1
|
Mishra SK, Zakaria A, Mihailovic J, Maritim S, Mercado B, Coman D, Hyder F. Complexes of Iron(II), Cobalt(II), and Nickel(II) with DOTA-Tetraglycinate for pH and Temperature Imaging Using Hyperfine Shifts of an Amide Moiety. Inorg Chem 2024. [PMID: 39533962 DOI: 10.1021/acs.inorgchem.4c04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Paramagnetic complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA4-) derivatives have shown potential for molecular imaging with magnetic resonance. DOTA-tetraglycinate (DOTA-4AmC4-) coordinated with lanthanide metal ions (Ln3+) demonstrates pH/temperature sensing with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) and Chemical Exchange Saturation Transfer (CEST), respectively, detecting nonexchangeable (e.g., -CHy, where 3 ≥ y ≥ 1) and exchangeable (e.g., -OH or -NHx, where 2 ≥ x ≥ 1) protons. Herein, we report paramagnetic complexes of divalent transition-metal ions (M2+ = Fe2+, Co2+, Ni2+) with DOTA-4AmC4- that endow a unique amide proton (-NH) moiety for pH/temperature sensing. Crystallographic data reveal that DOTA-4AmC4- coordinates with M2+ through oxygen and nitrogen donor atoms, ranging in coordination numbers from 8-coordinate in Fe(II)DOTA-4AmC2-, 7-coordinate in Co(II)DOTA-4AmC2-, and 6-coordinate in Ni(II)DOTA-4AmC2-. The -CHy protons in M(II)DOTA-4AmC2- displayed modest pH/temperature sensitivities, but -NH protons exhibited higher intensity, suggesting prominent BIRDS properties. The pH sensitivity was the highest for Ni(II)DOTA-4AmC2- (1.42 ppm/pH), followed by Co(II)DOTA-4AmC2- (0.21 ppm/pH) and Fe(II)DOTA-4AmC2- (0.16 ppm/pH), whereas temperature sensitivities were comparable (i.e., 0.22, 0.13, and 0.17 ppm/°C, respectively). The CEST image contrast for -NH in M(II)DOTA-4AmC2- was much weaker compared to that of Ln(III)DOTA-4AmC-. Given its high pH sensitivity and low cytotoxicity, Ni(II)DOTA-4AmC2- shows promise for use in preclinical BIRDS-based pH imaging.
Collapse
|
2
|
Mishra SK, Santana JG, Mihailovic J, Hyder F, Coman D. Transmembrane pH gradient imaging in rodent glioma models. NMR IN BIOMEDICINE 2024; 37:e5102. [PMID: 38263680 PMCID: PMC10987279 DOI: 10.1002/nbm.5102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/25/2024]
Abstract
A unique feature of the tumor microenvironment is extracellular acidosis in relation to intracellular milieu. Metabolic reprogramming in tumors results in overproduction of H+ ions (and lactate), which are extruded from the cells to support tumor survival and progression. As a result, the transmembrane pH gradient (ΔpH), representing the difference between intracellular pH (pHi) and extracellular pH (pHe), is posited to be larger in tumors compared with normal tissue. Controlling the transmembrane pH difference has promise as a potential therapeutic target in cancer as it plays an important role in regulating drug delivery into cells. The current study shows successful development of an MRI/MRSI-based technique that provides ΔpH imaging at submillimeter resolution. We applied this technique to image ΔpH in rat brains with RG2 and U87 gliomas, as well as in mouse brains with GL261 gliomas. pHi was measured with Amine and Amide Concentration-Independent Detection (AACID), while pHe was measured with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). The results indicate that pHi was slightly higher in tumors (7.40-7.43 in rats, 7.39-7.47 in mice) compared with normal brain (7.30-7.38 in rats, 7.32-7.36 in mice), while pHe was significantly lower in tumors (6.62-6.76 in rats, 6.74-6.84 in mice) compared with normal tissue (7.17-7.22 in rats, 7.20-7.21 in mice). As a result, ΔpH was higher in tumors (0.64-0.81 in rats, 0.62-0.65 in mice) compared with normal brain (0.13-0.16 in rats, 0.13-0.16 in mice). This work establishes an MRI/MRSI-based platform for ΔpH imaging at submillimeter resolution in gliomas.
Collapse
Affiliation(s)
- Sandeep Kumar Mishra
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
| | | | - Jelena Mihailovic
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
| | - Fahmeed Hyder
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
- Yale University, Department of Biomedical Engineering, New Haven, CT 06510, USA
| | - Daniel Coman
- Yale University, Department of Radiology & Biomedical Imaging, New Haven, CT 06510, USA
- Yale University, Department of Biomedical Engineering, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Verghese G, Voroslakos M, Markovic S, Tal A, Dehkharghani S, Yaghmazadeh O, Alon L. Autonomous animal heating and cooling system for temperature-regulated magnetic resonance experiments. NMR IN BIOMEDICINE 2024; 37:e5046. [PMID: 37837254 PMCID: PMC10840815 DOI: 10.1002/nbm.5046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023]
Abstract
Temperature is a hallmark parameter influencing almost all magnetic resonance properties (e.g., T1 , T2 , proton density, and diffusion). In the preclinical setting, temperature has a large influence on animal physiology (e.g., respiration rate, heart rate, metabolism, and oxidative stress) and needs to be carefully regulated, especially when the animal is under anesthesia and thermoregulation is disrupted. We present an open-source heating and cooling system capable of regulating the temperature of the animal. The system was designed using Peltier modules capable of heating or cooling a circulating water bath with active temperature feedback. Feedback was obtained using a commercial thermistor, placed in the animal rectum, and a proportional-integral-derivative controller was used to modulate the temperature. Its operation was demonstrated in a phantom as well as in mouse and rat animal models, where the standard deviation of the temperature of the animal upon convergence was less than a 10th of a degree. An application where brain temperature of a mouse was modulated was demonstrated using an invasive optical probe and noninvasive magnetic resonance spectroscopic thermometry measurements.
Collapse
Affiliation(s)
- George Verghese
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, New York University School of Medicine, New York, NY, United States
| | | | - Stefan Markovic
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Seena Dehkharghani
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, New York University School of Medicine, New York, NY, United States
| | | | - Leeor Alon
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Bajwa AA, Neubauer A, Schwerter M, Schilling L. 23Na chemical shift imaging in the living rat brain using a chemical shift agent, Tm[DOTP] 5. MAGMA (NEW YORK, N.Y.) 2023; 36:107-118. [PMID: 36053432 PMCID: PMC9992022 DOI: 10.1007/s10334-022-01040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE It is well known that the use of shift reagents (SRs) in nuclear magnetic resonance (NMR) studies is substantially limited by an intact blood-brain barrier (BBB). The current study aims to develop a method enabling chemical shift imaging in the living rat brain under physiological conditions using an SR, Tm[DOTP]5-. MATERIALS AND METHODS Hyperosmotic mannitol bolus injection followed by 60 min infusion of a Tm[DOTP]5- containing solution was administered via a catheter inserted into an internal carotid artery. We monitored the homeostasis of physiological parameters, and we measured the thulium content in brain tissue post mortem using total reflection fluorescence spectroscopy (T-XRF). The alterations of the 23Na resonance spectrum were followed in a 9.4T small animal scanner. RESULTS Based on the T-XRF measurements, the thulium concentration was estimated at 2.3 ± 1.8 mM in the brain interstitial space. Spectroscopic imaging showed a split of the 23Na resonance peak which became visible 20 min after starting the infusion. Chemical shift imaging revealed a significant decrease of the initial intensity level to 0.915 ± 0.058 at the end of infusion. CONCLUSION Our novel protocol showed bulk accumulation of Tm[DOTP]5- thus enabling separation of the extra-/intracellular 23Na signal components in the living rat brain while maintaining physiological homeostasis.
Collapse
Affiliation(s)
- Awais A Bajwa
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Neubauer
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Schwerter
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Lothar Schilling
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Zhang S, Peng B, Chen Z, Yu J, Deng G, Bao Y, Ma C, Du F, Sheu WC, Kimberly WT, Simard JM, Coman D, Chen Q, Hyder F, Zhou J, Sheth KN. Brain-targeting, acid-responsive antioxidant nanoparticles for stroke treatment and drug delivery. Bioact Mater 2022; 16:57-65. [PMID: 35386312 PMCID: PMC8958421 DOI: 10.1016/j.bioactmat.2022.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Stroke is the leading cause of death and disability. Currently, there is no effective pharmacological treatment for this disease, which can be partially attributed to the inability to efficiently deliver therapeutics to the brain. Here we report the development of natural compound-derived nanoparticles (NPs), which function both as a potent therapeutic agent for stroke treatment and as an efficient carrier for drug delivery to the ischemic brain. First, we screened a collection of natural nanomaterials and identified betulinic acid (BA) as one of the most potent antioxidants for stroke treatment. Next, we engineered BA NPs for preferential drug release in acidic ischemic tissue through chemically converting BA to betulinic amine (BAM) and for targeted drug delivery through surface conjugation of AMD3100, a CXCR4 antagonist. The resulting AMD3100-conjugated BAM NPs, or A-BAM NPs, were then assessed as a therapeutic agent for stroke treatment and as a carrier for delivery of NA1, a neuroprotective peptide. We show that intravenous administration of A-BAM NPs effectively improved recovery from stroke and its efficacy was further enhanced when NA1 was encapsulated. Due to their multifunctionality and significant efficacy, we anticipate that A-BAM NPs have the potential to be translated both as a therapeutic agent and as a drug carrier to improve the treatment of stroke.
