1
|
Wu Y, Liu X, Huang Y, Zhou T, Zhang F. An open relaxation-diffusion MRI dataset in neurosurgical studies. Sci Data 2024; 11:177. [PMID: 38326377 PMCID: PMC10850093 DOI: 10.1038/s41597-024-03013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Diffusion MRI (dMRI) is a safe and noninvasive technique that provides insight into the microarchitecture of brain tissue. Relaxation-diffusion MRI (rdMRI) is an extension of traditional dMRI that captures diffusion imaging data at multiple TEs to detect tissue heterogeneity between relaxation and diffusivity. rdMRI has great potential in neurosurgical research including brain tumor grading and treatment response evaluation. However, the lack of available data has limited the exploration of rdMRI in clinical settings. To address this, we are sharing a high-quality rdMRI dataset from 18 neurosurgical patients with different types of lesions, as well as two healthy individuals as controls. The rdMRI data was acquired using 7 TEs, where at each TE multi-shell dMRI with high spatial and angular resolutions is obtained at each TE. Each rdMRI scan underwent thorough artifact and distortion corrections using a specially designed processing pipeline. The dataset's quality was assessed using standard practices, including quality control and assurance. This resource is a valuable addition to neurosurgical studies, and all data are openly accessible.
Collapse
Affiliation(s)
- Ye Wu
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Yunzhi Huang
- School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Tao Zhou
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
3
|
Ruck L, Mennecke A, Wilferth T, Lachner S, Müller M, Egger N, Doerfler A, Uder M, Nagel AM. Influence of image contrasts and reconstruction methods on the classification of multiple sclerosis-like lesions in simulated sodium magnetic resonance imaging. Magn Reson Med 2023; 89:1102-1116. [PMID: 36373186 DOI: 10.1002/mrm.29476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the classifiability of small multiple sclerosis (MS)-like lesions in simulated sodium (23 Na) MRI for different 23 Na MRI contrasts and reconstruction methods. METHODS 23 Na MRI and 23 Na inversion recovery (IR) MRI of a phantom and simulated brain with and without lesions of different volumes (V = 1.3-38.2 nominal voxels) were simulated 100 times by adding Gaussian noise matching the SNR of real 3T measurements. Each simulation was reconstructed with four different reconstruction methods (Gridding without and with Hamming filter, Compressed sensing (CS) reconstruction without and with anatomical 1 H prior information). Based on the mean signals within the lesion volumes of simulations with and without lesions, receiver operating characteristics (ROC) were determined and the area under the curve (AUC) was calculated to assess the classifiability for each lesion volume. RESULTS Lesions show higher classifiability in 23 Na MRI than in 23 Na IR MRI. For typical parameters and SNR of a 3T scan, the voxel normed minimal classifiable lesion volume (AUC > 0.9) is 2.8 voxels for 23 Na MRI and 19 voxels for 23 Na IR MRI, respectively. In terms of classifiability, Gridding with Hamming filter and CS without anatomical 1 H prior outperform CS reconstruction with anatomical 1 H prior. CONCLUSION Reliability of lesion classifiability strongly depends on the lesion volume and the 23 Na MRI contrast. Additional incorporation of 1 H prior information in the CS reconstruction was not beneficial for the classification of small MS-like lesions in 23 Na MRI.
Collapse
Affiliation(s)
- Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Kim S, Merugumala S, Lin AP. A uniformity correction method to reduce scan time for 7T sodium imaging of brain tumors. J Neuroimaging 2022; 32:1062-1069. [PMID: 35989449 PMCID: PMC9649857 DOI: 10.1111/jon.13041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sodium imaging shows great potential for the characterization of brain tumors. Intensity correction is required but the additional scan time is costly. Recent developments can halve the time but were optimized in normal brains and may not be applicable in brain tumor imaging. We aim to develop an individualized uniformity correction for sodium imaging optimized for brain tumor patients that reduces scan time but provides high-resolution images for clinical practice. METHODS Two-, 4-, and 6-mm iso-cubic voxel resolution birdcage coil images were used to calculate the 2-mm iso-cubic voxel individual sensitivity maps in healthy subjects (n = 3). Cut profiles were compared to determine the optimal approach. In addition, a 3-dimensional phantom was developed to test a generalized uniformity correction approach in both healthy subjects (n = 3) and tumor patients (n = 3). RESULTS The cut profiles showed that the average correlation coefficient between 2- and 4-mm birdcage image correction results was r = .9937, and r = .9876 for 2- and 6-mm birdcage images. The correlation result between individual map correction and phantom map correction was r = .9817. CONCLUSION The 4 mm birdcage coil image provided the optimal approach for both as a compromise between the time-savings effect and image quality. This method allows for a 2-mm iso-cubic voxel resolution clinical sodium scan within 12 minutes. We also presented prescanned phantom sensitivity map results, which were designed to cover all patient head sizes. This approach provides an alternative solution in more time-sensitive cases.
