1
|
Guadilla I, González S, Cerdán S, Lizarbe B, López-Larrubia P. Magnetic resonance imaging to assess the brain response to fasting in glioblastoma-bearing rats as a model of cancer anorexia. Cancer Imaging 2023; 23:36. [PMID: 37038232 PMCID: PMC10088192 DOI: 10.1186/s40644-023-00553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Global energy balance is a vital process tightly regulated by the brain that frequently becomes dysregulated during the development of cancer. Glioblastoma (GBM) is one of the most investigated malignancies, but its appetite-related disorders, like anorexia/cachexia symptoms, remain poorly understood. METHODS We performed manganese enhanced magnetic resonance imaging (MEMRI) and subsequent diffusion tensor imaging (DTI), in adult male GBM-bearing (n = 13) or control Wistar rats (n = 12). A generalized linear model approach was used to assess the effects of fasting in different brain regions involved in the regulation of the global energy metabolism: cortex, hippocampus, hypothalamus and thalamus. The regions were selected on the contralateral side in tumor-bearing animals, and on the left hemisphere in control rats. An additional DTI-only experiment was completed in two additional GBM (n = 5) or healthy cohorts (n = 6) to assess the effects of manganese infusion on diffusion measurements. RESULTS MEMRI results showed lower T1 values in the cortex (p-value < 0.001) and thalamus (p-value < 0.05) of the fed ad libitum GBM animals, as compared to the control cohort, consistent with increased Mn2+ accumulation. No MEMRI-detectable differences were reported between fed or fasting rats, either in control or in the GBM group. In the MnCl2-infused cohorts, DTI studies showed no mean diffusivity (MD) variations from the fed to the fasted state in any animal cohort. However, the DTI-only set of acquisitions yielded remarkably decreased MD values after fasting only in the healthy control rats (p-value < 0.001), and in all regions, but thalamus, of GBM compared to control animals in the fed state (p-value < 0.01). Fractional anisotropy (FA) decreased in tumor-bearing rats due to the infiltrate nature of the tumor, which was detected in both diffusion sets, with (p-value < 0.01) and without Mn2+ administration (p-value < 0.001). CONCLUSIONS Our results revealed that an altered physiological brain response to fasting occurred in hunger related regions in GBM animals, detectable with DTI, but not with MEMRI acquisitions. Furthermore, the present results showed that Mn2+ induces neurotoxic inflammation, which interferes with diffusion MRI to detect appetite-induced responses through MD changes.
Collapse
Affiliation(s)
- Irene Guadilla
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Sara González
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Sebastián Cerdán
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Blanca Lizarbe
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pilar López-Larrubia
- Biomedical Magnetic Resonance Group, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, C/ Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
3
|
Lasagni Vitar RM, Fonteyne P, Chaabane L, Rama P, Ferrari G. A Hypothalamic-Controlled Neural Reflex Promotes Corneal Inflammation. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34698773 PMCID: PMC8556564 DOI: 10.1167/iovs.62.13.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To test whether an acute corneal injury activates a proinflammatory reflex, involving corneal sensory nerves expressing substance P (SP), the hypothalamus, and the sympathetic nervous system. Methods C57BL6/N (wild-type [WT]) and SP-depleted B6.Cg-Tac1tm1Bbm/J (TAC1-KO) mice underwent bilateral corneal alkali burn. One group of WT mice received oxybuprocaine before alkali burn. One hour later, hypothalamic neuronal activity was assessed in vivo by magnetic resonance imaging and ex vivo by cFOS staining. Some animals were followed up for 14 days to evaluate corneal transparency and inflammation. Tyrosine hydroxylase (TH), neurokinin 1 receptor (NK1R), and neuronal nitric oxide synthase (nNOS) expression was assessed in brain sections. Sympathetic neuron activation was evaluated in the superior cervical ganglion (SCG). CD45+ leukocytes were quantified in whole-mounted corneas. Noradrenaline (NA) was evaluated in the cornea and bone marrow. Results Alkali burn acutely induced neuronal activation in the trigeminal ganglion, paraventricular hypothalamus, and lateral hypothalamic area (PVH and LHA), which was significantly lower in TAC1-KO mice (P < 0.05). Oxybuprocaine application similarly reduced neuronal activation (P < 0.05). TAC1-KO mice showed a reduced number of cFOS+/NK1R+/TH+ presympathetic neurons (P < 0.05) paralleled by higher nNOS expression (P < 0.05) in both PVH and LHA. A decrease in activated sympathetic neurons in the SCG and NA levels in both cornea/bone marrow and reduced corneal leukocyte infiltration (P < 0.05) in TAC1-KO mice were found. Finally, 14 days after injury, TAC1-KO mice showed reduced corneal opacity and inflammation (P < 0.05). Conclusions Our findings suggest that stimulation of corneal sensory nerves containing SP activates presympathetic neurons located in the PVH and LHA, leading to sympathetic activation, peripheral release of NA, and corneal inflammation.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Benítez A, Lizarbe B, Guadilla I, López-Larrubia P, Lago-Fernández LF, Cerdán S, Sánchez-Montañés M. Cerebral hunger maps in rodents and humans by diffusion weighted MRI. Appetite 2019; 142:104333. [PMID: 31252030 DOI: 10.1016/j.appet.2019.104333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/20/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022]
Abstract
We design, implement and validate a novel image processing strategy to obtain in vivo maps of hunger stimulation in the brain of mice, rats and humans, combining Diffusion Weighted Magnetic Resonance Imaging (DWI) datasets from fed and fasted subjects. Hunger maps were obtained from axial/coronal (rodents/humans) brain sections containing the hypothalamus and coplanar cortico-limbic structures using Fisher's Discriminant Analysis of the combined voxel ensembles from both feeding situations. These maps were validated against those provided by the classical mono-exponential diffusion model as applied over the same subjects and conditions. Mono-exponential fittings revealed significant Apparent Diffusion Coefficient (ADC) decreases through the brain regions stimulated by hunger, but rigorous parameter estimations imposed the rejection of considerable number of pixels. The proposed approach avoided pixel rejections and provided a representation of the combined DWI dataset as a pixel map of the "Hunger Index" (HI), a parameter revealing the hunger score of every pixel. The new methodology proved to be robust both, by yielding consistent results with classical ADC maps and, by reproducing very similar HI maps when applied to newly acquired rodent datasets. ADC and HI maps demonstrated similar patterns of activation by hunger in hypothalamic and cortico-limbic structures of the brain of rodents and humans, albeit with different relative intensities, rodents showing more intense activations by hunger than humans, for similar fasting periods. The proposed methodology may be easily extended to other feeding paradigms or even to alternative imaging methods.
Collapse
Affiliation(s)
- Ania Benítez
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC/UAM, c/Arturo Duperier, 4, Madrid, 28029, Spain; Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC/UAM, c/Arturo Duperier, 4, Madrid, 28029, Spain
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC/UAM, c/Arturo Duperier, 4, Madrid, 28029, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC/UAM, c/Arturo Duperier, 4, Madrid, 28029, Spain
| | - Luis F Lago-Fernández
- Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC/UAM, c/Arturo Duperier, 4, Madrid, 28029, Spain
| | - Manuel Sánchez-Montañés
- Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
5
|
Badea A, Delpratt NA, Anderson RJ, Dibb R, Qi Y, Wei H, Liu C, Wetsel WC, Avants BB, Colton C. Multivariate MR biomarkers better predict cognitive dysfunction in mouse models of Alzheimer's disease. Magn Reson Imaging 2019; 60:52-67. [PMID: 30940494 DOI: 10.1016/j.mri.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
To understand multifactorial conditions such as Alzheimer's disease (AD) we need brain signatures that predict the impact of multiple pathologies and their interactions. To help uncover the relationships between pathology affected brain circuits and cognitive markers we have used mouse models that represent, at least in part, the complex interactions altered in AD, while being raised in uniform environments and with known genotype alterations. In particular, we aimed to understand the relationship between vulnerable brain circuits and memory deficits measured in the Morris water maze, and we tested several predictive modeling approaches. We used in vivo manganese enhanced MRI traditional voxel based analyses to reveal regional differences in volume (morphometry), signal intensity (activity), and magnetic susceptibility (iron deposition, demyelination). These regions included hippocampus, olfactory areas, entorhinal cortex and cerebellum, as well as the frontal association area. The properties of these regions, extracted from each of the imaging markers, were used to predict spatial memory. We next used eigenanatomy, which reduces dimensionality to produce sets of regions that explain the variance in the data. For each imaging marker, eigenanatomy revealed networks underpinning a range of cognitive functions including memory, motor function, and associative learning, allowing the detection of associations between context, location, and responses. Finally, the integration of multivariate markers in a supervised sparse canonical correlation approach outperformed single predictor models and had significant correlates to spatial memory. Among a priori selected regions, expected to play a role in memory dysfunction, the fornix also provided good predictors, raising the possibility of investigating how disease propagation within brain networks leads to cognitive deterioration. Our cross-sectional results support that modeling approaches integrating multivariate imaging markers provide sensitive predictors of AD-like behaviors. Such strategies for mapping brain circuits responsible for behaviors may help in the future predict disease progression, or response to interventions.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA; Department of Neurology, Duke University Medical Center, Durham, NC, USA; Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
| | - Natalie A Delpratt
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - R J Anderson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Russell Dibb
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Cell Biology, Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Carol Colton
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Androuin A, Abada YS, Ly M, Santin M, Petiet A, Epelbaum S, Bertrand A, Delatour B. Activity-induced MEMRI cannot detect functional brain anomalies in the APPxPS1-Ki mouse model of Alzheimer's disease. Sci Rep 2019; 9:1140. [PMID: 30718666 PMCID: PMC6361936 DOI: 10.1038/s41598-018-37980-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/10/2018] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia. Aside neuropathological lesions, abnormal neuronal activity and brain metabolism are part of the core symptoms of the disease. Activity-induced Manganese-Enhanced Magnetic Resonance Imaging (MEMRI) has been proposed as a powerful approach to visualize evoked brain activity in rodents. Here, we evaluated the relevance of MEMRI in measuring neuronal (dys-)function in the APPxPS1 knocked-in (KI) mouse model of AD. Brain anomalies were firstly demonstrated in APPxPS1-Ki mice using cognitive testing (memory impairment) and histological mapping of immediate early gene products (decreased density of fos-positive neurons). Paradoxically, MEMRI analyses were not able to confirm the occurrence of neuronal hypoactivities in vivo. We then performed a neuropathological analysis that highlighted an abnormal increased permeability of the blood-brain barrier (BBB) in APPxPS1-Ki mice. We hypothesized that diffuse weakening of the BBB results in an uncontrolled diffusion of the MR contrast agent and a lack of correlation between manganese accumulation and neuronal activity. These results bring to light a limitation of the activity-induced MEMRI approach when applied to the APPxPS1-Ki mouse model as well as other mouse models harboring a compromised BBB.
