1
|
Aviles Verdera J, Tomi-Tricot R, Story L, Rutherford MA, Ourselin S, Hajnal JV, Malik SJ, Hutter J. Characterizing T1 in the fetal brain and placenta over gestational age at 0.55T. Magn Reson Med 2024; 92:2101-2111. [PMID: 38968093 DOI: 10.1002/mrm.30193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/07/2024]
Abstract
PURPOSE T1 mapping and T1-weighted contrasts have a complimentary but currently under utilized role in fetal MRI. Emerging clinical low field scanners are ideally suited for fetal T1 mapping. The advantages are lower T1 values which results in higher efficiency and reduced field inhomogeneities resulting in a decreased requirement for specialist tools. In addition the increased bore size associated with low field scanners provides improved patient comfort and accessibility. This study aims to demonstrate the feasibility of fetal brain T1 mapping at 0.55T. METHODS An efficient slice-shuffling inversion-recovery echo-planar imaging (EPI)-based T1-mapping and postprocessing was demonstrated for the fetal brain at 0.55T in a cohort of 38 fetal MRI scans. Robustness analysis was performed and placental measurements were taken for validation. RESULTS High-quality T1 maps allowing the investigation of subregions in the brain were obtained and significant correlation with gestational age was demonstrated for fetal brain T1 maps (p < 0 . 05 $$ p<0.05 $$ ) as well as regions-of-interest in the deep gray matter and white matter. CONCLUSIONS Efficient, quantitative T1 mapping in the fetal brain was demonstrated on a clinical 0.55T MRI scanner, providing foundations for both future research and clinical applications including low-field specific T1-weighted acquisitions.
Collapse
Affiliation(s)
- Jordina Aviles Verdera
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Raphael Tomi-Tricot
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | | | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sebastien Ourselin
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan J Malik
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Maher S, Seed M. Fetal Cardiovascular MR Imaging. Magn Reson Imaging Clin N Am 2024; 32:479-487. [PMID: 38944435 DOI: 10.1016/j.mric.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Prenatal diagnosis of congenital heart disease allows for appropriate planning of delivery and an opportunity to inform families about the prognosis of the cardiac malformation. On occasion, prenatal therapies may be offered to improve perinatal outcomes. While ultrasound is the primary diagnostic method, advances have led to interest in fetal MRI for its potential to aid in clinical decision-making. This review explores technical innovations and the clinical utility of fetal cardiovascular magnetic resonance (CMR), highlighting its role in diagnosing and planning interventions for complex heart conditions. Future directions include the prediction of perinatal physiology and guidance of delivery planning.
Collapse
Affiliation(s)
- Samer Maher
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mike Seed
- Cardiology, The Hospital for Sick Children, University of Toronto, 170 Elizabeth Street, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Darby JRT, Saini BS, Holman SL, Hammond SJ, Perumal SR, Macgowan CK, Seed M, Morrison JL. Acute-on-chronic: using magnetic resonance imaging to disentangle the haemodynamic responses to acute and chronic fetal hypoxaemia. Front Med (Lausanne) 2024; 11:1340012. [PMID: 38933113 PMCID: PMC11199546 DOI: 10.3389/fmed.2024.1340012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The fetal haemodynamic response to acute episodes of hypoxaemia are well characterised. However, how these responses change when the hypoxaemia becomes more chronic in nature such as that associated with fetal growth restriction (FGR), is less well understood. Herein, we utilised a combination of clinically relevant MRI techniques to comprehensively characterize and differentiate the haemodynamic responses occurring during acute and chronic periods of fetal hypoxaemia. Methods Prior to conception, carunclectomy surgery was performed on non-pregnant ewes to induce FGR. At 108-110 days (d) gestational age (GA), pregnant ewes bearing control (n = 12) and FGR (n = 9) fetuses underwent fetal catheterisation surgery. At 117-119 days GA, ewes underwent MRI sessions where phase-contrast (PC) and T2 oximetry were used to measure blood flow and oxygenation, respectively, throughout the fetal circulation during a normoxia and then an acute hypoxia state. Results Fetal oxygen delivery (DO2) was lower in FGR fetuses than controls during the normoxia state but cerebral DO2 remained similar between fetal groups. Acute hypoxia reduced both overall fetal and cerebral DO2. FGR increased ductus venosus (DV) and foramen ovale (FO) blood flow during both the normoxia and acute hypoxia states. Pulmonary blood flow (PBF) was lower in FGR fetuses during the normoxia state but similar to controls during the acute hypoxia state when PBF in controls was decreased. Conclusion Despite a prevailing level of chronic hypoxaemia, the FGR fetus upregulates the preferential streaming of oxygen-rich blood via the DV-FO pathway to maintain cerebral DO2. However, this upregulation is unable to maintain cerebral DO2 during further exposure to an acute episode of hypoxaemia. The haemodynamic alterations required at the level of the liver and lung to allow the DV-FO pathway to maintain cerebral DO2, may have lasting consequences on hepatic function and pulmonary vascular regulation after birth.
Collapse
Affiliation(s)
- Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Brahmdeep S. Saini
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarah J. Hammond
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Christopher K. Macgowan
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
| | - Mike Seed
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Research Institute, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Saini BS, Ducas R, Darby JRT, Marini D, Sun L, Macgowan CK, Windrim R, Kingdom JC, Wald RM, Morrison JL, Seed M. Feasibility of MRI assessment of maternal-fetal oxygen transport and consumption relative to maternal position in healthy late gestational pregnancies. J Physiol 2023; 601:5413-5436. [PMID: 37906114 DOI: 10.1113/jp285097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Late gestational supine positioning reduces maternal cardiac output due to inferior vena caval (IVC) compression, despite increased collateral venous return. However, little is known about the impact of maternal position on oxygen (O2 ) delivery and consumption of the gravid uterus, fetus, placenta and lower limbs. We studied the effects of maternal positioning on these parameters in 20 healthy pregnant subjects at 36 ± 2 weeks using magnetic resonance imaging (MRI); a follow-up MRI was performed 6-months postpartum (n = 16/20). MRI techniques included phase-contrast and T1/T2 relaxometry for blood flow and oximetry imaging, respectively. O2 transport was measured in the following vessels (bilateral where appropriate): maternal abdominal descending aorta (DAoabdo ), IVC, ovarian, paraspinal veins (PSV), uterine artery (UtA) and external iliacs, and umbilical. Maternal cardiac output was measured by summing DAothoracic and superior vena cava flows. Supine mothers (n = 6) had lower cardiac output and O2 delivery in the DAoabdo , UtA and external iliac arteries, and higher PSV flow than those in either the left (n = 8) or right (n = 6) lateral positions during MRI. However, O2 consumption in the gravid uterus, fetus, placenta and lower limbs was unaffected by maternal positioning. The ratio of IVC/PSV flow decreased in supine mothers while ovarian venous flow and O2 saturation were unaltered, suggesting a major route of pelvic venous return unaffected by maternal position. Placental-fetal O2 transport and consumption were similar between left and right lateral maternal positions. In comparison to non-pregnant findings, DAoabdo and UtA O2 delivery and pelvic O2 consumption increased, while lower-limb consumption remained constant , despite reduced external iliac artery O2 delivery in late gestation. KEY POINTS: Though sleeping supine during the third trimester is associated with an increased risk of antepartum stillbirth, the underlying biological mechanisms are not fully understood. Maternal cardiac output and uteroplacental flow are reduced in supine mothers due to inferior vena caval compression from the weight of the gravid uterus. This MRI study provides a comprehensive circulatory assessment, demonstrating reduced maternal cardiac output and O2 delivery (uteroplacental, lower body) in supine compared to lateral positioning; however, O2 consumption (gravid uterus, fetus, placenta, lower limbs) was preserved. Unlike other mammalian species, the ovarian veins conduct substantial venous return from the human pregnant uterus that is unaffected by maternal positioning. Lumbar paraspinal venous flow increased in supine mothers. These observations may have important considerations during major pelvic surgery in pregnancy (i.e. placenta percreta). Future studies should address the importance of maternal positioning as a potential tool to deliver improved perinatal outcomes in pregnancies with compromised uteroplacental O2 delivery.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robin Ducas
- Department of Internal Medicine, Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Davide Marini
- Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liqun Sun
- Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rory Windrim
- Department of Obstetrics and Gynaecology, Maternal-Fetal Medicine Division, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, Maternal-Fetal Medicine Division, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel M Wald
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Heart Centre, Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Jani D, Clark A, Couper S, Thompson JMD, David AL, Melbourne A, Mirjalili A, Lydon AM, Stone PR. The effect of maternal position on placental blood flow and fetoplacental oxygenation in late gestation fetal growth restriction: a magnetic resonance imaging study. J Physiol 2023; 601:5391-5411. [PMID: 37467072 DOI: 10.1113/jp284269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Fetal growth restriction (FGR) and maternal supine going-to-sleep position are both risk factors for late stillbirth. This study aimed to use magnetic resonance imaging (MRI) to quantify the effect of maternal supine position on maternal-placental and fetoplacental blood flow, placental oxygen transfer and fetal oxygenation in FGR and healthy pregnancies. Twelve women with FGR and 27 women with healthy pregnancies at 34-38 weeks' gestation underwent MRI in both left lateral and supine positions. Phase-contrast MRI and a functional MRI technique (DECIDE) were used to measure blood flow in the maternal internal iliac arteries (IIAs) and umbilical vein (UV), placental oxygen transfer (placental flux), fetal oxygen saturation (FO2 ), and fetal oxygen delivery (delivery flux). The presence of FGR, compared to healthy pregnancies, was associated with a 7.8% lower FO2 (P = 0.02), reduced placental flux, and reduced delivery flux. Maternal supine positioning caused a 3.8% reduction in FO2 (P = 0.001), and significant reductions in total IIA flow, placental flux, UV flow and delivery flux compared to maternal left lateral position. The effect of maternal supine position on fetal oxygen delivery was independent of FGR pregnancy, meaning that supine positioning has an additive effect of reducing fetal oxygenation further in women with FGR, compared to women with appropriately grown for age pregnancies. Meanwhile, the effect of maternal supine positioning on placental oxygen transfer was not independent of the effect of FGR. Therefore, growth-restricted fetuses, which are chronically hypoxaemic, experience a relatively greater decline in oxygen transfer when mothers lie supine in late gestation compared to appropriately growing fetuses. KEY POINTS: Fetal growth restriction (FGR) is the most common risk factor associated with stillbirth, and early recognition and timely delivery is vital to reduce this risk. Maternal supine going-to-sleep position is found to increase the risk of late stillbirth but when combined with having a FGR pregnancy, maternal supine position leads to 15 times greater odds of stillbirth compared to supine sleeping with appropriately grown for age (AGA) pregnancies. Using MRI, this study quantifies the chronic hypoxaemia experienced by growth-restricted fetuses due to 13.5% lower placental oxygen transfer and 26% lower fetal oxygen delivery compared to AGA fetuses. With maternal supine positioning, there is a 23% reduction in maternal-placental blood flow and a further 14% reduction in fetal oxygen delivery for both FGR and AGA pregnancies, but this effect is proportionally greater for growth-restricted fetuses. This knowledge emphasises the importance of avoiding supine positioning in late pregnancy, particularly for vulnerable FGR pregnancies.