Collapse
Key Words
- A-BAM NPs, A-BAM NPs
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Acid-triggered release
- Antioxidant nanoparticles
- BA, betulinic acid
- BAM, betulinic amine
- BBB, blood brain barrier
- BIRDS, biosensor imaging of redundant deviation in shifts
- BT, ß-sitosterol
- DLS, dynamic light scattering
- DTA, dehydrotrametenolic acid
- DYDA, diketohydrindylidene diketohydrindamine
- Drug delivery
- GA, glycyrrhetic acid
- Ischemic stroke
- LCMS, liquid chromatography mass spectrometry
- LP, lupeol
- MCAO, middle cerebral artery occlusion
- NA1
- NMR, nuclear magnetic resonance
- NP, nanoparticle
- OA, oleanolic acid
- PAA, poricoic acid
- PEG, polyethylene glycol
- SA, sumaresinolic acid
- SEM, scanning electron microscopy
- ST, stigmasterol
- TEM, transmission electron microscope
- TTC, triphenyltetrazolium chloride
- UA, ursolic acid
- tPA, tissue-type plasminogen activator
Collapse
Affiliation(s)
- Shenqi Zhang
- Department of Neurosurgery, USA
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | | | | | | | | | | | - Chao Ma
- Department of Neurosurgery, USA
| | | | | | - W. Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, MA, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Fahmeed Hyder
- Department of Biomedical Engineering, USA
- Department of Radiology and Biomedical Imaging, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, USA
- Department of Biomedical Engineering, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, USA
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
6
|
Zakaria ABM, Huang Y, Coman D, Mishra SK, Mihailovic JM, Maritim S, Rojas-Quijano FA, Jurek P, Kiefer GE, Hyder F. Methylated tetra-amide derivatives of paramagnetic complexes for magnetic resonance biosensing with both BIRDS and CEST. NMR IN BIOMEDICINE 2022; 35:e4687. [PMID: 34970801 DOI: 10.1002/nbm.4687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Paramagnetic agents that utilize two mechanisms to provide physiological information by magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) are described. MRI with chemical exchange saturation transfer (CEST) takes advantage of the agent's exchangeable protons (e.g., -OH or -NHx , where 2 ≥ x ≥ 1) to create pH contrast. The agent's incorporation of non-exchangeable protons (e.g., -CHy , where 3 ≥ y ≥ 1) makes it possible to map tissue temperature and/or pH using an MRSI method called biosensor imaging of redundant deviation in shifts (BIRDS). Hybrid probes based upon 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate chelate (DOTA4- ) and its methylated analog (1,4,7,10-tetraazacyclododecane-α, α', α″, α‴-tetramethyl-1,4,7,10-tetraacetate, DOTMA4- ) were synthesized, and modified to create new tetra-amide chelates. Addition of several methyl groups per pendent arm of the symmetrical chelates, positioned proximally and distally to thulium ions (Tm3+ ), gave rise to favorable BIRDS properties (i.e., high signal-to-noise ratio (SNR) from non-exchangeable methyl proton peaks) and CEST responsiveness (i.e., from amide exchangeable protons). Structures of the Tm3+ probes elucidate the influence of methyl group placement on sensor performance. An eight-coordinate geometry with high symmetry was observed for the complexes: Tm-L1 was based on DOTA4- , whereas Tm-L2 and Tm-L3 were based on DOTMA4- , where the latter contained an additional carboxylate at the distal end of each arm. The distance of Tm3+ from terminal methyl carbons is a key determinant for sustaining BIRDS temperature sensitivity without compromising CEST pH contrast; however, water solubility was influenced by introduction of hydrophobic methyl groups and hydrophilic carboxylate. Combined BIRDS and CEST detection of Tm-L2, which features two high-SNR methyl peaks and a strong amide CEST peak, should enable simultaneous temperature and pH measurements for high-resolution molecular imaging in vivo.
Collapse
Affiliation(s)
- Abul B M Zakaria
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Samuel Maritim
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | | | | | | | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Mihailovic JM, Huang Y, Walsh JJ, Khan MH, Mishra SK, Samuels S, Hyder F, Coman D. High-resolution pH imaging using ratiometric chemical exchange saturation transfer combined with biosensor imaging of redundant deviation in shifts featuring paramagnetic DOTA-tetraglycinate agents. NMR IN BIOMEDICINE 2022; 35:e4658. [PMID: 34837412 DOI: 10.1002/nbm.4658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS) methods differ respectively by detecting exchangeable and nonexchangeable proton signals by magnetic resonance. Because CEST contrast depends on both temperature and pH, simultaneous CEST and BIRDS imaging can be employed to separate these contributions. Here, we test if high-resolution pH imaging in vivo is possible with ratiometric CEST calibrated for temperature variations measured by BIRDS. Thulium- and europium-based DOTA-tetraglycinate agents, TmDOTA-(gly)4- and EuDOTA-(gly)4- , were used for high-resolution pH mapping in vitro and in vivo, using BIRDS for temperature adjustments needed for a more accurate ratiometric CEST approach. Although neither agent showed pH dependence with BIRDS in vitro in the pH range 6 to 8, each one's temperature sensitivity was enhanced when mixed because of increased redundancy. By contrast, the CEST signal of each agent was affected by the presence of the other agent in vitro. However, pH could be measured more accurately when temperature from BIRDS was detected. These in vitro calibrations with TmDOTA-(gly)4- and EuDOTA-(gly)4- enabled high-resolution pH imaging of glioblastoma in rat brains. It was concluded that temperature mapping with BIRDS can calibrate the ratiometric CEST signal from a cocktail of TmDOTA-(gly)4- and EuDOTA-(gly)4- agents to provide temperature-independent absolute pH imaging in vivo.
Collapse
Affiliation(s)
- Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - John J Walsh
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Muhammad H Khan
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Sara Samuels
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Doemel LA, Santana JG, Savic LJ, Gaupp FML, Borde T, Petukhova-Greenstein A, Kucukkaya AS, Schobert IT, Hamm CA, Gebauer B, Walsh JJ, Rexha I, Hyder F, Lin M, Madoff DC, Schlachter T, Chapiro J, Coman D. Comparison of metabolic and immunologic responses to transarterial chemoembolization with different chemoembolic regimens in a rabbit VX2 liver tumor model. Eur Radiol 2022; 32:2437-2447. [PMID: 34718844 PMCID: PMC9359419 DOI: 10.1007/s00330-021-08337-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The goal of this study was to investigate the effects of TACE using Lipiodol, Oncozene™ drug-eluting embolics (DEEs), or LUMI™-DEEs alone, or combined with bicarbonate on the metabolic and immunological tumor microenvironment in a rabbit VX2 tumor model. METHODS VX2 liver tumor-bearing rabbits were assigned to five groups. MRI and extracellular pH (pHe) mapping using Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) were performed before and after intra-arterial therapy with conventional TACE (cTACE), DEE-TACE with Idarubicin-eluting Oncozene™-DEEs, or Doxorubicin-eluting LUMI™-DEEs, each with or without prior bicarbonate infusion, and in untreated rabbits or treated with intra-arterial bicarbonate only. Imaging results were validated with immunohistochemistry (IHC) staining of cell viability (PCNA, TUNEL) and immune response (HLA-DR, CD3). Statistical analysis was performed using Mann-Whitney U test. RESULTS pHe mapping revealed that combining cTACE with prior bicarbonate infusion significantly increased tumor pHe compared to control (p = 0.0175) and cTACE alone (p = 0.0025). IHC staining revealed peritumoral accumulation of HLA-DR+ antigen-presenting cells and CD3 + T-lymphocytes in controls. cTACE-treated tumors showed reduced immune infiltration, which was restored through combination with bicarbonate. DEE-TACE with Oncozene™-DEEs induced moderate intratumoral and marked peritumoral infiltration, which was slightly reduced with bicarbonate. Addition of bicarbonate prior to LUMI™-beads enhanced peritumoral immune cell infiltration compared to LUMI™-beads alone and resulted in the strongest intratumoral immune cell infiltration across all treated groups. CONCLUSIONS The choice of chemoembolic regimen for TACE strongly affects post-treatment TME pHe and the ability of immune cells to accumulate and infiltrate the tumor tissue. KEY POINTS • Combining conventional transarterial chemotherapy with prior bicarbonate infusion increases the pHe towards a more physiological value (p = 0.0025). • Peritumoral infiltration and intratumoral accumulation patterns of antigen-presenting cells and T-lymphocytes after transarterial chemotherapy were dependent on the choice of the chemoembolic regimen. • Combination of intra-arterial treatment with Doxorubicin-eluting LUMI™-beads and bicarbonate infusion resulted in the strongest intratumoral presence of immune cells (positivity index of 0.47 for HLADR+-cells and 0.62 for CD3+-cells).
Collapse
Affiliation(s)
- Luzie A Doemel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jessica G Santana
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Lynn J Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Fabian M Laage Gaupp
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Tabea Borde
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts Der Isar, Technische Universitat München, Munich, Germany
| | - Alexandra Petukhova-Greenstein
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Ahmet S Kucukkaya
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Isabel T Schobert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Charlie A Hamm
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute for Diagnostic Radiology and Neuroradiology, Greifswald University Hospital, Ferdinand-Sauerbruch-Strasse, 17475, Greifswald, Germany
| | - Bernhard Gebauer
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - John J Walsh
- Department of Biomedical Engineering, School of Engineering & Applied Science, 17 Hillhouse Avenue, New Haven, CT, 06510, USA
| | - Irvin Rexha
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, School of Engineering & Applied Science, 17 Hillhouse Avenue, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Visage Imaging, Inc., San Diego, CA, 92130, USA
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Division of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Liver Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Smilow Cancer Hospital Care Center - North Haven, 6 Devine Street, Fl 2, North Haven, CT, 06473, USA
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
9
|
Khan MH, Mishra SK, Zakaria ABM, Mihailović JM, Coman D, Hyder F. Comparison of Lanthanide Macrocyclic Complexes as 23Na NMR Sensors. Anal Chem 2022; 94:2536-2545. [DOI: 10.1021/acs.analchem.1c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad H. Khan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Sandeep Kumar Mishra
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - A. B. M. Zakaria
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Jelena M. Mihailović
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel Coman
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
10
|
Fernandes E, Ledo A, Barbosa RM. Design and Evaluation of a Lactate Microbiosensor: Toward Multianalyte Monitoring of Neurometabolic Markers In Vivo in the Brain. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020514. [PMID: 35056837 PMCID: PMC8780383 DOI: 10.3390/molecules27020514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
Direct in vivo measurements of neurometabolic markers in the brain with high spatio-temporal resolution, sensitivity, and selectivity is highly important to understand neurometabolism. Electrochemical biosensors based on microelectrodes are very attractive analytical tools for continuous monitoring of neurometabolic markers, such as lactate and glucose in the brain extracellular space at resting and following neuronal activation. Here, we assess the merits of a platinized carbon fiber microelectrode (CFM/Pt) as a sensing platform for developing enzyme oxidase-based microbiosensors to measure extracellular lactate in the brain. Lactate oxidase was immobilized on the CFM/Pt surface by crosslinking with glutaraldehyde. The CFM/Pt-based lactate microbiosensor exhibited high sensitivity and selectivity, good operational stability, and low dependence on oxygen, temperature, and pH. An array consisting of a glucose and lactate microbiosensors, including a null sensor, was used for concurrent measurement of both neurometabolic substrates in vivo in the anesthetized rat brain. Rapid changes of lactate and glucose were observed in the cortex and hippocampus in response to local glucose and lactate application and upon insulin-induced fluctuations of systemic glucose. Overall, these results indicate that microbiosensors are a valuable tool to investigate neurometabolism and to better understand the role of major neurometabolic markers, such as lactate and glucose.
