1
|
Mayer T, Scholle L, Foerster L, Schneider I, Stoltenburg‐Didinger G, Delank K, Kendzierski T, Koelsch A, Kleeberg K, Kraya T, Barba L, Naegel S, Schänzer A, Otto M, Mensch A. Alpha-Synuclein as a Potential Biomarker for Inclusion Body Myositis in Blood and Muscle. Neuropathol Appl Neurobiol 2025; 51:e70019. [PMID: 40384347 PMCID: PMC12086613 DOI: 10.1111/nan.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025]
Abstract
AIMS Diagnosis of inclusion body myositis (IBM) is difficult and currently based on a combination of clinical and (immuno)histological findings. Biomarkers facilitating the diagnostic process are needed. Alpha-synuclein (αSN) aggregates are a known histological feature of IBM, but there is a lack of information on their diagnostic relevance. Furthermore, serum αSN concentrations in IBM have not been investigated. METHODS Immunohistochemical staining for αSN was performed on 63 biopsies (19 IBM, 21 other inflammatory myopathies, 20 other myopathies and 3 healthy controls), and αSN reactive fibres were quantified. The serum concentration of αSN was determined by ELISA in 156 serum samples (11 IBM, 25 other inflammatory myopathies, 53 hereditary myopathies, 30 mitochondriopathies and 37 healthy controls). RESULTS The proportion of fibres with αSN immunoreactivity was significantly higher in IBM compared to all groups (p < 0.001) and discriminated IBM against all other neuromuscular disorders with a sensitivity of 79% and a specificity of 85%, which further improved when only non-regenerating fibres were examined. In serum, αSN concentrations in IBM were generally not different from healthy controls. However, serum concentrations were inversely correlated with disease duration (r = -0.62, p = 0.04) and positively correlated with the IBM functional rating scale (r = 0.74, p = 0.01). Consequently, stratification according to these clinical parameters showed significantly lower serum αSN concentrations in late-stage, more severely affected patients. CONCLUSIONS αSN reactivity may serve as an additional immunohistochemical marker for IBM diagnosis. Furthermore, this study indicates that αSN serum concentrations decrease with disease duration and clinical deterioration. Therefore, serum αSN may be provisionally considered a monitoring biomarker in IBM, pending further studies.
Collapse
Affiliation(s)
- Tobias Mayer
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
| | - Leila Scholle
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
| | - Laura Foerster
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
| | - Ilka Schneider
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
- Department of NeurologySt. Georg Hospital LeipzigLeipzigGermany
| | - Gisela Stoltenburg‐Didinger
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
- Institute of Cell and Neurobiology, Charité University Medicine BerlinBerlinGermany
| | - Karl‐Stefan Delank
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
- Department of Orthopedics, Trauma and Reconstructive SurgeryUniversity Medicine HalleHalle (Saale)Germany
| | | | - Anna Koelsch
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
| | - Kathleen Kleeberg
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
| | - Torsten Kraya
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
- Department of NeurologySt. Georg Hospital LeipzigLeipzigGermany
| | - Lorenzo Barba
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
| | - Steffen Naegel
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
- Department of NeurologyAlfried Krupp Krankenhaus RüttenscheidEssenGermany
| | - Anne Schänzer
- Institute of NeuropathologyJustus‐Liebig UniversityGiessenGermany
- Translational Neuroscience Network Giessen (TNNG)Justus Liebig University GiessenGiessenGermany
| | - Markus Otto
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
| | - Alexander Mensch
- Department of NeurologyUniversity Medicine HalleHalle (Saale)Germany
| |
Collapse
|
2
|
Ikenaga C, Wilson AB, Irwin KE, Peethambaran Mallika A, Kilgore C, Sinha IR, Michelle EH, Ling JP, Wong PC, Lloyd TE. Loss of TDP-43 Splicing Repression Occurs in Myonuclei of Inclusion Body Myositis Patients. Ann Neurol 2025; 97:629-641. [PMID: 39757935 DOI: 10.1002/ana.27167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Inclusion body myositis (IBM) is an idiopathic inflammatory myopathy with muscle pathology characterized by endomysial inflammation, rimmed vacuoles, and cytoplasmic mislocalization of transactive response DNA-binding protein 43 (TDP-43). We aimed to determine whether loss of TDP-43 splicing repression led to the production of "cryptic peptides" that could be detected in muscle biopsies as a useful biomarker for IBM. METHODS We used an antisera against a neoepitope encoded by a TDP-43-dependent cryptic exon within hepatoma-derived growth factor-like protein 2 (HDGFL2) for immunohistochemical analysis on muscle biopsy samples of 122 patients with IBM, 181 disease controls, and 16 healthy controls without abnormal muscle pathology. In situ hybridization was also utilized to detect the localization of cryptic HDGFL2 transcripts. RESULTS We found cryptic HDGFL2 peptides localized within myonuclei from muscle biopsies in 79 of 122 patients with IBM (65%), and this staining correlated with TDP-43 depletion. In contrast, cryptic HDGFL2 immunoreactivity was absent in 197 muscle biopsies from a variety of disease controls, except for 2 patients with vacuolar myopathies. Notably, we show that cryptic HDGFL2 transcripts are accompanied by the detection of cryptic HDGFL2 in muscle fibers of IBM without rimmed vacuoles and TDP-43 aggregates. INTERPRETATION Together, our findings establish that loss of TDP-43 splicing repression occurs in myonuclei of IBM skeletal muscle and suggest that detection of cryptic peptides in muscle biopsies may be a useful biomarker. We suggest that a therapeutic strategy designed to restore TDP-43 function should be considered to attenuate the degeneration of skeletal muscle in this devastating disease. ANN NEUROL 2025;97:629-641.
Collapse
Affiliation(s)
- Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew B Wilson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katherine E Irwin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Collin Kilgore
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Irika R Sinha
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth H Michelle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Naddaf E, Nguyen TKO, Watzlawik JO, Gao H, Hou X, Fiesel FC, Mandrekar J, Kokesh E, Harmsen WS, Lanza IR, Springer W, Trushina E. NLRP3 Inflammasome Activation and Altered Mitophagy Are Key Pathways in Inclusion Body Myositis. J Cachexia Sarcopenia Muscle 2025; 16:e13672. [PMID: 39723571 DOI: 10.1002/jcsm.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM. METHODS The study population consisted of 38 IBM patients and 22 age- and sex-matched controls without a myopathy. Mean age was 62.9 years (SD = 9) in IBM group and 59.7 (10) in controls. Bulk RNA sequencing, Meso Scale Discovery electrochemiluminescence (ECL), western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. RESULTS We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome being the most upregulated pathway on RNA sequencing, along with increased expression of NLRP3 and ASC proteins in IBM group. NLRP3 RNA levels most strongly correlated with TLR7 (correlation coefficient ρ = 0.91) and complement activation-related genes, and inversely correlated with several mitochondria-related genes among others. On muscle histopathology, there was increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibres. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 inflammasome activation. Herein, we showed altered mitophagy, as witnessed by the elevated levels of p-S65-Ubiquitin, a mitophagy marker, in muscle lysates from IBM patients compared to controls (median of 114.3 vs. 81.25 ECL units, p = 0.005). The p-S65-Ubiquitin levels were most significantly elevated in IBM males compared to male controls (136 vs. 83.5 ECL units; p = 0.013), whereas IBM females had milder nonsignificant elevation compared to female controls (97.25 vs. 69 ECL units, p = 0.31). On muscle histopathology, p-S65-Ubiquitin aggregates accumulated in muscle fibres that were mostly Type 2 and devoid of cytochrome-c-oxidase reactivity. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes (males: ρ = 0.48, females: ρ = 0.54) but with loss of muscle strength, as reflected by the manual motor test score, only in males (males: ρ = 0.62, females: ρ = -0.14). Lastly, we identified sex-specific molecular pathways in IBM. Females had upregulation of pathways related to response to stress, which could conceivably offset some of the pathomechanisms of IBM, while males had upregulation of pathways related to cell adhesion and migration. CONCLUSIONS There is activation of the NLRP3 inflammasome in IBM, along with altered mitophagy, particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.
Collapse
Affiliation(s)
- Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - William S Harmsen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Bai D, Deng F, Jia Q, Ou K, Wang X, Hou J, Zhu L, Guo M, Yang S, Jiang G, Li S, Li X, Yin P. Pathogenic TDP-43 accelerates the generation of toxic exon1 HTT in Huntington's disease knock-in mice. Aging Cell 2024; 23:e14325. [PMID: 39185703 PMCID: PMC11634733 DOI: 10.1111/acel.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in exon1 of the HTT gene that encodes a polyglutamine tract in huntingtin protein. The formation of HTT exon1 fragments with an expanded polyglutamine repeat has been implicated as a key step in the pathogenesis of HD. It was reported that the CAG repeat length-dependent aberrant splicing of exon1 HTT results in a short polyadenylated mRNA that is translated into an exon1 HTT protein. Under normal conditions, TDP-43 is predominantly found in the nucleus, where it regulates gene expression. However, in various pathological conditions, TDP-43 is mislocalized in the cytoplasm. By investigating HD knock-in mice, we explore whether the pathogenic TDP-43 in the cytoplasm contributes to HD pathogenesis, through expressing the cytoplasmic TDP-43 without nuclear localization signal. We found that the cytoplasmic TDP-43 is increased in the HD mouse brain and that its mislocalization could deteriorate the motor and gait behavior. Importantly, the cytoplasmic TDP-43, via its binding to the intron1 sequence (GU/UG)n of the mouse Htt pre-mRNA, promotes the transport of exon1-intron1 Htt onto ribosome, resulting in the aberrant generation of exon1 Htt. Our findings suggest that cytoplasmic TDP-43 contributes to HD pathogenesis via its binding to and transport of nuclear un-spliced mRNA to the ribosome for the generation of a toxic protein product.