Collapse
Affiliation(s)
- Sanghoon Kim
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sai Merugumala
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Peter Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Wilferth T, Müller M, Gast LV, Ruck L, Meyerspeer M, Lopez Kolkovsky AL, Uder M, Dörfler A, Nagel AM. Motion‐corrected
23
Na MRI
of the human brain using interleaved
1
H 3D
navigator images. Magn Reson Med 2022; 88:309-321. [DOI: 10.1002/mrm.29221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Tobias Wilferth
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Max Müller
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Lena V. Gast
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Laurent Ruck
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
| | - Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- NMR Laboratory CEA/DRF/IBFJ/Molecular Imaging Research Center Paris France
| | - Michael Uder
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Arnd Dörfler
- Department of Neuroradiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Armin M. Nagel
- Institute of Radiology University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) Erlangen Germany
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
6
|
Hagiwara A, Bydder M, Oughourlian TC, Yao J, Salamon N, Jahan R, Villablanca JP, Enzmann DR, Ellingson BM. Sodium MR Neuroimaging. AJNR Am J Neuroradiol 2021; 42:1920-1926. [PMID: 34446457 PMCID: PMC8583254 DOI: 10.3174/ajnr.a7261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
Sodium MR imaging has the potential to complement routine proton MR imaging examinations with the goal of improving diagnosis, disease characterization, and clinical monitoring in neurologic diseases. In the past, the utility and exploration of sodium MR imaging as a valuable clinical tool have been limited due to the extremely low MR signal, but with recent improvements in imaging techniques and hardware, sodium MR imaging is on the verge of becoming clinically realistic for conditions that include brain tumors, ischemic stroke, and epilepsy. In this review, we briefly describe the fundamental physics of sodium MR imaging tailored to the neuroradiologist, focusing on the basics necessary to understand factors that play into making sodium MR imaging feasible for clinical settings and describing current controversies in the field. We will also discuss the current state of the field and the potential future clinical uses of sodium MR imaging in the diagnosis, phenotyping, and therapeutic monitoring in neurologic diseases.
Collapse
Affiliation(s)
- A Hagiwara
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - M Bydder
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - T C Oughourlian
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Neuroscience Interdepartmental Program (T.C.O., B.M.E.)
| | - J Yao
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Bioengineering (J.Y., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - N Salamon
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - R Jahan
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - J P Villablanca
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - D R Enzmann
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
| | - B M Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (A.H., M.B., T.C.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers
- Department of Bioengineering (J.Y., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences (A.H., M.B., J.Y., N.S., R.J., J.P.V., D.R.E., B.M.E.)
- Neuroscience Interdepartmental Program (T.C.O., B.M.E.)
- Department of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
7
|
Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain. Nat Commun 2021; 12:5987. [PMID: 34645793 PMCID: PMC8514510 DOI: 10.1038/s41467-021-26116-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Following prolonged exposure to hypoxic conditions, for example, due to ascent to high altitude, stroke, or traumatic brain injury, cerebral edema can develop. The exact nature and genesis of hypoxia-induced edema in healthy individuals remain unresolved. We examined the effects of prolonged, normobaric hypoxia, induced by 16 h of exposure to simulated high altitude, on healthy brains using proton, dynamic contrast enhanced, and sodium MRI. This dual approach allowed us to directly measure key factors in the development of hypoxia-induced brain edema: (1) Sodium signals as a surrogate of the distribution of electrolytes within the cerebral tissue and (2) Ktrans as a marker of blood–brain–barrier integrity. The measurements point toward an accumulation of sodium ions in extra- but not in intracellular space in combination with an intact endothelium. Both findings in combination are indicative of ionic extracellular edema, a subtype of cerebral edema that was only recently specified as an intermittent, yet distinct stage between cytotoxic and vasogenic edemas. In sum, here a combination of imaging techniques demonstrates the development of ionic edemas following prolonged normobaric hypoxia in agreement with cascadic models of edema formation. Prolonged hypoxia, which can be due to stroke or ascent to high altitude, can lead to cerebral edema. Here, the authors used a combination of sodium and proton MRI and experimentally induced hypoxic conditions to identify the cause for brain swelling: Ionic edema, an intermediate between cytotoxic and vasogenic edema defined by sodium ion accumulation in extracellular space and an intact endothelium.
