1
|
Yeung J, DeYoung T, Spring S, de Guzman AE, Elder MW, Beauchamp A, Wong CS, Palmert MR, Lerch JP, Nieman BJ. Sex chromosomes and hormones independently influence healthy brain development but act similarly after cranial radiation. Proc Natl Acad Sci U S A 2024; 121:e2404042121. [PMID: 39207735 PMCID: PMC11388377 DOI: 10.1073/pnas.2404042121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The course of normal development and response to pathology are strongly influenced by biological sex. For instance, female childhood cancer survivors who have undergone cranial radiation therapy (CRT) tend to display more pronounced cognitive deficits than their male counterparts. Sex effects can be the result of sex chromosome complement (XX vs. XY) and/or gonadal hormone influence. The contributions of each can be separated using the four-core genotype mouse model (FCG), where sex chromosome complement and gonadal sex are decoupled. While studies of FCG mice have evaluated brain differences in adulthood, it is still unclear how sex chromosome and sex hormone effects emerge through development in both healthy and pathological contexts. Our study utilizes longitudinal MRI with the FCG model to investigate sex effects in healthy development and after CRT in wildtype and immune-modified Ccl2-knockout mice. Our findings in normally developing mice reveal a relatively prominent chromosome effect prepubertally, compared to sex hormone effects which largely emerge later. Spatially, sex chromosome and hormone influences were independent of one another. After CRT in Ccl2-knockout mice, both male chromosomes and male hormones similarly improved brain outcomes but did so more separately than in combination. Our findings highlight the crucial role of sex chromosomes in early development and identify roles for sex chromosomes and hormones after CRT-induced inflammation, highlighting the influences of biological sex in both normal brain development and pathology.
Collapse
Affiliation(s)
- Jonas Yeung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
| | - A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto TN 38068, Italy
| | - Madeline W Elder
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
| | - C Shun Wong
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto ON M5T 1P5, Canada
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, Medical Sciences Division, University of Oxford, Oxford, OXF OX3 9DU, United Kingdom
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, OXF OX3 9DU, United Kingdom
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto ON M5T 3H7, Canada
- Translational Medicine, Hospital for Sick Children, Toronto ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto ON M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| |
Collapse
|
2
|
Xu H, Dugué GP, Cantaut-Belarif Y, Lejeune FX, Gupta S, Wyart C, Lehtinen MK. SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation. Fluids Barriers CNS 2023; 20:89. [PMID: 38049798 PMCID: PMC10696872 DOI: 10.1186/s12987-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023] Open
Abstract
Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Guillaume P Dugué
- Neurophysiology of Brain Circuits, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Yasmine Cantaut-Belarif
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France
| | - François-Xavier Lejeune
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Szulc-Lerch K, Yeung J, de Guzman AE, Egan S, Yee Y, Fernandes D, Lerch JP, Mabbott DJ, Nieman BJ. Exercise promotes growth and rescues volume deficits in the hippocampus after cranial radiation in young mice. NMR IN BIOMEDICINE 2023; 36:e5015. [PMID: 37548099 DOI: 10.1002/nbm.5015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Human and animal studies suggest that exercise promotes healthy brain development and function, including promoting hippocampal growth. Childhood cancer survivors that have received cranial radiotherapy exhibit hippocampal volume deficits and are at risk of impaired cognitive function, thus they may benefit from regular exercise. While morphological changes induced by exercise have been characterized using magnetic resonance imaging (MRI) in humans and animal models, evaluation of changes across the brain through development and following cranial radiation is lacking. In this study, we used high-resolution longitudinal MRI through development to evaluate the effects of exercise in a pediatric mouse model of cranial radiation. Female mice received whole-brain radiation (7 Gy) or sham radiation (0 Gy) at an infant equivalent age (P16). One week after irradiation, mice were housed in either a regular cage or a cage equipped with a running wheel. In vivo MRI was performed prior to irradiation, and at three subsequent timepoints to evaluate the effects of radiation and exercise. We used a linear mixed-effects model to assess volumetric and cortical thickness changes. Exercise caused substantial increases in the volumes of certain brain regions, notably the hippocampus in both irradiated and nonirradiated mice. Volume increases exceeded the deficits induced by cranial irradiation. The effect of exercise and irradiation on subregional hippocampal volumes was also characterized. In addition, we characterized cortical thickness changes across development and found that it peaked between P23 and P43, depending on the region. Exercise also induced regional alterations in cortical thickness after 3 weeks of voluntary exercise, while irradiation did not substantially alter cortical thickness. Our results show that exercise has the potential to alter neuroanatomical outcomes in both irradiated and nonirradiated mice. This supports ongoing research exploring exercise as a strategy for improving neurocognitive development for children, particularly those treated with cranial radiotherapy.
Collapse
Affiliation(s)
- Kamila Szulc-Lerch
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Jonas Yeung
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Shannon Egan
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Yohan Yee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Darren Fernandes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jason P Lerch
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Donald J Mabbott
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
4
|
Uselman TW, Jacobs RE, Bearer EL. Reconfiguration of brain-wide neural activity after early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557058. [PMID: 38328213 PMCID: PMC10849645 DOI: 10.1101/2023.09.10.557058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Early life adversity (ELA) predisposes individuals to both physical and mental disorders lifelong. How ELA affects brain function leading to this vulnerability is under intense investigation. Research has begun to shed light on ELA effects on localized brain regions within defined circuits. However, investigations into brain-wide neural activity that includes multiple localized regions, determines relationships of activity between regions and identifies shifts of activity in response to experiential conditions is necessary. Here, we performed longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to image the brain in normally reared or ELA-exposed adults. Images were captured in the freely moving home cage condition, and short- and long-term after naturalistic threat. Images were analyzed with new computational methods, including automated segmentation and fractional activation or difference volumes. We found that neural activity was increased after ELA compared to normal rearing in multiple brain regions, some of which are involved in defensive and/or reward circuitry. Widely distributed patterns of neural activity, "brain states", and their dynamics after threat were altered with ELA. Upon acute threat, ELA-mice retained heightened neural activity within many of these regions, and new hyperactive responses emerged in monoaminergic centers of the mid- and hindbrain. Nine days after acute threat, heightened neural activity remained within locus coeruleus and increased within posterior amygdala, ventral hippocampus, and dorso- and ventromedial hypothalamus, while reduced activity emerged within medial prefrontal cortical regions (prelimbic, infralimbic, anterior cingulate). These results reveal that functional imbalances arise between multiple brain-systems which are dependent upon context and cumulative experiences after ELA.