Collapse
Affiliation(s)
- Dazhang Bai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongSichuanChina
| | - Fuyu Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical DevicesIn Vitro Diagnostic Reagents Testing DepartmentShenzhenGuangdongChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Kaili Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Mingwei Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical CollegeInstitute of Neurological Diseases, North Sichuan Medical CollegeNanchongSichuanChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of non‐human Primate Research, Guangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Lynch EM, Pittman S, Daw J, Ikenaga C, Chen S, Dhavale DD, Jackrel ME, Ayala YM, Kotzbauer P, Ly CV, Pestronk A, Lloyd TE, Weihl CC. Seeding-competent TDP-43 persists in human patient and mouse muscle. Sci Transl Med 2024; 16:eadp5730. [PMID: 39602508 PMCID: PMC11812673 DOI: 10.1126/scitranslmed.adp5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
TAR DNA binding protein 43 (TDP-43) is an RNA binding protein that accumulates as aggregates in the central nervous systems of some patients with neurodegenerative diseases. However, TDP-43 aggregation is also a sensitive and specific pathologic feature found in a family of degenerative muscle diseases termed inclusion body myopathy. TDP-43 aggregates from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia brain lysates may serve as self-templating aggregate seeds in vitro and in vivo, supporting a prion-like spread from cell to cell. Whether a similar process occurs in patient muscle is not clear. We developed a mouse model of inducible, muscle-specific cytoplasmic localized TDP-43. These mice develop muscle weakness with robust accumulation of insoluble and phosphorylated sarcoplasmic TDP-43, leading to eosinophilic inclusions, altered proteostasis, and changes in TDP-43-related RNA processing that resolve with the removal of doxycycline. Skeletal muscle lysates from these mice also have seeding-competent TDP-43, as determined by a FRET-based biosensor, that persists for weeks upon resolution of TDP-43 aggregate pathology. Human muscle biopsies with TDP-43 pathology also contain TDP-43 aggregate seeds. Using lysates from muscle biopsies of patients with sporadic inclusion body myositis (IBM), immune-mediated necrotizing myopathy (IMNM), and ALS, we found that TDP-43 seeding capacity was specific to IBM. TDP-43 seeding capacity anticorrelated with TDP-43 aggregate and vacuole abundance. These data support that TDP-43 aggregate seeds are present in IBM skeletal muscle and represent a unique TDP-43 pathogenic species not previously appreciated in human muscle disease.
Collapse
Affiliation(s)
- Eileen M. Lynch
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Sara Pittman
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Jil Daw
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, USA, 21205
| | - Sheng Chen
- Department of Chemistry, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Dhruva D. Dhavale
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Meredith E. Jackrel
- Department of Chemistry, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Yuna M. Ayala
- Department of Biochemistry and Molecular Biology, Saint Louis University; St Louis, MO, USA, 63130
| | - Paul Kotzbauer
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Cindy V. Ly
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Alan Pestronk
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| | - Thomas E. Lloyd
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Conrad C. Weihl
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA, 63130
| |
Collapse
|
6
|
Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sci 2024; 14:1132. [PMID: 39595895 PMCID: PMC11591745 DOI: 10.3390/brainsci14111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
TDP-43 is a ubiquitous nuclear protein that plays a central role in neurodegenerative disorders collectively known as TDP-43 proteinopathies. Under physiological conditions, TDP-43 is primarily localized to the nucleus, but in its pathological form it aggregates in the cytoplasm, contributing to neuronal death. Given its association with numerous diseases, particularly ALS and FTLD, the mechanisms underlying TDP-43 aggregation and its impact on neuronal function have been extensively investigated. However, little is still known about the spreading of this pathology from cell to cell. Recent research has unveiled the possibility that TDP-43 may possess prion-like properties. Specifically, misfolded TDP-43 aggregates can act as templates inducing conformational changes in native TDP-43 molecules and propagating the misfolded state across neural networks. This review summarizes the mounting and most recent evidence from in vitro and in vivo studies supporting the prion-like hypothesis and its underlying mechanisms. The prion-like behavior of TDP-43 has significant implications for diagnostics and therapeutics. Importantly, emerging strategies such as small molecule inhibitors, immunotherapies, and gene therapies targeting TDP-43 propagation offer promising avenues for developing effective treatments. By elucidating the mechanisms of TDP-43 spreading, we therefore aim to pave the way for novel therapies for TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Pongrácová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
7
|
Daniel E, Smith IC, Sampaio ML, Melkus G, Hamilton LE, Bourque PR, Warman-Chardon J. Current biomarkers in inclusion body myositis. J Neuromuscul Dis 2024; 11:1165-1179. [PMID: 39967427 DOI: 10.1177/22143602241286712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Inclusion body myositis (IBM) is an idiopathic muscle disorder primarily affecting adults above the age of 50. IBM is characterized by weakness in the knee extensor and deep finger flexor muscles due to muscle atrophy and fibroadipose replacement. Dynamometry and manual muscle testing are commonly used to assess patient muscle strength, while magnetic resonance imaging and electromyography studies identify the patterns of muscle atrophy and motor unit potentials. Although the underlying pathophysiological mechanisms of IBM are still unknown, common histopathological markers include rimmed vacuoles and inclusions. The immune system is also largely implicated in pathogenesis, as skeletal muscle in IBM overexpresses major histocompatibility complex I (MHC-I), and cluster of differentiation (CD) 8+ T-cells, and features endomysial inflammation. Antibodies to the cytosolic 5'-nucleotidase 1A (cN1A) protein have been associated with IBM but have low sensitivity and specificity. As many classic features of IBM present only in advanced stages of disease, there are substantial challenges to the diagnosis and monitoring of IBM progression in its early stages. Identifying early diagnostic biomarkers and new biomarker signatures associated with IBM disease progression is necessary for clinical trial readiness.
Collapse
Affiliation(s)
- Eden Daniel
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ian C Smith
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marcos L Sampaio
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Radiology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gerd Melkus
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, Radiology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Leslie E Hamilton
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Pathology & Laboratory Medicine, The Ottawa Hospital, Ottawa, Ontario Canada
- Department of Pathology & Laboratory Medicine, Children's Hospital of Eastern Ontario, Ontario, Canada
| | - Pierre R Bourque
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Neurology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Jodi Warman-Chardon
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, Neurology, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario and Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Chevalier E, Audrain M, Ratnam M, Ollier R, Fuchs A, Piorkowska K, Pfeifer A, Kosco-Vilbois M, Seredenina T, Afroz T. Targeting the TDP-43 low complexity domain blocks spreading of pathology in a mouse model of ALS/FTD. Acta Neuropathol Commun 2024; 12:156. [PMID: 39363348 PMCID: PMC11448013 DOI: 10.1186/s40478-024-01867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Abnormal cytoplasmic localization and accumulation of pathological transactive response DNA binding protein of 43 kDa (TDP-43) underlies several devastating diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). A key element is the correlation between disease progression and spatio-temporal propagation of TDP-43-mediated pathology in the central nervous system. Several lines of evidence support the concept of templated aggregation and cell to cell spreading of pathological TDP-43. To further investigate this mechanism in vivo, we explored the efficacy of capturing and masking the seeding-competent region of extracellular TDP-43 species. For this, we generated a novel monoclonal antibody (mAb), ACI-6677, that targets the pathogenic protease-resistant amyloid core of TDP-43. ACI-6677 has a picomolar binding affinity for TDP-43 and is capable of binding to all C-terminal TDP-43 fragments. In vitro, ACI-6677 inhibited TDP-43 aggregation and boosted removal of pathological TDP-43 aggregates by phagocytosis. When injecting FTLD-TDP brain extracts unilaterally in the CamKIIa-hTDP-43NLSm mouse model, ACI-6677 significantly limited the induction of phosphorylated TDP-43 (pTDP-43) inclusions. Strikingly, on the contralateral side, the mAb significantly prevented pTDP-43 inclusion appearance exemplifying blocking of the spreading process. Taken together, these data demonstrate for the first time that an immunotherapy targeting the protease-resistant amyloid core of TDP-43 has the potential to restrict spreading, substantially slowing or stopping progression of disease.
Collapse
Affiliation(s)
- Elodie Chevalier
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Mickael Audrain
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Monisha Ratnam
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Romain Ollier
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Aline Fuchs
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Kasia Piorkowska
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | | | - Tamara Seredenina
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland.
| | - Tariq Afroz
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Meer E, Ahmad M, Grob S, Winn BJ. Bilateral Facial Palsy: A Rare Presenting Symptom for Inclusion Body Myositis. Ophthalmic Plast Reconstr Surg 2024; 40:e107-e109. [PMID: 38319192 DOI: 10.1097/iop.0000000000002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Inclusion body myositis is a common type of inflammatory myopathy among populations over the age of 50 years, classically presenting with weakness and atrophy of the forearms and quadriceps. While a third of patients may eventually present with mild facial weakness, findings of ptosis, facial palsy, or involvement of extraocular muscles are rarely, if ever, seen. The authors describe a unique case of inclusion body myositis in which a patient initially presented with bilateral severe facial palsy and exposure keratitis but minimal limb weakness. While midface weakness, unilateral lagophthalmos, and ptosis have been documented in one reported case, key presenting symptoms of bilateral facial palsy and symmetric paralytic lagophthalmos with corneal exposure have not been presented before. Therefore, this case serves as an important reminder to consider the inclusion body myositis in the differential diagnosis of bilateral facial palsy.
Collapse
Affiliation(s)
- Elana Meer
- Department of Ophthalmology, University of California, San Francisco, California, U.S.A
| | - Meleha Ahmad
- Department of Ophthalmology, University of California, San Francisco, California, U.S.A
- Division of Oculofacial Plastic and Orbital Surgery, Department of Ophthalmology, University of California, San Francisco, California, U.S.A
| | - Seanna Grob
- Department of Ophthalmology, University of California, San Francisco, California, U.S.A
- Division of Oculofacial Plastic and Orbital Surgery, Department of Ophthalmology, University of California, San Francisco, California, U.S.A
| | - Bryan J Winn
- Department of Ophthalmology, University of California, San Francisco, California, U.S.A
- Division of Oculofacial Plastic and Orbital Surgery, Department of Ophthalmology, University of California, San Francisco, California, U.S.A
| |
Collapse
|
10
|
Naddaf E, Nguyen TKO, Watzlawik JO, Gao H, Hou X, Fiesel FC, Mandrekar J, Kokesh E, Harmsen WS, Lanza IR, Springer W, Trushina E. NLRP3 inflammasome activation and altered mitophagy are key pathways in inclusion body myositis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.15.24308845. [PMID: 38947067 PMCID: PMC11213039 DOI: 10.1101/2024.06.15.24308845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. Inflammation and mitochondrial dysfunction are the most common histopathological findings. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM patients, highlighting sex differences. Methods We included 38 IBM patients and 22 age- and sex-matched controls without myopathy. Bulk RNA sequencing, Meso Scale Discovery ELISA, western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. Results We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome pathway being the most upregulated. On muscle histopathology, there is increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibers. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 activation. In the IBM muscle samples, we showed altered mitophagy, most significantly in males, with elevated levels of p-S65-Ubiquitin, a mitophagy marker. Furthermore, p-S65-Ubiquitin aggregates accumulated in muscle fibers that were mostly type 2 and devoid of cytochrome-c-oxidase reactivity. Type 2 muscle fibers are known to be more prone to mitochondrial dysfunction. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes but with loss of in muscle strength only in males. Finally, we identified sex-specific molecular pathways in IBM, with females having activation of pathways that could offset some of the pathomechanisms of IBM. Conclusions NLRP3 inflammasome is activated in IBM, along with altered mitophagy particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.