Collapse
|
8
|
Hanson P, Philp CJ, Randeva HS, James S, O’Hare JP, Meersmann T, Pavlovskaya GE, Barber TM. Sodium in the dermis colocates to glycosaminoglycan scaffold, with diminishment in type 2 diabetes mellitus. JCI Insight 2021; 6:145470. [PMID: 34003801 PMCID: PMC8262470 DOI: 10.1172/jci.insight.145470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/13/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Dietary sodium intake mismatches urinary sodium excretion over prolonged periods. Our aims were to localize and quantify electrostatically bound sodium within human skin using triple-quantum-filtered (TQF) protocols for MRI and magnetic resonance spectroscopy (MRS) and to explore dermal sodium in type 2 diabetes mellitus (T2D). METHODS We recruited adult participants with T2D (n = 9) and euglycemic participants with no history of diabetes mellitus (n = 8). All had undergone lower limb amputations or abdominal skin reduction surgery for clinical purposes. We used 20 μm in-plane resolution 1H MRI to visualize anatomical skin regions ex vivo from skin biopsies taken intraoperatively, 23Na TQF MRI/MRS to explore distribution and quantification of freely dissolved and bound sodium, and inductively coupled plasma mass spectrometry to quantify sodium in selected skin samples. RESULTS Human dermis has a preponderance (>90%) of bound sodium that colocalizes with the glycosaminoglycan (GAG) scaffold. Bound and free sodium have similar anatomical locations. T2D associates with a severely reduced dermal bound sodium capacity. CONCLUSION We provide the first evidence to our knowledge for high levels of bound sodium within human dermis, colocating to the GAG scaffold, consistent with a dermal "third space repository" for sodium. T2D associates with diminished dermal electrostatic binding capacity for sodium.
Collapse
Affiliation(s)
- Petra Hanson
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| | | | - Harpal S. Randeva
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| | - Sean James
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| | - J. Paul O’Hare
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| | - Thomas Meersmann
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Medicine, and
- Nottingham NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Galina E. Pavlovskaya
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Medicine, and
- Nottingham NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Thomas M. Barber
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire (UHCW), Clifford Bridge Road, Coventry, United Kingdom
| |
Collapse
|
9
|
Niendorf T, Beenakker JWM, Langner S, Erb-Eigner K, Bach Cuadra M, Beller E, Millward JM, Niendorf TM, Stachs O. Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)? Curr Eye Res 2021; 46:1251-1270. [PMID: 33535828 DOI: 10.1080/02713683.2021.1874021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging of the eye and orbit (MReye) is a cross-domain research field, combining (bio)physics, (bio)engineering, physiology, data sciences and ophthalmology. A growing number of reports document technical innovations of MReye and promote their application in preclinical research and clinical science. Realizing the progress and promises, this review outlines current trends in MReye. Examples of MReye strategies and their clinical relevance are demonstrated. Frontier applications in ocular oncology, refractive surgery, ocular muscle disorders and orbital inflammation are presented and their implications for explorations into ophthalmic diseases are provided. Substantial progress in anatomically detailed, high-spatial resolution MReye of the eye, orbit and optic nerve is demonstrated. Recent developments in MReye of ocular tumors are explored, and its value for personalized eye models derived from machine learning in the treatment planning of uveal melanoma and evaluation of retinoblastoma is highlighted. The potential of MReye for monitoring drug distribution and for improving treatment management and the assessment of individual responses is discussed. To open a window into the eye and into (patho)physiological processes that in the past have been largely inaccessible, advances in MReye at ultrahigh magnetic field strengths are discussed. A concluding section ventures a glance beyond the horizon and explores future directions of MReye across multiple scales, including in vivo electrolyte mapping of sodium and other nuclei. This review underscores the need for the (bio)medical imaging and ophthalmic communities to expand efforts to find solutions to the remaining unsolved problems and technical obstacles of MReye, with the objective to transfer methodological advancements driven by MR physics into genuine clinical value.