Collapse
Affiliation(s)
- Devanshi Jani
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Sophie Couper
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - John M D Thompson
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Department of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College Huntley Street, London, UK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - Ali Mirjalili
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Anna-Maria Lydon
- Centre for Advanced MRI, University of Auckland, Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Hedström E, Piek M, Bidhult-Johansson S, Ryd D, Testud F, Töger J, Aletras AH. Factors affecting performance of fetal blood T 2 measurements for noninvasive estimation of oxygen saturation. Magn Reson Med 2023; 90:2472-2485. [PMID: 37582228 DOI: 10.1002/mrm.29821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE To ultimately make accurate and precise fetal noninvasive oxygen saturation (sO2 ) measurements by T2 -prepared bSSFP more widely available by systematically assessing error sources in order to potentially reduce perinatal mortality in cardiovascular malformations and fetal growth restriction. METHODS T2 -prepared bSSFP data were acquired in phantoms; in flowing blood in adults in the superior sagittal sinus, ascending and descending aorta, and main pulmonary artery; and in the fetal descending aorta and umbilical vein. T2 was assessed in relation to T2 two- or three-parameter curve-fitting techniques, SSFP readout, refocusing time delay (τ), constant and pulsatile blood flow, and impact of T1 recovery. Further, fetal T2 and sO2 variability were quantified in the descending aorta and umbilical vein in healthy fetuses and fetuses with cardiovascular malformation (gestational weeks 32-38). RESULTS In phantoms, three-parameter fitting was accurate irrespective of phase FOV (<4 ms; i.e., <2%), and T2 was overestimated (up to 23 ms/10%; p = 0.001) beyond ±30 Hz off-resonance. In the adult aorta, T2 was underestimated during higher blood flow velocities and pulsatility for τ = 16 ms (-41 ms/-17%; p = 0.008). In fetuses, two-parameter fitting overestimated T2 compared with three-parameter fitting (+33 ms/+18%; p = 0.03). T2 variability was 18 ms/15% in the fetal descending aorta and 28 ms/14% in the umbilical vein. The resulting estimated sO2 variability was ∼10% (15% of sO2 value) in the fetal descending aorta. CONCLUSIONS Errors due to T2 -fitting techniques, off-resonance, flow velocity, and insufficient T1 recovery between image acquisitions could be mitigated by using three-parameter fitting with included saturation-prepared images approximating infinite T2 -preparation time, adequate shimming covering the fetus and placenta, and by modifying acquisition parameters. Variability in fetal blood T2 and sO2 , however, indicate that it is currently not feasible to use these methods for prediction of disease.
Collapse
Affiliation(s)
- Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden
- Department of Radiology, Skåne University Hospital, Lund, Sweden
| | - Marjolein Piek
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden
| | | | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden
| | | | - Johannes Töger
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anthony H Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Desmond A, Nguyen K, Watterson CT, Sklansky M, Satou GM, Prosper AE, Garg M, Van Arsdell GS, Finn JP, Afshar Y. Integration of Prenatal Cardiovascular Magnetic Resonance Imaging in Congenital Heart Disease. J Am Heart Assoc 2023; 12:e030640. [PMID: 37982254 PMCID: PMC10727279 DOI: 10.1161/jaha.123.030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Standard of care echocardiography can have limited diagnostic accuracy in certain cases of fetal congenital heart disease. Prenatal cardiovascular magnetic resonance (CMR) imaging has potential to provide additional anatomic imaging information, including excellent soft tissue images in multiple planes, improving prenatal diagnostics and in utero hemodynamic assessment. We conducted a literature review of fetal CMR, including its development and implementation into clinical practice, and compiled and analyzed the results. Our findings included the fact that technological and innovative approaches are required to overcome some of the challenges in fetal CMR, in part due to the dynamic nature of the fetal heart. A number of reconstruction algorithms and cardiac gating strategies have been developed over time to improve fetal CMR image quality, allowing unique investigations into fetal hemodynamics, oxygenation, and growth. Studies demonstrate that incorporating CMR in the prenatal arena influences postnatal clinical management. With further refinement and experience, fetal CMR in congenital heart disease continues to evolve and demonstrate ongoing potential as a complementary imaging modality to fetal echocardiography in the care of these patients.
Collapse
Affiliation(s)
- Angela Desmond
- Division of Neonatology, Department of PediatricsUCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Kim‐Lien Nguyen
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Division of CardiologyDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | | | - Mark Sklansky
- Division of Pediatric Cardiology, Department of PediatricsDavid Geffen School of Medicine, UCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Gary M. Satou
- Division of Pediatric Cardiology, Department of PediatricsDavid Geffen School of Medicine, UCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Ashley E. Prosper
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - Meena Garg
- Division of Neonatology, Department of PediatricsUCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Glen S. Van Arsdell
- Division of Cardiac Surgery, Department of SurgeryDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - J. Paul Finn
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Division of CardiologyDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - Yalda Afshar
- Division of Maternal Fetal Medicine, Department of Obstetrics and GynecologyDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
8
|
Aertsen M, Melbourne A, Couck I, King E, Ourselin S, De Keyzer F, Dymarkowski S, Deprest J, Lewi L. Placental differences between uncomplicated and complicated monochorionic diamniotic pregnancies on diffusion and multicompartment Magnetic Resonance Imaging. Placenta 2023; 142:106-114. [PMID: 37683336 DOI: 10.1016/j.placenta.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
INTRODUCTION Twin-twin transfusion syndrome (TTTS) and selective fetal growth restriction (sFGR) are common complications in monochorionic diamniotic (MCDA) pregnancies. The Diffusion-rElaxation Combined Imaging for Detailed Placental Evaluation (DECIDE) model, a placental-specific model, separates the T2 values of the fetal and maternal blood from the background tissue and estimates the fetal blood oxygen saturation. This study investigates diffusion and relaxation differences in uncomplicated MCDA pregnancies and MCDA pregnancies complicated by TTTS and sFGR in mid-pregnancy. METHODS This prospective monocentric cohort study included uncomplicated MCDA pregnancies and pregnancies complicated by TTTS and sFGR. We performed MRI with conventional diffusion-weighted imaging (DWI) and combined relaxometry - DWI-intravoxel incoherent motion. DECIDE analysis was used to quantify different parameters within the placenta related to the fetal, placental, and maternal compartments. RESULTS We included 99 pregnancies, of which 46 were uncomplicated, 12 were complicated by sFGR and 41 by TTTS. Conventional DWI did not find differences between or within cohorts. On DECIDE imaging, fetoplacental oxygen saturation was significantly lower in the smaller member of sFGR (p = 0.07) and in both members of TTTS (p = 0.01 and p = 0.004) compared to the uncomplicated pairs. Additionally, average T2 relaxation time was significantly lower in the smaller twin of the sFGR (p = 0.004) compared to the uncomplicated twins (p = 0.03). CONCLUSION Multicompartment functional MRI showed significant differences in several MRI parameters between the placenta of uncomplicated MCDA pregnancies and those complicated by sFGR and TTTS in mid-pregnancy.
Collapse
Affiliation(s)
- M Aertsen
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium.
| | - A Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Medical Physics and Biomedical Engineering, University College London, UK
| | - I Couck
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - E King
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - S Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Medical Physics and Biomedical Engineering, University College London, UK
| | - F De Keyzer
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - S Dymarkowski
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - J Deprest
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium; Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, Perinatal Imaging and Health, King's College London, King's Health Partners, St.Thomas' Hospital, 1st Floor South Wing, London, SE1 7EH, UK
| | - L Lewi
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
van Amerom JFP, Goolaub DS, Schrauben EM, Sun L, Macgowan CK, Seed M. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023; 96:20211096. [PMID: 35687661 PMCID: PMC10321246 DOI: 10.1259/bjr.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.
Collapse
Affiliation(s)
- Joshua FP van Amerom
- Division of Translational Medicine, SickKids Research Institute, Toronto, Canada
| | | | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
10
|
Kühle H, Cho SKS, Barber N, Goolaub DS, Darby JRT, Morrison JL, Haller C, Sun L, Seed M. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023; 10:1206138. [PMID: 37288263 PMCID: PMC10242056 DOI: 10.3389/fcvm.2023.1206138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.
Collapse
Affiliation(s)
- Henriette Kühle
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Cardiac and Thoracic Surgery, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steven K. S. Cho
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Nathaniel Barber
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Datta Singh Goolaub
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Moscatelli S, Leo I, Lisignoli V, Boyle S, Bucciarelli-Ducci C, Secinaro A, Montanaro C. Cardiovascular Magnetic Resonance from Fetal to Adult Life-Indications and Challenges: A State-of-the-Art Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050763. [PMID: 37238311 DOI: 10.3390/children10050763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging offers a comprehensive, non-invasive, and radiation-free imaging modality, which provides a highly accurate and reproducible assessment of cardiac morphology and functions across a wide spectrum of cardiac conditions spanning from fetal to adult life. It minimises risks to the patient, particularly the risks associated with exposure to ionising radiation and the risk of complications from more invasive haemodynamic assessments. CMR utilises high spatial resolution and provides a detailed assessment of intracardiac and extracardiac anatomy, ventricular and valvular function, and flow haemodynamic and tissue characterisation, which aid in the diagnosis, and, hence, with the management of patients with cardiac disease. This article aims to discuss the role of CMR and the indications for its use throughout the different stages of life, from fetal to adult life.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street, Children NHS Foundation Trust, London WC1N 3JH, UK
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Veronica Lisignoli
- Department of Cardiac Surgery, Cardiology, Heart and Lung Transplantation, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Siobhan Boyle
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Cardiology Department, Logan Hospital, Loganlea Rd, Meadowbrook, QLD 4131, Australia
| | - Chiara Bucciarelli-Ducci
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College University, London SW7 2BX, UK
| | - Aurelio Secinaro
- Radiology Department, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
| | - Claudia Montanaro
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- National Heart and Lung Institute, Imperial Collage London, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
12
|
Deng M, Liu A, Xu W, Yang H, Gao Q, Zhang L, Zhen Y, Liu X, Xie W, Liu M. Right and left ventricular blood pool T2 ratio on cardiac magnetic resonance imaging correlates with hemodynamics in patients with pulmonary hypertension. Insights Imaging 2023; 14:66. [PMID: 37060418 PMCID: PMC10105812 DOI: 10.1186/s13244-023-01406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/18/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVES Our objective is to compare the right/left ventricular blood pool T1 ratio (RVT1/LVT1), and right/left ventricular blood pool T2 ratio (RVT2/LVT2) on Cardiac Magnetic Resonance Imaging (CMR) between patients with pulmonary hypertension (PH) and normal controls, to analyze the correlation of RVT1/LVT1, RVT2/LVT2 and hemodynamics measured with right heart catheterization (RHC) in patients with PH. METHODS Forty two patients with PH and 40 gender-and age-matched healthy controls were prospectively included. All patients underwent RHC and CMR within 24 h. The right and left ventricular blood pool T1 and T2 values were respectively measured, and RVT1/LVT1 and RVT2/LVT2 between the PH group and the healthy control were compared. Meanwhile, the correlation between RVT1/LVT1, RV/LVT2 ratio and hemodynamic parameters in patients with PH respectively was analyzed. RESULTS In the control group, RVT2 was significantly lower than LVT2 (t = 6.782, p < 0.001) while RVT1 also was lower than LVT1 (t = 8.961, p < 0.001). In patients with PH, RVT2 was significantly lower than LVT2 (t = 9.802, p < 0.001) while RVT1 was similar to LVT1 (t = - 1.378, p = 0.176). RVT2/LVT2 in the PH group was significantly lower than that in the control group (p < 0.001). RVT1/LVT1 in PH patients increased in comparison with the control group (p < 0.001). RVT2/LVT2 negatively correlated with pulmonary vascular resistance (r = - 0.506) and positively correlated with cardiac index (r = 0.521), blood oxygen saturation in Superior vena cava, right atrium, right ventricle and pulmonary artery (r = 0.564, 0.603, 0.648, 0.582). CONCLUSIONS RVT2/LVT2 on T2 mapping could be an additional CMR imaging marker that may assist to evaluate the severity of PH.
