1
|
Tsitkanou S, Lindsay A, Abbott G, Foletta V, Walker AK, Russell AP, Della Gatta PA. Exercise training induces mild skeletal muscle adaptations without altering disease progression in a TDP-43 mouse model. J Appl Physiol (1985) 2024; 137:728-745. [PMID: 39008617 DOI: 10.1152/japplphysiol.00192.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
Exercise training is considered a nonpharmacological therapeutic approach for many diseases. Mild-to-moderate endurance exercise training is suggested to improve the mental and physical state of people with amyotrophic lateral sclerosis (ALS). The aim of the present study was to determine the capacity of symptomatic rNLS8 mice, which develop ALS-reminiscent TAR DNA-binding protein 43 (TDP-43) pathology and motor dysfunction, to perform mild-to-moderate intensity treadmill exercise training and to evaluate the effects of this training on skeletal muscle health and disease progression. Symptomatic rNLS8 mice were able to complete 4 wk of mild-to-moderate treadmill running (30 min at 6-13 m/min, 3 days a week). Exercise training induced an increase in the percentage of type IIA fibers in the tibialis anterior muscle as well as minor adaptations in molecular markers of myogenic, mitochondrial, and neuromuscular junction health in some forelimb and hindlimb muscles. However, this exercise training protocol did not attenuate the loss in motor function or delay disease progression. Alternative exercise regimens need to be investigated to better understand the role exercise training may play in alleviating symptoms of ALS.NEW & NOTEWORTHY This is the first study to investigate the capacity of symptomatic rNLS8 mice, which develop ALS-reminiscent TDP-43 pathology and motor dysfunction, to perform exercise training. We demonstrate that despite the ALS-reminiscent aggressive disease progression characterizing the rNLS8 mouse model, rNLS8 mice are capable of performing mild-to-moderate endurance treadmill training for at least 3-4 wk. We demonstrate that exercise training induces several minor skeletal muscle adaptations without delaying disease progression in rNLS8 mice.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
- School of Biological Sciences, Faculty of Science, University of Canterbury, Christchurch, New Zealand
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Victoria Foletta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
2
|
Guo X, Geng L, Jiang C, Yao W, Jin J, Liu Z, Mu Y. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9. Anim Biotechnol 2023; 34:4703-4712. [PMID: 36946758 DOI: 10.1080/10495398.2023.2187402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Multiplex gene modifications are highly required for various fields of porcine research. In many species, the CRISPR/Cas9 system has been widely applied for genomic editing and provides a potential tool for introducing multiplex genome mutations simultaneously. Here, we present a CRISPR-Cas9 gRNA-tRNA array (GTR-CRISPR) for multiplexed engineering of porcine fetal fibroblasts (PFFs). We successfully produced multiple sgRNAs using only one Pol III promoter by taking advantage of the endogenous tRNA processing mechanism in porcine cells. Using an all-in-one construct carrying GTR and Cas9, we disrupted the IGFBP3, MSTN, MC4R, and SOCS2 genes in multiple codon regions in one PFF cell simultaneously. This technique allows the simultaneous disruption of four genes with 5.5% efficiency. As a result, this approach may effectively target multiple genes at the same time, making it a powerful tool for establishing multiple genes mutant cells in pigs.
Collapse
Affiliation(s)
- Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lishuang Geng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wang Yao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Yedigaryan L, Martínez-Sarrà E, Giacomazzi G, Giarratana N, van der Veer BK, Rotini A, Querceto S, Grosemans H, Cortés-Calabuig Á, Salucci S, Battistelli M, Falcieri E, Gijsbers R, Quattrocelli M, Peng Koh K, De Waele L, Buyse GM, Derua R, Sampaolesi M. Extracellular vesicle-derived miRNAs improve stem cell-based therapeutic approaches in muscle wasting conditions. Front Immunol 2022; 13:977617. [PMID: 36451814 PMCID: PMC9702803 DOI: 10.3389/fimmu.2022.977617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Skeletal muscle holds an intrinsic capability of growth and regeneration both in physiological conditions and in case of injury. Chronic muscle illnesses, generally caused by genetic and acquired factors, lead to deconditioning of the skeletal muscle structure and function, and are associated with a significant loss in muscle mass. At the same time, progressive muscle wasting is a hallmark of aging. Given the paracrine properties of myogenic stem cells, extracellular vesicle-derived signals have been studied for their potential implication in both the pathogenesis of degenerative neuromuscular diseases and as a possible therapeutic target. In this study, we screened the content of extracellular vesicles from animal models of muscle hypertrophy and muscle wasting associated with chronic disease and aging. Analysis of the transcriptome, protein cargo, and microRNAs (miRNAs) allowed us to identify a hypertrophic miRNA signature amenable for targeting muscle wasting, consisting of miR-1 and miR-208a. We tested this signature among others in vitro on mesoangioblasts (MABs), vessel-associated adult stem cells, and we observed an increase in the efficiency of myogenic differentiation. Furthermore, injections of miRNA-treated MABs in aged mice resulted in an improvement in skeletal muscle features, such as muscle weight, strength, cross-sectional area, and fibrosis compared to controls. Overall, we provide evidence that the extracellular vesicle-derived miRNA signature we identified enhances the myogenic potential of myogenic stem cells.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ester Martínez-Sarrà
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Giorgia Giacomazzi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nefele Giarratana
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bernard K. van der Veer
- Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Alessio Rotini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Silvia Querceto
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Álvaro Cortés-Calabuig
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences, Urbino University Carlo Bo, Urbino, Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences, Urbino University Carlo Bo, Urbino, Italy
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Mattia Quattrocelli
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium,Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Heart Institute, University of Cincinnati College of Medicine and Molecular Cardiovascular Biology Division, Cincinnati, OH, United States
| | - Kian Peng Koh
- Department of Development and Regeneration, Laboratory for Stem Cell and Developmental Epigenetics, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- Department of Development and Regeneration, Pediatric Neurology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gunnar M. Buyse
- Department of Development and Regeneration, Pediatric Neurology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, SyBioMa, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy,*Correspondence: Maurilio Sampaolesi,
| |
Collapse
|
4
|
Massett MP, Matejka C, Kim H. Systematic Review and Meta-Analysis of Endurance Exercise Training Protocols for Mice. Front Physiol 2021; 12:782695. [PMID: 34950054 PMCID: PMC8691460 DOI: 10.3389/fphys.2021.782695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V ˙ O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Caitlyn Matejka
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Hyoseon Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Hendrickse PW, Krusnauskas R, Hodson-Tole E, Venckunas T, Degens H. Endurance exercise plus overload induces fatigue resistance and similar hypertrophy in mice irrespective of muscle mass. Exp Physiol 2020; 105:2110-2122. [PMID: 33140456 DOI: 10.1113/ep089096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does combining endurance and hypertrophic stimuli blunt the adaptations to both modalities and is this effect greater in muscles with larger baseline fibre cross sectional area? What is the main finding and its importance? Endurance exercise and hypertrophic stimuli can be combined to increase fatigue resistance and fibre size without blunting either adaptation regardless of baseline fibre size. ABSTRACT Previous studies have demonstrated that fibre cross-sectional area (FCSA) is inversely related to oxidative capacity, which is thought to be determined by diffusion limitations of oxygen, ADP and ATP. Consequently, it is hypothesised that (1) when endurance training is combined with a hypertrophic stimulus the response to each will be blunted, and (2) muscles with a smaller FCSA will show a larger hypertrophic response than those with a large FCSA. To investigate this, we combined overload with endurance exercise in 12-month-old male mice from three different strains with different FCSA: Berlin High (BEH) (large fibres), C57BL/6J (C57) (normal-sized fibres) and Berlin Low (BEL) (small fibres). The right plantaris muscle was subjected to overload through denervation of synergists with the left muscle acting as an internal control. Half the animals trained 30 min per day for 6 weeks. The overload-induced hypertrophy was not blunted by endurance exercise, and the exercise-induced increase in fatigue resistance was not impaired by overload. All strains demonstrated similar absolute increases in FCSA, although the BEH mice with more fibres than the C57 mice demonstrated the largest increase in muscle mass and BEL mice with fewer fibres the smallest increase in muscle mass. This study suggests that endurance exercise and hypertrophic stimuli can be combined without attenuating adaptations to either modality, and that increases in FCSA are independent of baseline fibre size.