Collapse
Affiliation(s)
- Eliana Fernandes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (E.F.); (A.L.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Ledo
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (E.F.); (A.L.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rui M. Barbosa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (E.F.); (A.L.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
11
|
Walsh JJ, Hyder F. Extracellular pH Mapping as Therapeutic Readout of Drug Delivery in Glioblastoma. Methods Mol Biol 2022; 2394:515-536. [PMID: 35094344 DOI: 10.1007/978-1-0716-1811-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An acidic extracellular space is a hallmark of the tumor microenvironment. Acidosis has been postulated to promote the aggressive and invasive characteristics of tumors and also inhibit the therapeutic response, particularly in the context of novel immunotherapies. Therefore, methods to quantitatively measure the extracellular pH (pHe) are needed. Here we describe a magnetic resonance spectroscopic imaging (MRSI) technique termed Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which uses the pH-dependent chemical shifts of nonexchangeable protons of lanthanide-based contrast agents to generate quantitative spatial pHe maps. We assess this method in the context of evaluating the acidic pHe and therapeutic response in glioblastoma in rodents, where normalization of the pHe upon therapy can serve as a quantitative readout of successful drug delivery to the tumor.
Collapse
Affiliation(s)
- John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Verma V, Lange F, Bainbridge A, Harvey-Jones K, Robertson NJ, Tachtsidis I, Mitra S. Brain temperature monitoring in newborn infants: Current methodologies and prospects. Front Pediatr 2022; 10:1008539. [PMID: 36268041 PMCID: PMC9577084 DOI: 10.3389/fped.2022.1008539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023] Open
Abstract
Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.
Collapse
Affiliation(s)
- Vinita Verma
- Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Engineering, University College London Hospital, London, United Kingdom
| | - Kelly Harvey-Jones
- Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
13
|
Walsh JJ, Parent M, Akif A, Adam LC, Maritim S, Mishra SK, Khan MH, Coman D, Hyder F. Imaging Hallmarks of the Tumor Microenvironment in Glioblastoma Progression. Front Oncol 2021; 11:692650. [PMID: 34513675 PMCID: PMC8426346 DOI: 10.3389/fonc.2021.692650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma progression involves multifaceted changes in vascularity, cellularity, and metabolism. Capturing such complexities of the tumor niche, from the tumor core to the periphery, by magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI) methods has translational impact. In human-derived glioblastoma models (U87, U251) we made simultaneous and longitudinal measurements of tumor perfusion (Fp), permeability (Ktrans), and volume fractions of extracellular (ve) and blood (vp) spaces from dynamic contrast enhanced (DCE) MRI, cellularity from apparent diffusion coefficient (ADC) MRI, and extracellular pH (pHe) from an MRSI method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Spatiotemporal patterns of these parameters during tumorigenesis were unique for each tumor. While U87 tumors grew faster, Fp, Ktrans, and vp increased with tumor growth in both tumors but these trends were more pronounced for U251 tumors. Perfused regions between tumor periphery and core with U87 tumors exhibited higher Fp, but Ktrans of U251 tumors remained lowest at the tumor margin, suggesting primitive vascularization. Tumor growth was uncorrelated with ve, ADC, and pHe. U87 tumors showed correlated regions of reduced ve and lower ADC (higher cellularity), suggesting ongoing proliferation. U251 tumors revealed that the tumor core had higher ve and elevated ADC (lower cellularity), suggesting necrosis development. The entire tumor was uniformly acidic (pHe 6.1-6.8) early and throughout progression, but U251 tumors were more acidic, suggesting lower aerobic glycolysis in U87 tumors. Characterizing these cancer hallmarks with DCE-MRI, ADC-MRI, and BIRDS-MRSI will be useful for exploring tumorigenesis as well as timely therapies targeted to specific vascular and metabolic aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Lucas C Adam
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Samuel Maritim
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Muhammad H Khan
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| |
Collapse
|
14
|
Wellm V, Groebner J, Heitmann G, Sönnichsen FD, Herges R. Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vanessa Wellm
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| | - Jens Groebner
- Department of Electrical Engineering and Information Technology South Westphalian University of Applied Sciences Bahnhofsallee 5 58507 Luedenscheid Germany
| | - Gernot Heitmann
- IWS Innovations- und Wissenstrategien GmbH Aviares Research Network Deichstraße 25 20459 Hamburg Germany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry Christian Albrechts University Otto Hahn Platz 4 24118 Kiel Germany
| |
Collapse
|
15
|
Wellm V, Groebner J, Heitmann G, Sönnichsen FD, Herges R. Towards Photoswitchable Contrast Agents for Absolute 3D Temperature MR Imaging. Angew Chem Int Ed Engl 2021; 60:8220-8226. [PMID: 33606332 PMCID: PMC8048480 DOI: 10.1002/anie.202015851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/27/2022]
Abstract
Temperature can be used as clinical marker for tissue metabolism and the detection of inflammations or tumors. The use of magnetic resonance imaging (MRI) for monitoring physiological parameters like the temperature noninvasively is steadily increasing. In this study, we present a proof-of-principle study of MRI contrast agents (CA) for absolute and concentration independent temperature imaging. These CAs are based on azoimidazole substituted NiII porphyrins, which can undergo Light-Driven Coordination-Induced Spin State Switching (LD-CISSS) in solution. Monitoring the fast first order kinetic of back isomerisation (cis to trans) with standard clinical MR imaging sequences allows the determination of half-lives, that can be directly translated into absolute temperatures. Different temperature responsive CAs were successfully tested as prototypes in methanol-based gels and created temperature maps of gradient phantoms with high spatial resolution (0.13×0.13×1.1 mm) and low temperature errors (<0.22 °C). The method is sufficiently fast to record the temperature flow from a heat source as a film.
Collapse
Affiliation(s)
- Vanessa Wellm
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| | - Jens Groebner
- Department of Electrical Engineering and Information TechnologySouth Westphalian University of Applied SciencesBahnhofsallee 558507LuedenscheidGermany
| | - Gernot Heitmann
- IWS Innovations- und Wissenstrategien GmbHAviares Research NetworkDeichstraße 2520459HamburgGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| | - Rainer Herges
- Otto Diels Institute of Organic ChemistryChristian Albrechts UniversityOtto Hahn Platz 424118KielGermany
| |
Collapse
|
16
|
Khan MH, Walsh JJ, Mihailović JM, Mishra SK, Coman D, Hyder F. Imaging the transmembrane and transendothelial sodium gradients in gliomas. Sci Rep 2021; 11:6710. [PMID: 33758290 PMCID: PMC7987982 DOI: 10.1038/s41598-021-85925-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/08/2021] [Indexed: 11/29/2022] Open
Abstract
Under normal conditions, high sodium (Na+) in extracellular (Na+e) and blood (Na+b) compartments and low Na+ in intracellular milieu (Na+i) produce strong transmembrane (ΔNa+mem) and weak transendothelial (ΔNa+end) gradients respectively, and these manifest the cell membrane potential (Vm) as well as blood–brain barrier (BBB) integrity. We developed a sodium (23Na) magnetic resonance spectroscopic imaging (MRSI) method using an intravenously-administered paramagnetic polyanionic agent to measure ΔNa+mem and ΔNa+end. In vitro 23Na-MRSI established that the 23Na signal is intensely shifted by the agent compared to other biological factors (e.g., pH and temperature). In vivo 23Na-MRSI showed Na+i remained unshifted and Na+b was more shifted than Na+e, and these together revealed weakened ΔNa+mem and enhanced ΔNa+end in rat gliomas (vs. normal tissue). Compared to normal tissue, RG2 and U87 tumors maintained weakened ΔNa+mem (i.e., depolarized Vm) implying an aggressive state for proliferation, whereas RG2 tumors displayed elevated ∆Na+end suggesting altered BBB integrity. We anticipate that 23Na-MRSI will allow biomedical explorations of perturbed Na+ homeostasis in vivo.
Collapse
Affiliation(s)
- Muhammad H Khan
- Department of Biomedical Engineering, Yale University, N143 TAC (MRRC), 300 Cedar Street, New Haven, CT, 06520, USA.