Collapse
Affiliation(s)
- Mei Deng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Anqi Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wenqing Xu
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100191, China
| | - Haoyu Yang
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100191, China
| | - Qian Gao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ling Zhang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wanmu Xie
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 Yinghua Dong Street, Hepingli, Chao Yang District, Beijing, 100029, China.
| |
Collapse
|
13
|
Bluemke E, Young LAJ, Owen J, Smart S, Kinchesh P, Bulte DP, Stride E. Determination of oxygen relaxivity in oxygen nanobubbles at 3 and 7 Tesla. MAGMA (NEW YORK, N.Y.) 2022; 35:817-826. [PMID: 35416627 PMCID: PMC9463275 DOI: 10.1007/s10334-022-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Oxygen-loaded nanobubbles have shown potential for reducing tumour hypoxia and improving treatment outcomes, however, it remains difficult to noninvasively measure the changes in partial pressure of oxygen (PO2) in vivo. The linear relationship between PO2 and longitudinal relaxation rate (R1) has been used to noninvasively infer PO2 in vitreous and cerebrospinal fluid, and therefore, this experiment aimed to investigate whether R1 is a suitable measurement to study oxygen delivery from such oxygen carriers. METHODS T1 mapping was used to measure R1 in phantoms containing nanobubbles with varied PO2 to measure the relaxivity of oxygen (r1Ox) in the phantoms at 7 and 3 T. These measurements were used to estimate the limit of detection (LOD) in two experimental settings: preclinical 7 T and clinical 3 T MRI. RESULTS The r1Ox in the nanobubble solution was 0.00057 and 0.000235 s-1/mmHg, corresponding to a LOD of 111 and 103 mmHg with 95% confidence at 7 and 3 T, respectively. CONCLUSION This suggests that T1 mapping could provide a noninvasive method of measuring a > 100 mmHg oxygen delivery from therapeutic nanobubbles.
Collapse
Affiliation(s)
- Emma Bluemke
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| | - Liam A J Young
- Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Joshua Owen
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sean Smart
- Department of Oncology, Radiobiology Research Institute, University of Oxford, Oxford, UK
| | - Paul Kinchesh
- Department of Oncology, Radiobiology Research Institute, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Sciences, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Chen JJ, Uthayakumar B, Hyder F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. J Cereb Blood Flow Metab 2022; 42:1139-1162. [PMID: 35296177 PMCID: PMC9207484 DOI: 10.1177/0271678x221077338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional functional MRI (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping human brain activity non-invasively. Recent interest in quantitative fMRI has renewed the importance of oxidative neuroenergetics as reflected by cerebral metabolic rate of oxygen consumption (CMRO2) to support brain function. Dynamic CMRO2 mapping by calibrated fMRI require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and/or volume (CBV). In human subjects this "calibration" is typically performed using a gas mixture containing small amounts of carbon dioxide and/or oxygen-enriched medical air, which are thought to produce changes in CBF (and CBV) and BOLD signal with minimal or no CMRO2 changes. However non-human studies have demonstrated that the "calibration" can also be achieved without gases, revealing good agreement between CMRO2 changes and underlying neuronal activity (e.g., multi-unit activity and local field potential). Given the simpler set-up of gas-free calibrated fMRI, there is evidence of recent clinical applications for this less intrusive direction. This up-to-date review emphasizes technological advances for such translational gas-free calibrated fMRI experiments, also covering historical progression of the calibrated fMRI field that is impacting neurological and neurodegenerative investigations of the human brain.
Collapse
Affiliation(s)
- J Jean Chen
- Medical Biophysics, University of Toronto, Toronto, Canada.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - Biranavan Uthayakumar
- Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Department of Radiology, Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Recommendations for cardiovascular magnetic resonance and computed tomography in congenital heart disease: a consensus paper from the CMR/CCT working group of the Italian Society of Pediatric Cardiology (SICP) and the Italian College of Cardiac Radiology endorsed by the Italian Society of Medical and Interventional Radiology (SIRM) Part I. Radiol Med 2022; 127:788-802. [PMID: 35608758 PMCID: PMC9308607 DOI: 10.1007/s11547-022-01490-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular magnetic resonance (CMR) and computed tomography (CCT) are advanced imaging modalities that recently revolutionized the conventional diagnostic approach to congenital heart diseases (CHD), supporting echocardiography and often replacing cardiac catheterization. Nevertheless, correct execution and interpretation require in-depth knowledge of all technical and clinical aspects of CHD, a careful assessment of risks and benefits before each exam, proper imaging protocols to maximize diagnostic information, minimizing harm. This position paper, written by experts from the Working Group of the Italian Society of Pediatric Cardiology and from the Italian College of Cardiac Radiology of the Italian Society of Medical and Interventional Radiology, is intended as a practical guide for applying CCT and CMR in children and adults with CHD, wishing to support Radiologists, Pediatricians, Cardiologists and Cardiac Surgeons in the multimodality diagnostic approach to these patients. The first part provides a review of the most relevant literature in the field, describes each modality's advantage and drawback, making considerations on the main applications, image quality, and safety issues. The second part focuses on clinical indications and appropriateness criteria for CMR and CCT, considering the level of CHD complexity, the clinical and logistic setting and the operator expertise.
Collapse
|
16
|
Stout JN, Liao C, Gagoski B, Turk EA, Feldman HA, Bibbo C, Barth WH, Shainker SA, Wald LL, Grant PE, Adalsteinsson E. Quantitative T 1 and T 2 mapping by magnetic resonance fingerprinting (MRF) of the placenta before and after maternal hyperoxia. Placenta 2021; 114:124-132. [PMID: 34537569 DOI: 10.1016/j.placenta.2021.08.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022]
Abstract
INTRODUCTION MR relaxometry has been used to assess placental exchange function, but methods to date are not sufficiently fast to be robust to placental motion. Magnetic resonance fingerprinting (MRF) permits rapid, voxel-wise, intrinsically co-registered T1 and T2 mapping. After characterizing measurement error, we scanned pregnant women during air and oxygen breathing to demonstrate MRF's ability to detect placental oxygenation changes. METHODS The accuracy of FISP-based, sliding-window reconstructed MRF was tested on phantoms. MRF scans in 9-s breath holds were acquired at 3T in 31 pregnant women during air and oxygen breathing. A mixed effects model was used to test for changes in placenta relaxation times between physiological states, to assess the dependency on gestational age (GA), and the impact of placental motion. RESULTS MRF estimates of known phantom relaxation times resulted in mean absolute errors for T1 of 92 ms (4.8%), but T2 was less accurate at 16 ms (13.6%). During normoxia, placental T1 = 1825 ± 141 ms (avg ± standard deviation) and T2 = 60 ± 16 ms (gestational age range 24.3-36.7, median 32.6 weeks). In the statistical model, placental T2 rose and T1 remained contant after hyperoxia, and no GA dependency was observed for T1 or T2. DISCUSSION Well-characterized, motion-robust MRF was used to acquire T1 and T2 maps of the placenta. Changes with hyperoxia are consistent with a net increase in oxygen saturation. Toward the goal of whole-placenta quantitative oxygenation imaging over time, we aim to implement 3D MRF with integrated motion correction to improve T2 accuracy.
Collapse
Affiliation(s)
- Jeffrey N Stout
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Borjan Gagoski
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Esra Abaci Turk
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Henry A Feldman
- Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Carolina Bibbo
- Brigham and Women's Hospital, Division of Maternal-Fetal Medicine, Boston, MA, 02115, USA
| | - William H Barth
- Maternal-Fetal Medicine, Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Scott A Shainker
- Maternal-Fetal Medicine, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - P Ellen Grant
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Elfar Adalsteinsson
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Andersen AS, Anderson KB, Hansen DN, Sinding M, Petersen AC, Peters DA, Frøkjær JB, Sørensen A. Placental MRI: Longitudinal relaxation time (T1) in appropriate and small for gestational age pregnancies. Placenta 2021; 114:76-82. [PMID: 34482232 DOI: 10.1016/j.placenta.2021.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The antenatal detection of small for gestational age (SGA) pregnancies is a challenge, which may be improved by placental MRI. The longitudinal relaxation time (T1) is a tissue constant related to tissue morphology and tissue oxygenation, thereby placental T1 may be related to placental function. The aim of this study is to investigate placental T1 in appropriate for gestational age (AGA) and SGA pregnancies. METHODS A total of 132 singleton pregnancies were retrieved from our MRI research database. MRI and ultrasound estimated fetal weight (EFW) was performed at gestational week 20.6-41.7 in a 1.5 T system. SGA was defined as BW ≤ -15% of the expected for gestational age (≤10th centile). A subgroup of SGA pregnancies underwent postnatal placental histological examination (PHE) and abnormal PHE was defined as vascular malperfusion. The placental T1 values were converted into Z-scores adjusted for gestational age at MRI. The predictive performance of placental T1 and EFW was compared by receiver operating curves (ROC). RESULTS In AGA pregnancies, placental T1 showed a negative linear correlation with gestational age (r = -0.36, p = 0.004) Placental T1 was significantly reduced in SGA pregnancies (mean Z-score = -0.34) when compared to AGA pregnancies, p = 0.03. Among SGA pregnancies placental T1 was not reduced in cases with abnormal PHE, p = 0.84. The predictive performance of EFW (AUC = 0.84, 95% CI, 0.77-0.91) was significantly stronger than placental T1 (AUC = 0.62, 95% CI, 0.52-0.72) (p = 0.002). DISCUSSION A low placental T1 relaxation time is associated with SGA at birth. However, the predictive performance of placental T1 is not as strong as EFW.
Collapse
Affiliation(s)
- Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark.
| | - Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Nørrebrogade 44, 8000, Aarhus C, Denmark.
| | - Jens B Frøkjær
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| |
Collapse
|
18
|
Srinivasan V, Melbourne A, Oyston C, James JL, Clark AR. Multiscale and multimodal imaging of utero-placental anatomy and function in pregnancy. Placenta 2021; 112:111-122. [PMID: 34329969 DOI: 10.1016/j.placenta.2021.07.290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Placental structures at the nano-, micro-, and macro scale each play important roles in contributing to its function. As such, quantifying the dynamic way in which placental structure evolves during pregnancy is critical to both clinical diagnosis of pregnancy disorders, and mechanistic understanding of their pathophysiology. Imaging the placenta, both exvivo and invivo, can provide a wealth of structural and/or functional information. This review outlines how imaging across modalities and spatial scales can ultimately come together to improve our understanding of normal and pathological pregnancies. We discuss how imaging technologies are evolving to provide new insights into placental physiology across disciplines, and how advanced computational algorithms can be used alongside state-of-the-art imaging to obtain a holistic view of placental structure and its associated functions to improve our understanding of placental function in health and disease.