Collapse
Affiliation(s)
- Paul W Hendrickse
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Kaunas, Lithuania
| | | | - Emma Hodson-Tole
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, UK
| | | | - Hans Degens
- Department of Life Sciences, Research Centre for Musculoskeletal Science & Sports Medicine, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
6
|
Regular endurance exercise of overloaded muscle of young and old male mice does not attenuate hypertrophy and improves fatigue resistance. GeroScience 2020; 43:741-757. [PMID: 32643063 PMCID: PMC8110681 DOI: 10.1007/s11357-020-00224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
It has been observed that there is an inverse relationship between fiber size and oxidative capacity due to oxygen, ADP, and ATP diffusion limitations. We aimed to see if regular endurance exercise alongside a hypertrophic stimulus would lead to compromised adaptations to both, particularly in older animals. Here we investigated the effects of combining overload with regular endurance exercise in young (12 months) and old (26 months) male mice. The plantaris muscles of these mice were overloaded through denervation of synergists to induce hypertrophy and the mice ran on a treadmill for 30 min per day for 6 weeks. The hypertrophic response to overload was not blunted by endurance exercise, and the increase in fatigue resistance with endurance exercise was not reduced by overload. Old mice demonstrated less hypertrophy than young mice, which was associated with impaired angiogenesis and a reduction in specific tension. The data of this study suggest that combining endurance exercise and overload induces the benefits of both types of exercise without compromising adaptations to either. Additionally, the attenuated hypertrophic response to overload in old animals may be due to a diminished capacity for capillary growth.
Collapse
|
7
|
Melouane A, Ghanemi A, Yoshioka M, St-Amand J. Functional genomics applications and therapeutic implications in sarcopenia. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:175-185. [PMID: 31416575 DOI: 10.1016/j.mrrev.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
The human genome contains around 20,000-25,000 genes coding for 30,000 proteins. Some proteins and genes represent therapeutic targets for human diseases. RNA and protein expression profiling tools allow the study of the molecular basis of aging and drug discovery validation. Throughout the life, there is an age-related and disease-related muscle decline. Sarcopenia is defined as a loss of muscle mass and a decrease in functional properties such as muscle strength and physical performance. Yet, there is still no consensus on the evaluation methods of sarcopenia prognosis. The main challenge of this complex biological phenomena is its multifactorial etiology. Thus, functional genomics methods attempt to shape the related scientific approaches via an innovative in-depth view on sarcopenia. Gene and drug high throughput screening combined with functional genomics allow the generation and the interpretation of a large amount of data related to sarcopenia and therapeutic progress. This review focuses on the application of selected functional genomics techniques such as RNA interference, RNA silencing, proteomics, transgenic mice, metabolomics, genomics, and epigenomics to better understand sarcopenia mechanisms.
Collapse
Affiliation(s)
- Aicha Melouane
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Abdelaziz Ghanemi
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Mayumi Yoshioka
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada
| | - Jonny St-Amand
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada.
| |
Collapse
|
8
|
Baati N, Feillet-Coudray C, Fouret G, Vernus B, Goustard B, Jollet M, Bertrand-Gaday C, Coudray C, Lecomte J, Bonnieu A, Koechlin-Ramonatxo C. New evidence of exercise training benefits in myostatin-deficient mice: Effect on lipidomic abnormalities. Biochem Biophys Res Commun 2019; 516:89-95. [PMID: 31200956 DOI: 10.1016/j.bbrc.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Myostatin (Mstn) inactivation or inhibition is considered as a promising treatment for various muscle-wasting disorders because it promotes muscle growth. However, myostatin-deficient hypertrophic muscles show strong fatigability associated with abnormal mitochondria and lipid metabolism. Here, we investigated whether endurance training could improve lipid metabolism and mitochondrial membrane lipid composition in mice where the Mstn gene was genetically ablated (Mstn-/- mice). In Mstn-/- mice, 4 weeks of daily running exercise sessions (65-70% of the maximal aerobic speed for 1 h) improved significantly aerobic performance, particularly the endurance capacity (up to +280% compared with untrained Mstn-/- mice), to levels comparable to those of trained wild type (WT) littermates. The expression of oxidative and lipid metabolism markers also was increased, as indicated by the upregulation of the Cpt1, Ppar-δ and Fasn genes. Moreover, endurance training also increased, but far less than WT, citrate synthase level and mitochondrial protein content. Interestingly endurance training normalized the cardiolipin fraction in the mitochondrial membrane of Mstn-/- muscle compared with WT. These results suggest that the combination of myostatin inhibition and endurance training could increase the muscle mass while preserving the physical performance with specific effects on cardiolipin and lipid-related pathways.