| | - John J Walsh
- Department of Biomedical Engineering, Yale University, N143 TAC (MRRC), 300 Cedar Street, New Haven, CT, 06520, USA
| | - Jelena M Mihailović
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06520, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06520, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, N143 TAC (MRRC), 300 Cedar Street, New Haven, CT, 06520, USA. .,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
17
|
Hyder F, Coman D. Imaging Extracellular Acidification and Immune Activation in Cancer. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18. [PMID: 33997581 DOI: 10.1016/j.cobme.2021.100278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metabolism reveals pathways by which cells, in healthy and disease tissues, use nutrients to fuel their function and (re)growth. However, gene-centric views have dominated cancer hallmarks, relegating metabolic reprogramming that all cells in the tumor niche undergo as an incidental phenomenon. Aerobic glycolysis in cancer is well known, but recent evidence suggests that diverse symbolic traits of cancer cells are derived from oncogene-directed metabolism required for their sustenance and evolution. Cells in the tumor milieu actively metabolize different nutrients, but proficiently secrete acidic by-products using diverse mechanisms to create a hostile ecosystem for host cells, and where local immune cells suffer collateral damage. Since metabolic interactions between cancer and immune cells hold promise for future cancer therapies, here we focus on translational magnetic resonance methods enabling in vivo and simultaneous detection of tumor habitat acidification and immune activation - innovations for monitoring personalized treatments.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Quantitative Neuroimaging with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Savic LJ, Schobert IT, Hamm CA, Adam LC, Hyder F, Coman D. A high-throughput imaging platform to characterize extracellular pH in organotypic three-dimensional in vitro models of liver cancer. NMR IN BIOMEDICINE 2021; 34:e4465. [PMID: 33354836 DOI: 10.1002/nbm.4465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Given the extraordinary nature of tumor metabolism in hepatocellular carcinoma and its impact on oncologic treatment response, this study introduces a novel high-throughput extracellular pH (pHe ) mapping platform using magnetic resonance spectroscopic imaging in a three-dimensional (3D) in vitro model of liver cancer. pHe mapping was performed using biosensor imaging of redundant deviation in shifts (BIRDS) on 9.4 T and 11.7 T MR scanners for validation purposes. 3D cultures of four liver cancer (HepG2, Huh7, SNU475, VX2) and one hepatocyte (THLE2) cell line were simultaneously analyzed (a) without treatment, (b) supplemented with 4.5 g/L d-glucose, and (c) treated with anti-glycolytic 3-bromopyruvate (6.25, 25, 50, 75, and 100 μM). The MR results were correlated with immunohistochemistry (GLUT-1, LAMP-2) and luminescence-based viability assays. Statistics included the unpaired t-test and ANOVA test. High-throughput pHe imaging with BIRDS for in vitro 3D liver cancer models proved feasible. Compared with non-tumorous hepatocytes (pHe = 7.1 ± 0.1), acidic pHe was revealed in liver cancer (VX2, pHe = 6.7 ± 0.1; HuH7, pHe = 6.8 ± 0.1; HepG2, pHe = 6.9 ± 0.1; SNU475, pHe = 6.9 ± 0.1), in agreement with GLUT-1 upregulation. Glucose addition significantly further decreased pHe in hyperglycolytic cell lines (VX2, HepG2, and Huh7, by 0.28, 0.06, and 0.11, respectively, all p < 0.001), whereas 3-bromopyruvate normalized tumor pHe in a dose-dependent manner without affecting viability. In summary, this study introduces a non-invasive pHe imaging platform for high-yield screening using a translational 3D liver cancer model, which may help reveal and target mechanisms of therapy resistance and inform personalized treatment of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Isabel Theresa Schobert
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Charlie Alexander Hamm
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
- Institute of Diagnostic Radiology and Neuroradiology, Greifswald University Hospital, Greifswald, Germany
| | - Lucas Christoph Adam
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Kim H, Krishnamurthy LC, Sun PZ. Brain pH Imaging and its Applications. Neuroscience 2021; 474:51-62. [PMID: 33493621 DOI: 10.1016/j.neuroscience.2021.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Acid-base homeostasis and pH regulation are critical for normal tissue metabolism and physiology, and brain tissue pH alters in many diseased states. Several noninvasive tissue pH Magnetic Resonance (MR) techniques have been developed over the past few decades to shed light on pH change during tissue function and dysfunction. Nevertheless, there are still challenges for mapping brain pH noninvasively at high spatiotemporal resolution. To address this unmet biomedical need, chemical exchange saturation transfer (CEST) MR techniques have been developed as a sensitive means for non-invasive pH mapping. This article briefly reviews the basic principles of different pH measurement techniques with a focus on CEST imaging of pH. Emerging pH imaging applications in the tumor are provided as examples throughout the narrative, and CEST pH imaging in acute stroke is discussed in the final section.
Collapse
Affiliation(s)
- Hahnsung Kim
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA, Decatur, GA, United States; Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
20
|
Molecular and Functional Imaging and Theranostics of the Tumor Microenvironment. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Lutz NW, Bernard M. Contactless Thermometry by MRI and MRS: Advanced Methods for Thermotherapy and Biomaterials. iScience 2020; 23:101561. [PMID: 32954229 PMCID: PMC7489251 DOI: 10.1016/j.isci.2020.101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Control of temperature variation is of primordial importance in particular areas of biomedicine. In this context, medical treatments such as hyperthermia and cryotherapy, and also the development and use of hydrogel-based biomaterials, are of particular concern. To enable accurate temperature measurement without perturbing or even destroying the biological tissue or material to be monitored, contactless thermometry methods are preferred. Among these, the most suitable are based on magnetic resonance imaging and spectroscopy (MRI, MRS). Here, we address the latest developments in this field as well as their current and anticipated practical applications. We highlight recent progress aimed at rendering MR thermometry faster and more reproducible, versatile, and sophisticated and provide our perspective on how these new techniques broaden the range of applications in medical treatments and biomaterial development by enabling insight into finer details of thermal behavior. Thus, these methods facilitate optimization of clinical and industrial heating and cooling protocols.
Collapse
Affiliation(s)
- Norbert W. Lutz
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Monique Bernard
- Aix-Marseille University, CNRS, CRMBM, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
22
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
23
|
Stringer MS, Lee H, Huuskonen MT, MacIntosh BJ, Brown R, Montagne A, Atwi S, Ramirez J, Jansen MA, Marshall I, Black SE, Zlokovic BV, Benveniste H, Wardlaw JM. A Review of Translational Magnetic Resonance Imaging in Human and Rodent Experimental Models of Small Vessel Disease. Transl Stroke Res 2020; 12:15-30. [PMID: 32936435 PMCID: PMC7803876 DOI: 10.1007/s12975-020-00843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Cerebral small vessel disease (SVD) is a major health burden, yet the pathophysiology remains poorly understood with no effective treatment. Since much of SVD develops silently and insidiously, non-invasive neuroimaging such as MRI is fundamental to detecting and understanding SVD in humans. Several relevant SVD rodent models are established for which MRI can monitor in vivo changes over time prior to histological examination. Here, we critically review the MRI methods pertaining to salient rodent models and evaluate synergies with human SVD MRI methods. We found few relevant publications, but argue there is considerable scope for greater use of MRI in rodent models, and opportunities for harmonisation of the rodent-human methods to increase the translational potential of models to understand SVD in humans. We summarise current MR techniques used in SVD research, provide recommendations and examples and highlight practicalities for use of MRI SVD imaging protocols in pre-selected, relevant rodent models.
Collapse
Affiliation(s)
- Michael S Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mikko T Huuskonen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Rosalind Brown
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maurits A Jansen
- Edinburgh Preclinical Imaging, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Borde T, Laage Gaupp F, Geschwind JF, Savic LJ, Miszczuk M, Rexha I, Adam L, Walsh JJ, Huber S, Duncan JS, Peters DC, Sinusas A, Schlachter T, Gebauer B, Hyder F, Coman D, van Breugel JMM, Chapiro J. Idarubicin-Loaded ONCOZENE Drug-Eluting Bead Chemoembolization in a Rabbit Liver Tumor Model: Investigating Safety, Therapeutic Efficacy, and Effects on Tumor Microenvironment. J Vasc Interv Radiol 2020; 31:1706-1716.e1. [PMID: 32684417 DOI: 10.1016/j.jvir.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate toxicity, efficacy, and microenvironmental effects of idarubicin-loaded 40-μm and 100-μm drug-eluting embolic (DEE) transarterial chemoembolization in a rabbit liver tumor model. MATERIALS AND METHODS Twelve male New Zealand White rabbits with orthotopically implanted VX2 liver tumors were assigned to DEE chemoembolization with 40-μm (n = 5) or 100-μm (n = 4) ONCOZENE microspheres or no treatment (control; n = 3). At 24-72 hours postprocedurally, multiparametric magnetic resonance (MR) imaging including dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), and biosensor imaging of redundant deviation in shifts (BIRDS) was performed to assess extracellular pH (pHe), followed by immediate euthanasia. Laboratory parameters and histopathologic ex vivo analysis included fluorescence confocal microscopy and immunohistochemistry. RESULTS DCE MR imaging demonstrated a similar degree of devascularization of embolized tumors for both microsphere sizes (mean arterial enhancement, 8% ± 12 vs 36% ± 51 in controls; P = .07). Similarly, DWI showed postprocedural increases in diffusion across the entire lesion (apparent diffusion coefficient, 1.89 × 10-3 mm2/s ± 0.18 vs 2.34 × 10-3 mm2/s ± 0.18 in liver; P = .002). BIRDS demonstrated profound tumor acidosis at baseline (mean pHe, 6.79 ± 0.08 in tumor vs 7.13 ± 0.08 in liver; P = .02) and after chemoembolization (6.8 ± 0.06 in tumor vs 7.1 ± 0.04 in liver; P = .007). Laboratory and ex vivo analyses showed central tumor core penetration and greater increase in liver enzymes for 40-μm vs 100-μm microspheres. Inhibition of cell proliferation, intratumoral hypoxia, and limited idarubicin elution were equally observed with both sphere sizes. CONCLUSIONS Noninvasive multiparametric MR imaging visualized chemoembolic effects in tumor and tumor microenvironment following DEE chemoembolization. Devascularization, increased hypoxia, coagulative necrosis, tumor acidosis, and limited idarubicin elution suggest ischemia as the predominant therapeutic mechanism. Substantial size-dependent differences indicate greater toxicity with the smaller microsphere diameter.
Collapse
Affiliation(s)
- Tabea Borde
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fabian Laage Gaupp
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | | | - Lynn J Savic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Milena Miszczuk
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irvin Rexha
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lucas Adam
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - John J Walsh
- Department of Biomedical Engineering, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Steffen Huber
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Department of Biomedical Engineering, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Albert Sinusas
- Department of Cardiology, Yale Translational Research Imaging Center, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Bernhard Gebauer
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Johanna M M van Breugel
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510.
| |
Collapse
|
25
|
Bond CJ, Cineus R, Nazarenko AY, Spernyak JA, Morrow JR. Isomeric Co(ii) paraCEST agents as pH responsive MRI probes. Dalton Trans 2020; 49:279-284. [PMID: 31833500 DOI: 10.1039/c9dt04558a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A newly discovered isomer of Co(ii) (1,4,8,11-tetrakis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane = CCRM) produces four highly paramagnetically shifted chemical exchange saturation transfer (CEST) peaks. The 1,8-pendants of the complex are bound in a trans-arrangement to produce a Co(ii) complex of increased kinetic inertness. The isomers have a stabilized Co(ii) center (E1/2 of 540 to 550 mV versus SHE). Both the 1,8 and the 1,4-isomer are excellent pH probes in solution and in tissue homogenate by virtue of their highly paramagnetically shifted amide protons. These isomers produce both a ratiometric pH readout as well as amide proton exchange rate constants that correlate to pH.