Collapse
Affiliation(s)
- Taylor W Uselman
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
- California Institute of Technology, Pasadena, CA 91125
| | - Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
5
|
Rallapalli H, Bayin NS, Goldman H, Maric D, Nieman BJ, Koretsky AP, Joyner AL, Turnbull DH. Cell specificity of Manganese-enhanced MRI signal in the cerebellum. Neuroimage 2023; 276:120198. [PMID: 37245561 PMCID: PMC10330770 DOI: 10.1016/j.neuroimage.2023.120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes. In such images, MEMRI hyperintensity is uniform in thickness throughout the anterior-posterior axis of sagittal sections and is centrally located in the cerebellar cortex. These signal features suggested that the Purkinje cell layer, which houses the cell bodies of the Purkinje cells and the Bergmann glia, is the source of hyperintensity. Despite this circumstantial evidence, the cellular source of MRI contrast has been difficult to define. In this study, we quantified the effects of selective ablation of Purkinje cells or Bergmann glia on cerebellar MEMRI signal to determine whether signal could be assigned to one cell type. We found that the Purkinje cells, not the Bergmann glia, are the primary of source of the enhancement in the Purkinje cell layer. This cell-ablation strategy should be useful for determining the cell specificity of other MRI contrast mechanisms.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - N Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States; Gurdon Institute, University of Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Hannah Goldman
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Canada; Medical Biophysics, University of Toronto, Toronto, Canada; Ontario Institute for Cancer Research, Toronto, Canada
| | - Alan P Koretsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| | - Daniel H Turnbull
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
6
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
7
|
Lindenmaier Z, Ellegood J, Stuive M, Easson K, Yee Y, Fernandes D, Foster J, Anagnostou E, Lerch JP. Examining the effect of chronic intranasal oxytocin administration on the neuroanatomy and behavior of three autism-related mouse models. Neuroimage 2022; 257:119243. [PMID: 35508216 DOI: 10.1016/j.neuroimage.2022.119243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Although initially showing great potential, oxytocin treatment has encountered a translational hurdle in its promise of treating the social deficits of autism. Some debate surrounds the ability of oxytocin to successfully enter the brain, and therefore modify neuroanatomy. Moreover, given the heterogeneous nature of autism, treatment will only amerliorate symptoms in a subset of patients. Therefore, to determine whether oxytocin changes brain circuitry, and whether it does so variably, depending on genotype, we implemented a large randomized, blinded, placebo-controlled, preclinical study on chronic intranasal oxytocin treatment in three different mouse models related to autism with a focus on using neuroanatomical phenotypes to assess and subset treatment response. Intranasal oxytocin (0.6IU) was administered daily, for 28 days, starting at 5 weeks of age to the 16p11.2 deletion, Shank3 (exon 4-9) knockout, and Fmr1 knockout mouse models. Given the sensitivity of structural magnetic resonance imaging (MRI) to the neurological effects of interventions like drugs, along with many other advantages, the mice underwent in vivo longitudinal and high-resolution ex vivo imaging with MRI. The scans included three in vivo T1weighted, 90um isotropic resolution scans and a T2-weighted, 3D fast spin echo with 40um isotropic resolution ex vivo scan to assess the changes in neuroanatomy using established automated image registration and deformation based morphometry approaches in response to oxytocin treatment. The behavior of the mice was assessed in multiple domains, including social behaviours and repetitive behaviours, among others. Treatment effect on the neuroanatomy did not reach significance, although the pattern of trending effects was promising. No significant effect of treatment was found on social behavior in any of the strains, although a significant effect of treatment was found in the Fmr1 mouse, with treatment normalizing a grooming deficit. No other treatment effect on behavior was observed that survived multiple comparisons correction. Overall, chronic treatment with oxytocin had limited effects on the three mouse models related to autism, and no promising pattern of response susceptibility emerged.
Collapse
Affiliation(s)
- Zsuzsa Lindenmaier
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Monique Stuive
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kaitlyn Easson
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yohan Yee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Darren Fernandes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jane Foster
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, St.Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Center, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections. Proc Natl Acad Sci U S A 2022; 119:2111869119. [PMID: 35165149 PMCID: PMC8851557 DOI: 10.1073/pnas.2111869119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
We established an ultra high-resolution diffusion MRI atlas of the embryonic mouse brains from E10.5 to E15.5, which characterizes the continuous changes of brain morphology and microstructures at mesoscopic scale. By integrating gene-expression data into the spatiotemporal continuum, we can navigate the evolving landscape of gene expression and neuroanatomy across both spatial and temporal dimensions to visualize their interactions in normal and abnormal embryonic brain development. We also identified regional clusters with distinct developmental trajectories and identified gene-expression profiles that matched to these regional domains. The diffusion MRI–based continuum of the embryonic brain and the computational techniques presented in this study offer a valuable tool for systematic study of the genetic control of brain development. The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene–neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene–neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.
Collapse
|
9
|
Yuen N, Szulc-Lerch KU, Li YQ, Morshead CM, Mabbott DJ, Wong CS, Nieman BJ. Metformin effects on brain development following cranial irradiation in a mouse model. Neuro Oncol 2021; 23:1523-1536. [PMID: 34042964 PMCID: PMC8408860 DOI: 10.1093/neuonc/noab131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cranial radiation therapy (CRT) is a mainstay of treatment for malignant pediatric brain tumors and high-risk leukemia. Although CRT improves survival, it has been shown to disrupt normal brain development and result in cognitive impairments in cancer survivors. Animal studies suggest that there is potential to promote brain recovery after injury using metformin. Our aim was to evaluate whether metformin can restore brain volume outcomes in a mouse model of CRT. METHODS C57BL/6J mice were irradiated with a whole-brain radiation dose of 7 Gy during infancy. Two weeks of metformin treatment started either on the day of or 3 days after irradiation. In vivo magnetic resonance imaging was performed prior to irradiation and at 3 subsequent time points to evaluate the effects of radiation and metformin on brain development. RESULTS Widespread volume loss in the irradiated brain appeared within 1 week of irradiation with limited subsequent recovery in volume outcomes. In many structures, metformin administration starting on the day of irradiation exacerbated radiation-induced injury, particularly in male mice. Metformin treatment starting 3 days after irradiation improved brain volume outcomes in subcortical regions, the olfactory bulbs, and structures of the brainstem and cerebellum. CONCLUSIONS Our results show that metformin treatment has the potential to improve neuroanatomical outcomes after CRT. However, both timing of metformin administration and subject sex affect structure outcomes, and metformin may also be deleterious. Our results highlight important considerations in determining the potential benefits of metformin treatment after CRT and emphasize the need for caution in repurposing metformin in clinical studies.
Collapse
Affiliation(s)
- Nili Yuen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kamila U Szulc-Lerch
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yu-Qing Li
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Cindi M Morshead
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Terrence Donelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Department of Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - C Shun Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Badea A, Schmalzigaug R, Kim W, Bonner P, Ahmed U, Johnson GA, Cofer G, Foster M, Anderson RJ, Badea C, Premont RT. Microcephaly with altered cortical layering in GIT1 deficiency revealed by quantitative neuroimaging. Magn Reson Imaging 2021; 76:26-38. [PMID: 33010377 PMCID: PMC7802083 DOI: 10.1016/j.mri.2020.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 01/06/2023]
Abstract
G Protein-Coupled Receptor Kinase-Interacting Protein-1 (GIT1) regulates neuronal functions, including cell and axon migration and synapse formation and maintenance, and GIT1 knockout (KO) mice exhibit learning and memory deficits. We noted that male and female GIT1-KO mice exhibit neuroimaging phenotypes including microcephaly, and altered cortical layering, with a decrease in neuron density in cortical layer V. Micro-CT and magnetic resonance microscopy (MRM) were used to identify morphometric phenotypes for the skulls and throughout the GIT1-KO brains. High field MRM of actively-stained mouse brains from GIT1-KO and wild type (WT) controls (n = 6 per group) allowed segmenting 37 regions, based on co-registration to the Waxholm Space atlas. Overall brain size in GIT1-KO mice was ~32% smaller compared to WT controls. After correcting for brain size, several regions were significantly different in GIT1-KO mice relative to WT, including the gray matter of the ventral thalamic nuclei and the rest of the thalamus, the inferior colliculus, and pontine nuclei. GIT1-KO mice had reduced volume of white matter tracts, most notably in the anterior commissure (~26% smaller), but also in the cerebral peduncle, fornix, and spinal trigeminal tract. On the other hand, the basal ganglia appeared enlarged in GIT1-KO mice, including the globus pallidus, caudate putamen, and particularly the accumbens - supporting a possible vulnerability to addiction. Volume based morphometry based on high-resolution MRM (21.5 μm isotropic voxels) was effective in detecting overall, and local differences in brain volumes in GIT1-KO mice, including in white matter tracts. The reduced relative volume of specific brain regions suggests a critical, but not uniform, role for GIT1 in brain development, conducive to brain microcephaly, and aberrant connectivity.