Collapse
Affiliation(s)
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, Kings College London, UK
| | - Charlotte Oyston
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
19
|
Hutter J, Ho A, Jackson LH, Slator PJ, Chappell LC, Hajnal JV, Rutherford MA. An efficient and combined placental T 1 -ADC acquisition in pregnancies with and without pre-eclampsia. Magn Reson Med 2021; 86:2684-2691. [PMID: 34268807 DOI: 10.1002/mrm.28809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To provide a new approach to jointly assess microstructural and molecular properties of the human placenta in vivo fast and efficiently and to present initial evidence in cohorts of healthy pregnancies and those affected by pre-eclampsia. METHODS Slice and diffusion preparation shuffling, built on the previously proposed ZEBRA method, is presented as a robust and fast way to obtain T 1 and apparent diffusivity coefficient (ADC) values. Joint modeling and evaluation is performed on a cohort of healthy and pre-eclamptic participants at 3T. RESULTS The datasets show the ability to obtain robust and fast T 1 -ADC measurements. Significant decay over gestation in T 1 (-11 ms/week, P < . 05 ) and a trend toward significance in ADC (-0.23 mm/ s 2 /week, P = .08) values can be observed in a control cohort. Values for the pre-eclamptic pregnancies show a negative trend for both ADC and T 1 . CONCLUSIONS The presented sequence allows the simultaneous acquisition of 2 of the most promising quantitative parameters to study placental insufficiency-identified individually as relevant in previous studies-in under 2 minutes. This allows dynamic assessment of physiological processes, reduced inconsistency in spatial comparisons due to reduced motion artefacts and opens novel avenues for analysis. Initial results in pre-eclamptic placentas, with depicted changes in both ADC and T 1 , illustrate its potential to identify cases of placental insufficiency. Future work will focus on expanding the field-of-view using multi-band acceleration techniques and the expansion to larger and more diverse patient groups.
Collapse
Affiliation(s)
- Jana Hutter
- Center for Medical Engineering, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging, King's College London, London, UK
| | - Alison Ho
- Academic Women's Health Department, King's College London, London, UK
| | - Laurence H Jackson
- Center for Medical Engineering, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging, King's College London, London, UK
| | - Paddy J Slator
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Lucy C Chappell
- Academic Women's Health Department, King's College London, London, UK
| | - Joseph V Hajnal
- Center for Medical Engineering, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging, King's College London, London, UK
| | - Mary A Rutherford
- Center for Medical Engineering, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging, King's College London, London, UK
| |
Collapse
|
20
|
Morrison JL, Ayonrinde OT, Care AS, Clarke GD, Darby JRT, David AL, Dean JM, Hooper SB, Kitchen MJ, Macgowan CK, Melbourne A, McGillick EV, McKenzie CA, Michael N, Mohammed N, Sadananthan SA, Schrauben E, Regnault TRH, Velan SS. Seeing the fetus from a DOHaD perspective: discussion paper from the advanced imaging techniques of DOHaD applications workshop held at the 2019 DOHaD World Congress. J Dev Orig Health Dis 2021; 12:153-167. [PMID: 32955011 DOI: 10.1017/s2040174420000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced imaging techniques are enhancing research capacity focussed on the developmental origins of adult health and disease (DOHaD) hypothesis, and consequently increasing awareness of future health risks across various subareas of DOHaD research themes. Understanding how these advanced imaging techniques in animal models and human population studies can be both additively and synergistically used alongside traditional techniques in DOHaD-focussed laboratories is therefore of great interest. Global experts in advanced imaging techniques congregated at the advanced imaging workshop at the 2019 DOHaD World Congress in Melbourne, Australia. This review summarizes the presentations of new imaging modalities and novel applications to DOHaD research and discussions had by DOHaD researchers that are currently utilizing advanced imaging techniques including MRI, hyperpolarized MRI, ultrasound, and synchrotron-based techniques to aid their DOHaD research focus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Oyekoya T Ayonrinde
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Alison S Care
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Marcus J Kitchen
- School of Physics and Astronomy, Monash University, Melbourne, Victoria, Australia
| | | | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Erin V McGillick
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- The Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Nuruddin Mohammed
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Aga Khan University Hospital, Karachi, Pakistan
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Timothy R H Regnault
- Lawson Health Research Institute and Children's Health Research Institute, London, ON, Canada
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - S Sendhil Velan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
21
|
Saini BS, Darby JRT, Marini D, Portnoy S, Lock MC, Yin Soo J, Holman SL, Perumal SR, Wald RM, Windrim R, Macgowan CK, Kingdom JC, Morrison JL, Seed M. An MRI approach to assess placental function in healthy humans and sheep. J Physiol 2021; 599:2573-2602. [PMID: 33675040 DOI: 10.1113/jp281002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Human placental function is evaluated using non-invasive Doppler ultrasound of umbilical and uterine artery pulsatility indices as measures of resistance in placental vascular beds, while measurement of placental oxygen consumption ( V O 2 ) is only possible during Caesarean delivery. This study shows the feasibility of using magnetic resonance imaging (MRI) in utero to measure blood flow and oxygen content in uterine and umbilical vessels to calculate oxygen delivery to and V O 2 by the gravid uterus, uteroplacenta and fetus. Normal late gestational human uteroplacental V O 2 by MRI was ∼4 ml min-1 kg-1 fetal weight, which was similar to our MRI measurements in sheep and to those previously measured using invasive techniques. Our MRI approach can quantify uteroplacental V O 2 , which involves the quantification of maternal- and fetal-placental blood flows, fetal oxygen delivery and V O 2 , and the oxygen gradient between uterine- and umbilical-venous blood, providing a comprehensive assessment of placental function with clinical potential. ABSTRACT It has not been feasible to perform routine clinical measurement of human placental oxygen consumption ( V O 2 ) and in vitro studies do not reflect true metabolism in utero. Here we propose an MRI method to non-invasively quantify in utero placental and fetal oxygen delivery ( D O 2 ) and V O 2 in healthy humans and sheep. Women (n = 20) and Merino sheep (n = 10; 23 sets of measurements) with singleton pregnancies underwent an MRI in late gestation (36 ± 2 weeks and 128 ± 9 days, respectively; mean ± SD). Blood flow (phase-contrast) and oxygen content (T1 and T2 relaxometry) were measured in the major uterine- and umbilical-placental vessels, allowing calculation of uteroplacental and fetal D O 2 and V O 2 . Maternal D O 2 (ml min-1 kg-1 fetus) to the gravid uterus was similar in humans and sheep (human = 54 ± 15, sheep = 53 ± 21, P = 0.854), while fetal D O 2 (human = 25 ± 4, sheep = 22 ± 5, P = 0.049) was slightly lower in sheep. Uteroplacental and fetal V O 2 (ml min-1 kg-1 fetus; uteroplacental: human = 4.1 ± 1.5, sheep = 3.5 ± 1.9, P = 0.281; fetus: human = 6.8 ± 1.3, sheep = 7.2 ± 1.7, P = 0.426) were similar between species. Late gestational uteroplacental:fetal V O 2 ratio did not change with age (human, P = 0.256; sheep, P = 0.121). Human umbilical blood flow (ml min-1 kg-1 fetus) decreased with advancing age (P = 0.008), while fetal V O 2 was preserved through an increase in oxygen extraction (P = 0.046). By contrast, sheep fetal V O 2 was preserved through stable umbilical flow (ml min-1 kg-1 ; P = 0.443) and oxygen extraction (P = 0.582). MRI derived measurements of uteroplacental and fetal V O 2 between humans and sheep were similar and in keeping with prior data obtained using invasive techniques. Taken together, these data confirm the reliability of our approach, which offers a novel clinical 'placental function test'.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Davide Marini
- Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Sharon Portnoy
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sunthara R Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5086, Australia
| | - Rachel M Wald
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, ON, M5G 2N2, Canada
| | - Rory Windrim
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Christopher K Macgowan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - John C Kingdom
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Mike Seed
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.,Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada
| |
Collapse
|
22
|
Sun L, Lee FT, van Amerom JFP, Freud L, Jaeggi E, Macgowan CK, Seed M. Update on fetal cardiovascular magnetic resonance and utility in congenital heart disease. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital heart disease (CHD) is the most common birth defect, affecting approximately eight per thousand newborns. Between one and two neonates per thousand have congenital cardiac lesions that require immediate post-natal treatment to stabilize the circulation, and the management of these patients in particular has been greatly enhanced by prenatal detection. The antenatal diagnosis of CHD has been made possible through the development of fetal echocardiography, which provides excellent visualization of cardiac anatomy and physiology and is widely available. However, late gestational fetal echocardiographic imaging can be hampered by suboptimal sonographic windows, particularly in the setting of oligohydramnios or adverse maternal body habitus.
Main body
Recent advances in fetal cardiovascular magnetic resonance (CMR) technology now provide a feasible alternative that could be helpful when echocardiography is inconclusive or limited. Fetal CMR has also been used to study fetal circulatory physiology in human fetuses with CHD, providing new insights into how these common anatomical abnormalities impact the distribution of blood flow and oxygen across the fetal circulation. In combination with conventional fetal and neonatal magnetic resonance imaging (MRI) techniques, fetal CMR can be used to explore the relationship between abnormal cardiovascular physiology and fetal development. Similarly, fetal CMR has been successfully applied in large animal models of the human fetal circulation, aiding in the evaluation of experimental interventions aimed at improving in utero development. With the advent of accelerated image acquisition techniques, post-processing approaches to correcting motion artifacts and commercial MRI compatible cardiotocography units for acquiring gated fetal cardiac imaging, an increasing number of CMR methods including angiography, ventricular volumetry, and the quantification of vessel blood flow and oxygen content are now possible.
Conclusion
Fetal CMR has reached an exciting stage whereby it may now be used to enhance the assessment of cardiac morphology and fetal hemodynamics in the setting of prenatal CHD.