Collapse
Affiliation(s)
- Alexandre Androuin
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Yah-Se Abada
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Myriam Ly
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Institut Roche, Boulogne-Billancourt, France
| | - Mathieu Santin
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Center for Neuroimaging Research, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Alexandra Petiet
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Center for Neuroimaging Research, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Stéphane Epelbaum
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Centre des Maladies Cognitives et Comportementales, Sorbonne Universités, Hôpital de la Salpêtrière, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Anne Bertrand
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.,Aramis Project Team, Inria Research Center of Paris, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR7225, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.
| |
Collapse
|
7
|
Cloyd RA, Koren SA, Abisambra JF. Manganese-Enhanced Magnetic Resonance Imaging: Overview and Central Nervous System Applications With a Focus on Neurodegeneration. Front Aging Neurosci 2018; 10:403. [PMID: 30618710 PMCID: PMC6300587 DOI: 10.3389/fnagi.2018.00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and the brief but decorated clinical usage of chelated manganese compound mangafodipir in humans.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,College of Medicine, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Shon A Koren
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
8
|
Kim SY, Heo H, Kim DH, Kim HJ, Oh SH. Neural Plastic Changes in the Subcortical Auditory Neural Pathway after Single-Sided Deafness in Adult Mice: A MEMRI Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8624745. [PMID: 30599000 PMCID: PMC6287207 DOI: 10.1155/2018/8624745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/14/2023]
Abstract
Single-sided deafness (SSD) induces cortical neural plastic changes according to duration of deafness. However, it is still unclear how the auditory cortical changes accompany the subcortical neural changes. The present study aimed to find the neural plastic changes in the cortical and subcortical auditory system following adult-onset single-sided deafness (SSD) using Mn-enhanced magnetic resonance imaging (MEMRI). B57BL/6 mice (postnatal 8-week-old) were divided into three groups: the SSD-4-week group (postnatal 12-week-old, n = 11), the SSD-8-week group (postnatal 16-week-old, n = 11), and a normal-hearing control group (postnatal 8-week-old, n = 9). The left cochlea was ablated in the SSD groups. White Gaussian noise was delivered for 24 h before MEMRI acquisition. T1-weighted MRI data were analyzed from the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus (LL), inferior colliculus (IC), medial geniculate body (MG), and auditory cortex (AC). The differences in relative Mn2+-enhanced signal intensities (Mn2+SI) and laterality were analyzed between the groups. Four weeks after the SSD procedure, the ipsilateral side of the SSD showed significantly lower Mn2+SI in the CN than the control group. On the other hand, the contralateral side of the SSD demonstrated significantly lower Mn2+SI in the SOC, LL, and IC. These decreased Mn2+SI values were partially recovered at 8 weeks after the SSD procedure. The interaural Mn2+SI differences representing the interaural dominance were highest in CN and then became less prominently higher in the auditory neural system. The SSD-8-week group still showed interaural differences in the CN, LL, and IC. In contrast, the MG and AC did not show any significant intergroup or interaural differences in Mn2+SI. In conclusion, subcortical auditory neural activities were decreased after SSD, and the interaural differences were diluted in the higher auditory nervous system. These findings were attenuated with time. Subcortical auditory neural changes after SSD may contribute to the change in tinnitus severity and the outcomes of cochlear implantation in SSD patients.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hwon Heo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Doo Hee Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Brain Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-ha Oh
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Brain Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Almeida-Corrêa S, Czisch M, Wotjak CT. In Vivo Visualization of Active Polysynaptic Circuits With Longitudinal Manganese-Enhanced MRI (MEMRI). Front Neural Circuits 2018; 12:42. [PMID: 29887796 PMCID: PMC5981681 DOI: 10.3389/fncir.2018.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for in vivo non-invasive whole-brain mapping of neuronal activity. Mn2+ enters active neurons via voltage-gated calcium channels and increases local contrast in T1-weighted images. Given the property of Mn2+ of axonal transport, this technique can also be used for tract tracing after local administration of the contrast agent. However, MEMRI is still not widely employed in basic research due to the lack of a complete description of the Mn2+ dynamics in the brain. Here, we sought to investigate how the activity state of neurons modulates interneuronal Mn2+ transport. To this end, we injected mice with low dose MnCl2 2. (i.p., 20 mg/kg; repeatedly for 8 days) followed by two MEMRI scans at an interval of 1 week without further MnCl2 injections. We assessed changes in T1 contrast intensity before (scan 1) and after (scan 2) partial sensory deprivation (unilateral whisker trimming), while keeping the animals in a sensory enriched environment. After correcting for the general decay in Mn2+ content, whole brain analysis revealed a single cluster with higher signal in scan 1 compared to scan 2: the left barrel cortex corresponding to the right untrimmed whiskers. In the inverse contrast (scan 2 > scan 1), a number of brain structures, including many efferents of the left barrel cortex were observed. These results suggest that continuous neuronal activity elicited by ongoing sensory stimulation accelerates Mn2+ transport from the uptake site to its projection terminals, while the blockage of sensory-input and the resulting decrease in neuronal activity attenuates Mn2+ transport. The description of this critical property of Mn2+ dynamics in the brain allows a better understanding of MEMRI functional mechanisms, which will lead to more carefully designed experiments and clearer interpretation of the results.
Collapse
Affiliation(s)
- Suellen Almeida-Corrêa
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carsten T Wotjak
- Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
10
|
Alaverdashvili M, Lapointe V, Whishaw IQ, Cross AR. Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl 2. MAGNETIC RESONANCE INSIGHTS 2017; 10:1178623X17706878. [PMID: 28579797 PMCID: PMC5428135 DOI: 10.1177/1178623x17706878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/17/2017] [Indexed: 12/25/2022]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl2 (48 mg/kg). The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl2. The relaxation mapping results suggest that the transport of Mn2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are difficult to achieve using a single systemic dose of MnCl2.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valerie Lapointe
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Albert R Cross
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
11
|
Ulyanova A, To XV, Asad ABMA, Han W, Chuang KH. MEMRI detects neuronal activity and connectivity in hypothalamic neural circuit responding to leptin. Neuroimage 2016; 147:904-915. [PMID: 27729278 DOI: 10.1016/j.neuroimage.2016.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022] Open
Abstract
Hypothalamus plays the central role in regulating energy homeostasis. To understand the hypothalamic neurocircuit in responding to leptin, Manganese-Enhanced MRI (MEMRI) was applied. Highly elevated signal could be mapped in major nuclei of the leptin signaling pathway, including the arcuate nucleus (ARC), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH) and dorsomedial hypothalamus (DMH) in fasted mice and the enhancement was reduced by leptin administration. However, whether changes in MEMRI signal reflect Ca2+ channel activity, neuronal activation or connectivity in the leptin signaling pathway are not clear. By blocking L-type Ca2+ channels, the signal enhancement in the ARC, PVN and DMH, but not VMH, was reduced. By disrupting microtubule with colchicine, signal enhancement of the secondary neural areas like DMH and PVN was delayed which is consistent with the known projection density from ARC into these regions. Finally, strong correlation between c-fos expression and MEMRI signal increase rate was observed in the ARC, VMH and DMH. Together, we provide experimental evidence that MEMRI signal could represent activity and connectivity in certain hypothalamic nuclei and hence may be used for mapping activated neuronal pathway in vivo. This understanding would facilitate the application of MEMRI for evaluation of hypothalamic dysfunction in metabolic diseases.