Collapse
Affiliation(s)
- Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William S. Harmsen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ian R. Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Zibold J, Lessard LER, Picard F, da Silva LG, Zadorozhna Y, Streichenberger N, Belotti E, Osseni A, Emerit A, Errazuriz-Cerda E, Michel-Calemard L, Menassa R, Coudert L, Wiessner M, Stucka R, Klopstock T, Simonetti F, Hutten S, Nonaka T, Hasegawa M, Strom TM, Bernard E, Ollagnon E, Urtizberea A, Dormann D, Petiot P, Schaeffer L, Senderek J, Leblanc P. The new missense G376V-TDP-43 variant induces late-onset distal myopathy but not amyotrophic lateral sclerosis. Brain 2024; 147:1768-1783. [PMID: 38079474 PMCID: PMC11068115 DOI: 10.1093/brain/awad410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 05/04/2024] Open
Abstract
TAR DNA binding protein of 43 kDa (TDP-43)-positive inclusions in neurons are a hallmark of several neurodegenerative diseases including familial amyotrophic lateral sclerosis (fALS) caused by pathogenic TARDBP variants as well as more common non-Mendelian sporadic ALS (sALS). Here we report a G376V-TDP-43 missense variant in the C-terminal prion-like domain of the protein in two French families affected by an autosomal dominant myopathy but not fulfilling diagnostic criteria for ALS. Patients from both families presented with progressive weakness and atrophy of distal muscles, starting in their fifth to seventh decade. Muscle biopsies revealed a degenerative myopathy characterized by accumulation of rimmed (autophagic) vacuoles, disruption of sarcomere integrity and severe myofibrillar disorganization. The G376V variant altered a highly conserved amino acid residue and was absent in databases on human genome variation. Variant pathogenicity was supported by in silico analyses and functional studies. The G376V mutant increased the formation of cytoplasmic TDP-43 condensates in cell culture models, promoted assembly into high molecular weight oligomers and aggregates in vitro, and altered morphology of TDP-43 condensates arising from phase separation. Moreover, the variant led to the formation of cytoplasmic TDP-43 condensates in patient-derived myoblasts and induced abnormal mRNA splicing in patient muscle tissue. The identification of individuals with TDP-43-related myopathy, but not ALS, implies that TARDBP missense variants may have more pleiotropic effects than previously anticipated and support a primary role for TDP-43 in skeletal muscle pathophysiology. We propose to include TARDBP screening in the genetic work-up of patients with late-onset distal myopathy. Further research is warranted to examine the precise pathogenic mechanisms of TARDBP variants causing either a neurodegenerative or myopathic phenotype.
Collapse
Affiliation(s)
- Julia Zibold
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Lola E R Lessard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service d’Electroneuromyographie et de pathologies neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France
| | - Flavien Picard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Lara Gruijs da Silva
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU BioCenter, Department Biology II Neurobiology, 82152 Planegg-Martinsried, Germany
- Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yelyzaveta Zadorozhna
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- International PhD Programme (IPP) of the Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nathalie Streichenberger
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Département d’Anatomo-Pathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Edwige Belotti
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Alexis Osseni
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Andréa Emerit
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | | | - Laurence Michel-Calemard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service Biochimie et Biologie Moléculaire, Centre de biologie et pathologie Est, Hospices civils de Lyon, 69677 Bron, France
| | - Rita Menassa
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service Biochimie et Biologie Moléculaire, Centre de biologie et pathologie Est, Hospices civils de Lyon, 69677 Bron, France
| | - Laurent Coudert
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Manuela Wiessner
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Rolf Stucka
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Thomas Klopstock
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich Site, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Francesca Simonetti
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU BioCenter, Department Biology II Neurobiology, 82152 Planegg-Martinsried, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich Site, 81377 Munich, Germany
| | - Saskia Hutten
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tim M Strom
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Emilien Bernard
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
- Service d’Electroneuromyographie et de pathologies neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France
| | - Elisabeth Ollagnon
- Service de Génétique, Neurogénétique et Médecine Prédictive, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| | - Andoni Urtizberea
- Centre de Référence Neuromusculaire, Hôpital Marin—APHP, 64701 Hendaye, France
| | - Dorothee Dormann
- Johannes Gutenberg University (JGU), Faculty of Biology, Institute of Molecular Physiology, 55128 Mainz, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Laurent Schaeffer
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| | - Jan Senderek
- Friedrich-Baur Institute at the Department of Neurology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Pascal Leblanc
- Faculté de Médecine Rockefeller, Institut NeuroMyoGène-PGNM, Université Claude Bernard Lyon, 69008 Lyon, France
| |
Collapse
|
12
|
Văcăraş V, Vulturar R, Chiş A, Damian L. Inclusion body myositis, viral infections, and TDP-43: a narrative review. Clin Exp Med 2024; 24:91. [PMID: 38693436 PMCID: PMC11062973 DOI: 10.1007/s10238-024-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The ubiquitous RNA-processing molecule TDP-43 is involved in neuromuscular diseases such as inclusion body myositis, a late-onset acquired inflammatory myopathy. TDP-43 solubility and function are disrupted in certain viral infections. Certain viruses, high viremia, co-infections, reactivation of latent viruses, and post-acute expansion of cytotoxic T cells may all contribute to inclusion body myositis, mainly in an age-shaped immune landscape. The virally induced senescent, interferon gamma-producing cytotoxic CD8+ T cells with increased inflammatory, and cytotoxic features are involved in the occurrence of inclusion body myositis in most such cases, in a genetically predisposed host. We discuss the putative mechanisms linking inclusion body myositis, TDP-43, and viral infections untangling the links between viruses, interferon, and neuromuscular degeneration could shed a light on the pathogenesis of the inclusion body myositis and other TDP-43-related neuromuscular diseases, with possible therapeutic implications.
Collapse
Affiliation(s)
- Vitalie Văcăraş
- Department of Neurosciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, 43, Victor Babeş St, 400012, Cluj-Napoca, Romania
- Neurology Department of Cluj, County Emergency Hospital, 3-5, Clinicilor St, 400347, Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 6, Pasteur St, 400349, Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babeş-Bolyai, 30, Fântânele St, 400294, Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania
| | - Adina Chiş
- Department of Molecular Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 6, Pasteur St, 400349, Cluj-Napoca, Romania.
- Cognitive Neuroscience Laboratory, University Babeş-Bolyai, 30, Fântânele St, 400294, Cluj-Napoca, Romania.
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania.
| | - Laura Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St, 400497, Cluj-Napoca, Romania
- Department of Rheumatology, Centre for Rare Autoimmune and Autoinflammatory Diseases, Emergency, Clinical County Hospital Cluj, 2-4, Clinicilor St, 400006, Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 6-8, Petru Maior St, 400002, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Lynch EM, Pittman S, Daw J, Ikenaga C, Chen S, Dhavale DD, Jackrel ME, Ayala YM, Kotzbauer P, Ly CV, Pestronk A, Lloyd TE, Weihl CC. Seeding competent TDP-43 persists in human patient and mouse muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587918. [PMID: 38617354 PMCID: PMC11014586 DOI: 10.1101/2024.04.03.587918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein that accumulates as aggregates in the central nervous system of some neurodegenerative diseases. However, TDP-43 aggregation is also a sensitive and specific pathologic feature found in a family of degenerative muscle diseases termed inclusion body myopathy (IBM). TDP-43 aggregates from ALS and FTD brain lysates may serve as self-templating aggregate seeds in vitro and in vivo, supporting a prion-like spread from cell to cell. Whether a similar process occurs in IBM patient muscle is not clear. We developed a mouse model of inducible, muscle-specific cytoplasmic localized TDP-43. These mice develop muscle weakness with robust accumulation of insoluble and phosphorylated sarcoplasmic TDP-43, leading to eosinophilic inclusions, altered proteostasis and changes in TDP-43-related RNA processing that resolve with the removal of doxycycline. Skeletal muscle lysates from these mice also have seeding competent TDP-43, as determined by a FRET-based biosensor, that persists for weeks upon resolution of TDP-43 aggregate pathology. Human muscle biopsies with TDP-43 pathology also contain TDP-43 aggregate seeds. Using lysates from muscle biopsies of patients with IBM, IMNM and ALS we found that TDP-43 seeding capacity was specific to IBM. Surprisingly, TDP-43 seeding capacity anti-correlated with TDP-43 aggregate and vacuole abundance. These data support that TDP-43 aggregate seeds are present in IBM skeletal muscle and represent a unique TDP-43 pathogenic species not previously appreciated in human muscle disease.
Collapse
Affiliation(s)
- Eileen M. Lynch
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Sara Pittman
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Jil Daw
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Sheng Chen
- Department of Chemistry, Washington University in St Louis; St Louis, MO, USA
| | - Dhruva D. Dhavale
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Meredith E. Jackrel
- Department of Chemistry, Washington University in St Louis; St Louis, MO, USA
| | - Yuna M. Ayala
- Department of Biochemistry and Molecular Biology, Saint Louis University; St Louis, MO, USA
| | - Paul Kotzbauer
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Cindy V. Ly
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Alan Pestronk
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| | - Thomas E. Lloyd
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Conrad C. Weihl
- Department of Neurology, Washington University in St Louis; St Louis, MO, USA
| |
Collapse
|
14
|
Lilleker JB, Naddaf E, Saris CGJ, Schmidt J, de Visser M, Weihl CC. 272nd ENMC international workshop: 10 Years of progress - revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16-18 June 2023, Hoofddorp, The Netherlands. Neuromuscul Disord 2024; 37:36-51. [PMID: 38522330 DOI: 10.1016/j.nmd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Since the publication of the 2013 European Neuromuscular Center (ENMC) diagnostic criteria for Inclusion Body Myositis (IBM), several advances have been made regarding IBM epidemiology, pathogenesis, diagnostic tools, and clinical trial readiness. Novel diagnostic tools include muscle imaging techniques such as MRI and ultrasound, and serological testing for cytosolic 5'-nucleotidase-1A antibodies. The 272nd ENMC workshop aimed to develop new diagnostic criteria, discuss clinical outcome measures and clinical trial readiness. The workshop started with patient representatives highlighting several understudied symptoms and the urge for a timely diagnosis. This was followed by presentations from IBM experts highlighting the new developments in the field. This report is composed of two parts, the first part providing new diagnostic criteria on which consensus was achieved. The second part focuses on the use of outcome measures in clinical practice and clinical trials, highlighting current limitations and outlining the goals for future studies.