Collapse
Affiliation(s)
- Thoralf Niendorf
- MRI.TOOLS GmbH, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jan-Willem M Beenakker
- Department of Ophthalmology and Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Katharina Erb-Eigner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meritxell Bach Cuadra
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Oliver Stachs
- Department Life, Light & Matter, University Rostock, Rostock, Germany.,Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
10
|
Lachner S, Utzschneider M, Zaric O, Minarikova L, Ruck L, Zbýň Š, Hensel B, Trattnig S, Uder M, Nagel AM. Compressed sensing and the use of phased array coils in 23Na MRI: a comparison of a SENSE-based and an individually combined multi-channel reconstruction. Z Med Phys 2021; 31:48-57. [PMID: 33183893 DOI: 10.1016/j.zemedi.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To implement and to evaluate a compressed sensing (CS) reconstruction algorithm based on the sensitivity encoding (SENSE) combination scheme (CS-SENSE), used to reconstruct sodium magnetic resonance imaging (23Na MRI) multi-channel breast data sets. METHODS In a simulation study, the CS-SENSE algorithm was tested and optimized by evaluating the structural similarity (SSIM) and the normalized root-mean-square error (NRMSE) for different regularizations and different undersampling factors (USF=1.8/3.6/7.2/14.4). Subsequently, the algorithm was applied to data from in vivo measurements of the healthy female breast (n=3) acquired at 7T. Moreover, the proposed CS-SENSE algorithm was compared to a previously published CS algorithm (CS-IND). RESULTS The CS-SENSE reconstruction leads to an increased image quality for all undersampling factors and employed regularizations. Especially if a simple 2nd order total variation is chosen as sparsity transformation, the CS-SENSE reconstruction increases the image quality of highly undersampled data sets (CS-SENSE: SSIMUSF=7.2=0.234, NRMSEUSF=7.2=0.491 vs. CS-IND: SSIMUSF=7.2=0.201, NRMSEUSF=7.2=0.506). CONCLUSION The CS-SENSE reconstruction supersedes the need of CS weighting factors for each channel as well as a method to combine single channel data. The CS-SENSE algorithm can be used to reconstruct undersampled data sets with increased image quality. This can be exploited to reduce total acquisition times in 23Na MRI.
Collapse
Affiliation(s)
- Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olgica Zaric
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lenka Minarikova
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Štefan Zbýň
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
11
|
Fantasia M, Galante A, Maggiorelli F, Retico A, Fontana N, Monorchio A, Alecci M. Numerical and Workbench Design of 2.35 T Double-Tuned (¹H/²³Na) Nested RF Birdcage Coils Suitable for Animal Size MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3175-3186. [PMID: 32310762 DOI: 10.1109/tmi.2020.2988599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (1H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g. 13C, 23Na, 31P, and many others) needs to be detected with high sensitivity and spatial homogeneity. To this purpose several technical solutions have been adopted to design Double Tuned (DT) volume RF coils, including the recent configuration of the nested birdcage RF coils. One of the main problems in the design of DT RF coils is the decoupling between the 1H and X channels, and a number of solutions have been adopted over the years. In this work, based on numerical and workbench methods, we report the decoupling optimization of DT (1H/23Na) nested RF birdcage coils suitable for 2.35 T MRI scanners encompassing an inner Low-Pass (LP) birdcage used for X-nuclei, an outer High-Pass (HP) birdcage for 1H and an external cylindrical RF shield. We show that a suitable geometrical selection of the two coaxial RF birdcage coils (relative angular orientation, diameters and lengths) and RF shield (diameter, length) allows a significant decoupling optimization. We also provide valuable information about the RF B1+ field homogeneity and efficiency. Our approach was validated both with numerical simulations and workbench testing using DT nested RF coil prototypes.