Collapse
Affiliation(s)
- Anna Ulyanova
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A⁎STAR), Singapore; Department of Physiology, National University of Singapore, Singapore
| | - Xuan Vinh To
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A⁎STAR), Singapore
| | - A B M A Asad
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A⁎STAR), Singapore
| | - Weiping Han
- Lab of Metabolic Medicine, Singapore Bioimaging Consortium, A⁎STAR, Singapore
| | - Kai-Hsiang Chuang
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A⁎STAR), Singapore; Department of Physiology, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Gao Z, Ma T, Zhao E, Docter D, Yang W, Stauber RH, Gao M. Small is Smarter: Nano MRI Contrast Agents - Advantages and Recent Achievements. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:556-76. [PMID: 26680328 DOI: 10.1002/smll.201502309] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/22/2015] [Indexed: 05/23/2023]
Abstract
Many challenges for advanced sensitive and noninvasive clinical diagnostic imaging remain unmatched. In particular, the great potential of magnetic nano-probes is intensively discussed to further improve the performance of magnetic resonance imaging (MRI), especially for cancer diagnosis. Based on recent achievements, here the concepts of magnetic nanoparticle-based MRI contrast agents and tumor-specific imaging probes are critically summarized. Advances in their synthesis, biocompatible chemical and biofunctional surface modifications, and current strategies for further developing them into multimodality imaging probes are discussed. In addition, how engineered versus unintended surface coatings such as protein coronas affect the biocompatibility and performance of MRI nano-probes is also considered. To stimulate progress in the field, future strategies and relevant challenges that still need to be resolved in the field conclude this review.
Collapse
Affiliation(s)
- Zhenyu Gao
- College of Chemistry, Jilin University, Changchun, 130012, China
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Tiancong Ma
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Enyu Zhao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Dominic Docter
- Department of Nanobiomedicine, ENT/University Medical Center of Mainz, Langenbeckstr. 1, 55101, Mainz, Germany
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Roland H Stauber
- Department of Nanobiomedicine, ENT/University Medical Center of Mainz, Langenbeckstr. 1, 55101, Mainz, Germany
| | - Mingyuan Gao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| |
Collapse
|
13
|
Activity-induced manganese-dependent MRI (AIM-MRI) and functional MRI in awake rabbits during somatosensory stimulation. Neuroimage 2015; 126:72-80. [PMID: 26589332 DOI: 10.1016/j.neuroimage.2015.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
Activity-induced manganese-dependent MRI (AIM-MRI) is a powerful tool to track system-wide neural activity using high resolution, quantitative T1-weighted MRI in animal models and has significant advantages for investigating neural activity over other modalities including BOLD fMRI. With AIM-MRI, Mn(2+) ions enter neurons via voltage-gated calcium channels preferentially active during the time of experimental exposure. A broad range of AIM-MRI studies using different species studying different phenomena have been performed, but few of these studies provide a systematic evaluation of the factors influencing the detection of Mn(2+) such as dosage and the temporal characteristics of Mn(2+) uptake. We identified an optimal dose of Mn(2+) (25 mg/kg, s.c.) in order to characterize the time-course of Mn(2+) accumulation in active neural regions in the rabbit. T1-weighted MRI and functional MRI were collected 0-3, 6-9, and 24-27 h post-Mn(2+) injection while the vibrissae on the right side were vibrated. Significant BOLD activation in the left somatosensory (SS) cortex and left ventral posteromedial (VPM) thalamic nucleus was detected during whisker vibration. T1-weighted signal intensities were extracted from these regions, their corresponding contralateral regions and the visual cortex (to serve as controls). A significant elevation in T1-weighted signal intensity in the left SS cortex (relative to right) was evident 6-9 and 24-27 h post-Mn(2+) injection while the left VPM thalamus showed a significant enhancement (relative to the right) only during the 24-27 h session. Visual cortex showed no hemispheric difference at any timepoint. Our results suggest that studies employing AIM-MRI would benefit by conducting experimental manipulations 6-24 h after subcutaneous MnCl2 injections to optimize the concentration of contrast agent in the regions active during the exposure.
Collapse
|
14
|
Sajja BR, Bade AN, Zhou B, Uberti MG, Gorantla S, Gendelman HE, Boska MD, Liu Y. Generation and Disease Model Relevance of a Manganese Enhanced Magnetic Resonance Imaging-Based NOD/scid-IL-2Rγc(null) Mouse Brain Atlas. J Neuroimmune Pharmacol 2015; 11:133-41. [PMID: 26556033 DOI: 10.1007/s11481-015-9635-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Strain specific mouse brain magnetic resonance imaging (MRI) atlases provide coordinate space linked anatomical registration. This allows longitudinal quantitative analyses of neuroanatomical volumes and imaging metrics for assessing the role played by aging and disease to the central nervous system. As NOD/scid-IL-2Rγ(c)(null) (NSG) mice allow human cell transplantation to study human disease, these animals are used to assess brain morphology. Manganese enhanced MRI (MEMRI) improves contrasts amongst brain components and as such can greatly help identifying a broad number of structures on MRI. To this end, NSG adult mouse brains were imaged in vivo on a 7.0 Tesla MR scanner at an isotropic resolution of 100 μm. A population averaged brain of 19 mice was generated using an iterative alignment algorithm. MEMRI provided sufficient contrast permitting 41 brain structures to be manually labeled. Volumes of 7 humanized mice brain structures were measured by atlas-based segmentation and compared against non-humanized controls. The humanized NSG mice brain volumes were smaller than controls (p < 0.001). Many brain structures of humanized mice were significantly smaller than controls. We posit that the irradiation and cell grafting involved in the creation of humanized mice were responsible for the morphological differences. Six NSG mice without MnCl2 administration were scanned with high resolution T2-weighted MRI and segmented to test broad utility of the atlas.
Collapse
Affiliation(s)
- Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Biyun Zhou
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Anesthesiology, Tongji Medical College, Huanzhong University of Science and Technology, Wuhan, China
| | - Mariano G Uberti
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
Lizarbe B, López-Larrubia P, Cerdán S. fDWI Evaluation of Hypothalamic Appetite Regulation Pathways in Mice Genetically Deficient in Leptin or Neuropeptide Y. Neurochem Res 2015; 40:2628-38. [DOI: 10.1007/s11064-015-1596-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/15/2015] [Accepted: 04/30/2015] [Indexed: 12/30/2022]
|
16
|
Comninos AN, Anastasovska J, Sahuri-Arisoylu M, Li X, Li S, Hu M, Jayasena CN, Ghatei MA, Bloom SR, Matthews PM, O'Byrne KT, Bell JD, Dhillo WS. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct 2015; 221:2035-47. [PMID: 25758403 PMCID: PMC4853463 DOI: 10.1007/s00429-015-1024-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Kisspeptin (encoded by KISS1) is a crucial activator of reproductive function. The role of kisspeptin has been studied extensively within the hypothalamus but little is known about its significance in other areas of the brain. KISS1 and its cognate receptor are expressed in the amygdala, a key limbic brain structure with inhibitory projections to hypothalamic centers involved in gonadotropin secretion. We therefore hypothesized that kisspeptin has effects on neuronal activation and reproductive pathways beyond the hypothalamus and particularly within the amygdala. To test this, we mapped brain neuronal activity (using manganese-enhanced MRI) associated with peripheral kisspeptin administration in rodents. We also investigated functional relevance by measuring the gonadotropin response to direct intra-medial amygdala (MeA) administration of kisspeptin and kisspeptin antagonist. Peripheral kisspeptin administration resulted in a marked decrease in signal intensity in the amygdala compared to vehicle alone. This was associated with an increase in luteinizing hormone (LH) secretion. In addition, intra-MeA administration of kisspeptin resulted in increased LH secretion, while blocking endogenous kisspeptin signaling within the amygdala by administering intra-MeA kisspeptin antagonist decreased both LH secretion and LH pulse frequency. We provide evidence for the first time that neuronal activity within the amygdala is decreased by peripheral kisspeptin administration and that kisspeptin signaling within the amygdala contributes to the modulation of gonadotropin release and pulsatility. Our data suggest that kisspeptin is a 'master regulator' of reproductive physiology, integrating limbic circuits with the regulation of gonadotropin-releasing hormone neurons and reproductive hormone secretion.