Collapse
|
23
|
Aujla T, Darby JRT, Saini BS, Lock MC, Holman SL, Bradshaw EL, Perumal SR, McInnes SJP, Voelcker NH, Wiese MD, Macgowan CK, Seed M, Morrison JL. Impact of resveratrol-mediated increase in uterine artery blood flow on fetal haemodynamics, blood pressure and oxygenation in sheep. Exp Physiol 2021; 106:1166-1180. [PMID: 33600040 DOI: 10.1113/ep089237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Uterine artery blood flow helps to maintain fetal oxygen and nutrient delivery. We investigated the effects of increased uterine artery blood flow mediated by resveratrol on fetal growth, haemodynamics, blood pressure regulation and oxygenation in pregnant sheep. What is the main finding and its importance? Fetuses from resveratrol-treated ewes were significantly larger and exhibited a haemodynamic profile that might promote peripheral growth. Absolute uterine artery blood flow was positively correlated with umbilical vein oxygen saturation, absolute fetal oxygen delivery and fetal growth. Increasing uterine artery blood flow with compounds such as resveratrol might have clinical significance for pregnancy conditions in which fetal growth and oxygenation are compromised. ABSTRACT High placental vascular resistance hinders uterine artery (UtA) blood flow and fetal substrate delivery. In the same group of animals as the present study, we have previously shown that resveratrol (RSV) increases UtA blood flow, fetal weight and oxygenation in an ovine model of human pregnancy. However, the mechanisms behind changes in growth and the effects of increases in UtA blood flow on fetal circulatory physiology have yet to be investigated. Twin-bearing ewes received s.c. vehicle (VEH, n = 5) or RSV (n = 6) delivery systems at 113 days of gestation (term = 150 days). Magnetic resonance imaging was performed at 123-124 days to quantify fetal volume, blood flow and oxygen saturation of major fetal vessels. At 128 days, i.v. infusions of sodium nitroprusside and phenylephrine were administered to study the vascular tone of the fetal descending aorta. Maternal RSV increased fetal body volume (P = 0.0075) and weight (P = 0.0358), with no change in brain volume or brain weight. There was a positive relationship between absolute UtA blood flow and umbilical vein oxygen saturation, absolute fetal oxygen delivery and combined fetal twin volume (all P ≤ 0.05). There were no differences between groups in fetal haemodynamics or blood pressure regulation except for higher blood flow to the lower body in RSV fetuses (P = 0.0170). The observed increase in fetal weight might be helpful in pregnancy conditions in which fetal growth and oxygen delivery are compromised. Further preclinical investigations on the mechanism(s) accounting for these changes and the potential to improve growth in complicated pregnancies are warranted.
Collapse
Affiliation(s)
- Tanroop Aujla
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Brahmdeep S Saini
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sunthara R Perumal
- Preclinical Imaging and Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
| | - Steven J P McInnes
- UniSA STEM, University of South Australia, Adelaide, South Australia, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Michael D Wiese
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Christopher K Macgowan
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Anderson KB, Andersen AS, Hansen DN, Sinding M, Peters DA, Frøkjaer JB, Sørensen A. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand 2020; 100:934-940. [PMID: 33258106 DOI: 10.1111/aogs.14057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Placental transverse relaxation time (T2) assessed by MRI may have the potential to improve the antenatal identification of small for gestational age. The aims of this study were to provide normal values of placental T2 in relation to gestational age at the time of MRI and to explore the correlation between placental T2 and birthweight. MATERIAL AND METHODS A mixed cohort of 112 singleton pregnancies was retrieved from our placental MRI research database. MRI was performed at 23.6-41.3 weeks of gestation in a 1.5T system (TE (8): 50-440 ms, TR: 4000 ms). Normal pregnancies were defined by uncomplicated pregnancies with normal obstetric outcome and birthweight deviation within ±1 SD of the expected for gestational age. The correlation between placental T2 and birthweight was investigated using the following outcomes; small for gestational age (birthweight ≤-2 SD of the expected for gestational age) and birthweight deviation (birthweight Z-scores). RESULTS In normal pregnancies (n = 27), placenta T2 showed a significant negative linear correlation with gestational age (r = -.91, P = .0001) being 184 ms ± 15.94 ms (mean ± SD) at 20 weeks of gestation and 89 ms ± 15.94 ms at 40 weeks of gestation. Placental T2 was significantly reduced among small-for-gestational-age pregnancies (mean Z-score -1.95, P < .001). Moreover, we found a significant positive correlation between placenta T2 deviation (Z-score) and birthweight deviation (Z-score) (R2 = .26, P = .0001). CONCLUSIONS This study provides normal values of placental T2 to be used in future studies on placental MRI. Placental T2 is closely related to birthweight and may improve the antenatal identification of small-for-gestational-age pregnancies.
Collapse
Affiliation(s)
- Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - Jens B Frøkjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
25
|
The application of in utero magnetic resonance imaging in the study of the metabolic and cardiovascular consequences of the developmental origins of health and disease. J Dev Orig Health Dis 2020; 12:193-202. [PMID: 33308364 PMCID: PMC8162788 DOI: 10.1017/s2040174420001154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Observing fetal development in utero is vital to further the understanding of later-life diseases. Magnetic resonance imaging (MRI) offers a tool for obtaining a wealth of information about fetal growth, development, and programming not previously available using other methods. This review provides an overview of MRI techniques used to investigate the metabolic and cardiovascular consequences of the developmental origins of health and disease (DOHaD) hypothesis. These methods add to the understanding of the developing fetus by examining fetal growth and organ development, adipose tissue and body composition, fetal oximetry, placental microstructure, diffusion, perfusion, flow, and metabolism. MRI assessment of fetal growth, organ development, metabolism, and the amount of fetal adipose tissue could give early indicators of abnormal fetal development. Noninvasive fetal oximetry can accurately measure placental and fetal oxygenation, which improves current knowledge on placental function. Additionally, measuring deficiencies in the placenta’s transport of nutrients and oxygen is critical for optimizing treatment. Overall, the detailed structural and functional information provided by MRI is valuable in guiding future investigations of DOHaD.
Collapse
|
26
|
Fetal cardiovascular magnetic resonance imaging. Pediatr Radiol 2020; 50:1881-1894. [PMID: 33252756 DOI: 10.1007/s00247-020-04902-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Fetal cardiovascular MRI is showing promise as a clinical diagnostic tool in the setting of congenital heart disease when the cardiac anatomy is unresolved by US or when complementary quantitative data on blood flow, oxygen saturation and hematocrit are required to aid in management. Compared with postnatal cardiovascular MRI, prenatal cardiovascular MRI still has some technical limitations. However, ongoing technical advances continue to improve the robustness and usability of fetal cardiovascular MRI. In this review, we provide an overview of the state of the art of fetal cardiovascular MRI and summarize the current focus of clinical application for this versatile technique.
Collapse
|
27
|
Dharmakumar R, Yang H. Editorial for “Patient‐Adaptive Magnetic Resonance Oximetry”. J Magn Reson Imaging 2020; 52:1460-1461. [DOI: 10.1002/jmri.27303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rohan Dharmakumar
- Cedars‐Sinai Medical Center Los Angeles California USA
- University of California Los Angeles California USA
| | | |
Collapse
|
28
|
Aughwane R, Mufti N, Flouri D, Maksym K, Spencer R, Sokolska M, Kendall G, Atkinson D, Bainbridge A, Deprest J, Vercauteren T, Ourselin S, David AL, Melbourne A. Magnetic resonance imaging measurement of placental perfusion and oxygen saturation in early-onset fetal growth restriction. BJOG 2020; 128:337-345. [PMID: 32603546 PMCID: PMC7613436 DOI: 10.1111/1471-0528.16387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVE We hypothesised that a multi-compartment magnetic resonance imaging (MRI) technique that is sensitive to fetal blood oxygenation would identify changes in placental blood volume and fetal blood oxygenation in pregnancies complicated by early-onset fetal growth restriction (FGR). DESIGN Case-control study. SETTING London, UK. POPULATION Women with uncomplicated pregnancies (estimated fetal weight [EFW] >10th centile for gestational age [GA] and normal maternal and fetal Doppler ultrasound, n = 12) or early-onset FGR (EFW <3rd centile with or without abnormal Doppler ultrasound <32 weeks GA, n = 12) were studied. METHODS All women underwent MRI examination. Using a multi-compartment MRI technique, we quantified fetal and maternal blood volume and feto-placental blood oxygenation. MAIN OUTCOME MEASURES Disease severity was stratified according to Doppler pulsatility index and the relationship to the MRI parameters was investigated, including the influence of GA at scan. RESULTS The FGR group (mean GA 27+5 weeks, range 24+2 to 33+6 weeks) had a significantly lower EFW compared with the control group (mean GA 29+1 weeks; -705 g, 95% CI -353 to -1057 g). MRI-derived feto-placental oxygen saturation was higher in controls compared with FGR (75 ± 9.6% versus 56 ± 16.2%, P = 0.02, 95% CI 7.8-30.3%). Feto-placental oxygen saturation estimation correlated strongly with GA at scan in controls (r = -0.83). CONCLUSION Using a novel multimodal MRI protocol we demonstrated reduced feto-placental blood oxygen saturation in pregnancies complicated by early-onset FGR. The degree of abnormality correlated with disease severity defined by ultrasound Doppler findings. Gestational age-dependent changes in oxygen saturation were also present in normal pregnancies. TWEETABLE ABSTRACT MRI reveals differences in feto-placental oxygen saturation between normal and FGR pregnancy that is associated with disease severity.
Collapse
Affiliation(s)
- R Aughwane
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - N Mufti
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - D Flouri
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - K Maksym
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - R Spencer
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,University of Leeds, Leeds, UK
| | - M Sokolska
- Medical Physics, University College Hospital, London, UK
| | - G Kendall
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - D Atkinson
- Centre for Medical Imaging, University College London, London, UK
| | - A Bainbridge
- Medical Physics, University College Hospital, London, UK
| | - J Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK.,University Hospital KU Leuven, Leuven, Belgium
| | - T Vercauteren
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - S Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - A L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,University Hospital KU Leuven, Leuven, Belgium.,NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - A Melbourne
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| |
Collapse
|
29
|
Desmond KL, Chavez SE. Editorial for "Effect of Drinking Oxygenated Water Assessed by in vivo MRI Relaxometry". J Magn Reson Imaging 2020; 52:729-730. [PMID: 32521071 DOI: 10.1002/jmri.27239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Kimberly L Desmond
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sofia E Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Saini BS, Darby JRT, Portnoy S, Sun L, van Amerom J, Lock MC, Soo JY, Holman SL, Perumal SR, Kingdom JC, Sled JG, Macgowan CK, Morrison JL, Seed M. Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging. J Physiol 2020; 598:3259-3281. [PMID: 32372463 DOI: 10.1113/jp279725] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Human fetal Doppler ultrasound and invasive blood gas measurements obtained by cordocentesis or at the time of delivery reveal similarities with sheep (an extensively used model for human fetal cardiovascular physiology). Oxygen saturation (SO2 ) measurements in human fetuses have been limited to the umbilical and scalp vessels, providing little information about normal regional SO2 differences in the fetus. Blood T2 MRI relaxometry presents a non-invasive measure of SO2 in the major fetal vessels. This study presents the first in vivo validation of fetal vessel T2 oximetry against the in vitro T2-SO2 relationship using catheterized sheep fetuses and compares the normal SO2 in the major vessels between the human and sheep fetal circulations. Human fetal vessel SO2 by T2 MRI confirms many similarities with the sheep fetal circulation and is able to demonstrate regional differences in SO2 ; in particular the significantly higher SO2 in the left versus right heart. ABSTRACT Blood T2 magnetic resonance imaging (MRI) relaxometry non-invasively measures oxygen saturation (SO2 ) in major vessels but has not been validated in fetuses in vivo. We compared the blood T2-SO2 relationship in vitro (tubes) and in vivo (vessels) in sheep, and measured SO2 across the normal human and sheep fetal circulations by T2. Singleton pregnant ewes underwent surgery to implant vascular catheters. In vitro and in vivo sheep blood T2 measurements were related to corresponding SO2 measured using a blood gas analyser, as well as relating T2 and SO2 of human fetal blood in vitro. MRI oximetry was performed in the major vessels of 30 human fetuses at 36 weeks (term, 40 weeks) and 10 fetal sheep (125 days; term, 150 days). The fidelity of in vivo fetal T2 oximetry was confirmed through comparison of in vitro and in vivo sheep blood T2-SO2 relationships (P = 0.1). SO2 was similar between human and sheep fetuses, as was the fetal oxygen extraction fraction (human, 33 ± 11%; sheep, 34 ± 7%; P = 0.798). The presence of streaming in the human fetal circulation was demonstrated by the SO2 gradient between the ascending aorta (68 ± 10%) and the main pulmonary artery (49 ± 9%; P < 0.001). Human and sheep fetal vessel MRI oximetry based on T2 is a validated approach that confirms the presence of streaming of umbilical venous blood towards the heart and brain. Streaming is important in ensuring oxygen delivery to these organs and its disruption may have important implications for organ development, especially in conditions such as congenital heart disease and fetal growth restriction.