Collapse
Affiliation(s)
- Alexandra Badea
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Neurology, Duke University Medical Center, Durham, NC 27710, United States of America; Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, United States of America; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, United States of America.
| | - Robert Schmalzigaug
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Woojoo Kim
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Pamela Bonner
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Umer Ahmed
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America
| | - G Allan Johnson
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America; Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Gary Cofer
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Mark Foster
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Robert J Anderson
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Cristian Badea
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, United States of America; Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
11
|
Yon M, Bao Q, Chitrit OJ, Henriques RN, Shemesh N, Frydman L. High-Resolution 3D in vivo Brain Diffusion Tensor Imaging at Ultrahigh Fields: Following Maturation on Juvenile and Adult Mice. Front Neurosci 2020; 14:590900. [PMID: 33328861 PMCID: PMC7714913 DOI: 10.3389/fnins.2020.590900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a well-established technique for mapping brain microstructure and white matter tracts in vivo. High resolution DTI, however, is usually associated with low intrinsic sensitivity and therefore long acquisition times. By increasing sensitivity, high magnetic fields can alleviate these demands, yet high fields are also typically associated with significant susceptibility-induced image distortions. This study explores the potential arising from employing new pulse sequences and emerging hardware at ultrahigh fields, to overcome these limitations. To this end, a 15.2 T MRI instrument equipped with a cryocooled surface transceiver coil was employed, and DTI experiments were compared between SPatiotemporal ENcoding (SPEN), a technique that tolerates well susceptibility-induced image distortions, and double-sampled Spin-Echo Echo-Planar Imaging (SE-EPI) methods. Following optimization, SE-EPI afforded whole brain DTI maps at 135 μm isotropic resolution that possessed higher signal-to-noise ratios (SNRs) than SPEN counterparts. SPEN, however, was a better alternative to SE-EPI when focusing on challenging regions of the mouse brain -including the olfactory bulb and the cerebellum. In these instances, the higher robustness of fully refocused SPEN acquisitions coupled to its built-in zooming abilities, provided in vivo DTI maps with 75 μm nominal isotropic spatial resolution. These DTI maps, and in particular the mean diffusion direction (MDD) details, exhibited variations that matched very well the anatomical features known from histological brain Atlases. Using these capabilities, the development of the olfactory bulb (OB) in live mice was followed from week 1 post-partum, until adulthood. The diffusivity of this organ showed a systematic decrease in its overall isotropic value and increase in its fractional anisotropy with age; this maturation was observed for all regions used in the OB's segmentation but was most evident for the lobules' centers, in particular for the granular cell layer. The complexity of the OB neuronal connections also increased during maturation, as evidenced by the growth in directionalities arising in the mean diffusivity direction maps.
Collapse
Affiliation(s)
- Maxime Yon
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | - Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | | | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
12
|
Krishnan V, Xu J, Mendoza AG, Koretsky A, Anderson SA, Pelled G. High-resolution MEMRI characterizes laminar specific ascending and descending spinal cord pathways in rats. J Neurosci Methods 2020; 340:108748. [PMID: 32335077 PMCID: PMC7281828 DOI: 10.1016/j.jneumeth.2020.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The spinal cord is composed of nine distinct cellular laminae that currently can only be visualized by histological methods. Developing imaging methods that can visualize laminar architecture in-vivo is of significant interest. Manganese enhanced magnetic resonance imaging (MEMRI) yields valuable architectural and functional information about the brain and has great potential in characterizing neural pathways in the spinal cord. Here we apply MEMRI to visualize laminae architecture in the thoracic region of the spinal cord with ultra-high resolution. NEW METHOD Manganese chloride (MnCl2) was delivered systemically and imaging of the lumbar and thoracic spinal cord levels was acquired in high field, 11.7 T MRI scanner, 48 h following MnCl2 administration. RESULTS Here we demonstrate laminar specific signal enhancement in the spinal cord of rats administered with MnCl2 with 69 μm in-plane resolution. We also report reduced T1 values over time in MnCl2 groups across laminae IIX. COMPARISONS WITH EXISTING METHODS This is the first study to demonstrate that MEMRI is capable of identifying spinal laminae at a high resolution of 69 μm in a living animal. This would enable the visualization of architecture and function of distinct regions with improved resolution, in healthy and diseased animal models. CONCLUSIONS The regions with the largest T1 enhancements were observed to correspond to laminae that contain either high cell density or large motor neurons, making MEMRI an excellent tool for studying spinal cord architecture, physiology and function in different animal models.
Collapse
Affiliation(s)
- Vijai Krishnan
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jiadi Xu
- Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Albert German Mendoza
- Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Stasia A Anderson
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States; Department of Radiology, Michigan State University, East Lansing, MI, United States; Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States.
| |
Collapse
|
13
|
Rallapalli H, Darwin BC, Toro-Montoya E, Lerch JP, Turnbull DH. Longitudinal MEMRI analysis of brain phenotypes in a mouse model of Niemann-Pick Type C disease. Neuroimage 2020; 217:116894. [PMID: 32417449 PMCID: PMC7443857 DOI: 10.1016/j.neuroimage.2020.116894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/15/2022] Open
Abstract
Niemann-Pick Type C (NPC) is a rare genetic disorder characterized by progressive cell death in various tissues, particularly in the cerebellar Purkinje cells, with no known cure. Mouse models for human NPC have been generated and characterized histologically, behaviorally, and using longitudinal magnetic resonance imaging (MRI). Previous imaging studies revealed significant brain volume differences between mutant and wild-type animals, but stopped short of making volumetric comparisons of the cerebellar sub-regions. In this study, we present longitudinal manganese-enhanced MRI (MEMRI) data from cohorts of wild-type, heterozygote carrier, and homozygote mutant NPC mice, as well as deformation-based morphometry (DBM) driven brain volume comparisons across genotypes, including the cerebellar cortex, white matter, and nuclei. We also present the first comparisons of MEMRI signal intensities, reflecting brain and cerebellum sub-regional Mn2+-uptake over time and across genotypes.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA; Biomedical Imaging & Technology Graduate Program, New York University School of Medicine, USA
| | - Benjamin C Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Estefania Toro-Montoya
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA; Biomedical Imaging & Technology Graduate Program, New York University School of Medicine, USA.
| |
Collapse
|
14
|
Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: An overview. Appl Radiat Isot 2020; 155:108898. [DOI: 10.1016/j.apradiso.2019.108898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
|
15
|
Rallapalli H, Tan IL, Volkova E, Wojcinski A, Darwin BC, Lerch JP, Joyner AL, Turnbull DH. MEMRI-based imaging pipeline for guiding preclinical studies in mouse models of sporadic medulloblastoma. Magn Reson Med 2020; 83:214-227. [PMID: 31403226 PMCID: PMC6778701 DOI: 10.1002/mrm.27904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE Genetically engineered mouse models of sporadic cancers are critical for studying tumor biology and for preclinical testing of therapeutics. We present an MRI-based pipeline designed to produce high resolution, quantitative information about tumor progression and response to novel therapies in mouse models of medulloblastoma (MB). METHODS Sporadic MB was modeled in mice by inducing expression of an activated form of the Smoothened gene (aSmo) in a small number of cerebellar granule cell precursors. aSmo mice were imaged and analyzed at defined time-points using a 3D manganese-enhanced MRI-based pipeline optimized for high-throughput. RESULTS A semi-automated segmentation protocol was established that estimates tumor volume in a time-frame compatible with a high-throughput pipeline. Both an empirical, volume-based classifier and a linear discriminant analysis-based classifier were tested to distinguish progressing from nonprogressing lesions at early stages of tumorigenesis. Tumor centroids measured at early stages revealed that there is a very specific location of the probable origin of the aSmo MB tumors. The efficacy of the manganese-enhanced MRI pipeline was demonstrated with a small-scale experimental drug trial designed to reduce the number of tumor associated macrophages and microglia. CONCLUSION Our results revealed a high level of heterogeneity between tumors within and between aSmo MB models, indicating that meaningful studies of sporadic tumor progression and response to therapy could not be conducted without an imaging-based pipeline approach.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine
- Department of Radiology, New York University School of Medicine
- Biomedical Imaging Graduate Program, New York University School of Medicine
| | - I-Li Tan
- Developmental Biology Program, Sloan Kettering Institute
- Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine
| | | | - Benjamin C. Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute
- Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University
| | - Daniel H. Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine
- Department of Radiology, New York University School of Medicine
- Biomedical Imaging Graduate Program, New York University School of Medicine
| |
Collapse
|
16
|
Spencer Noakes TL, Przybycien TS, Forwell A, Nicholls C, Zhou YQ, Butcher DT, Weksberg R, Guger SL, Spiegler BJ, Schachar RJ, Hitzler J, Ito S, van der Plas E, Nieman BJ. Brain Development and Heart Function after Systemic Single-Agent Chemotherapy in a Mouse Model of Childhood Leukemia Treatment. Clin Cancer Res 2018; 24:6040-6052. [PMID: 30054283 DOI: 10.1158/1078-0432.ccr-18-0551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/19/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemotherapy for childhood acute lymphoblastic leukemia (ALL) can cause late-appearing side effects in survivors that affect multiple organs, including the heart and brain. However, the complex ALL treatment regimen makes it difficult to isolate the causes of these side effects and impossible to separate the contributions of individual chemotherapy agents by clinical observation. Using a mouse model, we therefore assessed each of eight representative, systemically-administered ALL chemotherapy agents for their impact on postnatal brain development and heart function. EXPERIMENTAL DESIGN Mice were treated systemically with a single chemotherapy agent at an infant equivalent age, then allowed to age to early adulthood (9 weeks). Cardiac structure and function were assessed using in vivo high-frequency ultrasound, and brain anatomy was assessed using high-resolution volumetric ex vivo MRI. In addition, longitudinal in vivo MRI was used to determine the time course of developmental change after vincristine treatment. RESULTS Vincristine, doxorubicin, and methotrexate were observed to produce the greatest deficiencies in brain development as determined by volumes measured on MRI, whereas doxorubicin, methotrexate, and l-asparaginase altered heart structure or function. Longitudinal studies of vincristine revealed widespread volume loss immediately following treatment and impaired growth over time in several brain regions. CONCLUSIONS Multiple ALL chemotherapy agents can affect postnatal brain development or heart function. This study provides a ranking of agents based on potential toxicity, and thus highlights a subset likely to cause side effects in early adulthood for further study.