Collapse
Affiliation(s)
- Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Jelena Anastasovska
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Meliz Sahuri-Arisoylu
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Xiaofeng Li
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shengyun Li
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Minghan Hu
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Channa N Jayasena
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Mohammad A Ghatei
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Stephen R Bloom
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Paul M Matthews
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Kevin T O'Byrne
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
17
|
Malheiros JM, Persike DS, Castro LUCD, Sanches TRC, Andrade LDC, Tannús A, Covolan L. Reduced hippocampal manganese-enhanced MRI (MEMRI) signal during pilocarpine-induced status epilepticus: edema or apoptosis? Epilepsy Res 2014; 108:644-52. [PMID: 24630048 DOI: 10.1016/j.eplepsyres.2014.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/13/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Manganese-enhanced MRI (MEMRI) has been considered a surrogate marker of Ca(+2) influx into activated cells and tracer of neuronal active circuits. However, the induction of status epilepticus (SE) by kainic acid does not result in hippocampal MEMRI hypersignal, in spite of its high cell activity. Similarly, short durations of status (5 or 15min) induced by pilocarpine did not alter the hippocampal MEMRI, while 30 min of SE even reduced MEMRI signal Thus, this study was designed to investigate possible explanations for the absence or decrease of MEMRI signal after short periods of SE. We analyzed hippocampal caspase-3 activation (to evaluate apoptosis), T2 relaxometry (tissue water content) and aquaporin 4 expression (water-channel protein) of rats subjected to short periods of pilocarpine-induced SE. For the time periods studied here, apoptotic cell death did not contribute to the decrease of the hippocampal MEMRI signal. However, T2 relaxation was higher in the group of animals subjected to 30min of SE than in the other SE or control groups. This result is consistent with higher AQP-4 expression during the same time period. Based on apoptosis and tissue water content analysis, the low hippocampal MEMRI signal 30min after SE can potentially be attributed to local edema rather than to cell death.
Collapse
Affiliation(s)
- Jackeline Moraes Malheiros
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-06, SP, Brazil; Centro de Imagens e Espectroscopia in vivo por Ressonância Magnética (CIERMag), Instituto de Física de São Carlos, Universidade de São Paulo (IFSC-USP), São Carlos 13566-590, SP, Brazil
| | - Daniele Suzete Persike
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | | | | | | | - Alberto Tannús
- Centro de Imagens e Espectroscopia in vivo por Ressonância Magnética (CIERMag), Instituto de Física de São Carlos, Universidade de São Paulo (IFSC-USP), São Carlos 13566-590, SP, Brazil
| | - Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-06, SP, Brazil.
| |
Collapse
|
18
|
Lizarbe B, Benitez A, Peláez Brioso GA, Sánchez-Montañés M, López-Larrubia P, Ballesteros P, Cerdán S. Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods. FRONTIERS IN NEUROENERGETICS 2013; 5:6. [PMID: 23781199 PMCID: PMC3680712 DOI: 10.3389/fnene.2013.00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn2+ accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Department of Experimental Models of Human diseases, Laboratory of Imaging and Spectroscopy by Magnetic Resonance, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC/UAM Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Perspective of functional magnetic resonance imaging in middle ear research. Hear Res 2013; 301:183-92. [PMID: 23291496 DOI: 10.1016/j.heares.2012.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/26/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022]
Abstract
Functional magnetic resonance imaging (MRI) studies have frequently been applied to study sensory system such as vision, language, and cognition, but have proceeded at a considerably slower speed in investigating middle ear and central auditory processing. This is due to several factors, including the intrinsic anatomy of the middle ear system and inherent acoustic noise during acquisition of MRI data. However, accumulating evidences have demonstrated that clarification of some fundamental neural underpinnings of audition associated with middle ear mechanics can be achieved using functional MRI methods. This mini review attempted to take a narrow snapshot of the currently available functional MRI procedures and gave examples of what may be learned about hearing from their application. It is hoped that with these technical advancements, many new high impact applications in audition would follow. In particular, because the fMRI can be used in humans and in animals, fMRI may represent a unique tool that should promote translational research by enabling parallel analyses of physiological and pathological processes in the human and animal auditory system. This article is part of a special issue entitled "MEMRO 2012".
Collapse
|
20
|
Differential effects of two fermentable carbohydrates on central appetite regulation and body composition. PLoS One 2012; 7:e43263. [PMID: 22952656 PMCID: PMC3430697 DOI: 10.1371/journal.pone.0043263] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/18/2012] [Indexed: 01/11/2023] Open
Abstract
Background Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and β-glucan) exert similar effects on body composition and central appetite regulation in high fat fed mice. Methodology/Principal Findings Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat diet containing 0% (w/w) fermentable carbohydrate, 10% (w/w) inulin or 10% (w/w) β-glucan individually. Fecal and cecal microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton nuclear magnetic resonance (1H NMR), colonic short chain fatty acids were measured by gas chromatography, body composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI) and manganese enhanced MRI (MEMRI), respectively, PYY (peptide YY) concentration was determined by radioimmunoassay, adipocyte cell size and number were also measured. Both inulin and β-glucan fed groups revealed significantly lower cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in β-glucan than inulin fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. β- glucan appeared to have marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state. Conclusions/Significance Although both fermentable carbohydrates are protective against increased body weight gain, the lower body fat content induced by inulin may be metabolically advantageous. β-glucan appears to suppress neuronal activity in the hypothalamic appetite centers. Differential effects of fermentable carbohydrates open new possibilities for nutritionally targeting appetite regulation and body composition.
Collapse
|
21
|
Anastasovska J, Arora T, Sanchez Canon GJ, Parkinson JRC, Touhy K, Gibson GR, Nadkarni NA, So PW, Goldstone AP, Thomas EL, Hankir MK, Van Loo J, Modi N, Bell JD, Frost G. Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment. Obesity (Silver Spring) 2012; 20:1016-23. [PMID: 22322344 DOI: 10.1038/oby.2012.6] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Obesity has become a major global health problem. Recently, attention has focused on the benefits of fermentable carbohydrates on modulating metabolism. Here, we take a system approach to investigate the physiological effects of supplementation with oligofructose-enriched inulin (In). We hypothesize that supplementation with this fermentable carbohydrate will not only lead to changes in body weight and composition, but also to modulation in neuronal activation in the hypothalamus. Male C57BL/6 mice were maintained on a normal chow diet (control) or a high fat (HF) diet supplemented with either oligofructose-enriched In or corn starch (Cs) for 9 weeks. Compared to HF+Cs diet, In supplementation led to significant reduction in average daily weight gain (mean ± s.e.m.: 0.19 ± 0.01 g vs. 0.26 ± 0.02 g, P < 0.01), total body adiposity (24.9 ± 1.2% vs. 30.7 ± 1.4%, P < 0.01), and lowered liver fat content (11.7 ± 1.7% vs. 23.8 ± 3.4%, P < 0.01). Significant changes were also observed in fecal bacterial distribution, with increases in both Bifidobacteria and Lactobacillius and a significant increase in short chain fatty acids (SCFA). Using manganese-enhanced MRI (MEMRI), we observed a significant increase in neuronal activation within the arcuate nucleus (ARC) of animals that received In supplementation compared to those fed HF+Cs diet. In conclusion, we have demonstrated for the first time, in the same animal, a wide range of beneficial metabolic effects following supplementation of a HF diet with oligofructose-enriched In, as well as significant changes in hypothalamic neuronal activity.
Collapse
Affiliation(s)
- Jelena Anastasovska
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Is there a path beyond BOLD? Molecular imaging of brain function. Neuroimage 2012; 62:1208-15. [PMID: 22406355 DOI: 10.1016/j.neuroimage.2012.02.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/18/2012] [Accepted: 02/27/2012] [Indexed: 12/20/2022] Open
Abstract
The dependence of BOLD on neuro-vascular coupling leaves it many biological steps removed from direct monitoring of neural function. MRI based approaches have been developed aimed at reporting more directly on brain function. These include: manganese enhanced MRI as a surrogate for calcium ion influx; agents responsive to calcium concentrations; approaches to measure membrane potential; agents to measure neurotransmitters; and strategies to measure gene expression. This work has led to clever design of molecular imaging tools and many contributions to studies of brain function in animal models. However, a robust approach that has potential to get MRI closer to neurons in the human brain has not yet emerged.