Collapse
Affiliation(s)
- James B Lilleker
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK; Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christiaan G J Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jens Schmidt
- Department of Neurology and Pain Treatment, Neuromuscular Center and Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School MHB, Rüdersdorf bei Berlin, Germany; Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Marianne de Visser
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Conrad C Weihl
- Neuromuscular Division, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
15
|
Ueda T, Takeuchi T, Fujikake N, Suzuki M, Minakawa EN, Ueyama M, Fujino Y, Kimura N, Nagano S, Yokoseki A, Onodera O, Mochizuki H, Mizuno T, Wada K, Nagai Y. Dysregulation of stress granule dynamics by DCTN1 deficiency exacerbates TDP-43 pathology in Drosophila models of ALS/FTD. Acta Neuropathol Commun 2024; 12:20. [PMID: 38311779 PMCID: PMC10840176 DOI: 10.1186/s40478-024-01729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The abnormal aggregation of TDP-43 into cytoplasmic inclusions in affected neurons is a major pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although TDP-43 is aberrantly accumulated in the neurons of most patients with sporadic ALS/FTD and other TDP-43 proteinopathies, how TDP-43 forms cytoplasmic aggregates remains unknown. In this study, we show that a deficiency in DCTN1, a subunit of the microtubule-associated motor protein complex dynactin, perturbs the dynamics of stress granules and drives the formation of TDP-43 cytoplasmic aggregation in cultured cells, leading to the exacerbation of TDP-43 pathology and neurodegeneration in vivo. We demonstrated using a Drosophila model of ALS/FTD that genetic knockdown of DCTN1 accelerates the formation of ubiquitin-positive cytoplasmic inclusions of TDP-43. Knockdown of components of other microtubule-associated motor protein complexes, including dynein and kinesin, also increased the formation of TDP-43 inclusions, indicating that intracellular transport along microtubules plays a key role in TDP-43 pathology. Notably, DCTN1 knockdown delayed the disassembly of stress granules in stressed cells, leading to an increase in the formation of pathological cytoplasmic inclusions of TDP-43. Our results indicate that a deficiency in DCTN1, as well as disruption of intracellular transport along microtubules, is a modifier that drives the formation of TDP-43 pathology through the dysregulation of stress granule dynamics.
Collapse
Affiliation(s)
- Tetsuhiro Ueda
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Toshihide Takeuchi
- Life Science Research Institute, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Nobuhiro Fujikake
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Mari Suzuki
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Eiko N Minakawa
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Morio Ueyama
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Yuzo Fujino
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Nobuyuki Kimura
- Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, 794-8555, Japan
| | - Seiichi Nagano
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Akio Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
- Life Science Research Institute, Kindai University, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
16
|
Lu J, Ge P, Sawaya MR, Hughes MP, Boyer DR, Cao Q, Abskharon R, Cascio D, Tayeb-Fligelman E, Eisenberg DS. Cryo-EM structures of the D290V mutant of the hnRNPA2 low-complexity domain suggests how D290V affects phase separation and aggregation. J Biol Chem 2024; 300:105531. [PMID: 38072051 PMCID: PMC10844680 DOI: 10.1016/j.jbc.2023.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A2 (hnRNPA2) is a human ribonucleoprotein that transports RNA to designated locations for translation via its ability to phase separate. Its mutated form, D290V, is implicated in multisystem proteinopathy known to afflict two families, mainly with myopathy and Paget's disease of bone. Here, we investigate this mutant form of hnRNPA2 by determining cryo-EM structures of the recombinant D290V low complexity domain. We find that the mutant form of hnRNPA2 differs from the WT fibrils in four ways. In contrast to the WT fibrils, the PY-nuclear localization signals in the fibril cores of all three mutant polymorphs are less accessible to chaperones. Also, the mutant fibrils are more stable than WT fibrils as judged by phase separation, thermal stability, and energetic calculations. Similar to other pathogenic amyloids, the mutant fibrils are polymorphic. Thus, these structures offer evidence to explain how a D-to-V missense mutation diverts the assembly of reversible, functional amyloid-like fibrils into the assembly of pathogenic amyloid, and may shed light on analogous conversions occurring in other ribonucleoproteins that lead to neurological diseases such as amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Peng Ge
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael R Sawaya
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David R Boyer
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Qin Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Duilio Cascio
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - Einav Tayeb-Fligelman
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA
| | - David S Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA; UCLA-DOE Institute, Molecular Biology Institute, Howard Hughes Medical Institute, Los Angeles, California, USA.
| |
Collapse
|
17
|
McCord B, Day RM. Cytotoxic immune cells do not affect TDP-43 and p62 sarcoplasmic aggregation but influence TDP-43 localisation. Sci Rep 2023; 13:15935. [PMID: 37741931 PMCID: PMC10517962 DOI: 10.1038/s41598-023-42824-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Sporadic inclusion body myositis (sIBM) is an idiopathic inflammatory myopathy with invasion of CD8 T cells in muscle and aggregation of proteins in the sarcoplasm. TDP-43 and p62 are two proteins that aggregate in affected muscle, and have been suggested as specific markers for sIBM over other inflammatory myopathies. TDP-43 is also mislocalised from the nucleus to the sarcoplasm in sIBM. It is not clear if inflammation precedes protein aggregation in sIBM. This study investigated if exposure to cytotoxic inflammatory cells caused TDP-43 and p62 aggregation or TDP-43 mislocalisation in cultured myotubes. TALL-104 coculture was highly cytotoxic to myotubes after 24 h. Secretion of IFNγ and TNFα were higher in cocultures compared to monocultured TALL-104 cells, indicating activation. TALL-104 cells attached to and infiltrated myotubes. There was no effect of TALL-104 coculture on TDP-43 or p62 sarcoplasmic aggregate size or frequency. However, there was decreased localisation of TDP-43 to the nucleus with TALL-104 coculture compared to control. In an in vitro setting, cytotoxic immune cells did not cause TDP-43 or p62 sarcoplasmic aggregation, suggesting cellular cytotoxicity may not trigger aggregation of these proteins. However TALL-104 coculture influenced TDP-43 localisation, suggesting cytotoxic immune cells may contribute to TDP-43 localisation shifts which is observed in sIBM.
Collapse
Affiliation(s)
- Bryony McCord
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Richard M Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
18
|
McCord B, Day RM. Influence of Inflammatory Cytokines IL-1 β and IFN γ on Sarcoplasmic Aggregation of p62 and TDP-43 in Myotubes. Mediators Inflamm 2023; 2023:9018470. [PMID: 37731843 PMCID: PMC10509004 DOI: 10.1155/2023/9018470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023] Open
Abstract
Skeletal muscle of patients with sporadic inclusion body myositis (sIBM) presents with inflammation, including upregulation of inflammatory cytokines such as interferon γ (IFNγ). Non-inflammatory features are also observed, like the sarcoplasmic accumulation of proteins including TDP-43 and p62. This study aimed to investigate the effect of IFNγ and interleukin 1-β (IL-1β) on TDP-43 and p62 aggregation in vitro. Primary human myotubes were treated with IL-1β (20 ng/mL) and IFNγ (750 ng/mL) separately or combined for 48 hr. Sarcoplasmic TDP-43 aggregates and p62 puncta were assessed using image analysis for size, frequency, and colocalization with each other. Total protein expression of TDP-43, p62 and LC3 was assessed using western blotting. The subcellular localization of TDP-43 was also analyzed using image analysis. Combined IL-1β and IFNγ treatment increased puncta size of p62 compared to control (0.49 ± 0.13 µm2 versus 0.28 ± 0.06 µm2), without affecting puncta frequency or p62 expression but with an increased LC3II/LC3I ratio, suggesting autophagic alterations. IL-1β or IFNγ did not alter p62 puncta size or frequency, suggesting a combined insult of multiple inflammatory mediators is necessary to cause p62 alterations. IL-1β increased p62 protein expression in an autophagy-independent manner. None of the cytokine treatments affected TDP-43 protein expression, size, or frequency of TDP-43 aggregates or localization, suggesting IL-1β and IFNγ may influence TDP-43 processing in human skeletal muscle cells. TDP-43 was localized to the sarcoplasm under control conditions, suggesting this may not be a pathological feature. Overall, sIBM-like TDP-43/p62 features were not triggered by IL-1β and/or IFNγ.
Collapse
Affiliation(s)
- Bryony McCord
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK
| | - Richard M. Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
19
|
Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol 2023; 14:1191815. [PMID: 37483632 PMCID: PMC10361824 DOI: 10.3389/fimmu.2023.1191815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs), which are a group of chronic and diverse inflammatory diseases, are primarily characterized by weakness in the proximal muscles that progressively leads to persistent disability. Current treatments of IIMs depend on nonspecific immunosuppressive agents (including glucocorticoids and immunosuppressants). However, these therapies sometimes fail to regulate muscle inflammation, and some patients suffer from infectious diseases and other adverse effects related to the treatment. Furthermore, even after inflammation has subsided, muscle weakness persists in a significant proportion of the patients. Therefore, the elucidation of pathophysiology of IIMs and development of a better therapeutic strategy that not only alleviates muscle inflammation but also improves muscle weakness without increment of opportunistic infection is awaited. Muscle fiber death, which has been formerly postulated as "necrosis", is a key histological feature of all subtypes of IIMs, however, its detailed mechanisms and contribution to the pathophysiology remained to be elucidated. Recent studies have revealed that muscle fibers of IIMs undergo necroptosis, a newly recognized form of regulated cell death, and promote muscle inflammation and dysfunction through releasing inflammatory mediators such as damage-associated molecular patterns (DAMPs). The research on murine model of polymyositis, a subtype of IIM, revealed that the inhibition of necroptosis or HMGB1, one of major DAMPs released from muscle fibers undergoing necroptosis, ameliorated muscle inflammation and recovered muscle weakness. Furthermore, not only the necroptosis-associated molecules but also PGAM5, a mitochondrial protein, and reactive oxygen species have been shown to be involved in muscle fiber necroptosis, indicating the multiple target candidates for the treatment of IIMs acting through necroptosis regulation. This article overviews the research on muscle injury mechanisms in IIMs focusing on the contribution of necroptosis in their pathophysiology and discusses the potential treatment strategy targeting muscle fiber necroptosis.
Collapse
|
20
|
Rohm M, Volke L, Schlaffke L, Rehmann R, Südkamp N, Roos A, Schänzer A, Hentschel A, Vorgerd M. Dysregulation of Metabolism and Proteostasis in Skeletal Muscle of a Presymptomatic Pompe Mouse Model. Cells 2023; 12:1602. [PMID: 37371072 DOI: 10.3390/cells12121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Pompe disease is a rare genetic metabolic disorder caused by mutations in acid-alpha glucoside (GAA) leading to pathological lysosomal glycogen accumulation associated with skeletal muscle weakness, respiratory difficulties and cardiomyopathy, dependent from the GAA residual enzyme activity. This study aimed to investigate early proteomic changes in a mouse model of Pompe disease and identify potential therapeutic pathways using proteomic analysis of skeletal muscles from pre-symptomatic Pompe mice. For this purpose, quadriceps samples of Gaa6neo/6neo mutant (Pompe) and wildtype mice, at the age of six weeks, were studied with three biological replicates for each group. The data were validated with skeletal muscle morphology, immunofluorescence studies and western blot analysis. Proteomic profiling identified 538 significantly upregulated and 16 significantly downregulated proteins in quadriceps muscles derived from Pompe animals compared to wildtype mice. The majority of significantly upregulated proteins were involved in metabolism, translation, folding, degrading and vesicular transport, with some having crucial roles in the etiopathology of other neurological or neuromuscular diseases. This study highlights the importance of the early diagnosis and treatment of Pompe disease and suggests potential add-on therapeutic strategies targeting protein dysregulations.