Collapse
|
12
|
Choi CH, Stegmayr C, Shymanskaya A, Worthoff WA, da Silva NA, Felder J, Langen KJ, Shah NJ. An in vivo multimodal feasibility study in a rat brain tumour model using flexible multinuclear MR and PET systems. EJNMMI Phys 2020; 7:50. [PMID: 32728773 PMCID: PMC7391464 DOI: 10.1186/s40658-020-00319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background In addition to the structural information afforded by 1H MRI, the use of X-nuclei, such as sodium-23 (23Na) or phosphorus-31 (31P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models. Methods In this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). This made it possible for in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET. Results High-quality in vivo images and spectra including high-resolution 1H imaging, 23Na-weighted imaging, detection of 31P metabolites and [18F]FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a healthy brain. It has been reported in the literature that these parameters are useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy. Conclusions The combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | | | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Nuno A da Silva
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Section JARA-BRAIN, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany. .,Institute of Neuroscience and Medicine-11, INM-11, JARA, Forschungszentrum Jülich, Germany. .,JARA-BRAIN-Translational Medicine, Aachen, Germany. .,Department of Neurology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
13
|
Sodium relaxometry using
23
Na MR fingerprinting: A proof of concept. Magn Reson Med 2020; 84:2577-2591. [DOI: 10.1002/mrm.28316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
14
|
Poku LO, Phil M, Cheng Y, Wang K, Sun X. 23 Na-MRI as a Noninvasive Biomarker for Cancer Diagnosis and Prognosis. J Magn Reson Imaging 2020; 53:995-1014. [PMID: 32219933 PMCID: PMC7984266 DOI: 10.1002/jmri.27147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
The influx of sodium (Na+) ions into a resting cell is regulated by Na+ channels and by Na+/H+ and Na+/Ca2+ exchangers, whereas Na+ ion efflux is mediated by the activity of Na+/K+‐ATPase to maintain a high transmembrane Na+ ion gradient. Dysfunction of this system leads to changes in the intracellular sodium concentration that promotes cancer metastasis by mediating invasion and migration. In addition, the accumulation of extracellular Na+ ions in cancer due to inflammation contributes to tumor immunogenicity. Thus, alterations in the Na+ ion concentration may potentially be used as a biomarker for malignant tumor diagnosis and prognosis. However, current limitations in detection technology and a complex tumor microenvironment present significant challenges for the in vivo assessment of Na+ concentration in tumor. 23Na‐magnetic resonance imaging (23Na‐MRI) offers a unique opportunity to study the effects of Na+ ion concentration changes in cancer. Although challenged by a low signal‐to‐noise ratio, the development of ultrahigh magnetic field scanners and specialized sodium acquisition sequences has significantly advanced 23Na‐MRI. 23Na‐MRI provides biochemical information that reflects cell viability, structural integrity, and energy metabolism, and has been shown to reveal rapid treatment response at the molecular level before morphological changes occur. Here we review the basis of 23Na‐MRI technology and discuss its potential as a direct noninvasive in vivo diagnostic and prognostic biomarker for cancer therapy, particularly in cancer immunotherapy. We propose that 23Na‐MRI is a promising method with a wide range of applications in the tumor immuno‐microenvironment research field and in cancer immunotherapy monitoring. Level of Evidence 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
| | - M Phil
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yongna Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Wilferth T, Gast LV, Stobbe RW, Beaulieu C, Hensel B, Uder M, Nagel AM. 23Na MRI of human skeletal muscle using long inversion recovery pulses. Magn Reson Imaging 2019; 63:280-290. [PMID: 31425815 DOI: 10.1016/j.mri.2019.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
23Na inversion recovery (IR) imaging allows for a weighting toward intracellular sodium in the human calf muscle and thus enables an improved analysis of pathophysiological changes of the muscular ion homeostasis. However, sodium signal-to-noise ratio (SNR) is low, especially when using IR sequences. 23Na has a nuclear spin of 3/2 and therefore experiences a strong electrical quadrupolar interaction. This results in very short relaxation times as well as in possible residual quadrupolar splitting. Consequently, relaxation effects during a radiofrequency pulse can no longer be neglected and even allow for increasing SNR as has previously been shown for human brain and knee. The aim of this work was to increase the SNR in 23Na IR imaging of the human calf muscle by using long inversion pulses instead of the usually applied short pulses. First, the influence of the inversion pulse length (1 to 20 ms) on the SNR as well as on image contrast was simulated for different model environments and verified by phantom measurements. Depending on the model environment (agarose 4% and 8%, xanthan 2% and 3%), SNR values increased by a factor of 1.15 up to 1.35, while NaCl solution was successfully suppressed. Thus, image contrast between the non-suppressed model compartments changes with IR pulse length. Finally, in vivo measurements of the human calf muscle of ten healthy volunteers were conducted at 3 Tesla. On average, a 1.4-fold increase in SNR could be achieved by increasing the inversion pulse length from 1 ms to 20 ms, leaving all other parameters - including the scan time - constant. This enables 23Na IR MRI with improved spatial resolution or reduced acquisition time.