Collapse
Affiliation(s)
- T Leigh Spencer Noakes
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Translational Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Thomas S Przybycien
- Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Forwell
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- The University of Waterloo, Waterloo, Ontario, Canada
| | - Connor Nicholls
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- The University of Waterloo, Waterloo, Ontario, Canada
| | - Yu-Qing Zhou
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, The University of Toronto, Ontario, Canada
| | - Darci T Butcher
- Genetics & Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics & Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Clinical and Metabolic Genetics, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, The University of Toronto, Toronto, Ontario, Canada
| | - Sharon L Guger
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Brenda J Spiegler
- Department of Psychology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| | - Russell J Schachar
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
- Psychiatry Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johann Hitzler
- Translational Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
- Development and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Shinya Ito
- Translational Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Clinical Pharmacology and Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Pharmacology and Toxicology, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| | - Ellen van der Plas
- Department of Psychiatry, The University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Mouse MRI shows brain areas relatively larger in males emerge before those larger in females. Nat Commun 2018; 9:2615. [PMID: 29976930 PMCID: PMC6033927 DOI: 10.1038/s41467-018-04921-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
Sex differences exist in behaviors, disease and neuropsychiatric disorders. Sexual dimorphisms however, have yet to be studied across the whole brain and across a comprehensive time course of postnatal development. Here, we use manganese-enhanced MRI (MEMRI) to longitudinally image male and female C57BL/6J mice across 9 time points, beginning at postnatal day 3. We recapitulate findings on canonically dimorphic areas, demonstrating MEMRI’s ability to study neuroanatomical sex differences. We discover, upon whole-brain volume correction, that neuroanatomical regions larger in males develop earlier than those larger in females. Groups of areas with shared sexually dimorphic developmental trajectories reflect behavioral and functional networks, and expression of genes involved with sex processes. Also, post-pubertal neuroanatomy is highly individualized, and individualization occurs earlier in males. Our results demonstrate the ability of MEMRI to reveal comprehensive developmental differences between male and female brains, which will improve our understanding of sex-specific predispositions to various neuropsychiatric disorders. Sex differences occur in various aspects of neurodevelopment. Here the authors use manganese-enhanced MRI at nine different postnatal stages to detail the development of structural sex differences in the mouse brain.
Collapse
|
18
|
High-resolution Imaging of Myeloperoxidase Activity Sensors in Human Cerebrovascular Disease. Sci Rep 2018; 8:7687. [PMID: 29769642 PMCID: PMC5956082 DOI: 10.1038/s41598-018-25804-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/26/2018] [Indexed: 01/23/2023] Open
Abstract
Progress in clinical development of magnetic resonance imaging (MRI) substrate-sensors of enzymatic activity has been slow partly due to the lack of human efficacy data. We report here a strategy that may serve as a shortcut from bench to bedside. We tested ultra high-resolution 7T MRI (µMRI) of human surgical histology sections in a 3-year IRB approved, HIPAA compliant study of surgically clipped brain aneurysms. µMRI was used for assessing the efficacy of MRI substrate-sensors that detect myeloperoxidase activity in inflammation. The efficacy of Gd-5HT-DOTAGA, a novel myeloperoxidase (MPO) imaging agent synthesized by using a highly stable gadolinium (III) chelate was tested both in tissue-like phantoms and in human samples. After treating histology sections with paramagnetic MPO substrate-sensors we observed relaxation time shortening and MPO activity-dependent MR signal enhancement. An increase of normalized MR signal generated by ultra-short echo time MR sequences was corroborated by MPO activity visualization by using a fluorescent MPO substrate. The results of µMRI of MPO activity associated with aneurysmal pathology and immunohistochemistry demonstrated active involvement of neutrophils and neutrophil NETs as a result of pro-inflammatory signalling in the vascular wall and in the perivascular space of brain aneurysms.
Collapse
|
19
|
Maekawa M, Watanabe A, Iwayama Y, Kimura T, Hamazaki K, Balan S, Ohba H, Hisano Y, Nozaki Y, Ohnishi T, Toyoshima M, Shimamoto C, Iwamoto K, Bundo M, Osumi N, Takahashi E, Takashima A, Yoshikawa T. Polyunsaturated fatty acid deficiency during neurodevelopment in mice models the prodromal state of schizophrenia through epigenetic changes in nuclear receptor genes. Transl Psychiatry 2017; 7:e1229. [PMID: 28872641 PMCID: PMC5639238 DOI: 10.1038/tp.2017.182] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
The risk of schizophrenia is increased in offspring whose mothers experience malnutrition during pregnancy. Polyunsaturated fatty acids (PUFAs) are dietary components that are crucial for the structural and functional integrity of neural cells, and PUFA deficiency has been shown to be a risk factor for schizophrenia. Here, we show that gestational and early postnatal dietary deprivation of two PUFAs-arachidonic acid (AA) and docosahexaenoic acid (DHA)-elicited schizophrenia-like phenotypes in mouse offspring at adulthood. In the PUFA-deprived mouse group, we observed lower motivation and higher sensitivity to a hallucinogenic drug resembling the prodromal symptoms in schizophrenia. Furthermore, a working-memory task-evoked hyper-neuronal activity in the medial prefrontal cortex was also observed, along with the downregulation of genes in the prefrontal cortex involved in oligodendrocyte integrity and the gamma-aminobutyric acid (GABA)-ergic system. Regulation of these genes was mediated by the nuclear receptor genes Rxr and Ppar, whose promoters were hyper-methylated by the deprivation of dietary AA and DHA. In addition, the RXR agonist bexarotene upregulated oligodendrocyte- and GABA-related gene expression and suppressed the sensitivity of mice to the hallucinogenic drug. Notably, the expression of these nuclear receptor genes were also downregulated in hair-follicle cells from schizophrenia patients. These results suggest that PUFA deficiency during the early neurodevelopmental period in mice could model the prodromal state of schizophrenia through changes in the epigenetic regulation of nuclear receptor genes.