Collapse
Affiliation(s)
- Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Leon Volke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Andreas Roos
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, 45147 Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, 35390 Giessen, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften, 44139 Dortmund, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
21
|
Roy B, Peck A, Evangelista T, Pfeffer G, Wang L, Diaz‐Manera J, Korb M, Wicklund MP, Milone M, Freimer M, Kushlaf H, Villar‐Quiles R, Stojkovic T, Needham M, Palmio J, Lloyd TE, Keung B, Mozaffar T, Weihl CC, Kimonis V. Provisional practice recommendation for the management of myopathy in VCP-associated multisystem proteinopathy. Ann Clin Transl Neurol 2023; 10:686-695. [PMID: 37026610 PMCID: PMC10187720 DOI: 10.1002/acn3.51760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Valosin-containing protein (VCP)-associated multisystem proteinopathy (MSP) is a rare genetic disorder with abnormalities in the autophagy pathway leading to various combinations of myopathy, bone diseases, and neurodegeneration. Ninety percent of patients with VCP-associated MSP have myopathy, but there is no consensus-based guideline. The goal of this working group was to develop a best practice set of provisional recommendations for VCP myopathy which can be easily implemented across the globe. As an initiative by Cure VCP Disease Inc., a patient advocacy organization, an online survey was initially conducted to identify the practice gaps in VCP myopathy. All prior published literature on VCP myopathy was reviewed to better understand the different aspects of management of VCP myopathy, and several working group sessions were conducted involving international experts to develop this provisional recommendation. VCP myopathy has a heterogeneous clinical phenotype and should be considered in patients with limb-girdle muscular dystrophy phenotype, or any myopathy with an autosomal dominant pattern of inheritance. Genetic testing is the only definitive way to diagnose VCP myopathy, and single-variant testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases can be considered. Muscle biopsy is important in cases of diagnostic uncertainty or lack of a definitive pathogenic genetic variant since rimmed vacuoles (present in ~40% cases) are considered a hallmark of VCP myopathy. Electrodiagnostic studies and magnetic resonance imaging can also help rule out disease mimics. Standardized management of VCP myopathy will optimize patient care and help future research initiatives.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | | | - Teresinha Evangelista
- GH Pitié‐Salpêtrière, Sorbonne Université‐Inserm UMRS97, Institut de MyologieParisFrance
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical NeurosciencesUniversity of Calgary Cumming School of MedicineCalgaryAlbertaCanada
| | - Leo Wang
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jordi Diaz‐Manera
- John Walton Muscular Dystrophy Research CentreNewcastle UniversityNewcastle upon TyneUK
| | - Manisha Korb
- Department of NeurologyUniversity of California—Irvine School of MedicineOrangeCaliforniaUSA
| | | | | | - Miriam Freimer
- Department of NeurologyOhio State UniversityColumbusOhioUSA
| | - Hani Kushlaf
- Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Rocio‐Nur Villar‐Quiles
- APHP, Reference Center for Neuromuscular Disorders, Center of Research in MyologySorbonne Université‐Inserm UMRS974, Pitié‐Salpêtrière HospitalParisFrance
| | - Tanya Stojkovic
- APHP, Reference Center for Neuromuscular Disorders, Center of Research in MyologySorbonne Université‐Inserm UMRS974, Pitié‐Salpêtrière HospitalParisFrance
| | - Merrilee Needham
- University of Notre Dame, Murdoch University and Fiona Stanley HospitalPerthAustralia
| | - Johanna Palmio
- Neuromuscular Research CenterTampere University HospitalTampereFinland
| | - Thomas E. Lloyd
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
- Department of Neuroscience and PathologyJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Benison Keung
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Tahseen Mozaffar
- Department of NeurologyUniversity of California—Irvine School of MedicineOrangeCaliforniaUSA
| | - Conrad Chris Weihl
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Virginia Kimonis
- Department of NeurologyUniversity of California—Irvine School of MedicineOrangeCaliforniaUSA
- Department of PediatricsUniversity of California—Irvine School of MedicineOrangeCaliforniaUSA
| |
Collapse
|
22
|
Afroz T, Chevalier E, Audrain M, Dumayne C, Ziehm T, Moser R, Egesipe AL, Mottier L, Ratnam M, Neumann M, Havas D, Ollier R, Piorkowska K, Chauhan M, Silva AB, Thapa S, Stöhr J, Bavdek A, Eligert V, Adolfsson O, Nelson PT, Porta S, Lee VMY, Pfeifer A, Kosco-Vilbois M, Seredenina T. Immunotherapy targeting the C-terminal domain of TDP-43 decreases neuropathology and confers neuroprotection in mouse models of ALS/FTD. Neurobiol Dis 2023; 179:106050. [PMID: 36809847 DOI: 10.1016/j.nbd.2023.106050] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Effective therapies are urgently needed to safely target TDP-43 pathology as it is closely associated with the onset and development of devastating diseases such as frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). In addition, TDP-43 pathology is present as a co-pathology in other neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Our approach is to develop a TDP-43-specific immunotherapy that exploits Fc gamma-mediated removal mechanisms to limit neuronal damage while maintaining physiological TDP-43 function. Thus, using both in vitro mechanistic studies in conjunction with the rNLS8 and CamKIIa inoculation mouse models of TDP-43 proteinopathy, we identified the key targeting domain in TDP-43 to accomplish these therapeutic objectives. Targeting the C-terminal domain of TDP-43 but not the RNA recognition motifs (RRM) reduces TDP-43 pathology and avoids neuronal loss in vivo. We demonstrate that this rescue is dependent on Fc receptor-mediated immune complex uptake by microglia. Furthermore, monoclonal antibody (mAb) treatment enhances phagocytic capacity of ALS patient-derived microglia, providing a mechanism to restore the compromised phagocytic function in ALS and FTD patients. Importantly, these beneficial effects are achieved while preserving physiological TDP-43 activity. Our findings demonstrate that a mAb targeting the C-terminal domain of TDP-43 limits pathology and neurotoxicity, enabling clearance of misfolded TDP-43 through microglia engagement, and supporting the clinical strategy to target TDP-43 by immunotherapy. SIGNIFICANCE STATEMENT: TDP-43 pathology is associated with various devastating neurodegenerative disorders with high unmet medical needs such as frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Thus, safely and effectively targeting pathological TDP-43 represents a key paradigm for biotechnical research as currently there is little in clinical development. After years of research, we have determined that targeting the C-terminal domain of TDP-43 rescues multiple patho-mechanisms involved in disease progression in two animal models of FTD/ALS. In parallel, importantly, our studies establish that this approach does not alter the physiological functions of this ubiquitously expressed and indispensable protein. Together, our findings substantially contribute to the understanding of TDP-43 pathobiology and support the prioritization for clinical testing of immunotherapy approaches targeting TDP-43.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Manuela Neumann
- Department of Neuropathology, University of Tübingen, Tübingen, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | - Sílvia Porta
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
23
|
Role of Triggers on the Structural and Functional Facets of TAR DNA-binding Protein 43. Neuroscience 2023; 511:110-130. [PMID: 36442745 DOI: 10.1016/j.neuroscience.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Nuclear TAR DNA-binding protein 43 (TDP-43) mitigates cellular function, but the dynamic nucleus-cytoplasm shuttling of TDP-43 is disrupted in diseases, such as Amyotrophic Lateral Sclerosis (ALS). The polymorphic nature of the TDP-43 structures in vitro and in vivo is a result of environmental factors leading to the protein pathogenesis. Once the triggers which mitigate TDP-43 biochemistry are identified, new therapies can be developed. This review aims to illustrate recent discoveries in the diversity of TDP-43 structures (amyloidogenic and non-amyloidogenic) and highlight the triggers which result in their formation.
Collapse
|
24
|
Naddaf E. Inclusion body myositis: Update on the diagnostic and therapeutic landscape. Front Neurol 2022; 13:1020113. [PMID: 36237625 PMCID: PMC9551222 DOI: 10.3389/fneur.2022.1020113] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Inclusion body myositis (IBM) is a progressive muscle disease affecting patients over the age of 40, with distinctive clinical and histopathological features. The typical clinical phenotype is characterized by prominent involvement of deep finger flexors and quadriceps muscles. Less common presentations include isolated dysphagia, asymptomatic hyper-CKemia, and axial or limb weakness beyond the typical pattern. IBM is associated with marked morbidity as majority of patients eventually become wheelchair dependent with limited use of their hands and marked dysphagia. Furthermore, IBM mildly affects longevity with aspiration pneumonia and respiratory complications being the most common cause of death. On muscle biopsy, IBM is characterized by a peculiar combination of endomysial inflammation, rimmed vacuoles, and protein aggregation. These histopathological features are reflective of the complexity of underlying disease mechanisms. No pharmacological treatment is yet available for IBM. Monitoring for swallowing and respiratory complications, exercise, and addressing mobility issues are the mainstay of management. Further research is needed to better understand disease pathogenesis and identify novel therapeutic targets.
Collapse
|
25
|
Myogenesis defects in a patient-derived iPSC model of hereditary GNE myopathy. NPJ Regen Med 2022; 7:48. [PMID: 36085325 PMCID: PMC9463157 DOI: 10.1038/s41536-022-00238-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Hereditary muscle diseases are disabling disorders lacking effective treatments. UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) myopathy (GNEM) is an autosomal recessive distal myopathy with rimmed vacuoles typically manifesting in late adolescence/early adulthood. GNE encodes the rate-limiting enzyme in sialic acid biosynthesis, which is necessary for the proper function of numerous biological processes. Outside of the causative gene, very little is known about the mechanisms contributing to the development of GNE myopathy. In the present study, we aimed to address this knowledge gap by querying the underlying mechanisms of GNE myopathy using a patient-derived induced pluripotent stem-cell (iPSC) model. Control and patient-specific iPSCs were differentiated down a skeletal muscle lineage, whereby patient-derived GNEM iPSC clones were able to recapitulate key characteristics of the human pathology and further demonstrated defects in myogenic progression. Single-cell RNA sequencing time course studies revealed clear differences between control and GNEM iPSC-derived muscle precursor cells (iMPCs), while pathway studies implicated altered stress and autophagy signaling in GNEM iMPCs. Treatment of GNEM patient-derived iMPCs with an autophagy activator improved myogenic differentiation. In summary, we report an in vitro, iPSC-based model of GNE myopathy and implicate defective myogenesis as a contributing mechanism to the etiology of GNE myopathy.