Collapse
Affiliation(s)
- Brahmdeep S Saini
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sharon Portnoy
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Liqun Sun
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Joshua van Amerom
- Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sunthara R Perumal
- Preclinical Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5086, Australia
| | - John C Kingdom
- Department of Obstetrics and Gynaecology, Maternal-Fetal Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, M5G 1E2, Canada
| | - John G Sled
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Christopher K Macgowan
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Mike Seed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Division of Cardiology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, M5G 1E2, Canada
| |
Collapse
|
31
|
Abstract
Magnetic resonance imaging (MRI) is an appealing technology for fetal cardiovascular assessment. It can be used to visualize fetal cardiac and vascular anatomy, to quantify fetal blood flow, and to quantify fetal blood oxygen saturation and hematocrit. However, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the human fetus, the lack of conventional cardiac gating methods to synchronize data acquisition, and the potential corruption of MRI data due to maternal respiration and unpredictable fetal movements. In this review, we discuss recent technical advances in accelerated imaging, image reconstruction, cardiac gating, and motion compensation that have enabled dynamic MRI of the fetal heart.
Collapse
|
32
|
Aughwane R, Ingram E, Johnstone ED, Salomon LJ, David AL, Melbourne A. Placental MRI and its application to fetal intervention. Prenat Diagn 2020; 40:38-48. [PMID: 31306507 PMCID: PMC7027916 DOI: 10.1002/pd.5526] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) of placental invasion has been part of clinical practice for many years. The possibility of being better able to assess placental vascularization and function using MRI has multiple potential applications. This review summarises up-to-date research on placental function using different MRI modalities. METHOD We discuss how combinations of these MRI techniques have much to contribute to fetal conditions amenable for therapy such as singletons at high risk for fetal growth restriction (FGR) and monochorionic twin pregnancies for planning surgery and counselling for selective growth restriction and transfusion conditions. RESULTS The whole placenta can easily be visualized on MRI, with a clear boundary against the amniotic fluid, and a less clear placental-uterine boundary. Contrasts such as diffusion weighted imaging, relaxometry, blood oxygenation level dependent MRI and flow and metabolite measurement by dynamic contrast enhanced MRI, arterial spin labeling, or spectroscopic techniques are contributing to our wider understanding of placental function. CONCLUSION The future of placental MRI is exciting, with the increasing availability of multiple contrasts and new models that will boost the capability of MRI to measure oxygen saturation and placental exchange, enabling examination of placental function in complicated pregnancies.
Collapse
Affiliation(s)
| | - Emma Ingram
- Division of Developmental Biology & MedicineUniversity of ManchesterManchesterUK
| | - Edward D. Johnstone
- Division of Developmental Biology & MedicineUniversity of ManchesterManchesterUK
| | - Laurent J. Salomon
- Hôpital Necker‐Enfants Malades, AP‐HP, EHU PACT and LUMIERE PlatformUniversité Paris DescartesParisFrance
| | - Anna L. David
- Institute for Women's HealthUniversity College LondonLondonUK
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research CentreLondonUK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
33
|
Xu J, Duan AQ, Marini D, Lim JM, Keunen J, Portnoy S, Sled JG, McCrindle BW, Kingdom J, Macgowan CK, Seed M. The utility of MRI for measuring hematocrit in fetal anemia. Am J Obstet Gynecol 2020; 222:81.e1-81.e13. [PMID: 31306649 DOI: 10.1016/j.ajog.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Doppler ultrasound measurements of the peak systolic velocity of the middle cerebral artery can be used to noninvasively diagnose fetal anemia but are less precise following fetal blood transfusion and in late gestation. We have previously demonstrated the feasibility of estimating fetal hematocrit in vitro using magnetic resonance imaging relaxation times. Here we report the use of magnetic resonance imaging as a noninvasive tool to accurately detect fetal anemia in vivo. OBJECTIVES This study has 2 objectives: (1) to determine the feasibility and accuracy of magnetic resonance imaging in estimating hematocrit in anemic fetuses and (2) to compare magnetic resonance imaging and middle cerebral artery Doppler in detecting moderate to severe fetal anemia. STUDY DESIGN Fetuses undergoing fetal blood sampling or transfusion underwent magnetic resonance imaging examinations prior to and following their procedures at 1.5 Tesla (Siemens Avanto). A modified Look-Locker inversion pulse sequence and T2 preparation sequence were applied for T1 and T2 mapping of the intrahepatic umbilical vein. Estimated fetal hematocrit was calculated using a combination of T1 and T2 values and compared with conventional hematocrit obtained from fetal blood samples and middle cerebral artery Doppler measurements. RESULTS Twenty-three fetuses were assessed during 33 magnetic resonance imaging scans. The mean absolute difference between the laboratory and magnetic resonance imaging-estimated hematocrit was 0.06 ± 0.05 with a correlation of 0.77 (P < .001) determined by a multilevel, mixed-effects model adjusting for the repeated measurements from the same participants, multiple gestation pregnancies, and the scan type (ie, before or after transfusion scan). Bland-Altman analysis revealed a systematic bias of -0.03 between the magnetic resonance imaging and fetal blood sampling measurements. Magnetic resonance imaging and middle cerebral artery Doppler had similar sensitivities of approximately 90% to detect moderate to severe anemia. However, magnetic resonance imaging had a higher specificity (93% [13/14], 95% confidence interval, 66-100%) than Doppler (71% [10/14], 95% confidence interval, 42-92%). CONCLUSION Moderate to severe fetal anemia can be detected noninvasively by magnetic resonance imaging with high sensitivity and specificity. Our results suggest an adjunct role for magnetic resonance imaging in fetuses with suspected anemia, particularly following previous transfusion and in late gestation.
Collapse
|
34
|
Marini D, Xu J, Sun L, Jaeggi E, Seed M. Current and future role of fetal cardiovascular MRI in the setting of fetal cardiac interventions. Prenat Diagn 2019; 40:71-83. [PMID: 31834624 DOI: 10.1002/pd.5626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Over recent years, technical developments resulting in the feasibility of fetal cardiovascular magnetic resonance (CMR) have provided a new diagnostic tool for studying the human fetal heart and circulation. During the same period, we have witnessed the arrival of several minimally invasive fetal cardiac interventions (FCI) as a possible form of treatment in selected congenital heart diseases (CHDs). The role of fetal CMR in the planning and monitoring of FCI is not yet clear. Indeed, high-quality fetal CMR is not available or routinely offered at most centers caring for patients with prenatally detected CHD. However, in theory, fetal CMR could have much to offer in the setting of FCI by providing complementary anatomic and physiologic information relating to the specific intervention under consideration. Similarly, fetal CMR may be useful as an alternative imaging modality when ultrasound is hampered by technical limitations, for example, in the setting of oligohydramnios and in late gestation. In this review, we summarize current experience of the use of fetal CMR in the diagnosis and monitoring of fetuses with cardiopathies in the setting of a range of invasive in utero cardiac and vascular interventions and medical treatments and speculate about future directions for this versatile imaging medium.
Collapse
Affiliation(s)
- Davide Marini
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiawei Xu
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liqun Sun
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edgar Jaeggi
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Rivera-Rivera LA, Schubert T, Johnson KM. Measurements of cerebral blood volume using quantitative susceptibility mapping, R 2 * relaxometry, and ferumoxytol-enhanced MRI. NMR IN BIOMEDICINE 2019; 32:e4175. [PMID: 31482602 PMCID: PMC6868300 DOI: 10.1002/nbm.4175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 05/08/2023]
Abstract
Ferumoxytol-enhanced MRI holds potential for the non-invasive assessment of vascular architecture using estimates of cerebral blood volume (CBV). Ferumoxytol specifically enables steady-state imaging with extended acquisition times, for substantial improvements in resolution and contrast-to-noise ratio. With such data, quantitative susceptibility mapping (QSM) can be used to obtain images of local tissue magnetic susceptibility and hence estimate the increase in blood susceptibility after administration of a contrast agent, which in turn can be correlated to tissue CBV. Here, we explore the use of QSM for CBV estimation and compare it with R2 * (1/T2 *)-based results. Institutional review board approval was obtained, and all subjects provided written informed consent. For this prospective study, MR images were acquired on a 3.0 T scanner in 19 healthy subjects using a multiple-echo T2 *-weighted sequence. Scanning was performed before and after the administration of two doses of ferumoxytol (1 mg FE/kg and 4 mg FE/kg). Different QSM approaches were tested on numerical phantom simulations. Results showed that the accuracy of magnetic susceptibility measurements improved with increasing image resolution and decreasing vascular density. In vivo changes in magnetic susceptibility were measured after the administration of ferumoxytol utilizing QSM, and significantly higher QSM-based CBV was measured in gray matter compared with white matter. QSM- and R2 *-based CBV estimates correlated well, with similar average values, but a larger variance was found in QSM-based estimates.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275, USA
| | - Tilman Schubert
- Department of Radiology and Nuclear Medicine, Basel University Hospital, Petersgraben 4, 4031 Basel, Switzerland
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705-2275, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53705-2275, USA
| |
Collapse
|
36
|
Sussman D, Saini BS, Schneiderman JE, Spitzer R, Seed M, Lye SJ, Wells GD. Uterine artery and umbilical vein blood flow are unaffected by moderate habitual physical activity during pregnancy. Prenat Diagn 2019; 39:976-985. [PMID: 31254464 DOI: 10.1002/pd.5517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study aims to noninvasively quantify blood flow in the uterine arteries (UTAs) and umbilical vein (UV) using phase-contrast magnetic resonance imaging (PC-MRI) and test whether these correlate with maternal fitness parameters. METHOD Resting UTA and UV flows were measured in 23 healthy 30 ± 3-year-old women who engaged in moderate-intensity physical activity during pregnancy. Participant fitness was characterized in the second and third trimesters using the submaximal oxygen uptake (VO2 ) test measuring heart rate (HR), VO2 , ventilation (ventilatory equivalent [VE]/VO2 ), and the Borg rating of perceived exertion (respiratory quotient [RQ]). Linear regression models were used to determine the associations between blood flow and maternal fitness measures. RESULTS Blood flows in the UTA (957 ± 241 mL/min) and UV (132 ± 38 mL/min/kg) were successfully measured in 20 (87%) participants. Neither was associated with any physical fitness parameters (HR, VO2 , VE/VO2 , and RQ) nor with any second-to-third trimester change in these parameters. CONCLUSION PC-MRI can be used to noninvasively measure blood flow in the UTA and UV. Neither resting UTA nor UV flow is associated with maternal fitness parameters. This is the first MRI-based study to provide novel hemodynamic data suggesting decoupling between maternal moderate fitness level and the maternal-placental-fetal hemodynamic system in healthy, normal body mass index (BMI) pregnancies.