Collapse
Affiliation(s)
- Narjes Baati
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | - Christine Feillet-Coudray
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | - Gilles Fouret
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | - Barbara Vernus
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | - Bénédicte Goustard
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | - Maxence Jollet
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | - Christelle Bertrand-Gaday
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | - Charles Coudray
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | - Jérôme Lecomte
- Centre de Recherche Agronomique pour le Développement)/SupAgro, UMR IATE, F-34398, Montpellier, France
| | - Anne Bonnieu
- INRA, UMR866 Dynamique Musculaire Et Métabolisme, Université Montpellier, 34000, Montpellier, France
| | | |
Collapse
|
9
|
Suzuki J. Effects of intermittent hyperbaric exposure on endurance and interval exercise performance in well-trained mice. Exp Physiol 2018; 104:112-125. [PMID: 30457682 DOI: 10.1113/ep087360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Intermittent hyperbaric exposure (1.3 atmospheres absolute with 20.9% O2 ) enhances endurance capacity by facilitating oxidative and glycolytic capacities in skeletal muscle. It remains unclear whether this strategy enhances endurance performance in well-trained individuals. What is the main finding and its importance? Hyperbaric exposure with endurance training enhanced oxidative and glycolytic capacities and protein levels of mitochondrial transcription factor A, dynamin-related protein-1 and heat shock protein 70. Hyperbaric exposure with sprint interval training increased the proportion of type I muscle fibres and promoted capillary growth and muscle fibre hypertrophy. These results may lead to a new strategy for enhancing exercise capacity in well-trained mice. ABSTRACT The study was designed to clarify the mechanisms by which hyperbaric exposure (1.3 atmospheres absolute with 20.9% O2 ) improves endurance and interval exercise capacities in highly trained mice. Male mice in the training group were housed in a cage with a wheel activity device for 7 weeks from 5 weeks old. Voluntary running markedly increased maximal endurance capacity by 6.4-fold. Trained mice were then subjected to either endurance treadmill training (20-32.5 m min-1 ) or sprint interval training (5 s run-10 s rest, 30-42.5 m min-1 ) with (HypET or HypSIT, respectively) and without (ET or SIT, respectively) 1 h hyperbaric exposure for 4 weeks. Maximal endurance capacity was significantly increased by HypET and HypSIT, and maximal interval capacity was significantly enhanced by HypSIT. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression levels were markedly increased after HypET and HypSIT. Activity levels of 3-hydroxyacyl-CoA-dehydrogenase, citrate synthase and phosphofructokinase in the red gastrocnemius muscle were increased more by HypET than by ET. Protein levels of mitochondrial transcription factor A, dynamin-related protein-1 and heat shock protein 70 were increased more by HypET than by ET. The proportion of type I fibres in the soleus muscle was remarkably increased by HypSIT. Capillary-to-fibre ratio values in the white gastrocnemius were increased more by HypSIT than by SIT. These results suggest that hyperbaric exposure has beneficial effects for endurance and interval training to improve exercise capacity in highly trained mice.
Collapse
Affiliation(s)
- Junichi Suzuki
- Laboratory of Exercise Physiology, Health and Sports Sciences, Course of Sports Education, Department of Education, Hokkaido University of Education, Midorigaoka, Iwamizawa, Hokkaido, 068-8642, Japan
| |
Collapse
|
10
|
Lee SH, Kim BJ, Park DR, Kim UH. Exercise induces muscle fiber type switching via transient receptor potential melastatin 2-dependent Ca 2+ signaling. J Appl Physiol (1985) 2018; 124:364-373. [PMID: 29146687 DOI: 10.1152/japplphysiol.00687.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to examine whether transient receptor potential melastatin 2 (TRPM2) plays a role in muscle fiber-type transition during exercise. Mice were trained at a speed of 12 m/min at a slope of 0° for 60 min for 5 consecutive days/wk for 4 wk. Exhaustion tests were performed on the treadmill (the speed was set at 6 m/min at a slope of 0° and increased at a rate of 1 m/min every 6 min). Isolated primary skeletal muscle cells from TRPM2-knockout (KO) mice showed lower amplitudes of electrical stimuli (ES)-induced Ca2+ signals when compared with wild-type (WT) mice due to a defect in Ca2+ influx. Moreover, TRPM2-KO mice had a higher proportion of fast-twitch skeletal muscle fibers and a lower proportion of slow-twitch muscle fibers before exercise than WT mice. After exercise, the expression of slow-twitch skeletal muscle fibers was increased only in WT mice but not in TRPM2-KO mice. ES-induced nuclear translocation of the Ca2+-dependent transcription factor NFATc1 was significantly lower in TRPM2-KO mice than in WT mice. TRPM2-KO mice also showed decreased mitochondrial Ca2+ and membrane potential. Lactate levels were higher in the skeletal muscle cells of TRPM2-KO mice before and after ES compared with WT mice. Collectively, these data indicate that TRPM2-mediated Ca2+ signaling plays a critical role in the regulation of fiber-type switching and mitochondrial function in skeletal muscle. NEW & NOTEWORTHY TRPM2 has been shown to play an important role in a variety of cellular functions. However, the role of TRPM2 in skeletal muscle remains poorly understood. Here, we provide evidence that TRPM2-mediated Ca2+ signaling is required for training-induced improvement in skeletal muscle mitochondrial function and fiber type transition.