Collapse
|
26
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
27
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
28
|
McLeish E, Slater N, Sooda A, Wilson A, Coudert JD, Lloyd TE, Needham M. Inclusion body myositis: The interplay between ageing, muscle degeneration and autoimmunity. Best Pract Res Clin Rheumatol 2022; 36:101761. [PMID: 35760741 DOI: 10.1016/j.berh.2022.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inclusion body myositis (IBM) is a slowly progressive muscle disease affecting ageing individuals. IBM presents with a distinctive pattern of weakness involving the quadriceps and finger flexor muscles, although other muscles including pharyngeal muscles become affected over time. Pathological hallmarks of IBM include autoimmune features, including endomysial infiltration by highly differentiated T cells, as well as degenerative features marked by intramyofibre protein aggregates organised into inclusion bodies. Despite some progress in understanding the cellular pathways involved in IBM, it remains untreatable, and the progression of the disease leads to progressive weakness, disability, wheelchair dependency and loss of independence. Therefore, there is an urgent need to improve our understanding of the underlying mechanisms and pathways involved in this disease to identify new treatment targets. Here, we discuss the current understanding of aetiopathogenesis, the interrelationship between autoimmunity and degeneration, and how ageing is a major influencer of both these features.
Collapse
Affiliation(s)
- E McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.
| | - N Slater
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - A Sooda
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - A Wilson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J D Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia; School of Medicine, University of Notre Dame, Fremantle, WA, Australia
| | - T E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - M Needham
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia; School of Medicine, University of Notre Dame, Fremantle, WA, Australia; Fiona Stanley Hospital, Department of Neurology, Perth, WA, Australia
| |
Collapse
|
29
|
Naddaf E, Shelly S, Mandrekar J, Chamberlain AM, Hoffman EM, Ernste FC, Liewluck T. Survival and associated comorbidities in inclusion body myositis. Rheumatology (Oxford) 2022; 61:2016-2024. [PMID: 34534271 PMCID: PMC9071572 DOI: 10.1093/rheumatology/keab716] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To evaluate survival and associated comorbidities in inclusion body myositis (IBM) in a population-based, case-control study. METHODS We utilized the expanded Rochester Epidemiology Project medical records-linkage system, including 27 counties in Minnesota and Wisconsin, to identify patients with IBM, other inflammatory myopathies (IIM), and age/sex-matched population-controls. We compared the frequency of various comorbidities and survival among groups. RESULTS We identified 50 IBM patients, 65 IIM controls and 294 population controls. Dysphagia was most common in IBM (64%) patients. The frequency of neurodegenerative disorders (dementia/parkinsonism) and solid cancers was not different between groups. Rheumatoid arthritis was the most common rheumatic disease in all groups. A total of 36% of IBM patients had a peripheral neuropathy, 6% had Sjögren's syndrome and 10% had a haematologic malignancy. T-cell large granular lymphocytic leukaemia was only observed in the IBM group. None of the IBM patients had hepatitis B or C, or HIV. IBM patients were 2.7 times more likely to have peripheral neuropathy, 6.2 times more likely to have Sjögren's syndrome and 3.9 times more likely to have a haematologic malignancy than population controls. IBM was associated with increased mortality, with a 10-year survival of 36% from index, compared with 67% in IIM and 59% in population controls. Respiratory failure or pneumonia (44%) was the most common cause of death. CONCLUSIONS IBM is associated with lower survival, and higher frequency of peripheral neuropathy, Sjögren's syndrome and haematologic malignancies than the general population. Close monitoring of IBM-related complications is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Floranne C Ernste
- Division of Rheumatology, Department of Medicine, Mayo Clinic,
Rochester, MN, USA
| | | |
Collapse
|
30
|
Šušnjar U, Škrabar N, Brown AL, Abbassi Y, Phatnani H, Cortese A, Cereda C, Bugiardini E, Cardani R, Meola G, Ripolone M, Moggio M, Romano M, Secrier M, Fratta P, Buratti E. Cell environment shapes TDP-43 function with implications in neuronal and muscle disease. Commun Biol 2022; 5:314. [PMID: 35383280 PMCID: PMC8983780 DOI: 10.1038/s42003-022-03253-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
TDP-43 (TAR DNA-binding protein 43) aggregation and redistribution are recognised as a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. As TDP-43 inclusions have recently been described in the muscle of inclusion body myositis patients, this highlights the need to understand the role of TDP-43 beyond the central nervous system. Using RNA-seq, we directly compare TDP-43-mediated RNA processing in muscle (C2C12) and neuronal (NSC34) mouse cells. TDP-43 displays a cell-type-characteristic behaviour targeting unique transcripts in each cell-type, which is due to characteristic expression of RNA-binding proteins, that influence TDP-43's performance and define cell-type specific splicing. Among splicing events commonly dysregulated in both cell lines, we identify some that are TDP-43-dependent also in human cells. Inclusion levels of these alternative exons are altered in tissues of patients suffering from FTLD and IBM. We therefore propose that TDP-43 dysfunction contributes to disease development either in a common or a tissue-specific manner.
Collapse
Affiliation(s)
- Urša Šušnjar
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Neva Škrabar
- Tumour Virology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Generatio GmbH, Center for Animal, Genetics, Tübingen, Germany
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Yasmine Abbassi
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behaviour Sciences, University of Pavia, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Rosanna Cardani
- BioCor Biobank, UOC SMEL-1 of Clinical Pathology, IRCCS-Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Emanuele Buratti
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
31
|
Versluys L, Ervilha Pereira P, Schuermans N, De Paepe B, De Bleecker JL, Bogaert E, Dermaut B. Expanding the TDP-43 Proteinopathy Pathway From Neurons to Muscle: Physiological and Pathophysiological Functions. Front Neurosci 2022; 16:815765. [PMID: 35185458 PMCID: PMC8851062 DOI: 10.3389/fnins.2022.815765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
TAR DNA-binding protein 43, mostly referred to as TDP-43 (encoded by the TARDBP gene) is strongly linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). From the identification of TDP-43 positive aggregates in the brains and spinal cords of ALS/FTD patients, to a genetic link between TARBDP mutations and the development of TDP-43 pathology in ALS, there is strong evidence indicating that TDP-43 plays a pivotal role in the process of neuronal degeneration. What this role is, however, remains to be determined with evidence ranging from gain of toxic properties through the formation of cytotoxic aggregates, to an inability to perform its normal functions due to nuclear depletion. To add to an already complex subject, recent studies highlight a role for TDP-43 in muscle physiology and disease. We here review the biophysical, biochemical, cellular and tissue-specific properties of TDP-43 in the context of neurodegeneration and have a look at the nascent stream of evidence that positions TDP-43 in a myogenic context. By integrating the neurogenic and myogenic pathological roles of TDP-43 we provide a more comprehensive and encompassing view of the role and mechanisms associated with TDP-43 across the various cell types of the motor system, all the way from brain to limbs.
Collapse
Affiliation(s)
- Lauren Versluys
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pedro Ervilha Pereira
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Nika Schuermans
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan L. De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elke Bogaert
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Bart Dermaut
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
32
|
Li Y, Chen W, Ogawa K, Koide M, Takahashi T, Hagiwara Y, Itoi E, Aizawa T, Tsuchiya M, Izumi R, Suzuki N, Aoki M, Kanzaki M. Feeder-supported in vitro exercise model using human satellite cells from patients with sporadic inclusion body myositis. Sci Rep 2022; 12:1082. [PMID: 35058512 PMCID: PMC8776910 DOI: 10.1038/s41598-022-05029-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
Contractile activity is a fundamental property of skeletal muscles. We describe the establishment of a “feeder-supported in vitro exercise model” using human-origin primary satellite cells, allowing highly-developed contractile myotubes to readily be generated by applying electrical pulse stimulation (EPS). The use of murine fibroblasts as the feeder cells allows biological responses to EPS in contractile human myotubes to be selectively evaluated with species-specific analyses such as RT-PCR. We successfully applied this feeder-supported co-culture system to myotubes derived from primary satellite cells obtained from sporadic inclusion body myositis (sIBM) patients who are incapable of strenuous exercise testing. Our results demonstrated that sIBM myotubes possess essentially normal muscle functions, including contractility development, de novo sarcomere formation, and contraction-dependent myokine upregulation, upon EPS treatment. However, we found that some of sIBM myotubes, but not healthy control myotubes, often exhibit abnormal cytoplasmic TDP-43 accumulation upon EPS-evoked contraction, suggesting potential pathogenic involvement of the contraction-inducible TDP-43 distribution peculiar to sIBM. Thus, our “feeder-supported in vitro exercise model” enables us to obtain contractile human-origin myotubes, potentially utilizable for evaluating exercise-dependent intrinsic and pathogenic properties of patient muscle cells. Our approach, using feeder layers, further expands the usefulness of the “in vitro exercise model”.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Weijian Chen
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Kazumi Ogawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Orthopaedic Surgery, Tohoku Rosai Hospital, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-04-110, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
33
|
Britson KA, Ling JP, Braunstein KE, Montagne JM, Kastenschmidt JM, Wilson A, Ikenaga C, Tsao W, Pinal-Fernandez I, Russell KA, Reed N, Mozaffar T, Wagner KR, Ostrow LW, Corse AM, Mammen AL, Villalta SA, Larman HB, Wong PC, Lloyd TE. Loss of TDP-43 function and rimmed vacuoles persist after T cell depletion in a xenograft model of sporadic inclusion body myositis. Sci Transl Med 2022; 14:eabi9196. [PMID: 35044790 PMCID: PMC9118725 DOI: 10.1126/scitranslmed.abi9196] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sporadic inclusion body myositis (IBM) is the most common acquired muscle disease in adults over age 50, yet it remains unclear whether the disease is primarily driven by T cell–mediated autoimmunity. IBM muscle biopsies display nuclear clearance and cytoplasmic aggregation of TDP-43 in muscle cells, a pathologic finding observed initially in neurodegenerative diseases, where nuclear loss of TDP-43 in neurons causes aberrant RNA splicing. Here, we show that loss of TDP-43–mediated splicing repression, as determined by inclusion of cryptic exons, occurs in skeletal muscle of subjects with IBM. Of 119 muscle biopsies tested, RT-PCR–mediated detection of cryptic exon inclusion was able to diagnose IBM with 84% sensitivity and 99% specificity. To determine the role of T cells in pathogenesis, we generated a xenograft model by transplanting human IBM muscle into the hindlimb of immunodeficient mice. Xenografts from subjects with IBM displayed robust regeneration of human myofibers and recapitulated both inflammatory and degenerative features of the disease. Myofibers in IBM xenografts showed invasion by human, oligoclonal CD8+ T cells and exhibited MHC-I up-regulation, rimmed vacuoles, mitochondrial pathology, p62-positive inclusions, and nuclear clearance and cytoplasmic aggregation of TDP-43, associated with cryptic exon inclusion. Reduction of human T cells within IBM xenografts by treating mice intraperitoneally with anti-CD3 (OKT3) suppressed MHC-I up-regulation. However, rimmed vacuoles and loss of TDP-43 function persisted. These data suggest that T cell depletion does not alter muscle degenerative pathology in IBM.