Collapse
|
23
|
Silva AC. Using manganese-enhanced MRI to understand BOLD. Neuroimage 2012; 62:1009-13. [PMID: 22245640 DOI: 10.1016/j.neuroimage.2012.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/12/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022] Open
Abstract
The 1990s were designated "The Decade of the Brain" by U.S. Congress, perhaps in great anticipation of the impact that functional neuroimaging techniques would have on advancing our understanding of how the brain is functionally organized. While it is impossible to overestimate the impact of functional MRI in neuroscience, many aspects of the blood oxygenation level-dependent (BOLD) contrast remain poorly understood, in great part due to the complex relationship between neural activity and hemodynamic changes. To better understand such relationship, it is important to probe neural activity independently. Manganese-enhanced MRI (MEMRI), when used to monitor neural activity, is a technique that uses the divalent manganese ion, Mn(2+), as a surrogate measure of calcium influx. A major advantage of using Mn(2+) as a functional marker is that the contrast obtained is directly related to the accumulation of the ion in excitable cells in an activity dependent manner. As such, the contrast in MEMRI is more directly related to neural activity then hemodynamic-based fMRI techniques. In the present work, the early conceptualization of MEMRI is reviewed, and the comparative experiments that have helped provide a better understanding of the spatial specificity of BOLD signal changes in the cortex is discussed.
Collapse
Affiliation(s)
- Afonso C Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065, USA.
| |
Collapse
|
24
|
Mok SI, Munasinghe JP, Young WS. Infusion-based manganese-enhanced MRI: a new imaging technique to visualize the mouse brain. Brain Struct Funct 2012; 217:107-14. [PMID: 21597966 PMCID: PMC3242156 DOI: 10.1007/s00429-011-0324-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/28/2011] [Indexed: 12/17/2022]
Abstract
Manganese-enhanced magnetic resonance imaging is a technique that employs the divalent ion of the paramagnetic metal manganese (Mn(2+)) as an effective contrast agent to visualize, in vivo, the mammalian brain. As total achievable contrast is directly proportional to the net amount of Mn(2+) accumulated in the brain, there is a great interest in optimizing administration protocols to increase the effective delivery of Mn(2+) to the brain while avoiding the toxic effects of Mn(2+) overexposure. In this study, we investigated outcomes following continuous slow systemic infusion of manganese chloride (MnCl(2)) into the mouse via mini-osmotic pump administration. The effects of increasing fractionated rates of Mn(2+) infusion on signal enhancement in regions of the brain were analyzed in a three-treatment study. We acquired whole-brain 3-D T1-weighted images and performed region of interest quantitative analysis to compare mean normalized signal in Mn(2+) treatments spanning 3, 7, or 14 days of infusion (rates of 1, 0.5, and 0.25 μL/h, respectively). Evidence of Mn(2+) transport at the conclusion of each infusion treatment was observed throughout the brains of normally behaving mice. Regions of particular Mn(2+) accumulation include the olfactory bulbs, cortex, infralimbic cortex, habenula, thalamus, hippocampal formation, amygdala, hypothalamus, inferior colliculus, and cerebellum. Signals measured at the completion of each infusion treatment indicate comparable means for all examined fractionated rates of Mn(2+) infusion. In this current study, we achieved a significantly higher dose of Mn(2+) (180 mg/kg) than that employed in previous studies without any observable toxic effects on animal physiology or behavior.
Collapse
Affiliation(s)
- Stephanie I Mok
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, DHHS, 9000 Rockville Pike, Building 49, Room 5A51, Bethesda, MD 20892-4483, USA
| | | | | |
Collapse
|
25
|
Leuze C, Kimura Y, Kershaw J, Shibata S, Saga T, Chuang KH, Shimoyama I, Aoki I. Quantitative measurement of changes in calcium channel activity in vivo utilizing dynamic manganese-enhanced MRI (dMEMRI). Neuroimage 2011; 60:392-9. [PMID: 22227885 DOI: 10.1016/j.neuroimage.2011.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/24/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
Abstract
The ability of manganese ions (Mn(2+)) to enter cells through calcium ion (Ca(2+)) channels has been used for depolarization dependent brain functional imaging with manganese-enhanced MRI (MEMRI). The purpose of this study was to quantify changes to Mn(2+) uptake in rat brain using a dynamic manganese-enhanced MRI (dMEMRI) scanning protocol with the Patlak and Logan graphical analysis methods. The graphical analysis was based on a three-compartment model describing the tissue and plasma concentration of Mn. Mn(2+) uptake was characterized by the total distribution volume of manganese (Mn) inside tissue (V(T)) and the unidirectional influx constant of Mn(2+) from plasma to tissue (K(i)). The measurements were performed on the anterior (APit) and posterior (PPit) parts of the pituitary gland, a region with an incomplete blood brain barrier. Modulation of Ca(2+) channel activity was performed by administration of the stimulant glutamate and the inhibitor verapamil. It was found that the APit and PPit showed different Mn(2+) uptake characteristics. While the influx of Mn(2+) into the PPit was reversible, Mn(2+) was found to be irreversibly trapped in the APit during the course of the experiment. In the PPit, an increase of Mn(2+) uptake led to an increase in V(T) (from 2.8±0.3 ml/cm(3) to 4.6±1.2 ml/cm(3)) while a decrease of Mn(2+) uptake corresponded to a decrease in V(T) (from 2.8±0.3 ml/cm(3) to 1.4±0.3 ml/cm(3)). In the APit, an increase of Mn(2+) uptake led to an increase in K(i) (from 0.034±0.009 min(-1) to 0.049±0.012 min(-1)) while a decrease of Mn(2+) uptake corresponded to a decrease in K(i) (from 0.034±0.009 min(-1) to 0.019±0.003 min(-1)). This work demonstrates that graphical analysis applied to dMEMRI data can quantitatively measure changes to Mn(2+) uptake following modulation of neural activity.
Collapse
Affiliation(s)
- Christoph Leuze
- Molecular Imaging Centre, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
McKenna MC. New clues and new questions regarding leptin and brain metabolism. J Cereb Blood Flow Metab 2011; 31:2255-6. [PMID: 21971351 PMCID: PMC3323191 DOI: 10.1038/jcbfm.2011.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
27
|
Just N, Gruetter R. Detection of neuronal activity and metabolism in a model of dehydration-induced anorexia in rats at 14.1 T using manganese-enhanced MRI and 1H MRS. NMR IN BIOMEDICINE 2011; 24:1326-1336. [PMID: 21544888 DOI: 10.1002/nbm.1694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/18/2010] [Accepted: 01/19/2011] [Indexed: 05/30/2023]
Abstract
In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.
Collapse
Affiliation(s)
- Nathalie Just
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
28
|
Lehallier B, Andrey P, Maurin Y, Bonny JM. Iterative algorithm for spatial and intensity normalization of MEMRI images. Application to tract-tracing of rat olfactory pathways. Magn Reson Imaging 2011; 29:1304-16. [DOI: 10.1016/j.mri.2011.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/28/2022]
|
29
|
Hankir MK, Parkinson JR, Bloom SR, Bell JD. The effects of glutamate receptor agonists and antagonists on mouse hypothalamic and hippocampal neuronal activity shown through manganese enhanced MRI. Neuroimage 2011; 59:968-78. [PMID: 21925279 DOI: 10.1016/j.neuroimage.2011.08.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/05/2011] [Accepted: 08/21/2011] [Indexed: 11/17/2022] Open
Abstract
Manganese enhanced MRI (MEMRI) is an imaging paradigm that can be used to assess neuronal activity in vivo. Here we investigate, through the use of MEMRI, the influence of receptor dynamics on neuronal activity in the hypothalamus and hippocampus focusing on the glutamate receptor signalling system. We demonstrate that intraperitoneal (i.p.) administration of monosodium glutamate (MSG) and the ionotropic glutamate receptor (iGluR) agonists NMDA and AMPA resulted in significantly increased signal intensity (SI) in the arcuate nucleus (ARC), the suprachiasmatic nucleus (SCN) and the CA3 region of the hippocampus of mice consistent with increased neuronal activity. Administration of the NMDA receptor antagonist MK-801 resulted in significantly decreased SI in the paraventricular nucleus (PVN) consistent with decreased neuronal activity. Co-administration of MSG and the AMPA receptor antagonist NBQX attenuated the increase in SI observed in the ARC from MSG alone, suggesting MEMRI may be applicable to the study of receptor dynamics in vivo. We also observed that administration of the various iGluR agonists and antagonists modulated SI in the lateral ventricle and that high dose MSG (300 mg) caused a hitherto unseen enhancement in SI in the entire cortical/subarachnoid region. In conclusion, MEMRI reveals changes in neuronal activity in response to iGluR agonists and antagonists in the CNS in vivo as well as revealing multifaceted effects beyond those attributable to neuronal activity alone.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, 3rd Floor Cyclotron Building, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | | | | | | |
Collapse
|
30
|
Bissig D, Berkowitz BA. Same-session functional assessment of rat retina and brain with manganese-enhanced MRI. Neuroimage 2011; 58:749-60. [PMID: 21749922 DOI: 10.1016/j.neuroimage.2011.06.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 06/24/2011] [Indexed: 11/27/2022] Open
Abstract
Manganese-enhanced MRI (MEMRI) is a powerful non-invasive approach for objectively measuring either retina or binocular visual brain activity in vivo. In this study, we investigated the sensitivity of MEMRI to monocular stimulation using a new protocol for providing within-subject functional comparisons in the retina and brain in the same scanning session. Adult Sprague Dawley or Long-Evans rats had one eye covered with an opaque patch. After intraperitoneal Mn(2+) administration on the following day, rats underwent visual stimulation for 8h. Animals were then anesthetized, and the brain and each eye examined by MEMRI. Function was assessed through pairwise comparisons of the patched (dark-adapted) versus unpatched (light-exposed) eyes, and of differentially-stimulated brain structures - the dorsal lateral geniculate nucleus, superior colliculus, and visual cortical regions - contralateral to the patched versus unpatched eye. As expected, Mn(2+) uptake was greater in the outer retina of dark-adapted, relative to light-exposed, eyes (P<0.05). Contralateral to the unpatched eye, significantly more Mn(2+) uptake was found throughout the visual brain regions than in the corresponding structures contralateral to the patched eye (P<0.05). Notably, this regional pattern of activity corresponded well to previous work with monocular stimulation. No stimulation-dependent differences in Mn(2+) uptake were observed in negative control brain regions (P>0.05). Post-hoc assessment of functional data by animal age and strain revealed no significant effects. These results demonstrate, for the first time, the acquisition of functional MRI data from the eye and visual brain regions in a single scanning session.