Collapse
Affiliation(s)
- Seo-Ho Lee
- Department of Biochemistry, Chonbuk National University Medical School, Jeon-ju, South Korea.,National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeon-ju, South Korea
| | - Byung-Ju Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeon-ju, South Korea.,National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeon-ju, South Korea
| | - Dae-Ryoung Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeon-ju, South Korea.,National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeon-ju, South Korea
| | - Uh-Hyun Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeon-ju, South Korea.,National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeon-ju, South Korea.,Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeon-ju, South Korea
| |
Collapse
|
11
|
Jeong Y, Daghlas SA, Kahveci AS, Salamango D, Gentry BA, Brown M, Rector RS, Pearsall RS, Phillips CL. Soluble activin receptor type IIB decoy receptor differentially impacts murine osteogenesis imperfecta muscle function. Muscle Nerve 2018; 57:294-304. [PMID: 28555931 PMCID: PMC5702601 DOI: 10.1002/mus.25706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is characterized by skeletal fragility and muscle weakness. In this study we investigated the effects of soluble activin type IIB receptor (sActRIIB-mFc) on muscle mass and function in 2 distinct mouse models of OI: osteogenesis imperfecta murine (oim) and +/G610C. METHODS Wild-type (WT), +/G610C, and oim/oim mice were treated from 2 to 4 months of age with Tris-buffered saline (vehicle) or sActRIIB-mFc and their hindlimb muscles evaluated for mass, morphology, and contractile function. RESULTS sActRIIB-mFc-treated WT, +/G610C, and oim/oim mice had increased hindlimb muscle weights and myofiber cross-sectional area compared with vehicle-treated counterparts. sActRIIB-mFc-treated oim/oim mice also exhibited increased contractile function relative to vehicle-treated counterparts. DISCUSSION Blocking endogenous ActRIIB was effective at increasing muscle size in mouse models of OI, and increasing contractile function in oim/oim mice. ActRIIB inhibitors may provide a potential mutation-specific therapeutic option for compromised muscle function in OI. Muscle Nerve 57: 294-304, 2018.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Salah A. Daghlas
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Alp S. Kahveci
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Daniel Salamango
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Bettina A. Gentry
- Department of Veterinary Pathology, University of Missouri, Columbia MO 65211
| | - Marybeth Brown
- Department of Biomedical Science and Physical Therapy Program, University of Missouri, Columbia MO 65211
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | | | | |
Collapse
|
12
|
Avila JJ, Kim SK, Massett MP. Differences in Exercise Capacity and Responses to Training in 24 Inbred Mouse Strains. Front Physiol 2017; 8:974. [PMID: 29249981 PMCID: PMC5714923 DOI: 10.3389/fphys.2017.00974] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023] Open
Abstract
Changes in cardiorespiratory fitness in response to a standardized exercise training protocol differ substantially between individuals. Results from cross-sectional, twin, and family studies indicate genetics contribute to individual differences in both baseline exercise capacity and the response to training. Exercise capacity and responses to training also vary between inbred strains of mice. However, such studies have utilized a limited number of inbred strains. Therefore, the aim of this study was to characterize exercise-training responses in a larger number of genetically diverse strains of inbred mice and estimate the contribution of genetic background to exercise training responses. Eight-week old male mice from 24 inbred strains (n = 4–10/strain) performed a graded exercise test before and after 4 weeks of exercise training. Before training, exercise capacity was significantly different between strains when expressed as time (range = 21–42 min) and work performed (range = 0.42–3.89 kg·m). The responses to training also were significantly different between strains, ranging from a decrease of 2.2 min in NON/ShiLtJ mice to an increase of 8.7 min in SWR/J mice. Changes in work also varied considerably between the lowest (−0.24 kg·m in NON/ShiLtJ) and highest (+2.30 kg·m in FVB/NJ) performing strains. Heart and skeletal muscle masses also varied significantly between strains. Two broad sense heritability estimates were calculated for each measure of exercise capacity and for responses to training. For change in run time, the intraclass correlation between mice within the same inbred strain (rI) was 0.58 and the coefficient of genetic determination (g2) was 0.41. Heritability estimates were similar for the change in work: rI = 0.54 and g2 = 0.37. In conclusion, these results indicate genetic background significantly influences responses to exercise training.
Collapse
Affiliation(s)
- Joshua J Avila
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Seung Kyum Kim
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Michael P Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Barbé C, Bray F, Gueugneau M, Devassine S, Lause P, Tokarski C, Rolando C, Thissen JP. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy. J Proteome Res 2017; 16:3477-3490. [PMID: 28810121 DOI: 10.1021/acs.jproteome.7b00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.
Collapse
Affiliation(s)
- Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Fabrice Bray
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Marine Gueugneau
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Stéphanie Devassine
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| |
Collapse
|
14
|
Belizário JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. SPRINGERPLUS 2016; 5:619. [PMID: 27330885 PMCID: PMC4870483 DOI: 10.1186/s40064-016-2197-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022]
Abstract
Adult skeletal tissue is composed of heterogeneous population of cells that constantly self-renew by means of a controlled process of activation and proliferation of tissue-resident stem cells named satellite cells. Many growth factors, cytokines and myokines produced by skeletal muscle cells play critical roles in local regulation of the inflammatory process and skeletal muscle regeneration during different pathological conditions. IL-6 is a pleiotropic cytokine released in large amount during infection, autoimmunity and cancer. Low levels of IL-6 can promote activation of satellite cells and myotube regeneration while chronically elevated production promote skeletal muscle wasting. These distinct effects may be explained by a crosstalk of the IL-6/IL-6 receptor and gp130 trans-signaling pathway that oppose to regenerative and anti-inflammatory of the classical IL-6 receptor signaling pathway. Here we discuss on potential therapeutic strategies using monoclonal antibodies to IL-6R for the treatment of skeletal muscle wasting and cachexia. We also highlight on the IL-6/JAK/STAT and FGF/p38αβ MAPK signaling pathways in satellite cell activation and the use of protein kinase inhibitors for tailoring and optimizing satellite cell proliferation during the skeletal muscle renewal. Future investigations on the roles of the IL-6 classical and trans-signaling pathways in both immune and non-immune cells in skeletal muscle tissue will provide new basis for therapeutic approaches to reverse atrophy and degeneration of skeletal muscles in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | | | - Janaina Padua Borges
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | - Janete Akemi Kashiabara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | - Edouard Vannier
- Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, Boston, MA 02111 USA
| |
Collapse
|
15
|
Morton TL, Galior K, McGrath C, Wu X, Uzer G, Uzer GB, Sen B, Xie Z, Tyson D, Rubin J, Styner M. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice. Front Endocrinol (Lausanne) 2016; 7:80. [PMID: 27445983 PMCID: PMC4928595 DOI: 10.3389/fendo.2016.00080] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022] Open
Abstract
Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete's paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a "brown" phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD.
Collapse
Affiliation(s)
- Tiffany L. Morton
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kornelia Galior
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cody McGrath
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xin Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guniz Bas Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Buer Sen
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Tyson
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- *Correspondence: Maya Styner,
| |
Collapse
|
16
|
Massett MP, Avila JJ, Kim SK. Exercise Capacity and Response to Training Quantitative Trait Loci in a NZW X 129S1 Intercross and Combined Cross Analysis of Inbred Mouse Strains. PLoS One 2015; 10:e0145741. [PMID: 26710100 PMCID: PMC4692404 DOI: 10.1371/journal.pone.0145741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.
Collapse
Affiliation(s)
- Michael P. Massett
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Joshua J. Avila
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
| | - Seung Kyum Kim
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
17
|
Collins-Hooper H, Sartori R, Giallourou N, Matsakas A, Mitchell R, Mararenkova H, Flasskamp H, Macharia R, Ray S, Swann JR, Sandri M, Patel K. Symmorphosis through dietary regulation: a combinatorial role for proteolysis, autophagy and protein synthesis in normalising muscle metabolism and function of hypertrophic mice after acute starvation. PLoS One 2015; 10:e0120524. [PMID: 25807490 PMCID: PMC4373938 DOI: 10.1371/journal.pone.0120524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/05/2015] [Indexed: 01/13/2023] Open
Abstract
Animals are imbued with adaptive mechanisms spanning from the tissue/organ to the cellular scale which insure that processes of homeostasis are preserved in the landscape of size change. However we and others have postulated that the degree of adaptation is limited and that once outside the normal levels of size fluctuations, cells and tissues function in an aberant manner. In this study we examine the function of muscle in the myostatin null mouse which is an excellent model for hypertrophy beyond levels of normal growth and consequeces of acute starvation to restore mass. We show that muscle growth is sustained through protein synthesis driven by Serum/Glucocorticoid Kinase 1 (SGK1) rather than Akt1. Furthermore our metabonomic profiling of hypertrophic muscle shows that carbon from nutrient sources is being channelled for the production of biomass rather than ATP production. However the muscle displays elevated levels of autophagy and decreased levels of muscle tension. We demonstrate the myostatin null muscle is acutely sensitive to changes in diet and activates both the proteolytic and autophagy programmes and shutting down protein synthesis more extensively than is the case for wild-types. Poignantly we show that acute starvation which is detrimental to wild-type animals is beneficial in terms of metabolism and muscle function in the myostatin null mice by normalising tension production.