Collapse
Affiliation(s)
- M Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - A Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Y Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - T Kimura
- Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - K Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - S Balan
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - H Ohba
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Y Hisano
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Y Nozaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - T Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - M Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - C Shimamoto
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - K Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - M Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - N Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - E Takahashi
- Support Unit for Animal Resources Development, RIKEN Brain Science Institute, Saitama, Japan
| | - A Takashima
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
- Department of Life Sciences, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - T Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
20
|
Medina CS, Manifold-Wheeler B, Gonzales A, Bearer EL. Automated Computational Processing of 3-D MR Images of Mouse Brain for Phenotyping of Living Animals. ACTA ACUST UNITED AC 2017; 119:29A.5.1-29A.5.38. [PMID: 28678440 DOI: 10.1002/cpmb.40] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-µm3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | | | - Aaron Gonzales
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Elaine L Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Division of Biology, California Institute of Technology, Pasadena, California
| |
Collapse
|
21
|
Sperry MM, Kandel BM, Wehrli S, Bass KN, Das SR, Dhillon PS, Gee JC, Barr GA. Mapping of pain circuitry in early post-natal development using manganese-enhanced MRI in rats. Neuroscience 2017; 352:180-189. [PMID: 28391012 PMCID: PMC7276061 DOI: 10.1016/j.neuroscience.2017.03.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022]
Abstract
Premature or ill full-term infants are subject to a number of noxious procedures as part of their necessary medical care. Although we know that human infants show neural changes in response to such procedures, we know little of the sensory or affective brain circuitry activated by pain. In rodent models, the focus has been on spinal cord and, more recently, midbrain and medulla. The present study assesses activation of brain circuits using manganese-enhanced magnetic resonance imaging (MEMRI). Uptake of manganese, a paramagnetic contrast agent that is transported across active synapses and along axons, was measured in response to a hindpaw injection of dilute formalin in 12-day-old rat pups, the age at which rats begin to show aversion learning and which is roughly the equivalent of full-term human infants. Formalin induced the oft-reported biphasic response at this age and induced a conditioned aversion to cues associated with its injection, thus demonstrating the aversiveness of the stimulation. Morphometric analyses, structural equation modeling and co-expression analysis showed that limbic and sensory paths were activated, the most prominent of which were the prefrontal and anterior cingulate cortices, nucleus accumbens, amygdala, hypothalamus, several brainstem structures, and the cerebellum. Therefore, both sensory and affective circuits, which are activated by pain in the adult, can also be activated by noxious stimulation in 12-day-old rat pups.
Collapse
Affiliation(s)
- M M Sperry
- Department of Bioengineering, University of Pennsylvania, United States
| | - B M Kandel
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - S Wehrli
- NMR Core, Children's Hospital of Philadelphia, United States
| | - K N Bass
- Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, United States
| | - S R Das
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - P S Dhillon
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - J C Gee
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, United States
| | - G A Barr
- Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
22
|
Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation. Biomaterials 2017; 122:141-153. [DOI: 10.1016/j.biomaterials.2017.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022]
|
23
|
Niehoff AC, Wachsmuth L, Schmid F, Sperling M, Faber C, Karst U. Quantification of Manganese Enhanced Magnetic Resonance Imaging based on Spatially Resolved Elemental Mass Spectrometry. ChemistrySelect 2016. [DOI: 10.1002/slct.201600058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ann-Christin Niehoff
- Institute of Inorganic and Analytical Chemistry; University of Münster; Corrensstr. 30 48149 Münster Germany
- NRW Graduate School of Chemistry; University of Münster
| | - Lydia Wachsmuth
- Department of Clinical Radiology; University Hospital Münster; Albert-Schweitzer-Campus 1 48149 Münster Germany
| | - Florian Schmid
- Department of Clinical Radiology; University Hospital Münster; Albert-Schweitzer-Campus 1 48149 Münster Germany
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry; University of Münster; Corrensstr. 30 48149 Münster Germany
| | - Cornelius Faber
- Department of Clinical Radiology; University Hospital Münster; Albert-Schweitzer-Campus 1 48149 Münster Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry; University of Münster; Corrensstr. 30 48149 Münster Germany
| |
Collapse
|
24
|
Suero-Abreu GA, Praveen Raju G, Aristizábal O, Volkova E, Wojcinski A, Houston EJ, Pham D, Szulc KU, Colon D, Joyner AL, Turnbull DH. In vivo Mn-enhanced MRI for early tumor detection and growth rate analysis in a mouse medulloblastoma model. Neoplasia 2015; 16:993-1006. [PMID: 25499213 PMCID: PMC4309249 DOI: 10.1016/j.neo.2014.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/03/2022] Open
Abstract
Mouse models have increased our understanding of the pathogenesis of medulloblastoma (MB), the most common malignant pediatric brain tumor that often forms in the cerebellum. A major goal of ongoing research is to better understand the early stages of tumorigenesis and to establish the genetic and environmental changes that underlie MB initiation and growth. However, studies of MB progression in mouse models are difficult due to the heterogeneity of tumor onset times and growth patterns and the lack of clinical symptoms at early stages. Magnetic resonance imaging (MRI) is critical for noninvasive, longitudinal, three-dimensional (3D) brain tumor imaging in the clinic but is limited in resolution and sensitivity for imaging early MBs in mice. In this study, high-resolution (100 μm in 2 hours) and high-throughput (150 μm in 15 minutes) manganese-enhanced MRI (MEMRI) protocols were optimized for early detection and monitoring of MBs in a Patched-1 (Ptch1) conditional knockout (CKO) model. The high tissue contrast obtained with MEMRI revealed detailed cerebellar morphology and enabled detection of MBs over a wide range of stages including pretumoral lesions as early as 2 to 3 weeks postnatal with volumes close to 0.1 mm3. Furthermore, longitudinal MEMRI allowed noninvasive monitoring of tumors and demonstrated that lesions within and between individuals have different tumorigenic potentials. 3D volumetric studies allowed quantitative analysis of MB tumor morphology and growth rates in individual Ptch1-CKO mice. These results show that MEMRI provides a powerful method for early in vivo detection and longitudinal imaging of MB progression in the mouse brain.
Collapse
Affiliation(s)
- Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - G Praveen Raju
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Alexandre Wojcinski
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Edward J Houston
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Diane Pham
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Kamila U Szulc
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Daniel Colon
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Alexandra L Joyner
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Malheiros JM, Paiva FF, Longo BM, Hamani C, Covolan L. Manganese-Enhanced MRI: Biological Applications in Neuroscience. Front Neurol 2015. [PMID: 26217304 PMCID: PMC4498388 DOI: 10.3389/fneur.2015.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn2+) enhances MRI contrast in vivo. Due to similarities between Mn2+ and calcium (Ca2+), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca2+ channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models.