Collapse
Affiliation(s)
- David Bissig
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
31
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
32
|
Manganese-enhanced magnetic resonance imaging (MEMRI) of rat brain after systemic administration of MnCl₂: hippocampal signal enhancement without disruption of hippocampus-dependent behavior. Behav Brain Res 2010; 216:293-300. [PMID: 20713092 DOI: 10.1016/j.bbr.2010.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/01/2010] [Accepted: 08/08/2010] [Indexed: 11/21/2022]
Abstract
Manganese (Mn(2+))-enhanced magnetic resonance (MR) imaging (MEMRI) in rodents offers unique opportunities for the longitudinal study of hippocampal structure and function in parallel with cognitive testing. However, Mn(2+) is a potent toxin and there is evidence that it can interfere with neuronal function. Thus, apart from causing adverse peripheral side effects, Mn(2+) may disrupt the function of brain areas where it accumulates to produce signal enhancement and, thereby, Mn(2+) administration may confound cognitive testing. Here, we examined in male adult Lister hooded rats if a moderate systemic dose of MnCl₂ (200 μmol/kg; two intraperitoneal injections of 100 μmol/kg separated by 1 h) that produces hippocampal MR signal enhancement would disrupt hippocampal function. To this end, we used a delayed-matching-to-place (DMP) watermaze task, which requires rapid allocentric place learning and is highly sensitive to interference with hippocampal function. Tested on the DMP task 1 h and 24 h after MnCl₂ injection, rats did not show any impairment in indices of memory performance (latencies, search preference) or any sensorimotor effects. However, MnCl₂ injection caused acute peripheral effects (severe ataxia and erythema, i.e. redness of paws, ears, and nose) which subsided over 30 min. Additionally, rats injected with MnCl₂ showed reduced weight 1 day after injection and failed to reach the normal weight-growth curve of control rats within the 16 days monitored. Our results indicate that 200 μmol/kg MnCl₂ produces hippocampal MR signal enhancement without disrupting hippocampus-dependent behavior on a rapid place learning task, even though attention must be paid to peripheral side effects.
Collapse
|
33
|
Kuo YT, So PW, Parkinson JR, Yu WS, Hankir M, Herlihy AH, Goldstone AP, Frost GS, Wasserfall C, Bell JD. The combined effects on neuronal activation and blood–brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI. Neuroimage 2010; 50:1384-91. [DOI: 10.1016/j.neuroimage.2010.01.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 01/06/2010] [Accepted: 01/14/2010] [Indexed: 11/24/2022] Open
|
34
|
Foldi CJ, Eyles DW, McGrath JJ, Burne THJ. Advanced paternal age is associated with alterations in discrete behavioural domains and cortical neuroanatomy of C57BL/6J mice. Eur J Neurosci 2010; 31:556-64. [DOI: 10.1111/j.1460-9568.2010.07074.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Zeeni N, Nadkarni N, Bell JD, Even PC, Fromentin G, Tome D, Darcel N. Peripherally injected cholecystokinin-induced neuronal activation is modified by dietary composition in mice. Neuroimage 2010; 50:1560-5. [PMID: 20100582 DOI: 10.1016/j.neuroimage.2010.01.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/18/2009] [Accepted: 01/18/2010] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the effect of long-term nutrient intake on the central response to the anorexigenic gut hormone CCK. C57BL/6 mice were fed one of three diets for 6 weeks: standard high carbohydrate (HC), high fat (HF), or high protein (HP). Assessment of brain response to cholecystokinin (CCK) by manganese-enhanced MRI (MEMRI) showed a reduction in neuronal activity both in an appetite-related area (ventromedial nucleus of the hypothalamus) and areas associated with reward (nucleus accumbens and striatum) regardless of diet. When comparing diet effects, while the HF diet did not induce any change in activity, reductions in MEMRI-associated signal were found in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) when comparing the HP to the HC diet. In addition, a significant interaction was found between CCK administration and the HF diet, shown by an increased activation in the PVN, which suggests a decrease the inhibiting action of CCK. Our results put forward that the long-term intake of an HP diet leads to a reduction in basal hypothalamic activation while a high-fat diet leads to desensitization to CCK-induced effects in the hypothalamus.
Collapse
Affiliation(s)
- N Zeeni
- AgroParisTech, CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, F-75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Tambalo S, Daducci A, Fiorini S, Boschi F, Mariani M, Marinone M, Sbarbati A, Marzola P. Experimental protocol for activation-induced manganese-enhanced MRI (AIM-MRI) based on quantitative determination of Mn content in rat brain by fast T1 mapping. Magn Reson Med 2010; 62:1080-4. [PMID: 19725135 DOI: 10.1002/mrm.22095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In activation-induced manganese-enhanced MRI (AIM-MRI) experiments, differential accumulation of Mn in activated and silent brain areas is generally assessed using T(1)-weighted images and quantified by the enhancement of signal intensity (SI), calculated with reference to SI before Mn administration or to SI of brain regions unaffected by the specific stimulus. However, SI enhancement can be unreliable when animals are removed from and reinserted into the magnet. We have developed an experimental protocol based on repeated intraperitoneal (i.p.) injections of Mn, quantitative determination of T(1), and coregistration of images to a rat brain atlas that allows absolute quantification of Mn concentration in selected brain areas. Results showed that interanimal variability of postcontrast T(1) values was very low (compared to the experimental error in T(1) determinations) allowing detection of differential regional Mn uptake in stimulated and unstimulated animals. In addition we have determined in vivo relaxivity of Mn in brain tissue and its frequency dependence.
Collapse
Affiliation(s)
- S Tambalo
- Department of Morphological and Biomedical Sciences, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lu H, Demny S, Zuo Y, Rea W, Wang L, Chefer SI, Vaupel DB, Yang Y, Stein EA. Temporary disruption of the rat blood-brain barrier with a monoclonal antibody: a novel method for dynamic manganese-enhanced MRI. Neuroimage 2009; 50:7-14. [PMID: 20026228 DOI: 10.1016/j.neuroimage.2009.12.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 12/03/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022] Open
Abstract
Manganese (Mn(2+)) has limited permeability through the blood-brain barrier (BBB). Opening the BBB such that a sufficient amount of Mn(2+) enters the extracellular space is a critical step for dynamic manganese-enhanced magnetic resonance imaging (ME-MRI) experiments. The traditional BBB opening method uses intracarotid hyperosmolar stress which results in suboptimal BBB opening, and practically is limited to nonsurvival experiments due to substantial surgical trauma. In the present ME-MRI study, we investigate the feasibility of opening the BBB with an antibody that targets the endothelial barrier antigen (EBA) specifically expressed by rat endothelial cells. Results demonstrate that intravenous infusion of the anti-EBA agent SMI-71 leads to BBB disruption of the whole brain as detected by ME-MRI and confirmed by Evans blue dye staining. Physiologically, injection of SMI-71 leads to a hypertensive response followed by a sustained hypotensive response in animals anesthetized with urethane alone. Incorporating isoflurane partially mitigated both pressor responses. In general, BBB disruption via intravenous infusion of SMI-71 is straightforward and obviates technical difficulties associated with intracarotid hyperosmolar stress, opening new possibilities for in vivo neuroimaging with ME-MRI. The data also suggest that ME-MRI may be used as an imaging method to assess BBB integrity complementary to the Evans blue dye method, a classical but highly invasive technique, permitting longitudinal assessment of the integrity of the BBB on the same animal.