Collapse
Affiliation(s)
- Christopher J Bond
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | | | | | | | | |
Collapse
|
26
|
Dehkharghani S, Qiu D. MR Thermometry in Cerebrovascular Disease: Physiologic Basis, Hemodynamic Dependence, and a New Frontier in Stroke Imaging. AJNR Am J Neuroradiol 2020; 41:555-565. [PMID: 32139425 DOI: 10.3174/ajnr.a6455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
Abstract
The remarkable temperature sensitivity of the brain is widely recognized and has been studied for its role in the potentiation of ischemic and other neurologic injuries. Pyrexia frequently complicates large-vessel acute ischemic stroke and develops commonly in critically ill neurologic patients; the profound sensitivity of the brain even to minor intraischemic temperature changes, together with the discovery of brain-to-systemic as well as intracerebral temperature gradients, has thus compelled the exploration of cerebral thermoregulation and uncovered its immutable dependence on cerebral blood flow. A lack of pragmatic and noninvasive tools for spatially and temporally resolved brain thermometry has historically restricted empiric study of cerebral temperature homeostasis; however, MR thermometry (MRT) leveraging temperature-sensitive nuclear magnetic resonance phenomena is well-suited to bridging this long-standing gap. This review aims to introduce the reader to the following: 1) fundamental aspects of cerebral thermoregulation, 2) the physical basis of noninvasive MRT, and 3) the physiologic interdependence of cerebral temperature, perfusion, metabolism, and viability.
Collapse
Affiliation(s)
- S Dehkharghani
- From the Department of Radiology (S.D.), New York University Langone Health, New York, New York
| | - D Qiu
- Department of Radiology (D.Q.), Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
27
|
Caldwell MA, Brue CR, Whittemore TJ, Meade TJ. A Ln(III)-3-hydroxypyridine pH responsive probe optimized by DFT. RSC Adv 2020; 10:8994-8999. [PMID: 32274014 PMCID: PMC7144623 DOI: 10.1039/c9ra11058e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Differences in tissue pH can be diagnostic of cancer and other conditions that shift cell metabolism. Paramagnetic probes are promising tools for pH mapping in vivo using magnetic resonance spectroscopy (MRS) as they provide uniquely shifted MR signals that change with pH. Here, we demonstrate a 3-hydroxy-6-methylpyridyl coordinating group as a new pH-responsive reporter group for Ln(III) MRS probes. The pH response of the complex was observed by UV-Vis, fluorescence, and NMR spectroscopies, and modeled using DFT. These results provide insight into the observed pH-dependent NMR spectrum of the complex. The protonation state of the hydroxypyridine changes the coordinating ability of the ligand, affecting the dipolar field of the lanthanide and the chemical shift of nearby reporter nuclei. The favorable pH response and coordination properties of the 3-hydroxypyridyl group indicates its potential for further development as a dual responsive-reporter group. Incorporation into optimized scaffolds for MRS detection may enable sensitive pH-mapping in vivo.
Collapse
Affiliation(s)
- Michael A Caldwell
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208
| | - Christopher R Brue
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208
| | - Tyler J Whittemore
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, IL, 60208
| |
Collapse
|
28
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
29
|
Coman D, Peters DC, Walsh JJ, Savic LJ, Huber S, Sinusas AJ, Lin M, Chapiro J, Constable RT, Rothman DL, Duncan JS, Hyder F. Extracellular pH mapping of liver cancer on a clinical 3T MRI scanner. Magn Reson Med 2019; 83:1553-1564. [PMID: 31691371 DOI: 10.1002/mrm.28035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To demonstrate feasibility of developing a noninvasive extracellular pH (pHe ) mapping method on a clinical MRI scanner for molecular imaging of liver cancer. METHODS In vivo pHe mapping has been demonstrated on preclinical scanners (e.g., 9.4T, 11.7T) with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), where the pHe readout by 3D chemical shift imaging (CSI) depends on hyperfine shifts emanating from paramagnetic macrocyclic chelates like TmDOTP5- which upon extravasation from blood resides in the extracellular space. We implemented BIRDS-based pHe mapping on a clinical 3T Siemens scanner, where typically diamagnetic 1 H signals are detected using millisecond-long radiofrequency (RF) pulses, and 1 H shifts span over ±10 ppm with long transverse (T2 , 102 ms) and longitudinal (T1 , 103 ms) relaxation times. We modified this 3D-CSI method for ultra-fast acquisition with microsecond-long RF pulses, because even at 3T the paramagnetic 1 H shifts of TmDOTP5- have millisecond-long T2 and T1 and ultra-wide chemical shifts (±200 ppm) as previously observed in ultra-high magnetic fields. RESULTS We validated BIRDS-based pH in vitro with a pH electrode. We measured pHe in a rabbit model for liver cancer using VX2 tumors, which are highly vascularized and hyperglycolytic. Compared to intratumoral pHe (6.8 ± 0.1; P < 10-9 ) and tumor's edge pHe (6.9 ± 0.1; P < 10-7 ), liver parenchyma pHe was significantly higher (7.2 ± 0.1). Tumor localization was confirmed with histopathological markers of necrosis (hematoxylin and eosin), glucose uptake (glucose transporter 1), and tissue acidosis (lysosome-associated membrane protein 2). CONCLUSION This work demonstrates feasibility and potential clinical translatability of high-resolution pHe mapping to monitor tumor aggressiveness and therapeutic outcome, all to improve personalized cancer treatment planning.
Collapse
Affiliation(s)
- Daniel Coman
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Dana C Peters
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Lynn J Savic
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Institute of Radiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Huber
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Albert J Sinusas
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, Connecticut
| | - MingDe Lin
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Visage Imaging, Inc., San Diego, California
| | - Julius Chapiro
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - R Todd Constable
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Douglas L Rothman
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - James S Duncan
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|
30
|
Savic LJ, Schobert IT, Peters D, Walsh JJ, Laage-Gaupp FM, Hamm CA, Tritz N, Doemel LA, Lin M, Sinusas A, Schlachter T, Duncan JS, Hyder F, Coman D, Chapiro J. Molecular Imaging of Extracellular Tumor pH to Reveal Effects of Locoregional Therapy on Liver Cancer Microenvironment. Clin Cancer Res 2019; 26:428-438. [PMID: 31582517 DOI: 10.1158/1078-0432.ccr-19-1702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To establish magnetic resonance (MR)-based molecular imaging paradigms for the noninvasive monitoring of extracellular pH (pHe) as a functional surrogate biomarker for metabolic changes induced by locoregional therapy of liver cancer. EXPERIMENTAL DESIGN Thirty-two VX2 tumor-bearing New Zealand white rabbits underwent longitudinal imaging on clinical 3T-MRI and CT scanners before and up to 2 weeks after complete conventional transarterial chemoembolization (cTACE) using ethiodized oil (lipiodol) and doxorubicin. MR-spectroscopic imaging (MRSI) was employed for pHe mapping. Multiparametric MRI and CT were performed to quantify tumor enhancement, diffusion, and lipiodol coverage of the tumor posttherapy. In addition, incomplete cTACE with reduced chemoembolic doses was applied to mimic undertreatment and exploit pHe mapping to detect viable tumor residuals. Imaging findings were correlated with histopathologic markers indicative of metabolic state (HIF-1α, GLUT-1, and LAMP-2) and viability (proliferating cell nuclear antigen and terminal deoxynucleotidyl-transferase dUTP nick-end labeling). RESULTS Untreated VX2 tumors demonstrated a significantly lower pHe (6.80 ± 0.09) than liver parenchyma (7.19 ± 0.03, P < 0.001). Upregulation of HIF-1α, GLUT-1, and LAMP-2 confirmed a hyperglycolytic tumor phenotype and acidosis. A gradual tumor pHe increase toward normalization similar to parenchyma was revealed within 2 weeks after complete cTACE, which correlated with decreasing detectability of metabolic markers. In contrast, pHe mapping after incomplete cTACE indicated both acidic viable residuals and increased tumor pHe of treated regions. Multimodal imaging revealed durable tumor devascularization immediately after complete cTACE, gradually increasing necrosis, and sustained lipiodol coverage of the tumor. CONCLUSIONS MRSI-based pHe mapping can serve as a longitudinal monitoring tool for viable tumors. As most liver tumors are hyperglycolytic creating microenvironmental acidosis, therapy-induced normalization of tumor pHe may be used as a functional biomarker for positive therapeutic outcome.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Isabel Theresa Schobert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Dana Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - John J Walsh
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Fabian Max Laage-Gaupp
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Charlie Alexander Hamm
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Nina Tritz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Luzie A Doemel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Visage Imaging, Inc., San Diego, California
| | - Albert Sinusas
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, Connecticut
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
31
|
Kim M, Torrealdea F, Adeleke S, Rega M, Evans V, Beeston T, Soteriou K, Thust S, Kujawa A, Okuchi S, Isaac E, Piga W, Lambert JR, Afaq A, Demetriou E, Choudhary P, Cheung KK, Naik S, Atkinson D, Punwani S, Golay X. Challenges in glucoCEST MR body imaging at 3 Tesla. Quant Imaging Med Surg 2019; 9:1628-1640. [PMID: 31728307 PMCID: PMC6828585 DOI: 10.21037/qims.2019.10.05] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aim of this study was to translate dynamic glucose enhancement (DGE) body magnetic resonance imaging (MRI) based on the glucose chemical exchange saturation transfer (glucoCEST) signal to a 3 T clinical field strength. METHODS An infusion protocol for intravenous (i.v.) glucose was optimised using a hyperglycaemic clamp to maximise the chances of detecting exchange-sensitive MRI signal. Numerical simulations were performed to define the optimum parameters for glucoCEST measurements with consideration to physiological conditions. DGE images were acquired for patients with lymphomas and prostate cancer injected i.v. with 20% glucose. RESULTS The optimised hyperglycaemic clamp infusion based on the DeFronzo method demonstrated higher efficiency and stability of glucose delivery as compared to manual determination of glucose infusion rates. DGE signal sensitivity was found to be dependent on T2, B1 saturation power and integration range. Our results show that motion correction and B0 field inhomogeneity correction are crucial to avoid mistaking signal changes for a glucose response while field drift is a substantial contributor. However, after B0 field drift correction, no significant glucoCEST signal enhancement was observed in tumour regions of all patients in vivo. CONCLUSIONS Based on our simulated and experimental results, we conclude that glucose-related signal remains elusive at 3 T in body regions, where physiological movements and strong effects of B1 + and B0 render the originally small glucoCEST signal difficult to detect.