Collapse
Affiliation(s)
- Jackeline Moraes Malheiros
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil ; Centro de Imagens e Espectroscopia In vivo por Ressonância Magnética, Institute of Physics of São Carlos, Universidade de São Paulo , São Carlos , Brazil
| | - Fernando Fernandes Paiva
- Centro de Imagens e Espectroscopia In vivo por Ressonância Magnética, Institute of Physics of São Carlos, Universidade de São Paulo , São Carlos , Brazil
| | - Beatriz Monteiro Longo
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil ; Research Imaging Centre, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| |
Collapse
|
26
|
MRI-detectable changes in mouse brain structure induced by voluntary exercise. Neuroimage 2015; 113:175-83. [DOI: 10.1016/j.neuroimage.2015.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/20/2022] Open
|
27
|
Szulc KU, Lerch JP, Nieman BJ, Bartelle BB, Friedel M, Suero-Abreu GA, Watson C, Joyner AL, Turnbull DH. 4D MEMRI atlas of neonatal FVB/N mouse brain development. Neuroimage 2015; 118:49-62. [PMID: 26037053 DOI: 10.1016/j.neuroimage.2015.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 11/19/2022] Open
Abstract
The widespread use of the mouse as a model system to study brain development has created the need for noninvasive neuroimaging methods that can be applied to early postnatal mice. The goal of this study was to optimize in vivo three- (3D) and four-dimensional (4D) manganese (Mn)-enhanced MRI (MEMRI) approaches for acquiring and analyzing data from the developing mouse brain. The combination of custom, stage-dependent holders and self-gated (motion-correcting) 3D MRI sequences enabled the acquisition of high-resolution (100-μm isotropic), motion artifact-free brain images with a high level of contrast due to Mn-enhancement of numerous brain regions and nuclei. We acquired high-quality longitudinal brain images from two groups of FVB/N strain mice, six mice per group, each mouse imaged on alternate odd or even days (6 3D MEMRI images at each day) covering the developmental stages between postnatal days 1 to 11. The effects of Mn-exposure, anesthesia and MRI were assessed, showing small but significant transient effects on body weight and brain volume, which recovered with time and did not result in significant morphological differences when compared to controls. Metrics derived from deformation-based morphometry (DBM) were used for quantitative analysis of changes in volume and position of a number of brain regions. The cerebellum, a brain region undergoing significant changes in size and patterning at early postnatal stages, was analyzed in detail to demonstrate the spatiotemporal characterization made possible by this new atlas of mouse brain development. These results show that MEMRI is a powerful tool for quantitative analysis of mouse brain development, with great potential for in vivo phenotype analysis in mouse models of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Kamila U Szulc
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Biomedical Imaging, New York University School of Medicine, New York, NY, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Benjamin B Bartelle
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Molecular Biophysics Graduate Programs, New York University School of Medicine, New York, NY, USA
| | - Miriam Friedel
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Biomedical Imaging, New York University School of Medicine, New York, NY, USA
| | - Charles Watson
- Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Biomedical Imaging, New York University School of Medicine, New York, NY, USA; Molecular Biophysics Graduate Programs, New York University School of Medicine, New York, NY, USA; Department of Radiology, New York University School of Medicine, New York, NY, USA; Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
28
|
de Guzman AE, Gazdzinski LM, Alsop RJ, Stewart JM, Jaffray DA, Wong CS, Nieman BJ. Treatment Age, Dose and Sex Determine Neuroanatomical Outcome in Irradiated Juvenile Mice. Radiat Res 2015; 183:541-9. [DOI: 10.1667/rr13854.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Lisa M. Gazdzinski
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard J. Alsop
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M. Stewart
- Radiation Medicine Program and Techna Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David A. Jaffray
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - C. Shun Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brian J. Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Scholz J, Allemang-Grand R, Dazai J, Lerch JP. Environmental enrichment is associated with rapid volumetric brain changes in adult mice. Neuroimage 2015; 109:190-8. [DOI: 10.1016/j.neuroimage.2015.01.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
|
30
|
Bartelle BB, Mana MD, Suero-Abreu GA, Rodriguez JJ, Turnbull DH. Engineering an effective Mn-binding MRI reporter protein by subcellular targeting. Magn Reson Med 2014; 74:1750-7. [PMID: 25522343 DOI: 10.1002/mrm.25566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 11/17/2014] [Indexed: 12/23/2022]
Abstract
PURPOSE Manganese (Mn) is an effective contrast agent and biologically active metal, which has been widely used for Mn-enhanced MRI (MEMRI). The purpose of this study was to develop and test a Mn binding protein for use as a genetic reporter for MEMRI. METHODS The bacterial Mn-binding protein, MntR was identified as a candidate reporter protein. MntR was engineered for expression in mammalian cells, and targeted to different subcellular organelles, including the Golgi Apparatus where cellular Mn is enriched. Transfected HEK293 cells and B16 melanoma cells were tested in vitro and in vivo, using immunocytochemistry, MR imaging and relaxometry. RESULTS Subcellular targeting of MntR to the cytosol, endoplasmic reticulum and Golgi apparatus was verified with immunocytochemistry. After targeting to the Golgi, MntR expression produced robust R1 changes and T1 contrast in cells, in vitro and in vivo. Co-expression with the divalent metal transporter DMT1, a previously described Mn-based reporter, further enhanced contrast in B16 cells in culture, but in the in vivo B16 tumor model tested was not significantly better than MntR alone. CONCLUSION This second-generation reporter system both expands the capabilities of genetically encoded reporters for imaging with MEMRI and provides important insights into the mechanisms of Mn biology which create endogenous MEMRI contrast.
Collapse
Affiliation(s)
- Benjamin B Bartelle
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Miyeko D Mana
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA.,Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Joe J Rodriguez
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA.,Departments of Radiology and Pathology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
31
|
Poole DS, Plenge E, Poot DHJ, Lakke EAJF, Niessen WJ, Meijering E, van der Weerd L. Three-dimensional inversion recovery manganese-enhanced MRI of mouse brain using super-resolution reconstruction to visualize nuclei involved in higher brain function. NMR IN BIOMEDICINE 2014; 27:749-759. [PMID: 24817644 DOI: 10.1002/nbm.3108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior.
Collapse
Affiliation(s)
- Dana S Poole
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Robison G, Zakharova T, Fu S, Jiang W, Fulper R, Barrea R, Zheng W, Pushkar Y. X-ray fluorescence imaging of the hippocampal formation after manganese exposure. Metallomics 2013; 5:1554-65. [PMID: 23999853 PMCID: PMC3892963 DOI: 10.1039/c3mt00133d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Manganese (Mn) intoxication results in neurological conditions similar, but not identical, to idiopathic Parkinson's disease. While the mechanism(s) by which Mn exposure leads to neurotoxic effects remains unclear, studies by magnetic resonance imaging demonstrate a high Mn accumulation in the hippocampal formation (HPCf) of the brain. Metal quantification using this method is not possible. Using X-ray fluorescence imaging, we measured the distribution of Mn in the HPCf for a rodent model of chronic Mn exposure and quantitatively compared it with distributions of other biologically relevant metals. We found considerable increases in average Mn concentrations in all analyzed areas and we identified the dentate gyrus (DG) and the cornus ammonis 3 (CA3) layer as areas accumulating the highest Mn content (∼1.2 μg Mn per g tissue). The DG is significantly enriched with iron (Fe), while the CA3 layer has high zinc (Zn) content. Additionally, significant spatial correlations were found for Mn-Zn concentrations across the HPCf substructures and for Mn-Fe concentrations in the DG. Combined results support that at least two mechanisms may be responsible for Mn transport and/or storage in the brain, associated with either Fe or Zn. Subcellular resolution images of metal distribution in cells of the CA3 show diffuse Mn distributions consistent with Mn localization in both the cytoplasm and nucleus. Mn was not increased in localized intracellular Fe or copper accumulations. A consistent Mn-Zn correlation both at the tissue (40 μm × 40 μm) and cellular (0.3 μm × 0.3 μm) levels suggests that a Zn transport/storage mechanism in the HPCf is likely associated with Mn accumulation.
Collapse
Affiliation(s)
- Gregory Robison
- Purdue University, Department of Physics, 525 Northwestern Avenue, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sigurdsson EM. Tau immunotherapy and imaging. NEURODEGENER DIS 2013; 13:103-6. [PMID: 24029727 DOI: 10.1159/000354491] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/18/2013] [Indexed: 01/05/2023] Open
Abstract
Disappointing findings from recent phase III trials on amyloid-β (Aβ) immunotherapy for Alzheimer's disease (AD) have shifted the focus of such treatments to the tau protein. As tau pathology correlates better with the degree of dementia than Aβ plaque burden, it is a more attractive target once cognitive impairments are evident, while Aβ therapies may be better suited for the presymptomatic phase of the disease. Over 12 years ago, we initiated a tau immunotherapy program, seeking to alleviate the functional impairments associated with tau lesions in tauopathies. We have reported that various active and passive tau immunizations diminish tau pathology and improve function, including cognition, in different mouse models. Both extra- and intracellular pathways are likely involved. The antibodies may block the spread of tau pathology via microglial phagocytosis of the antibody-tau complex and facilitate lysosomal tau clearance in neurons after endosomal uptake. We have observed such antibody internalization following intracarotid injection in mice and in various culture models. These include brain slices and primary neurons from tangle mice as well as human neuroblastoma cell lines. Antibody targeting of different intracellular protein aggregates, including α-synuclein, Aβ and superoxide dismutase has been reported by others. Now, several laboratories have confirmed and extended our findings using various active and passive tau immunizations in different models, thereby clearly establishing the feasibility of this approach for clinical trials. We are also working on imaging approaches to monitor tau pathology, its consequences and the efficacy of treatments. Dire need exists for such diagnostic methods for tauopathies. Overall, therapies and diagnostic tools targeting tau pathology have a great potential for AD and other tauopathies.