Collapse
Affiliation(s)
- Henry Collins-Hooper
- School of Biological Sciences, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Roberta Sartori
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Natasa Giallourou
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Antonios Matsakas
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Hull/York, United Kingdom
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Helen Mararenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Hannah Flasskamp
- School of Biological Sciences, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Raymond Macharia
- Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | - Steve Ray
- Natural Biosciences, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Jonathan R. Swann
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Whiteknights campus, Reading, United Kingdom
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Whiteknights campus, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Caetano-Anollés K, Mishra S, Rodriguez-Zas SL. Synergistic and antagonistic interplay between myostatin gene expression and physical activity levels on gene expression patterns in triceps Brachii muscles of C57/BL6 mice. PLoS One 2015; 10:e0116828. [PMID: 25710176 PMCID: PMC4339580 DOI: 10.1371/journal.pone.0116828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/15/2014] [Indexed: 12/28/2022] Open
Abstract
Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways, impacting medical practices and therapies associated with muscle atrophy in humans and companion animal species and genome-enabled selection practices applied to food-production animal species.
Collapse
Affiliation(s)
- Kelsey Caetano-Anollés
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sanjibita Mishra
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Khorana Scholars Program, Indo-US Science and Technology Forum, New Delhi, India
- National Institute of Technology, Rourkel, India
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Pauly M, Chabi B, Favier FB, Vanterpool F, Matecki S, Fouret G, Bonafos B, Vernus B, Feillet-Coudray C, Coudray C, Bonnieu A, Ramonatxo C. Combined Strategies for Maintaining Skeletal Muscle Mass and Function in Aging: Myostatin Inactivation and AICAR-Associated Oxidative Metabolism Induction. J Gerontol A Biol Sci Med Sci 2014; 70:1077-87. [PMID: 25227129 DOI: 10.1093/gerona/glu147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/21/2014] [Indexed: 11/13/2022] Open
Abstract
Myostatin (mstn) blockade, resulting in muscle hypertrophy, is a promising therapy to counteract age-related muscle loss. However, oxidative and mitochondrial deficit observed in young mice with myostatin inhibition could be detrimental with aging. The aim of this study was (a) to bring original data on metabolic and mitochondrial consequences of mstn inhibition in old mice, and (b) to examine whether 4-weeks of AICAR treatment, a pharmacological compound known to upregulate oxidative metabolism, may be useful to improve exercise capacity and mitochondrial deficit of 20-months mstn KO versus wild-type (WT) mice. Our results show that despite the enlarged muscle mass, the oxidative and mitochondrial deficit associated with reduced endurance running capacity is maintained in old mstn KO mice but not worsened by aging. Importantly, AICAR treatment induced a significant beneficial effect on running limit time only in old mstn KO mice, with a marked increase in PGC-1α expression and slight beneficial effects on mitochondrial function. We showed that AICAR effects were autophagy-independent. This study underlines the relevance of aged muscle remodelling by complementary approaches that impact both muscle mass and function, and suggest that mstn inhibition and aerobic metabolism activators should be co-developed for delaying age-related deficits in skeletal muscle.
Collapse
Affiliation(s)
- Marion Pauly
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France INSERM U1046, Physiology and Experimental Medicine Heart-Muscle Unit, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Béatrice Chabi
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - François Bertrand Favier
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Frankie Vanterpool
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Stefan Matecki
- INSERM U1046, Physiology and Experimental Medicine Heart-Muscle Unit, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Gilles Fouret
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Béatrice Bonafos
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Barbara Vernus
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Christine Feillet-Coudray
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Charles Coudray
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Anne Bonnieu
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| | - Christelle Ramonatxo
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F-34060, Montpellier, France
| |
Collapse
|
20
|
Mouisel E, Relizani K, Mille-Hamard L, Denis R, Hourdé C, Agbulut O, Patel K, Arandel L, Morales-Gonzalez S, Vignaud A, Garcia L, Ferry A, Luquet S, Billat V, Ventura-Clapier R, Schuelke M, Amthor H. Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2014; 307:R444-54. [DOI: 10.1152/ajpregu.00377.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn −/− mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn −/− mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn−/− mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn −/− mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.
Collapse
Affiliation(s)
- Etienne Mouisel
- Institut National de la Santé et de la Recherche Médicale (INSERM)/Paul Sabatier University, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Obesity Research Laboratory, Toulouse, France
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
| | - Karima Relizani
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
- Laboratoire “End:icap”, UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, France
| | | | - Raphaël Denis
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Paris, France
| | - Christophe Hourdé
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
- Laboratory of Exercise Physiology, University of Savoie, Chambery, France
| | - Onnik Agbulut
- UPMC, Paris 06, Sorbonne Universités, UMR Centre National de la Recherche Scientifique (CNRS) Biological Adaptation and Ageing, Paris, France
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Ludovic Arandel
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
| | - Susanne Morales-Gonzalez
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Luis Garcia
- Laboratoire “End:icap”, UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, France
- Laboratoire International Associé - Biothérapies Appliquées aux Handicaps Neuromusculaires, Centre Scientifique de Monaco, Monaco
| | - Arnaud Ferry
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
- Université Paris Descartes, Paris, France
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413, Paris, France
- CNRS, EAC 4413, Paris, France; and
| | | | | | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Amthor
- Sorbonne Universités, Universités Européennes, l'Université Pierre et Marie Curie (UPMC), Paris 06, Myology Center of Research and Institut National de la Santé et de la Recherche Médicale, UMR S974 and Centre National de la Recherche Scientifique, FRE 3617 and Institut de Myologie, Paris, France
- Laboratoire “End:icap”, UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, France
- Laboratoire International Associé - Biothérapies Appliquées aux Handicaps Neuromusculaires, Centre Scientifique de Monaco, Monaco
| |
Collapse
|
21
|
Relizani K, Mouisel E, Giannesini B, Hourdé C, Patel K, Morales Gonzalez S, Jülich K, Vignaud A, Piétri-Rouxel F, Fortin D, Garcia L, Blot S, Ritvos O, Bendahan D, Ferry A, Ventura-Clapier R, Schuelke M, Amthor H. Blockade of ActRIIB signaling triggers muscle fatigability and metabolic myopathy. Mol Ther 2014; 22:1423-1433. [PMID: 24861054 DOI: 10.1038/mt.2014.90] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/18/2014] [Indexed: 12/26/2022] Open
Abstract
Myostatin regulates skeletal muscle size via the activin receptor IIB (ActRIIB). However, its effect on muscle energy metabolism and energy-dependent muscle function remains largely unexplored. This question needs to be solved urgently since various therapies for neuromuscular diseases based on blockade of ActRIIB signaling are being developed. Here, we show in mice, that 4-month pharmacological abrogation of ActRIIB signaling by treatment with soluble ActRIIB-Fc triggers extreme muscle fatigability. This is associated with elevated serum lactate levels and a severe metabolic myopathy in the mdx mouse, an animal model of Duchenne muscular dystrophy. Blockade of ActRIIB signaling downregulates porin, a crucial ADP/ATP shuttle between cytosol and mitochondrial matrix leading to a consecutive deficiency of oxidative phosphorylation as measured by in vivo Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS). Further, ActRIIB blockade reduces muscle capillarization, which further compounds the metabolic stress. We show that ActRIIB regulates key determinants of muscle metabolism, such as Pparβ, Pgc1α, and Pdk4 thereby optimizing different components of muscle energy metabolism. In conclusion, ActRIIB signaling endows skeletal muscle with high oxidative capacity and low fatigability. The severe metabolic side effects following ActRIIB blockade caution against deploying this strategy, at least in isolation, for treatment of neuromuscular disorders.