Collapse
Affiliation(s)
- Kyla A. Britson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kerstin E. Braunstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Janelle M. Montagne
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Andrew Wilson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William Tsao
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Iago Pinal-Fernandez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katelyn A. Russell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicole Reed
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tahseen Mozaffar
- Institute for Immunology, Department of Neurology, University of California Irvine, Irvine, CA 92697, USA
| | - Kathryn R. Wagner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Lyle W. Ostrow
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea M. Corse
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew L. Mammen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S. Armando Villalta
- Department of Physiology and Biophysics, Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip C. Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Synder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Synder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Glaubitz S, Zeng R, Rakocevic G, Schmidt J. Update on Myositis Therapy: from Today's Standards to Tomorrow's Possibilities. Curr Pharm Des 2021; 28:863-880. [PMID: 34781868 DOI: 10.2174/1381612827666211115165353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
Inflammatory myopathies, in short, myositis, are heterogeneous disorders that are characterized by inflammation of skeletal muscle and weakness of arms and legs. Research over the past few years has led to a new understanding regarding the pathogenesis of myositis. The new insights include different pathways of the innate and adaptive immune response during the pathogenesis of myositis. The importance of non-inflammatory mechanisms such as cell stress and impaired autophagy has been recently described. New target-specific drugs for myositis have been developed and are currently being tested in clinical trials. In this review, we discuss the mechanisms of action of pharmacological standards in myositis and provide an outlook of future treatment approaches.
Collapse
Affiliation(s)
- Stefanie Glaubitz
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen. Germany
| | - Rachel Zeng
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen. Germany
| | - Goran Rakocevic
- Department of Neurology, Neuromuscular Division, University of Virginia, Charlottesville. United States
| | - Jens Schmidt
- Department of Neurology, Muscle Immunobiology Group, Neuromuscular Center, University Medical Center Göttingen, Göttingen. Germany
| |
Collapse
|
35
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
36
|
Pinto MV, Laughlin RS, Klein CJ, Mandrekar J, Naddaf E. Inclusion body myositis: correlation of clinical outcomes with histopathology, electromyography and laboratory findings. Rheumatology (Oxford) 2021; 61:2504-2511. [PMID: 34617994 DOI: 10.1093/rheumatology/keab754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To determine whether histopathological, electromyographic and laboratory markers correlate with clinical measures in Inclusion Body Myositis (IBM). METHODS We reviewed our electronic medical records to identify patients with IBM according to ENMC 2011 criteria, seen between 2015 and 2020. We only included patients who had a muscle biopsy and needle electromyography (EMG) performed on the same muscle (opposite or same side). We used a detailed grading system (0- normal to 4- severe) to score histopathological and EMG findings. Clinical severity was assessed by the modified Rankin scale (mRS), muscle strength sum score (SSS), quadriceps strength and severity of dysphagia on swallow evaluation. Serum markers of interest were creatine kinase level, and cN-1A antibodies. RESULTS We included 50 IBM patients, with a median age of 69 years; 64% were males. Median disease duration at diagnosis was 51 months. On muscle biopsy, endomysial inflammation mainly correlated with dysphagia, and inversely correlated with mRS. Vacuoles and congophilic inclusions did not correlate with any of the clinical measures. On EMG, the shortness of motor unit potential (MUP) duration correlated with all clinical measures. Myotonic discharges, and not fibrillation potentials, correlated with the severity of inflammation. Serum markers did not have a statistically-significant correlation with any of the clinical measures. CONCLUSIONS Dysphagia was the main clinical feature of IBM correlating with endomysial inflammation. Otherwise, inclusion body myositis clinical measures had limited correlation with histopathological features in this study. The shortness of MUP duration correlated with all clinical measures.
Collapse
Affiliation(s)
- Marcus V Pinto
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jay Mandrekar
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Biomarker und Histologie bei idiopathischen inflammatorischen Myopathien. AKTUEL RHEUMATOL 2021. [DOI: 10.1055/a-1548-8934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie idiopathischen inflammatorischen Myopathien (IIM) sind eine Gruppe entzündlicher Muskelerkrankungen für deren Diagnosestellung, Verlaufsbeurteilung, Prognoseabschätzung und Risikostratifizierung Biomarker eine jeweils essentielle Rolle spielen. Biomarker in diesem Kontext können sowohl „herkömmliche“ serologische Marker wie Muskelenzyme oder Autoantikörper, histologische Marker wie entitätsspezifische inflammatorische Muster, aber auch genomische und genetische Marker sein. Der vorliegende Artikel gibt einen Überblick über bewährte und innovative Marker.
Collapse
|
38
|
Kushlaf H, Ezzat K. Extracellular amyloid deposition in sporadic inclusion body myositis: Further insights. Muscle Nerve 2021; 64:517-519. [PMID: 34396542 DOI: 10.1002/mus.27401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Hani Kushlaf
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Aggregates. J Neuropathol Exp Neurol 2021; 80:514-529. [PMID: 33970243 PMCID: PMC8177849 DOI: 10.1093/jnen/nlab039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurogenerative diseases are characterized by diverse protein aggregates with a variety of microscopic morphologic features. Although ultrastructural studies of human neurodegenerative disease tissues have been conducted since the 1960s, only recently have near-atomic resolution structures of neurodegenerative disease aggregates been described. Solid-state nuclear magnetic resonance spectroscopy and X-ray crystallography have provided near-atomic resolution information about in vitro aggregates but pose logistical challenges to resolving the structure of aggregates derived from human tissues. Recent advances in cryo-electron microscopy (cryo-EM) have provided the means for near-atomic resolution structures of tau, amyloid-β (Aβ), α-synuclein (α-syn), and transactive response element DNA-binding protein of 43 kDa (TDP-43) aggregates from a variety of diseases. Importantly, in vitro aggregate structures do not recapitulate ex vivo aggregate structures. Ex vivo tau aggregate structures indicate individual tauopathies have a consistent aggregate structure unique from other tauopathies. α-syn structures show that even within a disease, aggregate heterogeneity may correlate to disease course. Ex vivo structures have also provided insight into how posttranslational modifications may relate to aggregate structure. Though there is less cryo-EM data for human tissue-derived TDP-43 and Aβ, initial structural studies provide a basis for future endeavors. This review highlights structural variations across neurodegenerative diseases and reveals fundamental differences between experimental systems and human tissue derived protein inclusions.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Send correspondence to: Edward B. Lee, MD, PhD, Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd., Philadelphia, PA 19104, USA; E-mail:
| |
Collapse
|
40
|
Lee EJ, Neppl RL. Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes (Basel) 2021; 12:genes12050688. [PMID: 34063658 PMCID: PMC8147613 DOI: 10.3390/genes12050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy in an inevitable occurrence with advancing age, and a consequence of disease including cancer. Muscle atrophy in the elderly is managed by a regimen of resistance exercise and increased protein intake. Understanding the signaling that regulates muscle mass may identify potential therapeutic targets for the prevention and reversal of muscle atrophy in metabolic and neuromuscular diseases. This review covers the major anabolic and catabolic pathways that regulate skeletal muscle mass, with a focus on recent progress and potential new players.
Collapse
|
41
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Lehmkuhl EM, Loganathan S, Alsop E, Blythe AD, Kovalik T, Mortimore NP, Barrameda D, Kueth C, Eck RJ, Siddegowda BB, Joardar A, Ball H, Macias ME, Bowser R, Van Keuren-Jensen K, Zarnescu DC. TDP-43 proteinopathy alters the ribosome association of multiple mRNAs including the glypican Dally-like protein (Dlp)/GPC6. Acta Neuropathol Commun 2021; 9:52. [PMID: 33762006 PMCID: PMC7992842 DOI: 10.1186/s40478-021-01148-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease in which 97% of patients exhibit cytoplasmic aggregates containing the RNA binding protein TDP-43. Using tagged ribosome affinity purifications in Drosophila models of TDP-43 proteinopathy, we identified TDP-43 dependent translational alterations in motor neurons impacting the spliceosome, pentose phosphate and oxidative phosphorylation pathways. A subset of the mRNAs with altered ribosome association are also enriched in TDP-43 complexes suggesting that they may be direct targets. Among these, dlp mRNA, which encodes the glypican Dally like protein (Dlp)/GPC6, a wingless (Wg/Wnt) signaling regulator is insolubilized both in flies and patient tissues with TDP-43 pathology. While Dlp/GPC6 forms puncta in the Drosophila neuropil and ALS spinal cords, it is reduced at the neuromuscular synapse in flies suggesting compartment specific effects of TDP-43 proteinopathy. These findings together with genetic interaction data show that Dlp/GPC6 is a novel, physiologically relevant target of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Erik M. Lehmkuhl
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Suvithanandhini Loganathan
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ 85004 USA
| | - Alexander D. Blythe
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Tina Kovalik
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013 USA
| | - Nicholas P. Mortimore
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Dianne Barrameda
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Chuol Kueth
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Randall J. Eck
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Bhavani B. Siddegowda
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Archi Joardar
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Hannah Ball
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Maria E. Macias
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013 USA
| | | | - Daniela C. Zarnescu
- Department of Cellular and Molecular Biology, University of Arizona, 1007 E. Lowell St, LSS RM 548A, Tucson, AZ 85721 USA
- Department of Neuroscience, University of Arizona, 1040 4th St, Tucson, AZ 85721 USA
- Department of Neurology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724 USA
| |
Collapse
|
43
|
Mofatteh M. Neurodegeneration and axonal mRNA transportation. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2021; 10:1-12. [PMID: 33815964 PMCID: PMC8012751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of neurodegenerative diseases is accelerating in rapidly aging global population. Novel and effective diagnostic and therapeutic methods are required to tackle the global issue of neurodegeneration in the future. A better understanding of the potential molecular mechanism causing neurodegeneration can shed light on dysfunctional processes in diseased neurons, which can pave the way to design and synthesize novel targets for early diagnosis during the asymptomatic phase of the disease. Abnormal protein aggregation is a hallmark of neurodegenerative diseases which can hamper transportation of cargoes into axons. Recent evidence suggests that disruption of local protein synthesis has been observed in neurodegenerative diseases. Because of their highly asymmetric structure, highly polarized neurons require trafficking of cargoes from the cell body to different subcellular regions to meet the extensive demands of cellular physiology. Localization of mRNAs and subsequent local translation to corresponding proteins in axons is a mechanism which allows neurons to rapidly respond to external stimuli as well as establishing neuronal networks by synthesizing proteins on demand. Axonal protein synthesis is required for axon guidance, synapse formation and plasticity, axon maintenance and regeneration in response to injury. Different types of excitatory and inhibitory neurons in the central and peripheral nervous systems have been shown to localize mRNA. Rising evidence suggests that the repertoire of localizing mRNA in axons can change during aging, indicating a connection between axonal mRNA trafficking and aging diseases such as neurodegeneration. Here, I briefly review the latest findings on the importance of mRNA localization and local translation in neurons and the consequences of their disruption in neurodegenerative diseases. In addition, I discuss recent evidence that dysregulation of mRNA localization and local protein translation can contribute to the formation of neurodegenerative diseases such as Alzheimer's disease, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. In addition, I discuss recent findings on mRNAs localizing to mitochondria in neurodegeneration.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- Lincoln College, University of OxfordOxford, UK
- Sir William Dunn School of Pathology, Medical Sciences Division, University of OxfordOxford, UK
| |
Collapse
|
44
|
Law C, Li H, Bandyopadhyay S. Coexistence of TDP-43 and C5b-9 staining of muscle in a patient with inclusion body myositis. BMJ Case Rep 2021; 14:14/2/e238312. [PMID: 33563691 PMCID: PMC7875291 DOI: 10.1136/bcr-2020-238312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
While sporadic inclusion body myositis (sIBM) is the most commonly acquired inflammatory myopathy above 50 years of age, its refractory response to conventional immunosuppressive treatments raises questions about its perplexing pathogenesis. Muscle biopsy typically reveals major histocompatibility complex I antigens and CD8+ T cell endomysial infiltrates invading non-necrotic muscle fibres early in the disease course with rimmed vacuoles, protein aggregates and amyloid inclusions later in the disease. Transactive response DNA-binding protein-43 (TDP-43), a protein implicated in transcriptional repression in neurodegenerative diseases, is also found in sIBM. C5b-9 membrane attack complex, an effector protein involved in the complement cascade of the immune response, is commonly found in dermatomyositis, but has rarely been reported in IBM. We describe a novel case of IBM with simultaneous C5b-9 and TDP-43 staining on quadriceps biopsy, raising the question of a possibility of concurrent immune-mediated inflammatory and myodegenerative pathogenesis.