Collapse
Affiliation(s)
- Mina Kim
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Francisco Torrealdea
- Medical Physics and Biomedical Engineering, University College Hospital, London, UK
| | | | - Marilena Rega
- Institute of Nuclear Medicine, University College Hospital, London, UK
| | | | | | | | - Stefanie Thust
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Aaron Kujawa
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Sachi Okuchi
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | - Asim Afaq
- Institute of Nuclear Medicine, University College Hospital, London, UK
| | - Eleni Demetriou
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Pratik Choudhary
- King’s College Hospital NHS Foundation Trust, London, UK
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, UK
| | | | - Sarita Naik
- Department of Diabetes and Endocrinology, University College Hospital, London, UK
| | | | | | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
32
|
Walsh JJ, Huang Y, Simmons JW, Goodrich JA, McHugh B, Rothman DL, Elefteriades JA, Hyder F, Coman D. Dynamic Thermal Mapping of Localized Therapeutic Hypothermia in the Brain. J Neurotrauma 2019; 37:55-65. [PMID: 31311414 DOI: 10.1089/neu.2019.6485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although whole body cooling is used widely to provide therapeutic hypothermia for the brain, there are undesirable clinical side effects. Selective brain cooling may allow for rapid and controllable neuroprotection while mitigating these undesirable side effects. We evaluated an innovative cerebrospinal fluid (CSF) cooling platform that utilizes chilled saline pumped through surgically implanted intraventricular catheters to induce hypothermia. Magnetic resonance thermal imaging of the healthy sheep brain (n = 4) at 7.0T provided dynamic temperature measurements from the whole brain. Global brain temperature was 38.5 ± 0.8°C at baseline (body temperature of 39.2 ± 0.4°C), and decreased by 3.1 ± 0.3°C over ∼30 min of cooling (p < 0.0001). Significant cooling was achieved in all defined regions across both the ipsilateral and contralateral hemispheres relative to catheter placement. On cooling cessation, global brain temperature increased by 3.1 ± 0.2°C over ∼20 min (p < 0.0001). Rapid and synchronized temperature fall/rise on cooling onset/offset was observed reproducibly with rates ranging from 0.06-0.21°C/min, where rewarming was faster than cooling (p < 0.0001) signifying the importance of thermoregulation in the brain. Although core regions (including the subcortex, midbrain, olfactory tract, temporal lobe, occipital lobe, and parahippocampal cortex) had slightly warmer (∼0.2°C) baseline temperatures, after cooling, temperatures reached the same level as the non-core regions (35.6 ± 0.2°C), indicating the cooling effectiveness of the CSF-based cooling device. In summary, CSF-based intraventricular cooling reliably reduces temperature in all identified brain regions to levels known to be neuroprotective, while maintaining overall systemic normothermia. Dynamic thermal mapping provides high spatiotemporal temperature measurements that can aid in optimizing selective neuroprotective protocols.
Collapse
Affiliation(s)
- John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | | | - James A Goodrich
- Department of Comparative Medicine, Yale University, New Haven, Connecticut
| | - Brian McHugh
- Department of Neurosurgery, Yale University, New Haven, Connecticut.,Inova Medical Group Neurosurgery, Fairfax, Virginia
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | | | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| |
Collapse
|
33
|
|
34
|
Renfrew AK, O'Neill ES, Hambley TW, New EJ. Harnessing the properties of cobalt coordination complexes for biological application. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Tsitovich PB, Tittiris TY, Cox JM, Benedict JB, Morrow JR. Fe(ii) and Co(ii) N-methylated CYCLEN complexes as paraSHIFT agents with large temperature dependent shifts. Dalton Trans 2018; 47:916-924. [PMID: 29260180 DOI: 10.1039/c7dt03812g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several complexes of Co(ii) or Fe(ii) with 1,4,7,10-tetraazacyclododecane (CYCLEN) appended with 1,7-(6-methyl)2-picolyl groups are studied as 1H NMR paraSHIFT agents (paramagnetic shift agents) for the registration of temperature. Two of the complexes, [Co(BMPC)]2+ and [Fe(BMPC)]2+, contain methyl groups only on the methyl picolyl pendents. Two other complexes, [Co(2MPC)]2+ and [Fe(2MPC)]2+, contain picolyl groups and also methyl groups on the macrocyclic amines. All macrocyclic complexes are in high spin form as shown by solution magnetic moments in the range of 5.0-5.9μBM and 5.3-5.8μBM for Co(ii) and Fe(ii) complexes, respectively. The 1H NMR spectra of both of the Fe(ii) complexes and one of the Co(ii) complexes are consistent with a predominant diastereomeric form in deuterium oxide solutions. The highly shifted methyl proton resonances for [Co(2MPC)]2+ appear at 164 and -113 ppm for macrocycle and pendent picolyl methyls and show temperature coefficients of -0.58 ppm °C-1 and 0.49 ppm °C-1, respectively. Fe(ii) complexes have less shifted methyl proton resonances and smaller temperature coefficients. The 1H resonances of [Fe(2MPC)]2+ appear at 105 ppm and -46 ppm with corresponding temperature coefficients (CT) of -0.29 ppm °C-1 and 0.22 ppm °C-1, respectively. The relatively narrow linewidths of [Fe(2MPC)]2+, however, produce superior CT/FWHM values of 0.44 and 0.31 °C-1 for the N-methyl and picolyl proton resonances where FWHM is the full width at half maximum of the 1H resonance. The crystal structure of [Co(BMPC)]Cl2 shows a six-coordinate Co(ii) bound to the macrocyclic amines and two pendent picolyl groups. The distorted trigonal prismatic geometry of the complex resembles that of an analogous complex containing four 6-methyl-2-picolyl groups, in which only two picolyl pendents are coordinated.
Collapse
Affiliation(s)
- Pavel B Tsitovich
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| | - Douglas L Rothman
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| |
Collapse
|
37
|
Hyder F, Manjura Hoque S. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6387217. [PMID: 29375280 PMCID: PMC5742516 DOI: 10.1155/2017/6387217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022]
Abstract
Ferrite nanoparticles (F-NPs) can transform both cancer diagnostics and therapeutics. Superparamagnetic F-NPs exhibit high magnetic moment and susceptibility such that in presence of a static magnetic field transverse relaxation rate of water protons for MRI contrast is augmented to locate F-NPs (i.e., diagnostics) and exposed to an alternating magnetic field local temperature is increased to induce tissue necrosis (i.e., thermotherapy). F-NPs are modified by chemical synthesis of mixed spinel ferrites as well as their size, shape, and coating. Purposely designed drug-containing nanoparticles (D-NPs) can slowly deliver drugs (i.e., chemotherapy). Convection-enhanced delivery (CED) of D-NPs with MRI guidance improves glioblastoma multiforme (GBM) treatment. MRI monitors the location of chemotherapy when D-NPs and F-NPs are coadministered with CED. However superparamagnetic field gradients produced by F-NPs complicate MRI readouts (spatial distortions) and MRS (extensive line broadening). Since extracellular pH (pHe) is a cancer hallmark, pHe imaging is needed to screen cancer treatments. Biosensor imaging of redundant deviation in shifts (BIRDS) extrapolates pHe from paramagnetically shifted signals and the pHe accuracy remains unaffected by F-NPs. Hence effect of both chemotherapy and thermotherapy can be monitored (by BIRDS), whereas location of F-NPs is revealed (by MRI). Smarter tethering of nanoparticles and agents will impact GBM theranostics.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - S. Manjura Hoque
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Materials Science Division, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| |
Collapse
|
38
|
Maritim S, Coman D, Huang Y, Rao JU, Walsh JJ, Hyder F. Mapping Extracellular pH of Gliomas in Presence of Superparamagnetic Nanoparticles: Towards Imaging the Distribution of Drug-Containing Nanoparticles and Their Curative Effect on the Tumor Microenvironment. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:3849373. [PMID: 29362558 PMCID: PMC5736903 DOI: 10.1155/2017/3849373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Since brain's microvasculature is compromised in gliomas, intravenous injection of tumor-targeting nanoparticles containing drugs (D-NPs) and superparamagnetic iron oxide (SPIO-NPs) can deliver high payloads of drugs while allowing MRI to track drug distribution. However, therapeutic effect of D-NPs remains poorly investigated because superparamagnetic fields generated by SPIO-NPs perturb conventional MRI readouts. Because extracellular pH (pHe) is a tumor hallmark, mapping pHe is critical. Brain pHe is measured by biosensor imaging of redundant deviation in shifts (BIRDS) with lanthanide agents, by detecting paramagnetically shifted resonances of nonexchangeable protons on the agent. To test the hypothesis that BIRDS-based pHe readout remains uncompromised by presence of SPIO-NPs, we mapped pHe in glioma-bearing rats before and after SPIO-NPs infusion. While SPIO-NPs accumulation in the tumor enhanced MRI contrast, the pHe inside and outside the MRI-defined tumor boundary remained unchanged after SPIO-NPs infusion, regardless of the tumor type (9L versus RG2) or agent injection method (renal ligation versus coinfusion with probenecid). These results demonstrate that we can simultaneously and noninvasively image the specific location and the healing efficacy of D-NPs, where MRI contrast from SPIO-NPs can track their distribution and BIRDS-based pHe can map their therapeutic impact.