Collapse
Affiliation(s)
- Karima Relizani
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany; UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Etienne Mouisel
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Current address: Inserm UMR 1048, Université Paul Sabatier, Toulouse, France
| | - Benoit Giannesini
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, Marseille, France
| | - Christophe Hourdé
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | - Susanne Morales Gonzalez
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kristina Jülich
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alban Vignaud
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Généthon, 1 bis rue de l'Internationale, Evry, France
| | - France Piétri-Rouxel
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France
| | | | - Luis Garcia
- UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Stéphane Blot
- Unité de Neurologie, Ecole Nationale Vétérinaire d'Alfort, Université Paris Est, Créteil, France
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Resonance Magnetique Biologique et Medicale UMR 7339, Marseille, France
| | - Arnaud Ferry
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; Université Paris Descartes, Paris, France
| | | | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Helge Amthor
- Université Pierre et Marie Curie, Institut de Myologie, Unité mixte de recherche UPMC-AIM UM 76, INSERM U 974, CNRS UMR 7215, Paris, France; UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France; Service Génétique Médicale, CHU Necker-Enfants Malades, Université Paris Descartes, Paris, France.
| |
Collapse
|
22
|
Mosler S, Relizani K, Mouisel E, Amthor H, Diel P. Combinatory effects of siRNA-induced myostatin inhibition and exercise on skeletal muscle homeostasis and body composition. Physiol Rep 2014; 2:e00262. [PMID: 24760516 PMCID: PMC4002242 DOI: 10.1002/phy2.262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract Inhibition of myostatin (Mstn) stimulates skeletal muscle growth, reduces body fat, and induces a number of metabolic changes. However, it remains unexplored how exercise training modulates the response to Mstn inhibition. The aim of this study was to investigate how siRNA-mediated Mstn inhibition alone but also in combination with physical activity affects body composition and skeletal muscle homeostasis. Adult mice were treated with Mstn-targeting siRNA and subjected to a treadmill-based exercise protocol for 4 weeks. Effects on skeletal muscle and fat tissue, expression of genes, and serum concentration of proteins involved in myostatin signaling, skeletal muscle homeostasis, and lipid metabolism were investigated and compared with Mstn(-/-) mice. The combination of siRNA-mediated Mstn knockdown and exercise induced skeletal muscle hypertrophy, which was associated with an upregulation of markers for satellite cell activity. SiRNA-mediated Mstn knockdown decreased visceral fat and modulated lipid metabolism similar to effects observed in Mstn(-/-) mice. Myostatin did not regulate its own expression via an autoregulatory loop, however, Mstn knockdown resulted in a decrease in the serum concentrations of myostatin propeptide, leptin, and follistatin. The ratio of these three parameters was distinct between Mstn knockdown, exercise, and their combination. Taken together, siRNA-mediated Mstn knockdown in combination with exercise stimulated skeletal muscle hypertrophy. Each intervention or their combination induced a specific set of adaptive responses in the skeletal muscle and fat metabolism which could be identified by marker proteins in serum.
Collapse
Affiliation(s)
- Stephanie Mosler
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
23
|
Bodnár D, Geyer N, Ruzsnavszky O, Oláh T, Hegyi B, Sztretye M, Fodor J, Dienes B, Balogh Á, Papp Z, Szabó L, Müller G, Csernoch L, Szentesi P. Hypermuscular mice with mutation in the myostatin gene display altered calcium signalling. J Physiol 2014; 592:1353-65. [PMID: 24445322 DOI: 10.1113/jphysiol.2013.261958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myostatin, a member of the transforming growth factor β family, is a potent negative regulator of skeletal muscle growth, as myostatin-deficient mice show a great increase in muscle mass. Yet the physical performance of these animals is reduced. As an explanation for this, alterations in the steps in excitation-contraction coupling were hypothesized and tested for in mice with the 12 bp deletion in the propeptide region of the myostatin precursor (Mstn(Cmpt-dl1Abc) or Cmpt). In voluntary wheel running, control C57BL/6 mice performed better than the mutant animals in both maximal speed and total distance covered. Despite the previously described lower specific force of Cmpt animals, the pCa-force relationship, determined on chemically permeabilized fibre segments, did not show any significant difference between the two mouse strains. While resting intracellular Ca(2+) concentration ([Ca(2+)]i) measured on single intact flexor digitorum brevis (FDB) muscle fibres using Fura-2 AM was similar to control (72.0 ± 1.7 vs. 78.1 ± 2.9 nM, n = 38 and 45), the amplitude of KCl-evoked calcium transients was smaller (360 ± 49 vs. 222 ± 45 nM, n = 22) in the mutant strain. Similar results were obtained using tetanic stimulation and Rhod-2 AM, which gave calcium transients that were smaller (2.42 ± 0.11 vs. 2.06 ± 0.10 ΔF/F0, n = 14 and 13, respectively) on Cmpt mice. Sarcoplasmic reticulum (SR) calcium release flux calculated from these transients showed a reduced peak (23.7 ± 3.0 vs. 15.8 ± 2.1 mM s(-1)) and steady level (5.7 ± 0.7 vs. 3.7 ± 0.5 mM s(-1)) with no change in the peak-to-steady ratio. The amplitude and spatial spread of calcium release events detected on permeabilized FDB fibres were also significantly smaller in mutant mice. These results suggest that reduced SR calcium release underlies the reduced muscle force in Cmpt animals.