Collapse
Affiliation(s)
- Dafna Sussman
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Brahmdeep S Saini
- Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jane E Schneiderman
- Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.,Clinical Research Services, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rachel Spitzer
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Ontario, Canada.,Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Greg D Wells
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Marini D, van Amerom J, Saini BS, Sun L, Seed M. MR imaging of the fetal heart. J Magn Reson Imaging 2019; 51:1030-1044. [PMID: 31190452 DOI: 10.1002/jmri.26815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, technological advances have enabled the acquisition of high spatial and temporal resolution cardiac magnetic resonance imaging (MRI) in the fetus. Fetal cardiac MRI has emerged as an alternative to ultrasound, which may be helpful to confirm a diagnosis of congenital heart disease when ultrasound assessment is hampered, for example in late gestation or in the setting of oligohydramnios. MRI also provides unique physiologic information, including vessel blood flow, oxygen saturation and hematocrit, which may be helpful to investigate cardiac and placental diseases. In this review, we summarize some of the main techniques and significant advances in the field to date. Level of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2020;51:1030-1044.
Collapse
Affiliation(s)
- Davide Marini
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua van Amerom
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Brahmdeep S Saini
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Liqun Sun
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| | - Mike Seed
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
38
|
Lloyd DFA, Pushparajah K, Simpson JM, van Amerom JFP, van Poppel MPM, Schulz A, Kainz B, Deprez M, Lohezic M, Allsop J, Mathur S, Bellsham-Revell H, Vigneswaran T, Charakida M, Miller O, Zidere V, Sharland G, Rutherford M, Hajnal JV, Razavi R. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet 2019; 393:1619-1627. [PMID: 30910324 PMCID: PMC6484696 DOI: 10.1016/s0140-6736(18)32490-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Two-dimensional (2D) ultrasound echocardiography is the primary technique used to diagnose congenital heart disease before birth. There is, however, a longstanding need for a reliable form of secondary imaging, particularly in cases when more detailed three-dimensional (3D) vascular imaging is required, or when ultrasound windows are of poor diagnostic quality. Fetal MRI, which is well established for other organ systems, is highly susceptible to fetal movement, particularly for 3D imaging. The objective of this study was to investigate the combination of prenatal MRI with novel, motion-corrected 3D image registration software, as an adjunct to fetal echocardiography in the diagnosis of congenital heart disease. METHODS Pregnant women carrying a fetus with known or suspected congenital heart disease were recruited via a tertiary fetal cardiology unit. After initial validation experiments to assess the general reliability of the approach, MRI data were acquired in 85 consecutive fetuses, as overlapping stacks of 2D images. These images were then processed with a bespoke open-source reconstruction algorithm to produce a super-resolution 3D volume of the fetal thorax. These datasets were assessed with measurement comparison with paired 2D ultrasound, structured anatomical assessment of the 2D and 3D data, and contemporaneous, archived clinical fetal MRI reports, which were compared with postnatal findings after delivery. FINDINGS Between Oct 8, 2015, and June 30, 2017, 101 patients were referred for MRI, of whom 85 were eligible and had fetal MRI. The mean gestational age at the time of MRI was 32 weeks (range 24-36). High-resolution (0·50-0·75 mm isotropic) 3D datasets of the fetal thorax were generated in all 85 cases. Vascular measurements showed good overall agreement with 2D echocardiography in 51 cases with paired data (intra-class correlation coefficient 0·78, 95% CI 0·68-0·84), with fetal vascular structures more effectively visualised with 3D MRI than with uncorrected 2D MRI (657 [97%] of 680 anatomical areas identified vs 358 [53%] of 680 areas; p<0·0001). When a structure of interest was visualised in both 2D and 3D data (n=358), observers gave a higher diagnostic quality score for 3D data in 321 (90%) of cases, with 37 (10%) scores tied with 2D data, and no lower scores than for 2D data (Wilcoxon signed rank test p<0·0001). Additional anatomical features were described in ten cases, of which all were confirmed postnatally. INTERPRETATION Standard fetal MRI with open-source image processing software is a reliable method of generating high-resolution 3D imaging of the fetal vasculature. The 3D volumes produced show good spatial agreement with ultrasound, and significantly improved visualisation and diagnostic quality compared with source 2D MRI data. This freely available combination requires minimal infrastructure, and provides safe, powerful, and highly complementary imaging of the fetal cardiovascular system. FUNDING Wellcome Trust/EPSRC Centre for Medical Engineering, National Institute for Health Research.
Collapse
Affiliation(s)
- David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - John M Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joshua F P van Amerom
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Alexander Schulz
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Bernard Kainz
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Computing (BioMedIA), Imperial College London, London, UK
| | - Maria Deprez
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Maelene Lohezic
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joanna Allsop
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Sujeev Mathur
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Hannah Bellsham-Revell
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Trisha Vigneswaran
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Marietta Charakida
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Owen Miller
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Vita Zidere
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gurleen Sharland
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mary Rutherford
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
39
|
Jørgensen DS, Vejlstrup N, Rode L, Ekelund CK, Macgowan CK, Jensen LN, Nørgaard LN, Portnoy S, Seed M, Sundberg K, Søgaard K, Forman JL, Tabor A. Magnetic Resonance Imaging: A New Tool to Optimize the Prediction of Fetal Anemia? Fetal Diagn Ther 2019; 46:257-265. [PMID: 30731466 DOI: 10.1159/000494615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The false-positive rate in the prediction of fetal anemia is 10-15%. We investigated if a new, noninvasive MRI method used as a supplement to ultrasound could improve the prediction. METHODS Fetuses suspected of anemia and controls were scanned in a 1.5-tesla MRI scanner 1-4 times during pregnancy. Cases were scanned before and after intrauterine blood transfusion with a T1-mapping MRI sequence in a cross-section of the umbilical vein. RESULTS Inclusion of 8 cases and 11 controls resulted in 10 case scans (2 cases were included twice) and 33 control scans. In controls, the T1 relaxation time was 1,005-1,391 ms; in cases with severe anemia, 1,505-1,595 ms, moderate anemia 1,503-1,525 ms, and no/mild anemia 1,245-1,410 ms. After blood transfusions, values dropped to 1,123-1,288 ms. The mean value in moderate and severe anemic cases was 275 ms higher than in controls (95% CI 210-341 ms, p < 0.0001), and after blood transfusion it was comparable to controls (3 ms, 95% CI -62 to 68 ms, p = 0.934). A 1,450-ms cut-off would have identified all cases in need of blood transfusion with no false-positive cases. CONCLUSIONS Our findings indicate a potential for this new MRI method to improve the prediction of fetal anemia as a supplement to ultrasound.
Collapse
Affiliation(s)
- Ditte S Jørgensen
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark, .,Faculty of Medicine and Health Sciences, University of Copenhagen, Copenhagen, Denmark,
| | - Niels Vejlstrup
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Line Rode
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Charlotte K Ekelund
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christopher K Macgowan
- Departments of Medical Biophysics and Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lisa N Jensen
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lone Nikoline Nørgaard
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sharon Portnoy
- Departments of Medical Biophysics and Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mike Seed
- Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Division of Paediatric Cardiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Karin Sundberg
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Søgaard
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann Tabor
- Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Faculty of Medicine and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Goolaub DS, Roy CW, Schrauben E, Sussman D, Marini D, Seed M, Macgowan CK. Multidimensional fetal flow imaging with cardiovascular magnetic resonance: a feasibility study. J Cardiovasc Magn Reson 2018; 20:77. [PMID: 30486832 PMCID: PMC6264058 DOI: 10.1186/s12968-018-0498-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To image multidimensional flow in fetuses using golden-angle radial phase contrast cardiovascular magnetic resonance (PC-CMR) with motion correction and retrospective gating. METHODS A novel PC-CMR method was developed using an ungated golden-angle radial acquisition with continuously incremented velocity encoding. Healthy subjects (n = 5, 27 ± 3 years, males) and pregnant females (n = 5, 34 ± 2 weeks gestation) were imaged at 3 T using the proposed sequence. Real-time reconstructions were first performed for retrospective motion correction and cardiac gating (using metric optimized gating, MOG). CINE reconstructions of multidimensional flow were then performed using the corrected and gated data. RESULTS In adults, flows obtained using the proposed method agreed strongly with those obtained using a conventionally gated Cartesian acquisition. Across the five adults, bias and limits of agreement were - 1.0 cm/s and [- 5.1, 3.2] cm/s for mean velocities and - 1.1 cm/s and [- 6.5, 4.3] cm/s for peak velocities. Temporal correlation between corresponding waveforms was also high (R~ 0.98). Calculated timing errors between MOG and pulse-gating RR intervals were low (~ 20 ms). First insights into multidimensional fetal blood flows were achieved. Inter-subject consistency in fetal descending aortic flows (n = 3) was strong with an average velocity of 27.1 ± 0.4 cm/s, peak systolic velocity of 70.0 ± 1.8 cm/s and an intra-class correlation coefficient of 0.95 between the velocity waveforms. In one fetal case, high flow waveform reproducibility was demonstrated in the ascending aorta (R = 0.97) and main pulmonary artery (R = 0.99). CONCLUSION Multidimensional PC-CMR of fetal flow was developed and validated, incorporating retrospective motion compensation and cardiac gating. Using this method, the first quantification and visualization of multidimensional fetal blood flow was achieved using CMR.