Collapse
Affiliation(s)
- Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert W Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
16
|
Lachner S, Zaric O, Utzschneider M, Minarikova L, Zbýň Š, Hensel B, Trattnig S, Uder M, Nagel AM. Compressed sensing reconstruction of 7 Tesla 23Na multi-channel breast data using 1H MRI constraint. Magn Reson Imaging 2019; 60:145-156. [DOI: 10.1016/j.mri.2019.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
|
17
|
Abstract
In this article, an overview of the current developments and research applications for non-proton magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHFs) is given. Due to technical and methodical advances, efficient MRI of physiologically relevant nuclei, such as Na, Cl, Cl, K, O, or P has become feasible and is of interest to obtain spatially and temporally resolved information that can be used for biomedical and diagnostic applications. Sodium (Na) MRI is the most widespread multinuclear imaging method with applications ranging over all regions of the human body. Na MRI yields the second largest in vivo NMR signal after the clinically used proton signal (H). However, other nuclei such as O and P (energy metabolism) or Cl and K (cell viability) are used in an increasing number of MRI studies at UHF. One major advancement has been the increased availability of whole-body MR scanners with UHFs (B0 ≥7T) expanding the range of detectable nuclei. Nevertheless, efforts in terms of pulse sequence and post-processing developments as well as hardware designs must be made to obtain valuable information in clinically feasible measurement times. This review summarizes the available methods in the field of non-proton UHF MRI, especially for Na MRI, as well as introduces potential applications in clinical research.
Collapse
Affiliation(s)
- Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
19
|
Zhang H, Ma Y, Wang H, Xu L, Yu Y. MMP-2 expression and correlation with pathology and MRI of glioma. Oncol Lett 2018; 17:1826-1832. [PMID: 30675244 PMCID: PMC6341586 DOI: 10.3892/ol.2018.9806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
The expression of matrix metalloproteinase-2 (MMP-2) in brain glioma and its correlation with patients' clinicopathological characteristics and magnetic resonance imaging (MRI) features were investigated. A total of 104 patients with brain glioma admitted and treated in the First Affiliated Hospital of Anhui Medical University from June 2010 to September 2014 were randomly enrolled. MRI examination was performed before operation. Immunohistochemistry (IHC) was used to detect the expression levels of MMP-2 in brain glioma tissues and paired normal brain tissues after operation and to analyze the associations of MMP-2 expression with the clinicopathological characteristics of brain glioma and survival time of patients. The relationship between MMP-2 expression and preoperative MRI features of glioma was analyzed. The positive rate of MMP-2 expression in brain glioma was 73.08% (76/104), while that in paired normal brain tissues was only 12.5% (13/104), obviously lower than that in brain glioma tissues (P<0.05). The MMP-2 expression in the body of glioma was not related to the patients' sex, age, tumor location and pathological type (P>0.05), but there was a significant correlation with the tumor diameter and pathological grade of the patients (P<0.05). Analysis by Cox model suggested that tumor diameter, pathological grade and MMP-2 were independent prognostic factors for glioma (P<0.05). The overall survival (OS) of patients in the positive MMP-2 expression group was 16.4 months, while the OS in the negative MMP-2 expression group was 20.16 months, and the difference between the two groups was statistically significant (P<0.05). The positive expression of MMP-2 in glioma was closely related to the uniformity of MRI signal for tumor, tumor diameter, severity of peritumoral edema, degree of enhancement and pathological grade of tumor (P<0.05). MMP-2 is highly expressed in brain glioma, and it is a negative factor for prognosis. Therefore, the MRI manifestations of glioma can reflect to some extent the intensity of MMP-2 expression.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yunxia Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Liyan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
20
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
21
|