Collapse
Affiliation(s)
- Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, N.Y., USA
| |
Collapse
|
34
|
Szulc KU, Nieman BJ, Houston EJ, Bartelle BB, Lerch JP, Joyner AL, Turnbull DH. MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice. Magn Reson Med 2013; 70:1707-17. [PMID: 23400959 DOI: 10.1002/mrm.24597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 12/19/2022]
Abstract
PURPOSE Our aim in this study was to apply three-dimensional MRI methods to analyze early postnatal morphological phenotypes in a Gbx2 conditional knockout (Gbx2-CKO) mouse that has variable midline deletions in the central cerebellum, reminiscent of many human cerebellar hypoplasia syndromes. METHODS In vivo three-dimensional manganese-enhanced MRI at 100-µm isotropic resolution was used to visualize mouse brains between postnatal days 3 and 11, when cerebellum morphology undergoes dramatic changes. Deformation-based morphometry and volumetric analysis of manganese-enhanced MRI images were used to, respectively, detect and quantify morphological phenotypes in Gbx2-CKO mice. Ex vivo micro-MRI was performed after perfusion-fixation with supplemented gadolinium for higher resolution (50-µm) analysis. RESULTS In vivo manganese-enhanced MRI and deformation-based morphometry correctly identified known cerebellar defects in Gbx2-CKO mice, and novel phenotypes were discovered in the deep cerebellar nuclei and the vestibulo-cerebellum, both validated using histology. Ex vivo micro-MRI revealed subtle phenotypes in both the vestibulo-cerebellum and the vestibulo-cochlear organ, providing an interesting example of complementary phenotypes in a sensory organ and its associated brain region. CONCLUSION These results show the potential of three-dimensional MRI for detecting and analyzing developmental defects in mouse models of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Kamila U Szulc
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA; Biomedical Imaging Program, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Gazdzinski LM, Cormier K, Lu FG, Lerch JP, Wong CS, Nieman BJ. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging. Int J Radiat Oncol Biol Phys 2012; 84:e631-8. [DOI: 10.1016/j.ijrobp.2012.06.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/17/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
|
36
|
Robison G, Zakharova T, Fu S, Jiang W, Fulper R, Barrea R, Marcus MA, Zheng W, Pushkar Y. X-ray fluorescence imaging: a new tool for studying manganese neurotoxicity. PLoS One 2012. [PMID: 23185282 PMCID: PMC3501493 DOI: 10.1371/journal.pone.0048899] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The neurotoxic effect of manganese (Mn) establishes itself in a condition known as manganism or Mn induced parkinsonism. While this condition was first diagnosed about 170 years ago, the mechanism of the neurotoxic action of Mn remains unknown. Moreover, the possibility that Mn exposure combined with other genetic and environmental factors can contribute to the development of Parkinson's disease has been discussed in the literature and several epidemiological studies have demonstrated a correlation between Mn exposure and an elevated risk of Parkinson's disease. Here, we introduce X-ray fluorescence imaging as a new quantitative tool for analysis of the Mn distribution in the brain with high spatial resolution. The animal model employed mimics deficits observed in affected human subjects. The obtained maps of Mn distribution in the brain demonstrate the highest Mn content in the globus pallidus, the thalamus, and the substantia nigra pars compacta. To test the hypothesis that Mn transport into/distribution within brain cells mimics that of other biologically relevant metal ions, such as iron, copper, or zinc, their distributions were compared. It was demonstrated that the Mn distribution does not follow the distributions of any of these metals in the brain. The majority of Mn in the brain was shown to occur in the mobile state, confirming the relevance of the chelation therapy currently used to treat Mn intoxication. In cells with accumulated Mn, it can cause neurotoxic action by affecting the mitochondrial respiratory chain. This can result in increased susceptibility of the neurons of the globus pallidus, thalamus, and substantia nigra pars compacta to various environmental or genetic insults. The obtained data is the first demonstration of Mn accumulation in the substantia nigra pars compacta, and thus, can represent a link between Mn exposure and its potential effects for development of Parkinson's disease.
Collapse
Affiliation(s)
- Gregory Robison
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
| | - Taisiya Zakharova
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
| | - Sherleen Fu
- School of Health Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Wendy Jiang
- School of Health Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Rachael Fulper
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
| | - Raul Barrea
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Matthew A. Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yulia Pushkar
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
37
|
Bartelle BB, Szulc KU, Suero-Abreu GA, Rodriguez JJ, Turnbull DH. Divalent metal transporter, DMT1: a novel MRI reporter protein. Magn Reson Med 2012; 70:842-50. [PMID: 23065715 DOI: 10.1002/mrm.24509] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/02/2012] [Accepted: 08/31/2012] [Indexed: 12/22/2022]
Abstract
Manganese (Mn)-enhanced MRI (MEMRI) has found a growing number of applications in anatomical and functional imaging in small animals, based on the cellular uptake of Mn ions in the brain, heart, and other organs. Previous studies have relied on endogenous mechanisms of paramagnetic Mn ion uptake and enhancement. To genetically control MEMRI signals, we reverse engineered a major component of the molecular machinery involved in Mn uptake, the divalent metal transporter, DMT1. DMT1 provides positive cellular enhancement in a manner that is highly sensitive and dynamic, allowing greater spatial and temporal resolution for MRI compared to previously proposed MRI reporters such as ferritin. We characterized the MEMRI signal enhancement properties of DMT1-expressing cells, both in vitro and in vivo in mouse models of cancer and brain development. Our results show that DMT1 provides an effective genetic MRI reporter for a wide range of biological and preclinical imaging applications.
Collapse
Affiliation(s)
- Benjamin B Bartelle
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA; Molecular Biophysics Graduate Program, New York University School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
38
|
Gregg CL, Butcher JT. Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation 2012; 84:149-62. [PMID: 22695188 DOI: 10.1016/j.diff.2012.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Animal models are critically important for a mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging.
Collapse
Affiliation(s)
- Chelsea L Gregg
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
39
|
Braun RD, Bissig D, North R, Vistisen KS, Berkowitz BA. Human tumor cell proliferation evaluated using manganese-enhanced MRI. PLoS One 2012; 7:e30572. [PMID: 22363447 PMCID: PMC3281834 DOI: 10.1371/journal.pone.0030572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 12/22/2011] [Indexed: 12/28/2022] Open
Abstract
Background Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn2+ [measured with manganese-enhanced MRI (MEMRI)], is linked to proliferation rate in vitro. Methodology/Principal Findings Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl2 for one hour and then thoroughly washed. MEMRI R1 values (longitudinal relaxation rates), which have a positive linear relationship with Mn2+ concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn2+-induced increases in R1 compared to cells not exposed to Mn2+. C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R1 values and proliferation rate (p≤0.005), while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R1 for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet. Conclusions/Significance These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI.
Collapse
Affiliation(s)
- Rod D Braun
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America.
| | | | | | | | | |
Collapse
|
40
|
Shazeeb MS, Sotak CH. Dose dependence and temporal evolution of the T1 relaxation time and MRI contrast in the rat brain after subcutaneous injection of manganese chloride. Magn Reson Med 2012; 68:1955-62. [PMID: 22294279 DOI: 10.1002/mrm.24184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/05/2011] [Accepted: 01/05/2012] [Indexed: 12/29/2022]
Abstract
Divalent manganese ion (Mn(2+)) is a widely used T(1) contrast agent in manganese-enhanced MRI studies to visualize functional neural tracts and anatomy in the brain in vivo. In animal studies, Mn(2+) is administered at a dose that will maximize the contrast, while minimizing its toxic effects. In rodents, systemic administration of Mn(2+) via intravenous injection has been shown to create unique MRI contrast in the brain at a maximum dose of 175 mg kg(-1). However, intravenous administration of Mn(2+) results in faster bioelimination of excess Mn(2+) from the plasma due to a steep concentration gradient between plasma and bile. By contrast, following subcutaneous injection (LD(50) value = 320 mg kg(-1)), Mn(2+) is released slowly into the bloodstream, thus avoiding immediate hepatic elimination resulting in prolonged accumulation of Mn(2+) in the brain via the choroid plexus than that obtained via intravenous administration. The goal of this study was to investigate MRI dose response of Mn(2+) in rat brain following subcutaneous administration of Mn(2+). Dose dependence and temporal dynamics of Mn(2+) after subcutaneous injection can prove useful for longitudinal in vivo studies that require brain enhancement to persist for a long period of time to visualize neuroarchitecture like in neurodegenerative disease studies.
