performance gradient insert for rapid and short-T2
imaging at full duty cycle. Magn Reson Med 2017; 79:3256-3266. [DOI: 10.1002/mrm.26954] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Markus Weiger
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - Johan Overweg
- Philips GmbH Innovative Technologies; Hamburg Germany
| | - Manuela Barbara Rösler
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - Bertram Jakob Wilm
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - Alexander Penn
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | | | - Wout Schuth
- Futura Composites BV; Heerhugowaard The Netherlands
| | | | | | - Peter Börnert
- Philips GmbH Innovative Technologies; Hamburg Germany
| | | | - Roger Luechinger
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | | | - Jonas Reber
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - David Otto Brunner
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - Thomas Schmid
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - Laetitia Vionnet
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering; ETH Zurich and University of Zurich; Zurich Switzerland
| |
Collapse
|
28
|
Tan ET, Hardy CJ, Shu Y, In MH, Guidon A, Huston J, Bernstein MA, K F Foo T. Reduced acoustic noise in diffusion tensor imaging on a compact MRI system. Magn Reson Med 2017; 79:2902-2911. [PMID: 28971512 DOI: 10.1002/mrm.26949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. METHODS A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. RESULTS Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). CONCLUSION The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ek T Tan
- GE Global Research, Niskayuna, New York, USA
| | | | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
29
|
Weavers PT, Tao S, Trzasko JD, Frigo LM, Shu Y, Frick MA, Lee SK, Foo TKF, Bernstein MA. B 0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils. Magn Reson Med 2017. [PMID: 28639370 DOI: 10.1002/mrm.26790] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B0 ) and linear (first-order) spatial dependence. METHODS This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. RESULTS A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. CONCLUSION A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Paul T Weavers
- Mayo Clinic Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shengzhen Tao
- Mayo Clinic Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, USA
| | - Joshua D Trzasko
- Mayo Clinic Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yunhong Shu
- Mayo Clinic Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew A Frick
- Mayo Clinic Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Seung-Kyun Lee
- GE Global Research, Niskayuna, New York, USA
- Center for Neuroscience Imaging Research, IBS, and Dept of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | | | - Matt A Bernstein
- Mayo Clinic Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|