Blunck Y, Moffat BA, Kolbe SC, Ordidge RJ, Cleary JO, Johnston LA. Zero-gradient-excitation ramped hybrid encoding (zG RF -RHE) sodium MRI. Magn Reson Med 2018; 81:1172-1180. [PMID: 30252156 DOI: 10.1002/mrm.27484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/28/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Fast bi-exponential transverse signal decay compounds sodium image quality. This work aims at enhancing image characteristics using a special case of ramped hybrid encoding (RHE). Zero-gradient-excitation (zGRF )-RHE provides (1) gradient-free excitation for high flip angle, artifact-free excitation profiles and (2) gradient ramping during dead-time for the optimization of encoding time (tenc ) to reduce T2 * signal decay influence during acquisition. METHODS Radial zGRF -RHE and standard radial UTE were investigated over a range of receiver bandwidths in simulations, phantom and in vivo brain experiments. Central k-space in zGRF -RHE was acquired through single point measurements at the minimum achievable TE. T2 * blurring artifacts and image SNR and CNR were assessed. RESULTS zGRF -RHE enabled 90° flip angle artifact-free excitation, whereas gradient pre-ramping provided greater tenc efficiency for any readout bandwidths. Experiments confirmed simulation results, revealing sharper edge characteristics particularly at short readout durations (TRO ). Significant SNR improvements of up to 4.8% were observed for longer TRO . CONCLUSION zGRF -RHE allows for artifact-free high flip angle excitation with time-efficient encoding improving on image characteristics. This hybrid encoding concept with gradient pre-ramping is trajectory independent and can be introduced in any center-out UTE trajectory design.
Collapse
Affiliation(s)
- Yasmin Blunck
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - Bradford A Moffat
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Scott C Kolbe
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Roger J Ordidge
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Jon O Cleary
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia.,Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Leigh A Johnston
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| |
Collapse
|
22
|
Budinger TF, Bird MD. MRI and MRS of the human brain at magnetic fields of 14 T to 20 T: Technical feasibility, safety, and neuroscience horizons. Neuroimage 2018; 168:509-531. [DOI: 10.1016/j.neuroimage.2017.01.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022] Open
|
23
|
Platt T, Umathum R, Fiedler TM, Nagel AM, Bitz AK, Maier F, Bachert P, Ladd ME, Wielpütz MO, Kauczor HU, Behl NG. In vivo self-gated 23
Na MRI at 7 T using an oval-shaped body resonator. Magn Reson Med 2018; 80:1005-1019. [DOI: 10.1002/mrm.27103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| | - Reiner Umathum
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| | - Thomas M. Fiedler
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| | - Armin M. Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
- Institute of Radiology; University Hospital Erlangen, Maximiliansplatz 3; 91054 Erlangen Germany
| | - Andreas K. Bitz
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
- Faculty of Electrical Engineering and Information Technology; University of Applied Sciences Aachen, Eupener Str. 70; 52066 Aachen Germany
| | - Florian Maier
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
- Faculty of Physics and Astronomy; University of Heidelberg, Im Neuenheimer Feld 226; 69120 Heidelberg Germany
| | - Mark E. Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
- Faculty of Physics and Astronomy; University of Heidelberg, Im Neuenheimer Feld 226; 69120 Heidelberg Germany
- Faculty of Medicine; University of Heidelberg, Im Neuenheimer Feld 672; 69120 Heidelberg Germany
| | - Mark O. Wielpütz
- Translational Lung Research Center (TLRC); University of Heidelberg, German Center for Lung Research (DZL), Im Neuenheimer Feld 430; 69120 Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Hospital of Heidelberg, Im Neuenheimer Feld 110; 69120 Heidelberg Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine; Thoraxklinik at University of Heidelberg, Röntgenstr. 1; 69126 Heidelberg Germany
| | - Hans-Ulrich Kauczor
- Translational Lung Research Center (TLRC); University of Heidelberg, German Center for Lung Research (DZL), Im Neuenheimer Feld 430; 69120 Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Hospital of Heidelberg, Im Neuenheimer Feld 110; 69120 Heidelberg Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine; Thoraxklinik at University of Heidelberg, Röntgenstr. 1; 69126 Heidelberg Germany