Collapse
Affiliation(s)
- Dóra Bodnár
- Department of Physiology, Faculty of Medicine, Medical and Health Science Centre, University of Debrecen, PO Box 22, H-4012 Debrecen, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baán JA, Kocsis T, Keller-Pintér A, Müller G, Zádor E, Dux L, Mendler L. The compact mutation of myostatin causes a glycolytic shift in the phenotype of fast skeletal muscles. J Histochem Cytochem 2013; 61:889-900. [PMID: 23979839 DOI: 10.1369/0022155413503661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myostatin is an important negative regulator of skeletal muscle growth. The hypermuscular Compact (Cmpt) mice carry a 12-bp natural mutation in the myostatin propeptide, with additional modifier genes being responsible for the phenotype. Muscle cellularity of the fast-type tibialis anterior (TA) and extensor digitorum longus (EDL) as well as the mixed-type soleus (SOL) muscles of Cmpt and wild-type mice was examined by immunohistochemical staining of the myosin heavy chain (MHC) proteins. In addition, transcript levels of MHC isoforms were quantified by qPCR. Based on our results, all investigated muscles of Cmpt mice were significantly larger compared with that of wild-type mice, as characterized by fiber hyperplasia of different grades. Fiber hypertrophy was not present in TA; however, EDL muscles showed specific IIB fiber hypertrophy while the (I and IIA) fibers of SOL muscles were generally hypertrophied. Both the fast TA and EDL muscles of Cmpt mice contained significantly more glycolytic IIB fibers accompanied by a decreased number of IIX and IIA fibers; however, this was not the case for SOL muscles. In summary, despite the variances found in muscle cellularity between the different myostatin mutant mice, similar glycolytic shifts were observed in Cmpt fast muscles as in muscles from myostatin knockout mice.
Collapse
Affiliation(s)
- Júlia Aliz Baán
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9., 6720 Szeged, Hungary (JAB, TK, AKP, EZ, LD, LM)
| | | | | | | | | | | | | |
Collapse
|
25
|
Giannesini B, Vilmen C, Amthor H, Bernard M, Bendahan D. Lack of myostatin impairs mechanical performance and ATP cost of contraction in exercising mouse gastrocnemius muscle in vivo. Am J Physiol Endocrinol Metab 2013; 305:E33-40. [PMID: 23632633 DOI: 10.1152/ajpendo.00651.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although it is well established that the lack of myostatin (Mstn) promotes skeletal muscle hypertrophy, the corresponding changes regarding force generation have been studied mainly in vitro and remain conflicting. Furthermore, the metabolic underpinnings of these changes are very poorly documented. To clarify this issue, we have investigated strictly noninvasively in vivo the impact of the lack of Mstn on gastrocnemius muscle function and energetics in Mstn-targeted knockout (Mstn-/-) mice using ¹H-magnetic resonance (MR) imaging and ³¹P-MR spectroscopy during maximal repeated isometric contractions induced by transcutaneous electrostimulation. In Mstn-/- animals, although body weight, gastrocnemius muscle volume, and absolute force were larger (+38, +118, and +34%, respectively) compared with wild-type (Mstn+/+) mice, specific force (calculated from MR imaging measurements) was significantly lower (-36%), and resistance to fatigue was decreased. Besides, Mstn deficiency did not affect phosphorylated compound concentrations and intracellular pH at rest but caused a large increase in ATP cost of contraction (up to +206% compared with Mstn+/+) throughout the stimulation period. Further, Mstn deficiency limits the shift toward oxidative metabolism during muscle activity despite the fact that oxidative ATP synthesis capacity was not altered. Our data demonstrate in vivo that the absence of Mstn impairs both mechanical performance and energy cost of contraction in hypertrophic muscle. These findings must be kept in mind when considering Mstn as a potential therapeutic target for increasing muscle mass in patients suffering from muscle-wasting disorders.
Collapse
Affiliation(s)
- Benoît Giannesini
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, 13385, Marseille, France.
| | | | | | | | | |
Collapse
|
26
|
Shefer G, Rauner G, Stuelsatz P, Benayahu D, Yablonka-Reuveni Z. Moderate-intensity treadmill running promotes expansion of the satellite cell pool in young and old mice. FEBS J 2013; 280:4063-73. [PMID: 23464362 DOI: 10.1111/febs.12228] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/13/2013] [Accepted: 02/28/2013] [Indexed: 02/06/2023]
Abstract
Satellite cells, the myogenic progenitors located at the myofibre surface, are essential for the repair of adult skeletal muscle. There is ample evidence for an age-linked decline in the number of satellite cells and performance in limb muscles. Hence, an effective means of activating and expanding the satellite cell pool may enhance muscle maintenance and reduce the impact of age-associated muscle deterioration (sarcopaenia). Accordingly, in the present study, we explored the beneficial effects of endurance exercise on satellite cells in young and old mice. Animals were subjected to an 8-week moderate-intensity treadmill-running approach that does not inflict apparent muscle damage (0° inclination, 11.5 m·min(-1) for 30 min·day(-1) , 6 days·week(-1) ). Myofibres of extensor digitorum longus muscles were then isolated from exercised and sedentary mice and used for monitoring the number of satellite cells, as well as for harvesting individual satellite cells for clonal growth assays. We specifically focused on satellite cell pools of single myofibres, with the view that daily wear of muscles probably affects individual myofibres rather than causing overall muscle damage. We found an expansion of the satellite cell pool in the exercised groups compared to the sedentary groups, with the same increase (~ 1.6-fold) in both ages. The results of the present study are in agreement with our findings obtained using rat gastrocnemius, indicating the consistent effect of exercise on satellite cell expansion in limb muscles. The experimental paradigm established in the present study is useful for investigating satellite cell dynamics at the myofibre niche, as well as for broader investigations of the impact of physiologically and pathologically relevant factors on adult myogenesis.