Collapse
Affiliation(s)
- Samuel Maritim
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yuegao Huang
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jyotsna U. Rao
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - John J. Walsh
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
39
|
Affiliation(s)
- Janet R. Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| | - Éva Tóth
- Centre de Biophysique
Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans 2, France
| |
Collapse
|
40
|
Multiparametric quantification of thermal heterogeneity within aqueous materials by water 1H NMR spectroscopy: Paradigms and algorithms. PLoS One 2017; 12:e0178431. [PMID: 28552959 PMCID: PMC5446178 DOI: 10.1371/journal.pone.0178431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/12/2017] [Indexed: 11/24/2022] Open
Abstract
Processes involving heat generation and dissipation play an important role in the performance of numerous materials. The behavior of (semi-)aqueous materials such as hydrogels during production and application, but also properties of biological tissue in disease and therapy (e.g., hyperthermia) critically depend on heat regulation. However, currently available thermometry methods do not provide quantitative parameters characterizing the overall temperature distribution within a volume of soft matter. To this end, we present here a new paradigm enabling accurate, contactless quantification of thermal heterogeneity based on the line shape of a water proton nuclear magnetic resonance (1H NMR) spectrum. First, the 1H NMR resonance from water serving as a "temperature probe" is transformed into a temperature curve. Then, the digital points of this temperature profile are used to construct a histogram by way of specifically developed algorithms. We demonstrate that from this histogram, at least eight quantitative parameters describing the underlying statistical temperature distribution can be computed: weighted median, weighted mean, standard deviation, range, mode(s), kurtosis, skewness, and entropy. All mathematical transformations and calculations are performed using specifically programmed EXCEL spreadsheets. Our new paradigm is helpful in detailed investigations of thermal heterogeneity, including dynamic characteristics of heat exchange at sub-second temporal resolution.
Collapse
|
41
|
Thorarinsdottir AE, Gaudette AI, Harris TD. Spin-crossover and high-spin iron(ii) complexes as chemical shift 19F magnetic resonance thermometers. Chem Sci 2017; 8:2448-2456. [PMID: 28694955 PMCID: PMC5477811 DOI: 10.1039/c6sc04287b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
The potential utility of paramagnetic transition metal complexes as chemical shift 19F magnetic resonance (MR) thermometers is demonstrated. Further, spin-crossover FeII complexes are shown to provide much higher temperature sensitivity than do the high-spin analogues, owing to the variation of spin state with temperature in the former complexes. This approach is illustrated through a series of FeII complexes supported by symmetrically and asymmetrically substituted 1,4,7-triazacyclononane ligand scaffolds bearing 3-fluoro-2-picolyl derivatives as pendent groups (L x ). Variable-temperature magnetic susceptibility measurements, in conjunction with UV-vis and NMR data, show thermally-induced spin-crossover for [Fe(L1)]2+ in H2O, with T1/2 = 52(1) °C. Conversely, [Fe(L2)]2+ remains high-spin in the temperature range 4-61 °C. Variable-temperature 19F NMR spectra reveal the chemical shifts of the complexes to exhibit a linear temperature dependence, with the two peaks of the spin-crossover complex providing temperature sensitivities of +0.52(1) and +0.45(1) ppm per °C in H2O. These values represent more than two-fold higher sensitivity than that afforded by the high-spin analogue, and ca. 40-fold higher sensitivity than diamagnetic perfluorocarbon-based thermometers. Finally, these complexes exhibit excellent stability in a physiological environment, as evidenced by 19F NMR spectra collected in fetal bovine serum.
Collapse
Affiliation(s)
- Agnes E Thorarinsdottir
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - Alexandra I Gaudette
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| | - T David Harris
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208-3113 , USA .
| |
Collapse
|
42
|
Krchová T, Herynek V, Gálisová A, Blahut J, Hermann P, Kotek J. Eu(III) Complex with DO3A-amino-phosphonate Ligand as a Concentration-Independent pH-Responsive Contrast Agent for Magnetic Resonance Spectroscopy (MRS). Inorg Chem 2017; 56:2078-2091. [PMID: 28170242 DOI: 10.1021/acs.inorgchem.6b02749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new DOTA-like ligand H5do3aNP with a 2-[amino(methylphosphonic acid)]ethyl-coordinating pendant arm was prepared, and its coordinating properties were studied by NMR spectroscopy and potentiometry. The study revealed a rare slow exchange (on the 1H and 31P NMR time scale) between protonated and unprotonated complex species with a corresponding acidity constant pKA ∼ 8.0. This unusually slow time scale associated with protonation is caused by a significant geometric change from square-antiprismatic (SA) arrangement observed for protonated complex SA-[Eu(Hdo3aNP)]- to twisted-square-antiprismatic (TSA) arrangement found for deprotonated complex TSA-[Eu(do3aNP)]2-. This behavior results in simultaneous occurrence of the signals of both species in the 31P NMR spectra at approximately -118 and +70 ppm, respectively. Such an unprecedented difference in the chemical shifts between species differing by a proton is caused by a significant movement of the principal magnetic axis and by a change of phosphorus atom position in the coordination sphere of the central Eu(III) ion (i.e., by relative movement of the phosphorus atom with respect to the principal magnetic axis). It changes the sign of the paramagnetic contribution to the 31P NMR chemical shift. The properties discovered can be employed in the measurement of pH by MRS techniques as presented by proof-of-principle experiments on phantoms.
Collapse
Affiliation(s)
- Tereza Krchová
- Department of Inorganic Chemistry, Faculty of Science, Charles University , Hlavova 2030, Prague 2 128 43, Czech Republic
| | - Vít Herynek
- Department of Radiodiagnostic and Interventional Radiology, Magnetic Resonance Unit, Institute for Clinical and Experimental Medicine , Vídeňská 1958/9, Prague 4 140 21, Czech Republic
| | - Andrea Gálisová
- Department of Radiodiagnostic and Interventional Radiology, Magnetic Resonance Unit, Institute for Clinical and Experimental Medicine , Vídeňská 1958/9, Prague 4 140 21, Czech Republic
| | - Jan Blahut
- Department of Inorganic Chemistry, Faculty of Science, Charles University , Hlavova 2030, Prague 2 128 43, Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Charles University , Hlavova 2030, Prague 2 128 43, Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Charles University , Hlavova 2030, Prague 2 128 43, Czech Republic
| |
Collapse
|
43
|
O’Neill ES, Kolanowski JL, Bonnitcha PD, New EJ. A cobalt(ii) complex with unique paraSHIFT responses to anions. Chem Commun (Camb) 2017; 53:3571-3574. [DOI: 10.1039/c7cc00619e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A cobalt(ii) complex can distinguish between anions by observing the paramagnetic 1H NMR shift.
Collapse
Affiliation(s)
- E. S. O’Neill
- School of Chemistry
- The University of Sydney
- Australia
| | | | - P. D. Bonnitcha
- Sydney Medical School
- Royal North Shore Hospital
- St. Leonards
- Australia
| | - E. J. New
- School of Chemistry
- The University of Sydney
- Australia
| |
Collapse
|
44
|
Huang Y, Coman D, Herman P, Rao JU, Maritim S, Hyder F. Towards longitudinal mapping of extracellular pH in gliomas. NMR IN BIOMEDICINE 2016; 29:1364-1372. [PMID: 27472471 PMCID: PMC5035200 DOI: 10.1002/nbm.3578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Biosensor imaging of redundant deviation in shifts (BIRDS), an ultrafast chemical shift imaging technique, requires infusion of paramagnetic probes such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis methylene phosphonate (DOTP(8-) ) complexed with thulium (Tm(3+) ) ion (i.e. TmDOTP(5-) ), where the pH-sensitive resonances of hyperfine-shifted non-exchangeable protons contained within the paramagnetic probe are detected. While imaging extracellular pH (pHe ) with BIRDS meets an important cancer research need by mapping the intratumoral-peritumoral pHe gradient, the surgical intervention used to raise the probe's plasma concentration limits longitudinal scans on the same subject. Here we describe using probenecid (i.e. an organic anion transporter inhibitor) to temporarily restrict renal clearance of TmDOTP(5-) , thereby facilitating molecular imaging by BIRDS without surgical intervention. Co-infusion of probenecid with TmDOTP(5-) increased the probe's distribution into various organs, including the brain, compared with infusing TmDOTP(5-) alone. In vivo BIRDS data using the probenecid-TmDOTP(5-) co-infusion method in rats bearing RG2, 9 L, and U87 brain tumors showed intratumoral-peritumoral pHe gradients that were unaffected by the probe dose. This co-infusion method can be used for pHe mapping with BIRDS in preclinical models for tumor characterization and therapeutic monitoring, given the possibility of repeated scans with BIRDS (e.g. over days and even weeks) in the same subject. The longitudinal pHe readout by the probenecid-TmDOTP(5-) co-infusion method for BIRDS adds translational value in tumor assessment and treatment. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuegao Huang
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Daniel Coman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Peter Herman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jyotsna U Rao
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Samuel Maritim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
45
|
Coman D, Huang Y, Rao JU, De Feyter HM, Rothman DL, Juchem C, Hyder F. Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas. NMR IN BIOMEDICINE 2016; 29:309-19. [PMID: 26752688 PMCID: PMC4769673 DOI: 10.1002/nbm.3466] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 05/26/2023]
Abstract
Solid tumors have an acidic extracellular pH (pHe ) but near neutral intracellular pH (pHi ). Because acidic pHe milieu is conducive to tumor growth and builds resistance to therapy, simultaneous mapping of pHe inside and outside the tumor (i.e., intratumoral-peritumoral pHe gradient) fulfills an important need in cancer imaging. We used Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which utilizes shifts of non-exchangeable protons from macrocyclic chelates (e.g., 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) or DOTP(8-) ) complexed with paramagnetic thulium (Tm(3) (+) ) ion, to generate in vivo pHe maps in rat brains bearing 9L and RG2 tumors. Upon TmDOTP(5-) infusion, MRI identified the tumor boundary by enhanced water transverse relaxation and BIRDS allowed imaging of intratumoral-peritumoral pHe gradients. The pHe measured by BIRDS was compared with pHi measured with (31) P-MRS. In normal tissue, pHe was similar to pHi , but inside the tumor pHe was lower than pHi . While the intratumoral pHe was acidic for both tumor types, peritumoral pHe varied with tumor type. The intratumoral-peritumoral pHe gradient was much larger for 9L than RG2 tumors because in RG2 tumors acidic pHe was found in distal peritumoral regions. The increased presence of Ki-67 positive cells beyond the RG2 tumor border suggested that RG2 was more invasive than the 9L tumor. These results indicate that extensive acidic pHe beyond the tumor boundary correlates with tumor cell invasion. In summary, BIRDS has sensitivity to map the in vivo intratumoral-peritumoral pHe gradient, thereby creating preclinical applications in monitoring cancer therapeutic responses (e.g., with pHe -altering drugs). Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel Coman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Yuegao Huang