| | - Nicolas G.R. Behl
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280; 69120 Heidelberg Germany
| |
Collapse
|
24
|
Blunck Y, Josan S, Taqdees SW, Moffat BA, Ordidge RJ, Cleary JO, Johnston LA. 3D‐multi‐echo radial imaging of
23
Na (3D‐MERINA) for time‐efficient multi‐parameter tissue compartment mapping. Magn Reson Med 2017; 79:1950-1961. [DOI: 10.1002/mrm.26848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Yasmin Blunck
- Biomedical Engineering, University of Melbourne, Parkville, Australia.,Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | | | - Syeda Warda Taqdees
- Biomedical Engineering, University of Melbourne, Parkville, Australia.,Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Roger J Ordidge
- Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Jon O Cleary
- Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Leigh A Johnston
- Biomedical Engineering, University of Melbourne, Parkville, Australia.,Melbourne Brain Centre Imaging Unit, Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| |
Collapse
|
25
|
Schepkin VD, Neubauer A, Nagel AM, Budinger TF. Comparison of potassium and sodium binding in vivo and in agarose samples using TQTPPI pulse sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:162-168. [PMID: 28314206 DOI: 10.1016/j.jmr.2017.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
Potassium and sodium specific binding in vivo were explored at 21.1T by triple quantum (TQ) magnetic resonance (MR) signals without filtration to achieve high sensitivities and precise quantifications. The pulse sequence used time proportional phase increments (TPPI). During simultaneous phase-time increments, it provided total single quantum (SQ) and TQ MR signals in the second dimension at single and triple quantum frequencies, respectively. The detection of both TQ and SQ signals was performed at identical experimental conditions and the resulting TQ signal equals 60±3% of the SQ signal when all ions experience sufficient time for binding. In a rat head in vivo the TQ percentage relative to SQ for potassium is 41.5±3% and for sodium is 16.1±1%. These percentages were compared to the matching values in an agarose tissue model with MR relaxation times similar to those of mammalian brain tissue. The sodium TQ signal in agarose samples decreased in the presence of potassium, suggesting a competitive binding of potassium relative to sodium ions for the same binding sites. The TQTPPI signals correspond to almost two times more effective binding of potassium than sodium. In vivo, up to ∼69% of total potassium and ∼27% of total sodium can be regarded as bound or experiencing an association time in the range of several milliseconds. Experimental data analyses show that more than half of the in vivo total sodium TQ signal could be from extracellular space, which is an important factor for quantification of intracellular MR signals.
Collapse
Affiliation(s)
- Victor D Schepkin
- CIMAR, National High Magnetic Field Laboratory/FSU, Tallahassee, FL, USA.
| | - Andreas Neubauer
- Computer Assisted Clinical Medicine/CBTM, Heidelberg University, Mannheim, Germany
| | - Armin M Nagel
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
26
|
Budinger TF, Bird MD, Frydman L, Long JR, Mareci TH, Rooney WD, Rosen B, Schenck JF, Schepkin VD, Sherry AD, Sodickson DK, Springer CS, Thulborn KR, Uğurbil K, Wald LL. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale. MAGMA (NEW YORK, N.Y.) 2016; 29:617-39. [PMID: 27194154 PMCID: PMC5538368 DOI: 10.1007/s10334-016-0561-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022]
Abstract
An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.
Collapse
Affiliation(s)
- Thomas F Budinger
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA.
| | - Mark D Bird
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Weizmann Institute, Rehovot, Israel
| | - Joanna R Long
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas H Mareci
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | - Bruce Rosen
- Massachusetts General Hospital, Harvard Medical School, Harvard, MA, USA
| | - John F Schenck
- General Electric Corporate Research, Schenectady, NY, USA
| | - Victor D Schepkin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - A Dean Sherry
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | - Lawrence L Wald
- Massachusetts General Hospital, Harvard Medical School, Harvard, MA, USA
| |
Collapse
|