Collapse
Affiliation(s)
- Datta Singh Goolaub
- Medical Biophysics, University of Toronto, Toronto, ON Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON Canada
| | | | - Eric Schrauben
- Translational Medicine, Hospital for Sick Children, Toronto, ON Canada
| | - Dafna Sussman
- Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael’s Hospital, Toronto, ON Canada
| | - Davide Marini
- Division of Pediatric Cardiology, Hospital for Sick Children, Toronto, ON Canada
| | - Mike Seed
- Division of Pediatric Cardiology, Hospital for Sick Children, Toronto, ON Canada
- Paediatrics, University of Toronto, Toronto, ON Canada
| | - Christopher K. Macgowan
- Medical Biophysics, University of Toronto, Toronto, ON Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
41
|
Rodríguez-Soto AE, Abdulmalik O, Langham MC, Schwartz N, Lee H, Wehrli FW. T 2 -prepared balanced steady-state free precession (bSSFP) for quantifying whole-blood oxygen saturation at 1.5T. Magn Reson Med 2018; 79:1893-1900. [PMID: 28718522 PMCID: PMC5771982 DOI: 10.1002/mrm.26835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To establish a calibration equation to convert human blood T2 to the full range of oxygen saturation levels (HbO2 ) and physiologic hematocrit (Hct) values using a T2 -prepared balanced steady-state free precession sequence (T2 -SSFP) at 1.5T. METHODS Blood drawn from 10 healthy donors (29.1 ± 3.9 years old) was prepared into samples of varying HbO2 and Hct (n = 79), and imaged using T2 -SSFP sequence at 37°C and interrefocusing interval τ180 = 12 ms. The relationship between blood T2 , HbO2 , and Hct was established based on the model R2=R2,plasma+Hct (R2,RBC-R2,plasma)+k·Hct·(1-Hct)·(1-HbO2)2. Measured R2 and HbO2 levels were fit by the model yielding values of R2,plasma, R2,RBC, and k. T2 -SSFP and the established calibration equation were applied to extract HbO2 at the superior sagittal sinus (SSS) in vivo and were compared with susceptometry-based oximetry. RESULTS Constants derived from the fit were: k = 74.2 [s-1 ], R2,plasma = 1.5 [s-1 ], R2,RBC = 11.6 [s-1 ], the R2 of the fit was 0.95. Average HbO2 at the SSS in seven healthy volunteers was 65% ± 7% and 66% ± 7% via T2 - and susceptometry-based oximetry, respectively. Bland-Altman analysis indicated agreement between the two oximetric methods with no significant bias. CONCLUSION The calibration constants presented here should ensure improved accuracy for whole-blood oximetry based on T2 -SSFP at 1.5T. Magn Reson Med 79:1893-1900, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ana E. Rodríguez-Soto
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Michael C. Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Nadav Schwartz
- Maternal and Child Health Research Program, Department of OBGYN, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hyunyeol Lee
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Felix W. Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
42
|
Duan AQ, Darby JRT, Soo JY, Lock MC, Zhu MY, Flynn LV, Perumal SR, Macgowan CK, Selvanayagam JB, Morrison JL, Seed M. Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. Am J Physiol Regul Integr Comp Physiol 2017; 317:R780-R792. [PMID: 29351431 DOI: 10.1152/ajpregu.00273.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phase-contrast cine MRI (PC-MRI) is the gold-standard noninvasive technique for measuring vessel blood flow and has previously been applied in the human fetal circulation. We aimed to assess the feasibility of using PC-MRI to define the distribution of the fetal circulation in sheep. Fetuses were catheterized at 119-120 days of gestation (term, 150 days) and underwent MRI at ∼123 days of gestation under isoflurane anesthesia, ventilated at a FIO2 of 1.0. PC-MRI was performed using a fetal arterial blood pressure catheter signal for cardiac triggering. Blood flows were measured in the major fetal vessels, including the main pulmonary artery, ascending and descending aorta, superior vena cava, ductus arteriosus, left and right pulmonary arteries, umbilical vein, ductus venosus, and common carotid artery and were indexed to estimated fetal weight. The combined ventricular output, pulmonary blood flow, and flow across the foramen ovale were calculated from vessel flows. Intraobserver and interobserver agreement and reproducibility was assessed. Blood flow measurements were successfully obtained in 61 out of 74 vessels (82.4%) interrogated in 9 fetuses. There was good intraobserver [R = 0.998, P < 0.0001; intraclass correlation (ICC) = 0.997] and interobserver agreement (R = 0.996, P < 0.0001; ICC = 0.996). Repeated MRI measurements showed good reproducibility (R = 0.989, P = 0.0002; ICC = 0.990). We conclude that PC-MRI using fetal catheters for gating triggers is feasible in the major vessels of late gestation fetal sheep. This approach may provide a useful new tool for assessing the circulatory characteristics of fetal sheep models of human disease, including fetal growth restriction and congenital heart disease.
Collapse
Affiliation(s)
- An Qi Duan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Meng Yuan Zhu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucy V Flynn
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging, and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, Adelaide, Australia
| | - Christopher K Macgowan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mike Seed
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Stout JN, Tisdall MD, McDaniel P, Gagoski B, Bolar DS, Grant PE, Adalsteinsson E. Assessing the effects of subject motion on T 2 relaxation under spin tagging (TRUST) cerebral oxygenation measurements using volume navigators. Magn Reson Med 2017; 78:2283-2289. [PMID: 28247427 PMCID: PMC5573669 DOI: 10.1002/mrm.26616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Subject motion may cause errors in estimates of blood T2 when using the T2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. METHODS The effects of integrated vNavs on TRUST-based T2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. RESULTS vNavs negligibly affected venous blood T2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. CONCLUSION Motion during TRUST causes an overestimate of T2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jeffrey N. Stout
- Harvard-MIT Health Sciences and Technology, Institute for Medical
Engineering & Science, MIT, Cambridge, MA, United States
| | - M. Dylan Tisdall
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts
General Hospital, Charlestown, MA, United States
- Radiology, Harvard Medical School, Boston, MA, United States
| | - Patrick McDaniel
- Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, United States
| | - Borjan Gagoski
- Department of Radiology, Boston Children’s Hospital, Boston
MA, United States
| | - Divya S. Bolar
- Department of Radiology, Massachusetts General Hospital, Boston, MA,
United States
| | - Patricia Ellen Grant
- Department of Radiology, Boston Children’s Hospital, Boston
MA, United States
- Department of Pediatrics, Boston Children’s Hospital, Boston
MA, United States
| | - Elfar Adalsteinsson
- Harvard-MIT Health Sciences and Technology, Institute for Medical
Engineering & Science, MIT, Cambridge, MA, United States
- Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, United States
| |
Collapse
|
44
|
Varghese J, Potter LC, LaFountain R, Pan X, Raman SV, Ahmad R, Simonetti OP. CMR-based blood oximetry via multi-parametric estimation using multiple T2 measurements. J Cardiovasc Magn Reson 2017; 19:88. [PMID: 29121971 PMCID: PMC5680788 DOI: 10.1186/s12968-017-0403-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/18/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Measurement of blood oxygen saturation (O2 saturation) is of great importance for evaluation of patients with many cardiovascular diseases, but currently there are no established non-invasive methods to measure blood O2 saturation in the heart. While T2-based CMR oximetry methods have been previously described, these approaches rely on technique-specific calibration factors that may not generalize across patient populations and are impractical to obtain in individual patients. We present a solution that utilizes multiple T2 measurements made using different inter-echo pulse spacings. These data are jointly processed to estimate all unknown parameters, including O2 saturation, in the Luz-Meiboom (L-M) model. We evaluated the accuracy of the proposed method against invasive catheterization in a porcine hypoxemia model. METHODS Sufficient data diversity to estimate the various unknown parameters of the L-M model, including O2 saturation, was achieved by acquiring four T2 maps, each at a different τ 180 (12, 15, 20, and 25 ms). Venous and arterial blood T2 values from these maps, together with hematocrit and arterial O2 saturation, were jointly processed to derive estimates for venous O2 saturation and other nuisance parameters in the L-M model. The technique was validated by a progressive graded hypoxemia experiment in seven pigs. CMR estimates of O2 saturation in the right ventricle were compared against a reference O2 saturation obtained by invasive catheterization from the right atrium in each pig, at each hypoxemia stage. O2 saturation derived from the proposed technique was also compared against the previously described method of applying a global calibration factor (K) to the simplified L-M model. RESULTS Venous O2 saturation results obtained using the proposed CMR oximetry method exhibited better agreement (y = 0.84× + 12.29, R2 = 0.89) with invasive blood gas analysis when compared to O2 saturation estimated by a global calibration method (y = 0.69× + 27.52, R2 = 0.73). CONCLUSIONS We have demonstrated a novel, non-invasive method to estimate O2 saturation using quantitative T2 mapping. This technique may provide a valuable addition to the diagnostic utility of CMR in patients with congenital heart disease, heart failure, and pulmonary hypertension.
Collapse
Affiliation(s)
- Juliet Varghese
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Lee C. Potter
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH USA
| | - Richard LaFountain
- Department of Health and Exercise Science, The Ohio State University, Columbus, OH USA
| | - Xueliang Pan
- Center for Biostatistics, The Ohio State University, Columbus, OH USA
| | - Subha V. Raman
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Rizwan Ahmad
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH USA
| | - Orlando P. Simonetti
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH USA
| |
Collapse
|
45
|
Rivera-Rivera LA, Schubert T, Knobloch G, Turski PA, Wieben O, Reeder SB, Johnson KM. Comparison of ferumoxytol-based cerebral blood volume estimates using quantitative R 1 and R2* relaxometry. Magn Reson Med 2017; 79:3072-3081. [PMID: 29096054 DOI: 10.1002/mrm.26975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/24/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Cerebral perfusion is commonly assessed clinically with dynamic susceptibility contrast MRI using a bolus injection of gadolinium-based contrast agents, resulting in semi-quantitative values of cerebral blood volume (CBV). Steady-state imaging with ferumoxytol allows estimation of CBV with the potential for higher precision and accuracy. Prior CBV studies have focused on the signal disrupting T2* effects, but ferumoxytol also has high signal-enhancing T1 relaxivity. The purpose of this study was to investigate and compare CBV estimation using T1 and T2*, with the goal of understanding the contrast mechanisms and quantitative differences. METHODS Changes in R1 (1/T1 ) and R2* (1/ T2*) were measured after the administration of ferumoxytol using high-resolution quantitative approaches. Images were acquired at 3.0T and R1 was estimated from an ultrashort echo time variable flip angle approach, while R2* was estimated from a multiple gradient echo sequence. Twenty healthy volunteers were imaged at two doses. CBV was derived and compared from relaxometry in gray and white matter using different approaches. RESULTS R1 measurements showed a linear dependence of blood R1 with respect to dose in large vessels, in contrast to the nonlinear dose-dependence of blood R2* estimates. In the brain parenchyma, R2* showed linear dose-dependency whereas R1 showed nonlinearity. CBV calculations based on R2* changes in tissue and ferumoxytol blood concentration estimates based on R1 relaxivity showed the lowest variability in our cohort. CONCLUSIONS CBV measurements were successfully derived using a combined approach of R1 and R2* relaxometry. Magn Reson Med 79:3072-3081, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Clinic of Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Gesine Knobloch
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Departments of Biomedical Engineering, Medicine and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Patrick A Turski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Departments of Biomedical Engineering, Medicine and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
46
|
Portnoy S, Milligan N, Seed M, Sled JG, Macgowan CK. Human umbilical cord blood relaxation times and susceptibility at 3 T. Magn Reson Med 2017; 79:3194-3206. [DOI: 10.1002/mrm.26978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/01/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Sharon Portnoy
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Natasha Milligan
- Department of Obstetrics & Gynecology; Mount Sinai Hospital; Toronto Ontario Canada
| | - Mike Seed
- Division of Cardiology; Hospital for Sick Children; Toronto Ontario Canada
- Department of Pediatrics and Diagnostic Imaging; University of Toronto; Toronto Ontario Canada
| | - John G. Sled
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
- Department of Obstetrics and Gynecology; University of Toronto; Toronto Ontario Canada
| | - Christopher K. Macgowan
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
- Division of Translational Medicine; Hospital for Sick Children; Toronto Ontario Canada
- Labatt Family Heart Centre; Hospital for Sick Children; Toronto Ontario Canada
| |
Collapse
|