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Jyotsna U. Rao
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Henk M. De Feyter
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Christoph Juchem
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
46
|
Senanayake PK, Rogers NJ, Finney KLNA, Harvey P, Funk AM, Wilson JI, O'Hogain D, Maxwell R, Parker D, Blamire AM. A new paramagnetically shifted imaging probe for MRI. Magn Reson Med 2016; 77:1307-1317. [PMID: 26922918 PMCID: PMC5324534 DOI: 10.1002/mrm.26185] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop and characterize a new paramagnetic contrast agent for molecular imaging by MRI. METHODS A contrast agent was developed for direct MRI detection through the paramagnetically shifted proton magnetic resonances of two chemically equivalent tert-butyl reporter groups within a dysprosium(III) complex. The complex was characterized in phantoms and imaged in physiologically intact mice at 7 Tesla (T) using three-dimensional (3D) gradient echo and spectroscopic imaging (MRSI) sequences to measure spatial distribution and signal frequency. RESULTS The reporter protons reside ∼6.5 Å from the paramagnetic center, resulting in fast T1 relaxation (T1 = 8 ms) and a large paramagnetic frequency shift exceeding 60 ppm. Fast relaxation allowed short scan repetition times with high excitation flip angle, resulting in high sensitivity. The large dipolar shift allowed direct frequency selective excitation and acquisition of the dysprosium(III) complex, independent of the tissue water signal. The biokinetics of the complex were followed in vivo with a temporal resolution of 62 s following a single, low-dose intravenous injection. The lower concentration limit for detection was ∼23 μM. Through MRSI, the temperature dependence of the paramagnetic shift (0.28 ppm.K-1 ) was exploited to examine tissue temperature variation. CONCLUSIONS These data demonstrate a new MRI agent with the potential for physiological monitoring by MRI. Magn Reson Med 77:1307-1317, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
| | - Nicola J Rogers
- Dept. of Chemistry, Durham University, South Road, Durham, United Kingdom
| | | | - Peter Harvey
- Dept. of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - Alexander M Funk
- Dept. of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - J Ian Wilson
- Northern Institute for Cancer Research, Newcastle University, United Kingdom
| | - Dara O'Hogain
- Institute of Cellular Medicine & Newcastle MR Centre, Newcastle University, United Kingdom
| | - Ross Maxwell
- Northern Institute for Cancer Research, Newcastle University, United Kingdom
| | - David Parker
- Dept. of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - Andrew M Blamire
- Institute of Cellular Medicine & Newcastle MR Centre, Newcastle University, United Kingdom
| |
Collapse
|
47
|
Tsitovich PB, Cox JM, Benedict JB, Morrow JR. Six-coordinate Iron(II) and Cobalt(II) paraSHIFT Agents for Measuring Temperature by Magnetic Resonance Spectroscopy. Inorg Chem 2016; 55:700-16. [PMID: 26716610 PMCID: PMC5555598 DOI: 10.1021/acs.inorgchem.5b02144] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Paramagnetic Fe(II) and Co(II) complexes are utilized as the first transition metal examples of (1)H NMR shift agents (paraSHIFT) for thermometry applications using Magnetic Resonance Spectroscopy (MRS). The coordinating ligands consist of TACN (1,4,7-triazacyclononane) and CYCLEN (1,4,7,10-tetraazacyclododecane) azamacrocycles appended with 6-methyl-2-picolyl groups, denoted as MPT and TMPC, respectively. (1)H NMR spectra of the MPT- and TMPC-based Fe(II) and Co(II) complexes demonstrate narrow and highly shifted resonances that are dispersed as broadly as 440 ppm. The six-coordinate complex cations, [M(MPT)](2+) and [M(TMPC)](2+), vary from distorted octahedral to distorted trigonal prismatic geometries, respectively, and also demonstrate that 6-methyl-2-picolyl pendents control the rigidity of these complexes. Analyses of the (1)H NMR chemical shifts, integrated intensities, line widths, the distances obtained from X-ray diffraction measurements, and longitudinal relaxation time (T1) values allow for the partial assignment of proton resonances of the [M(MPT)](2+) complexes. Nine and six equivalent methyl protons of [M(MPT)](2+) and [M(TMPC)](2+), respectively, produce 3-fold higher (1)H NMR intensities compared to other paramagnetically shifted proton resonances. Among all four complexes, the methyl proton resonances of [Fe(TMPC)](2+) and [Co(TMPC)](2+) at -49.3 ppm and -113.7 ppm (37 °C) demonstrate the greatest temperature dependent coefficients (CT) of 0.23 ppm/°C and 0.52 ppm/°C, respectively. The methyl groups of these two complexes both produce normalized values of |CT|/fwhm = 0.30 °C(-1), where fwhm is full width at half-maximum (Hz) of proton resonances. The T1 values of the highly shifted methyl protons are in the range of 0.37-2.4 ms, allowing rapid acquisition of spectroscopic data. These complexes are kinetically inert over a wide range of pH values (5.6-8.6), as well as in the presence of serum albumin and biologically relevant cations and anions. The combination of large hyperfine shifts, large temperature sensitivity, increased signal-to-noise ratio, and short T1 values suggests that these complexes, in particular the TMPC-based complexes, show promise as paraSHIFT agents for thermometry.
Collapse
Affiliation(s)
- Pavel B. Tsitovich
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Jordan M. Cox
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Jason B. Benedict
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260
| |
Collapse
|
48
|
Olatunde AO, Bond CJ, Dorazio SJ, Cox JM, Benedict JB, Daddario MD, Spernyak JA, Morrow JR. Six, Seven or Eight Coordinate Fe(II) , Co(II) or Ni(II) Complexes of Amide-Appended Tetraazamacrocycles for ParaCEST Thermometry. Chemistry 2015; 21:18290-300. [PMID: 26494320 PMCID: PMC4679426 DOI: 10.1002/chem.201503125] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/26/2022]
Abstract
Fe(II) , Co(II) and Ni(II) complexes of two tetraazamacrocycles (1,4,8,11-tetrakis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane (L1) and 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (L2) show promise as paraCEST agents for registration of temperature (paraCEST=paramagnetic chemical exchange saturation transfer). The Fe(II) , Co(II) and Ni(II) complexes of L1 show up to four CEST peaks shifted ≤112 ppm, whereas analogous complexes of L2 show only a single CEST peak at ≤69 ppm. Comparison of the temperature coefficients (CT ) of the CEST peaks of [Co(L2)](2+) , [Fe(L2)](2+) , [Ni(L1)](2+) and [Co(L1)](2+) showed that a CEST peak of [Co(L1)](2+) gave the largest CT (-0.66 ppm (o) C(-1) at 4.7 T). NMR spectral and CEST properties of these complexes correspond to coordination complex symmetry as shown by structural data. The [Ni(L1)](2+) and [Co(L1)](2+) complexes have a six-coordinate metal ion bound to the 1-, 4-amide oxygen atoms and four nitrogen atoms of the tetraazamacrocycle. The [Fe(L2)](2+) complex has an unusual eight-coordinate Fe(II) bound to four amide oxygen atoms and four macrocyclic nitrogen atoms. For [Co(L2)](2+) , one structure has seven-coordinate Co(II) with three bound amide pendents and a second structure has a six-coordinate Co(II) with two bound amide pendents.
Collapse
Affiliation(s)
- Abiola O Olatunde
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Christopher J Bond
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Sarina J Dorazio
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Jordan M Cox
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Jason B Benedict
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Michael D Daddario
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263 (USA)
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263 (USA)
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA).
| |
Collapse
|
49
|
Huang Y, Coman D, Hyder F, Ali MM. Dendrimer-Based Responsive MRI Contrast Agents (G1-G4) for Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Bioconjug Chem 2015; 26:2315-23. [PMID: 26497087 DOI: 10.1021/acs.bioconjchem.5b00568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biosensor imaging of redundant deviation in shifts (BIRDS) is a molecular imaging platform for magnetic resonance that utilizes unique properties of low molecular weight paramagnetic monomers by detecting hyperfine-shifted nonexchangeable protons and transforming the chemical shift information to reflect its microenvironment (e.g., via temperature, pH, etc.). To optimize translational biosensing potential of BIRDS we examined if this detection scheme observed with monomers can be extended onto dendrimers, which are versatile and biocompatible macromolecules with modifiable surface for molecular imaging and drug delivery. Here we report on feasibility of paramagnetic dendrimers for BIRDS. The results show that BIRDS is resilient with paramagnetic dendrimers up to the fourth generation (i.e., G1-G4), where the model dendrimer and chelate were based on poly(amido amine) (PAMAM) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA(4-)) complexed with thulium ion (Tm(3+)). Temperature sensitivities of two prominent signals of Gn-PAMAM-(TmDOTA(-))x (where n = 1-4, x = 6-39) were comparable to that of prominent signals in TmDOTA(-). Transverse relaxation times of the coalesced nonexchangeable protons on Gn-PAMAM-(TmDOTA(-))x were relatively short to provide signal-to-noise ratio that was comparable to or better than that of TmDOTA(-). A fluorescent dye, rhodamine, was conjugated to a G2-PAMAM-(TmDOTA)12 to create a dual-modality nanosized contrast agent. BIRDS properties of the dendrimer were unaltered with rhodamine conjugation. Purposely designed paramagnetic dendrimers for BIRDS in conjunction with novel macromolecular surface modification for functional ligands/drugs could potentially be used for biologically compatible theranostic sensors.
Collapse
Affiliation(s)
| | | | | | - Meser M Ali
- Department of Neurology, Henry Ford Hospital , Detroit, Michigan 48202, United States
| |
Collapse
|
50
|
Coman D, Sanganahalli BG, Jiang L, Hyder F, Behar KL. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure. NMR IN BIOMEDICINE 2015; 28:1257-66. [PMID: 26286889 PMCID: PMC4573923 DOI: 10.1002/nbm.3375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 06/22/2015] [Accepted: 07/19/2015] [Indexed: 05/05/2023]
Abstract
(+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as potential heat generation) may vary regionally, neuroprotection may require different cooling strategies.
Collapse
Affiliation(s)
- Daniel Coman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Lihong Jiang
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Kevin L. Behar
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|