Collapse
Affiliation(s)
- Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, NIH, 251 Bayview Blvd, Suite 200, Rm 7A711, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Van der Linden A, Van Meir V, Boumans T, Poirier C, Balthazart J. MRI in small brains displaying extensive plasticity. Trends Neurosci 2009; 32:257-66. [PMID: 19307029 DOI: 10.1016/j.tins.2009.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 12/18/2008] [Accepted: 01/06/2009] [Indexed: 01/28/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (ME-MRI), blood oxygen-level-dependent functional MRI (BOLD fMRI) and diffusion tensor imaging (DTI) can now be applied to animal species as small as mice or songbirds. These techniques confirmed previous findings but are also beginning to reveal new phenomena that were difficult or impossible to study previously. These imaging techniques will lead to major technical and conceptual advances in systems neurosciences. We illustrate these new developments with studies of the song control and auditory systems in songbirds, a spatially organized neuronal circuitry that mediates the acquisition, production and perception of complex learned vocalizations. This neural system is an outstanding model for studying vocal learning, brain steroid hormone action, brain plasticity and lateralization of brain function.
Collapse
|
39
|
Guy J. MRI in experimental inflammatory and mitochondrial optic neuropathies. NMR IN BIOMEDICINE 2008; 21:968-977. [PMID: 18756439 DOI: 10.1002/nbm.1309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
MRI is a powerful tool for evaluating structural and functional alterations in the optic nerve in experimental animal models of human disease. MRI-histopathological correlations have provided important insights into the pathogenesis of disease. Paramagnetic contrast agents have been used to serially visualize the foci and severity of disruption of the blood-optic nerve barrier and physiological neuronal alterations in living animals. Here I review the experience of our group in optic nerve imaging of experimental autoimmune encephalomyelitis and neurodegeneration induced by genetic manipulation of respiratory chain enzymes.
Collapse
Affiliation(s)
- John Guy
- Department of Ophthalmology and Neurology, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
40
|
Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). Neuroimage 2008; 44:1022-31. [PMID: 18983926 DOI: 10.1016/j.neuroimage.2008.09.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/02/2008] [Accepted: 09/23/2008] [Indexed: 01/01/2023] Open
Abstract
We have used manganese-enhanced magnetic resonance imaging (MEMRI) to show distinct patterns of neuronal activation within the hypothalamus and brainstem of fasted mice in response to peripheral injection of the anorexigenic agents glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and lithium chloride. Administration of both GLP-1 and OXM resulted in a significant increase in signal intensity (SI) in the area postrema of fasted mice, reflecting an increase in neuronal activity within the brainstem. In the hypothalamus, GLP-1 administration induced a significant reduction in SI in the paraventricular nucleus and an increase in the ventromedial hypothalamic nucleus whereas OXM reduced SI in the arcuate and supraoptic nuclei of the hypothalamus. These data indicate that whilst these related peptides both induce a similar effect on neuronal activity in the brainstem they generate distinct patterns of activation within the hypothalamus. Furthermore, the hypothalamic pattern of signal intensity generated by GLP-1 closely matches that generated by peripheral injection of LiCl, suggesting the anorexigenic effects of GLP-1 may be in part transmitted via nausea circuits. This work provides a framework by which the temporal effects of appetite modulating agents can be recorded simultaneously within hypothalamic and brainstem feeding centres.
Collapse
|
41
|
Duyn J, Koretsky AP. Magnetic resonance imaging of neural circuits. NATURE CLINICAL PRACTICE. CARDIOVASCULAR MEDICINE 2008; 5 Suppl 2:S71-8. [PMID: 18641610 PMCID: PMC3529508 DOI: 10.1038/ncpcardio1248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 03/28/2008] [Indexed: 12/27/2022]
Abstract
A major goal of modern MRI research is to be able to image neural circuits in the central nervous system. Critical to this mission is the ability to describe a number of important parameters associated with neural circuits. These parameters include neural architecture, functional activation of neural circuits, anatomical and functional connectivity of neural circuits, and factors that might alter neural circuits, such as trafficking of immune cells and brain precursor cells in the brain. Remarkably, a variety of work in human and animal brains has demonstrated that all these features of neural circuits can be visualized with MRI. In this Article we provide a brief summary of the new directions in neural imaging research, which should prove useful in future analyses of normal and pathological human brains and in studies of animal models of neurological and psychiatric disorders. At present, few MRI data characterizing the neural circuits in the heart are available, but in this Article we discuss the applicable present developments and the prospects for the future.
Collapse
Affiliation(s)
- Jeff Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
42
|
Abstract
The metal manganese is a potent magnetic resonance imaging (MRI) contrast agent that is essential in cell biology. Manganese-enhanced magnetic resonance imaging (MEMRI) is providing unique information in an ever-growing number of applications aimed at understanding the anatomy, the integration, and the function of neural circuits both in normal brain physiology as well as in translational models of brain disease. A major drawback to the use of manganese as a contrast agent, however, is its cellular toxicity. Therefore, paramount to the successful application of MEMRI is the ability to deliver Mn2+ to the site of interest using as low a dose as possible while preserving detectability by MRI. In the present work, the different approaches to MEMRI in translational neuroimaging are reviewed and challenges for future identified from a practical standpoint.
Collapse
Affiliation(s)
- Afonso C. Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,To whom correspondence should be addressed: Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC1065, Building 10, Room B1D106, Bethesda, MD 20892-1065; tel: 301-402-9703, fax: 301-480-2558, e-mail:
| | - Nicholas A. Bock
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Watanabe T, Frahm J, Michaelis T. Manganese-enhanced MRI of the mouse auditory pathway. Magn Reson Med 2008; 60:210-2. [DOI: 10.1002/mrm.21645] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Abstract
We investigated the use of manganese-enhanced MRI (MEMRI) with fractionated doses as a way to retain the unique properties of manganese as a neuronal contrast agent while lessening its toxic effects in animals. First, we followed the signal enhancement on T1-weighted images of the brains of rats receiving 30 mg/kg fractions of MnCl2 . 4H2O every 48 h and found that the signal increased in regions with consecutive fractionated doses and ultimately saturated. Second, we used T1 mapping to test whether the amount of MRI-visible manganese that accumulated depended on the concentration of manganese in the fractions. For a fixed cumulative dose of 180 mg/kg MnCl2 . 4H2O, increasing fraction doses of 6 x 30 mg/kg, 3 x 60 mg/kg, 2 x 90 mg/kg and 1 x 180 mg/kg produced progressively shorter T1 values. The adverse systemic health effects, including complications at the injection site and poor animal well-being, also rose with the fraction dose. Thus, fractionated MEMRI can be used to balance the properties of manganese as a contrast agent in animals against its toxic effects.
Collapse
Affiliation(s)
- Nicholas A Bock
- Cerebral Microcirculation Unit/Laboratory of Functional and Molecular Imaging/National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-1065, USA.
| | | | | |
Collapse
|
45
|
Immonen RJ, Kharatishvili I, Sierra A, Einula C, Pitkänen A, Gröhn OH. Manganese enhanced MRI detects mossy fiber sprouting rather than neurodegeneration, gliosis or seizure-activity in the epileptic rat hippocampus. Neuroimage 2008; 40:1718-30. [DOI: 10.1016/j.neuroimage.2008.01.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022] Open
|
46
|
Hsu YH, Chen CCV, Zechariah A, Yen CC, Yang LC, Chang C. Neuronal dysfunction of a long projecting multisynaptic pathway in response to methamphetamine using manganese-enhanced MRI. Psychopharmacology (Berl) 2008; 196:543-53. [PMID: 18000655 DOI: 10.1007/s00213-007-0990-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/15/2007] [Indexed: 01/19/2023]
Abstract
RATIONALE Manganese (Mn2+)-enhanced magnetic resonance imaging (MEMRI) is an emerging in vivo MR approach for pharmacological research. One new application of MEMRI in this area is to characterize functional changes of a specific neural circuit that is essential to the central effects of a drug challenge. OBJECTIVES To develop and validate such use of MEMRI in neuropharmacology, the current study applied MEMRI to visualize functional changes within a multisynaptic pathway originating from fasciculus retroflexus (FR) that is central to a commonly abused psychostimulant, methamphetamine (MA). METHODS Twelve rats were injected intraperitoneally with MA (10 mg/kg) or saline every 2 h for a total of four injections. After 6 days, Mn2+ was injected into the habenular nucleus (FR origin) of all animals, and MEMRI was repeatedly performed at certain points in time over 48 h. The evolution of Mn2+-induced signal enhancement was assessed across the FR tract, the ventral tegmental area (VTA), the striatum, the nucleus accumbens, and the prefrontal cortex (PFC), in both MA-injected animals and controls. RESULTS MA treatment was found to affect the complexity and efficiency of Mn2+ uptake in the VTA, via the FR tract, with significantly increased Mn2+ accumulation in the VTA, the dorsomedial part of the striatum, and the PFC. CONCLUSIONS MEMRI successfully visualizes disruptions in the multisynaptic pathway as the consequences of repeated MA exposure. MEMRI is potentially an important method in the future to investigate functional changes within a specific pathway under the influences of pharmacological agents, given its excellent functional, in vivo, spatial, and temporal properties.