Collapse
Affiliation(s)
- Gabi Shefer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|
27
|
Schirwis E, Agbulut O, Vadrot N, Mouisel E, Hourdé C, Bonnieu A, Butler-Browne G, Amthor H, Ferry A. The beneficial effect of myostatin deficiency on maximal muscle force and power is attenuated with age. Exp Gerontol 2012. [PMID: 23201547 DOI: 10.1016/j.exger.2012.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The prolonged effect of myostatin deficiency on muscle performance in knockout mice has as yet been only poorly investigated. We have demonstrated that absolute maximal force is increased in 6-month old female and male knockout mice and 2-year old female knockout mice as compared to age- and sex-matched wildtype mice. Similarly, absolute maximal power is increased by myostatin deficiency in 6-month old female and male knockout mice but not in 2-year old female knockout mice. The increases we observed were greater in 6-month old female than in male knockout mice and can primarily result from muscle hypertrophy. In contrast, fatigue resistance was decreased in 6-month old knockout mice of both sexes as compared to age- and sex-matched wildtype mice. Moreover, in contrast to 2-year old female wildtype mice, aging in 2-year old knockout mice reduced absolute maximal force and power of both sexes as compared to their younger counterparts, although muscle weight did not change. These age-related decreases were lower in 2-year old female than in 2-year old male knockout mice. Together these results suggest that the beneficial effect of myostatin deficiency on absolute maximal force and power is greater in young (versus old) mice and female (versus male) mice. Most of these effects of myostatin deficiency are related neither to changes in the concentration of myofibrillar proteins nor to the slow to fast fiber type transition.
Collapse
Affiliation(s)
- E Schirwis
- Université Pierre et Marie Curie-Paris6, Sorbonne Universités, UMR S794, INSERM, U974, CNRS UMR7215, Institut de Myologie, Paris F-75013, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ploquin C, Chabi B, Fouret G, Vernus B, Feillet-Coudray C, Coudray C, Bonnieu A, Ramonatxo C. Lack of myostatin alters intermyofibrillar mitochondria activity, unbalances redox status, and impairs tolerance to chronic repetitive contractions in muscle. Am J Physiol Endocrinol Metab 2012; 302:E1000-8. [PMID: 22318951 DOI: 10.1152/ajpendo.00652.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Loss of myostatin (mstn) function leads to a decrease in mitochondrial content, a reduced expression of cytochrome c oxidase, and a lower citrate synthase activity in skeletal muscle. These data suggest functional or ultrastructural mitochondrial abnormalities that can impact on muscle endurance characteristics in such phenotype. To address this issue, we investigated subsarcolemmal and intermyofibrillar (IMF) mitochondrial activities, skeletal muscle redox homeostasis, and muscle fiber endurance quality in mstn-deficient mice [mstn knockout (KO)]. We report that lack of mstn induced a decrease in the coupling of IMF mitochondria respiration, with significantly higher basal oxygen consumption. No lysis of mitochondrial cristae or excessive swelling were observed in mstn KO mice compared with wild-type (WT) mice. Concerning redox status, mstn KO gastrocnemius exhibited a significant decrease in lipid peroxidation levels (-56%; P < 0.01 vs. WT) together with a significant upregulation of the antioxidant glutathione system. In contrast, superoxide dismutase and catalase activities were altered in mstn KO, gastrocnemius and soleus with a reduction of up to 80% compared with WT animals. The force production observed after contractile endurance test was significantly lower in extensor digitorum longus and soleus muscles of mstn KO mice compared with the controls (17 ± 3 and 36 ± 5% vs. 28 ± 4 and 56 ± 5%, respectively, P < 0.05). Together, these findings indicate that, besides an increased skeletal muscle mass, genetic mstn inhibition has differential effects on redox homeostasis and mitochondrial function that would have functional consequences on muscle response to endurance exercise.
Collapse
Affiliation(s)
- Claire Ploquin
- Institut National de la Recherche Agronomique, Dynamique Musculaire et Métabolisme, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Allen DL, Hittel DS, McPherron AC. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med Sci Sports Exerc 2012; 43:1828-35. [PMID: 21364474 DOI: 10.1249/mss.0b013e3182178bb4] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myostatin is a member of the transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) superfamily of secreted factors that functions as a potent inhibitor of skeletal muscle growth. Moreover, considerable evidence has accumulated that myostatin also regulates metabolism and that its inhibition can significantly attenuate the progression of obesity and diabetes. Although at least part of these effects on metabolism can be attributable to myostatin's influence over skeletal muscle growth and therefore on the total volume of metabolically active lean body mass, there is mounting evidence that myostatin affects the growth and metabolic state of other tissues, including the adipose and the liver. In addition, recent work has explored the role of myostatin in substrate mobilization, uptake, and/or utilization of muscle independent of its effects on body composition. Finally, the effects of both endurance and resistance exercise on myostatin expression, as well as the potential role of myostatin in the beneficial metabolic adaptations occurring in response to exercise, have also begun to be delineated in greater detail. The purpose of this review was to summarize the work to date on the expression and function of myostatin in obesity, diabetes, and exercise adaptation.
Collapse
Affiliation(s)
- David L Allen
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | |
Collapse
|
30
|
Matsakas A, Macharia R, Otto A, Elashry MI, Mouisel E, Romanello V, Sartori R, Amthor H, Sandri M, Narkar V, Patel K. Exercise training attenuates the hypermuscular phenotype and restores skeletal muscle function in the myostatin null mouse. Exp Physiol 2011; 97:125-40. [DOI: 10.1113/expphysiol.2011.063008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Olfert IM, Howlett RA, Wagner PD, Breen EC. Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1059-67. [PMID: 20686173 DOI: 10.1152/ajpregu.00347.2010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have previously shown, using a Cre-LoxP strategy, that vascular endothelial growth factor (VEGF) is required for the development and maintenance of skeletal muscle capillarity in sedentary adult mice. To determine whether VEGF expression is required for skeletal muscle capillary adaptation to exercise training, gastrocnemius muscle capillarity was measured in myocyte-specific VEGF gene-deleted (mVEGF(-/-)) and wild-type (WT) littermate mice following 6 wk of treadmill running (1 h/day, 5 days/wk) at the same running speed. The effect of training on metabolic enzyme activity levels and whole body running performance was also evaluated in mVEGF(-/-) and WT mice. Posttraining capillary density was significantly increased by 59% (P < 0.05) in the deep muscle region of the gastrocnemius in WT mice but did not change in mVEGF(-/-) mice. Maximal running speed and time to exhaustion during submaximal running increased by 20 and 13% (P < 0.05), respectively, in WT mice after training but were unchanged in mVEGF(-/-) mice. Training led to increases in skeletal muscle citrate synthase (CS) and phosphofructokinase (PFK) activities in both WT and mVEGF(-/-) mice (P < 0.05), whereas β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity was increased only in WT mice. These data demonstrate that skeletal muscle capillary adaptation to physical training does not occur in the absence of myocyte-expressed VEGF. However, skeletal muscle metabolic adaptation to exercise training takes place independent of myocyte VEGF expression.
Collapse
Affiliation(s)
- I Mark Olfert
- Department of Medicine, University of California, San Diego, La Jolla, USA.
| | | | | | | |
Collapse
|