Collapse
Affiliation(s)
- Christina Law
- Penn State Health Milton S Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Huili Li
- Pathology, Penn State Health Milton S Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Sankar Bandyopadhyay
- Neurology, Penn State Health Milton S Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
45
|
Dalakas MC. Inflammatory myopathies: update on diagnosis, pathogenesis and therapies, and COVID-19-related implications. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:289-301. [PMID: 33458584 PMCID: PMC7783437 DOI: 10.36185/2532-1900-032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The inflammatory myopathies constitute a heterogeneous group of acquired myopathies that have in common the presence of endomysial inflammation. Based on steadily evolved clinical, histological and immunopathological features and some autoantibody associations, these disorders can now be classified in five characteristic subsets: Dermatomyositis (DM) Polymyositis (PM), Necrotizing Autoimmune Myositis (NAM), Anti-synthetase syndrome-overlap myositis (Anti-SS-OM), and Inclusion-Body-Myositis (IBM). Each inflammatory myopathy subset has distinct immunopathogenesis, prognosis and response to immunotherapies, necessitating the need to correctly identify each subtype from the outset to avoid disease mimics and proceed to early therapy initiation. The review presents the main clinicopathologic characteristics of each subset highlighting the importance of combining expertise in clinical neurological examination with muscle morphology and immunopathology to avoid erroneous diagnoses and therapeutic schemes. The main autoimmune markers related to autoreactive T cells, B cells, autoantibodies and cytokines are presented and the concomitant myodegenerative features seen in IBM muscles are pointed out. Most importantly, unsettled issues related to a role of autoantibodies and controversies with reference to possible triggering factors related to statins are clarified. The emerging effect SARS-CoV-2 as the cause of hyperCKemia and potentially NAM is addressed and practical guidelines on the best therapeutic approaches and concerns regarding immunotherapies during COVID-19 pandemic are summarized.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA and the Neuroimmunology Unit, National and Kapodistrian University University of Athens Medical School, Athens, Greece
| |
Collapse
|
46
|
Korb MK, Kimonis VE, Mozaffar T. Multisystem proteinopathy: Where myopathy and motor neuron disease converge. Muscle Nerve 2020; 63:442-454. [PMID: 33145792 DOI: 10.1002/mus.27097] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Multisystem proteinopathy (MSP) is a pleiotropic group of inherited disorders that cause neurodegeneration, myopathy, and bone disease, and share common pathophysiology. Originally referred to as inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), attributed to mutations in the gene encoding valosin-containing protein (VCP), it has more recently been discovered that there are several other genes responsible for similar clinical and pathological phenotypes with muscle, brain, nerve, and bone involvement, in various combinations. These include heterogeneous nuclear ribonucleoprotein A2B1 and A1 (hnRNPA2B1, hnRNPA1), sequestosome 1 (SQSTM1), matrin 3 (MATR3), T-cell restricted intracellular antigen 1 (TIA1), and optineurin (OPTN), all of which share disruption of RNA stress granule function and autophagic degradation. This review will discuss each of the genes implicated in MSP, exploring the molecular pathogenesis, clinical features, current standards of care, and future directions for this diverse yet mechanistically linked spectrum of disorders.
Collapse
Affiliation(s)
- Manisha K Korb
- Departments of Neurology, University of California Irvine, Orange, California, USA
| | - Virginia E Kimonis
- Departments of Pediatrics, University of California Irvine, Orange, California, USA
| | - Tahseen Mozaffar
- Departments of Neurology, University of California Irvine, Orange, California, USA.,Departments of Orthopedic Surgery, University of California Irvine, Orange, California, USA.,Departments of Pathology & Laboratory Medicine, University of California Irvine, Orange, California, USA
| |
Collapse
|
47
|
Valosin-Containing Protein, a Calcium-Associated ATPase Protein, in Endoplasmic Reticulum and Mitochondrial Function and Its Implications for Diseases. Int J Mol Sci 2020; 21:ijms21113842. [PMID: 32481679 PMCID: PMC7312078 DOI: 10.3390/ijms21113842] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondrion are the key organelles in mammal cells and play crucial roles in a variety of biological functions in both physiological and pathological conditions. Valosin-containing protein (VCP), a newly identified calcium-associated ATPase protein, has been found to be involved in both ER and mitochondrial function. Impairment of VCP, caused by structural mutations or alterations of expressions, contributes to the development of various diseases, through an integrating effect on ER, mitochondria and the ubiquitin–proteasome system, by interfering with protein degradation, subcellular translocation and calcium homeostasis. Thus, understanding the role and the molecular mechanisms of VCP in these organelles brings new insights to the pathogenesis of the associated diseases, and leads to the discovery of new therapeutic strategies. In this review, we summarized the progress of studies on VCP, in terms of its regulation of ER and mitochondrial function and its implications for the associated diseases, focusing on the cancers, heart disease, and neurodegenerative disorders.
Collapse
|
48
|
Picchiarelli G, Dupuis L. Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress 2020; 4:76-91. [PMID: 32292882 PMCID: PMC7146060 DOI: 10.15698/cst2020.04.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of neuromuscular and muscular diseases, including amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and several myopathies, are associated to mutations in related RNA-binding proteins (RBPs), including TDP-43, FUS, MATR3 or hnRNPA1/B2. These proteins harbor similar modular primary sequence with RNA binding motifs and low complexity domains, that enables them to phase separate and create liquid microdomains. These RBPs have been shown to critically regulate multiple events of RNA lifecycle, including transcriptional events, splicing and RNA trafficking and sequestration. Here, we review the roles of these disease-related RBPs in muscle and motor neurons, and how their dysfunction in these cell types might contribute to disease.
Collapse
Affiliation(s)
- Gina Picchiarelli
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| |
Collapse
|
49
|
Greenberg SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2020; 15:257-272. [PMID: 30837708 DOI: 10.1038/s41584-019-0186-x] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inclusion body myositis (IBM) is often viewed as an enigmatic disease with uncertain pathogenic mechanisms and confusion around diagnosis, classification and prospects for treatment. Its clinical features (finger flexor and quadriceps weakness) and pathological features (invasion of myofibres by cytotoxic T cells) are unique among muscle diseases. Although IBM T cell autoimmunity has long been recognized, enormous attention has been focused for decades on several biomarkers of myofibre protein aggregates, which are present in <1% of myofibres in patients with IBM. This focus has given rise, together with the relative treatment refractoriness of IBM, to a competing view that IBM is not an autoimmune disease. Findings from the past decade that implicate autoimmunity in IBM include the identification of a circulating autoantibody (anti-cN1A); the absence of any statistically significant genetic risk factor other than the common autoimmune disease 8.1 MHC haplotype in whole-genome sequencing studies; the presence of a marked cytotoxic T cell signature in gene expression studies; and the identification in muscle and blood of large populations of clonal highly differentiated cytotoxic CD8+ T cells that are resistant to many immunotherapies. Mounting evidence that IBM is an autoimmune T cell-mediated disease provides hope that future therapies directed towards depleting these cells could be effective.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,Children's Hospital Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat Rev Neurol 2020; 15:272-286. [PMID: 30890779 DOI: 10.1038/s41582-019-0157-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular condensation arising through phase transitions has emerged as an essential organizational strategy that governs many aspects of cell biology. In particular, the role of phase transitions in the assembly of large, complex ribonucleoprotein (RNP) granules has become appreciated as an important regulator of RNA metabolism. In parallel, genetic, histopathological and cell and molecular studies have provided evidence that disturbance of phase transitions is an important driver of neurological diseases, notably amyotrophic lateral sclerosis (ALS), but most likely also other diseases. Indeed, our growing knowledge of the biophysics underlying biological phase transitions suggests that this process offers a unifying mechanism to explain the numerous and diverse disturbances in RNA metabolism that have been observed in ALS and some related diseases - specifically, that these diseases are driven by disturbances in the material properties of RNP granules. Here, we review the evidence for this hypothesis, emphasizing the reciprocal roles in which disease-related protein and disease-related RNA can lead to disturbances in the material properties of RNP granules and consequent pathogenesis. Additionally, we review evidence that implicates aberrant phase transitions as a contributing factor to a larger set of neurodegenerative diseases, including frontotemporal dementia, certain repeat expansion diseases and Alzheimer disease.
Collapse
|