Collapse
Affiliation(s)
- Yi-Hua Hsu
- Functional and Micro-Magnetic Resonance Imaging Center, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
So PW, Yu WS, Kuo YT, Wasserfall C, Goldstone AP, Bell JD, Frost G. Impact of resistant starch on body fat patterning and central appetite regulation. PLoS One 2007; 2:e1309. [PMID: 18074032 PMCID: PMC2111051 DOI: 10.1371/journal.pone.0001309] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/12/2007] [Indexed: 01/28/2023] Open
Abstract
Background Adipose tissue patterning has a major influence on the risk of developing chronic disease. Environmental influences on both body fat patterning and appetite regulation are not fully understood. This study was performed to investigate the impact of resistant starch (RS) on adipose tissue deposition and central regulation of appetite in mice. Methodology and Principle Findings Forty mice were randomised to a diet supplemented with either the high resistant starch (HRS), or the readily digestible starch (LRS). Using 1H magnetic resonance (MR) methods, whole body adiposity, intrahepatocellular lipids (IHCL) and intramyocellular lipids (IMCL) were measured. Manganese-enhanced MRI (MEMRI) was used to investigate neuronal activity in hypothalamic regions involved in appetite control when fed ad libitum. At the end of the interventional period, adipocytes were isolated from epididymal adipose tissue and fasting plasma collected for hormonal and adipokine measurement. Mice on the HRS and LRS diet had similar body weights although total body adiposity, subcutaneous and visceral fat, IHCL, plasma leptin, plasma adiponectin plasma insulin/glucose ratios was significantly greater in the latter group. Adipocytes isolated from the LRS group were significantly larger and had lower insulin-stimulated glucose uptake. MEMRI data obtained from the ventromedial and paraventricular hypothalamic nuclei suggests a satiating effect of the HRS diet despite a lower energy intake. Conclusion and Significance Dietary RS significantly impacts on adipose tissue patterning, adipocyte morphology and metabolism, glucose and insulin metabolism, as well as affecting appetite regulation, supported by changes in neuronal activity in hypothalamic appetite regulation centres which are suggestive of satiation.
Collapse
Affiliation(s)
- Po-Wah So
- Biological Imaging Centre, Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Wei-Sheng Yu
- Molecular Imaging Group, Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Yu-Ting Kuo
- Molecular Imaging Group, Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiology, Kaohsiung Medical University Hospital, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Clive Wasserfall
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Anthony P. Goldstone
- Molecular Imaging Group, Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Jimmy D. Bell
- Molecular Imaging Group, Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Gary Frost
- Department of Nutrition, Dietetics and Food Science, School of Biomedical and Molecular Science, University of Surrey, Guildford, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Kuo YT, Parkinson JRC, Chaudhri OB, Herlihy AH, So PW, Dhillo WS, Small CJ, Bloom SR, Bell JD. The temporal sequence of gut peptide CNS interactions tracked in vivo by magnetic resonance imaging. J Neurosci 2007; 27:12341-8. [PMID: 17989298 PMCID: PMC6673259 DOI: 10.1523/jneurosci.2391-07.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 11/21/2022] Open
Abstract
Hormonal satiety signals secreted by the gut play a pivotal role in the physiological control of appetite. However, therapeutic exploitation of the gut-brain axis requires greater insight into the interaction of gut hormones with CNS circuits of appetite control. Using the manganese ion (Mn2+) as an activity-dependent magnetic resonance imaging (MRI) contrast agent, we showed an increase in signal intensity (SI) in key appetite-regulatory regions of the hypothalamus, including the arcuate, paraventricular, and ventromedial nuclei, after peripheral injection of the orexigenic peptide ghrelin. Conversely, administration of the anorexigenic hormone peptide YY(3-36) caused a reduction in SI. In both cases, the changes in SI recorded in the hypothalamic arcuate nucleus preceded the effect of these peptides on food intake. Intravenous Mn2+ itself did not significantly alter ghrelin-mediated expression of the immediate early gene product c-Fos, nor did it cause abnormalities of behavior or metabolic parameters. We conclude that manganese-enhanced MRI constitutes a powerful tool for the future investigation of the effects of drugs, hormones, and environmental influences on neuronal activity.
Collapse
Affiliation(s)
- Yu-Ting Kuo
- Molecular Imaging Group and
- Department of Medical Imaging, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - James R. C. Parkinson
- Department of Metabolic Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom, and
| | - Owais B. Chaudhri
- Department of Metabolic Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom, and
| | - Amy H. Herlihy
- Biological Imaging Centre, Medical Research Council Clinical Sciences Centre, and
| | - Po-Wah So
- Biological Imaging Centre, Medical Research Council Clinical Sciences Centre, and
| | - Waljit S. Dhillo
- Department of Metabolic Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom, and
| | - Caroline J. Small
- Department of Metabolic Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom, and
| | - Stephen R. Bloom
- Department of Metabolic Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom, and
| | | |
Collapse
|
49
|
Yu X, Zou J, Babb JS, Johnson G, Sanes DH, Turnbull DH. Statistical mapping of sound-evoked activity in the mouse auditory midbrain using Mn-enhanced MRI. Neuroimage 2007; 39:223-30. [PMID: 17919926 DOI: 10.1016/j.neuroimage.2007.08.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/25/2007] [Accepted: 08/10/2007] [Indexed: 11/30/2022] Open
Abstract
Manganese-enhanced MRI (MEMRI) has been developed to image brain activity in small animals, including normal and genetically modified mice. Here, we report the use of a MEMRI-based statistical parametric mapping method to analyze sound-evoked activity in the mouse auditory midbrain, the inferior colliculus (IC). Acoustic stimuli with defined frequency and amplitude components were shown to activate and enhance neuronal ensembles in the IC. These IC activity patterns were analyzed quantitatively using voxel-based statistical comparisons between groups of mice with or without sound stimulation. Repetitive 40-kHz pure tone stimulation significantly enhanced ventral IC regions, which was confirmed in the statistical maps showing active regions whose volumes increased in direct proportion to the amplitude of the sound stimuli (65 dB, 77 dB, and 89 dB peak sound pressure level). The peak values of the activity-dependent MEMRI signal enhancement also increased from 7% to 20% for the sound amplitudes employed. These results demonstrate that MEMRI statistical mapping can be used to analyze both the 3D spatial patterns and the magnitude of activity evoked by sound stimuli carrying different energy. This represents a significant advance in the development of MEMRI for quantitative and unbiased analysis of brain function in the deep brain nuclei of mice.
Collapse
Affiliation(s)
- Xin Yu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
50
|
Alvestad S, Goa PE, Qu H, Risa Ø, Brekken C, Sonnewald U, Haraldseth O, Hammer J, Ottersen OP, Håberg A. In vivo mapping of temporospatial changes in manganese enhancement in rat brain during epileptogenesis. Neuroimage 2007; 38:57-66. [PMID: 17822925 DOI: 10.1016/j.neuroimage.2007.07.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/31/2007] [Accepted: 07/20/2007] [Indexed: 10/23/2022] Open
Abstract
Mesial temporal lobe epilepsy is associated with structural and functional abnormalities, such as hippocampal sclerosis and axonal reorganization. The temporal evolution of these changes remains to be determined, and there is a need for in vivo imaging techniques that can uncover the epileptogenic processes at an early stage. Manganese-enhanced magnetic resonance imaging may be useful in this regard. The aim of this study was to analyze the temporospatial changes in manganese enhancement in rat brain during the development of epilepsy subsequent to systemic kainate application (10 mg/kg i.p.). MnCl(2) was given systemically on day 2 (early), day 15 (latent), and 11 weeks (chronic phase) after the initial status epilepticus. Twenty-four hours after MnCl(2) injection T1-weighted 3D MRI was performed followed by analysis of manganese enhancement. In the medial temporal lobes, there was a pronounced decrease in manganese enhancement in CA1, CA3, dentate gyrus, entorhinal cortex and lateral amygdala in the early phase. In the latent and chronic phases, recovery of the manganese enhancement was observed in all these structures except CA1. A significant increase in manganese enhancement was detected in the entorhinal cortex and the amygdala in the chronic phase. In the latter phase, the structurally intact cerebellum showed significantly decreased manganese enhancement. The highly differentiated changes in manganese enhancement are likely to represent the net outcome of a number of pathological and pathophysiological events, including cell loss and changes in neuronal activity. Our findings are not consistent with the idea that manganese enhancement primarily reflects changes in glial cells.
Collapse
Affiliation(s)
- Silje Alvestad
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|