Collapse
Affiliation(s)
- Mohammed Salman Shazeeb
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
41
|
Chan KC, Cheng JS, Fan S, Zhou IY, Yang J, Wu EX. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging. Neuroimage 2011; 59:2274-83. [PMID: 21985904 DOI: 10.1016/j.neuroimage.2011.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022] Open
Abstract
The rodents are an excellent model for understanding the development and plasticity of the visual system. In this study, we explored the feasibility of Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) at 7 T for in vivo and longitudinal assessments of the retinal and callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Along the retinal pathways, unilateral intravitreal Mn2+ injection resulted in Mn2+ uptake and transport in normal neonatal visual brains at postnatal days (P) 1, 5 and 10 with faster Mn2+ clearance than the adult brains at P60. The reorganization of retinocollicular projections was also detected by significant Mn2+ enhancement by 2%-10% in the ipsilateral superior colliculus (SC) of normal neonatal rats, normal adult mice and adult rats after neonatal monocular enucleation (ME) but not in normal adult rats or adult rats after monocular deprivation (MD). DTI showed a significantly higher fractional anisotropy (FA) by 21% in the optic nerve projected from the remaining eye of ME rats compared to normal rats at 6 weeks old, likely as a result of the retention of axons from the ipsilaterally uncrossed retinal ganglion cells, whereas the anterior and posterior retinal pathways projected from the enucleated or deprived eyes possessed lower FA after neonatal binocular enucleation (BE), ME and MD by 22%-56%, 18%-46% and 11%-15% respectively compared to normal rats, indicative of neurodegeneration or immaturity of white matter tracts. Along the visual callosal pathways, intracortical Mn2+ injection to the visual cortex of BE rats enhanced a larger projection volume by about 74% in the V1/V2 transition zone of the contralateral hemisphere compared to normal rats, without apparent DTI parametric changes in the splenium of corpus callosum. This suggested an adaptive change in interhemispheric connections and spatial specificity in the visual cortex upon early blindness. The results of this study may help determine the mechanisms of axonal uptake and transport, microstructural reorganization and functional activities in the living visual brains during development, diseases, plasticity and early interventions in a global and longitudinal setting.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
42
|
Nieman BJ, Wong MD, Henkelman RM. Genes into geometry: imaging for mouse development in 3D. Curr Opin Genet Dev 2011; 21:638-46. [PMID: 21907568 DOI: 10.1016/j.gde.2011.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 02/07/2023]
Abstract
Mammalian development is a sophisticated program coordinated by a complex set of genetic and physiological factors. Alterations in anatomy or morphology provide intrinsic measures of progress in or deviations from this program. Emerging three-dimensional imaging methods now allow for more sophisticated morphological assessment than ever before, enabling comprehensive phenotyping, visualization of anatomical context and patterns, automated and quantitative morphological analysis, as well as improved understanding of the developmental time course. Furthermore, these imaging tools are becoming increasingly available and will consequently play a prominent role in elucidating the factors that direct and influence mammalian development.
Collapse
Affiliation(s)
- Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
43
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
44
|
Sahara N, Lewis J. Amyloid precursor protein and tau transgenic models of Alzheimer's disease: insights from the past and directions for the future. FUTURE NEUROLOGY 2010; 5:411-420. [PMID: 20730022 DOI: 10.2217/fnl.10.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the last 20 years, our understanding of the mechanisms underlying Alzheimer's disease (AD) has considerably improved, in part owing to both in vitro and in vivo model systems. Studies in mice expressing both human amyloid precursor protein and human tau have provided clear evidence that amyloid-beta and tau interact in the pathogenesis of AD. Moreover, amyloid-beta toxicity has been shown to be tau-dependent since reducing tau levels prevents behavioral deficits and sudden death in amyloid precursor protein transgenic mice. As tau pathology preferentially develops in specific sites and spreads in a predictable manner across the brain, understanding the mechanism underlying tau dysfunction should be a focus in AD mouse modeling. A defined effort must be made to develop therapies that directly address the impact of tau dysfunction in the pathogenesis of AD. Finally, early diagnosis of AD is essential and this must be made possible by identification of early biomarkers, behavioral changes or use of novel imaging techniques.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Neuroscience, Mayo Clinic, Jacksonville FL 32224, USA
| | | |
Collapse
|
45
|
|
46
|
Yang J, Wu EX. Manganese-enhanced MRI of hypoxic-ischemic brain injuries using Mn-DPDP. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:4775-8. [PMID: 19964849 DOI: 10.1109/iembs.2009.5334210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, Mn-dipyridoxaldiphosphate (MnDPDP), a clinically approved manganese contrast agent for hepatic and pancreatic imaging, was demonstrated for the first time for manganese-enhanced MRI (MEMRI) in brains of normal young rats (n = 4) and rats with hypoxic-ischemic (H-I) insult at postnatal day 7 (n = 8). After a single intraperitoneal injection of low dosage with 0.1micromol/g in postnatal 14 days, 2D T1-weighted image (T1WIs), T1 maps, T2-weighted images (T2WIs) and T2 maps were acquired at 7 Tesla 1 day before, 1 day and 7 days after MnDPDP injection. The image contrast changes induced by MnDPDP appeared as the hyperintensity in T1WIs and the hypointensity in T2WIs. T1 and T2 values decreased in the regions of Mn enhancement. Such enhancement presented as a delayed pattern that was more pronounced in 7 day after MnDPDP injection, suggesting the sustained Mn accumulation due to MnDPDP. Moreover, the MnDPDP enhancement in H-I brains was more pronounced in the lesion sites and was easily detectable in T1WI, T1 map, T2WI and T2 map. The results demonstrated here support the possibility of using MnDPDP as a 'slow release' Mn(2+) for clinical diagnosis of various neuropathologies.
Collapse
Affiliation(s)
- Jian Yang
- Medical Imaging Center of the First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University Xi'an, Shannxi Province, China.
| | | |
Collapse
|
47
|
Inui-Yamamoto C, Yoshioka Y, Inui T, Sasaki KS, Ooi Y, Ueda K, Seiyama A, Ohzawa I. The brain mapping of the retrieval of conditioned taste aversion memory using manganese-enhanced magnetic resonance imaging in rats. Neuroscience 2010; 167:199-204. [PMID: 20167260 DOI: 10.1016/j.neuroscience.2010.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Manganese-enhanced MRI (MEMRI) is a newly developed noninvasive imaging technique of brain activities. The signal intensity of MEMRI reflects cumulative activities of the neurons. To validate the use of MEMRI technique to investigate the neural mechanisms of learning and memory, we tried to map brain areas involved in the retrieval of conditioned taste aversion (CTA) memory. CTAs were established to saccharin (conditioned stimulus: CS) by pairing its ingestion with an i.p. injection of LiCl (unconditioned stimulus: US). LiCl solutions (as a robust aversion chemical) of 0.15 M were injected i.p. 15 min after drinking the saccharine solution (CS). After the two times conditionings, these rats showed a robust aversion to the saccharine solution (CS). Rats of the control group were injected saline i.p. instead of LiCl solutions. The MRI signal intensities at the gustatory cortex (GC), the core subregion of the nucleus accumbens (NAcC), the shell subregion of the nucleus accumbens (NAcSh), the ventral pallidum (VP), the central nucleus of amygdala (CeA), the lateral hypothalamus (LH), and the basolateral nucleus of amygdala (BLA) of the conditioned group were higher than those of the control group. There were no significant differences between the conditioned and the control groups in the intensities for other regions, such as the striatum area, motor cortex, cingulate cortex, interstitial nucleus of the posterior limb of the anterior commissure and hippocampus. These indicate that the GC, NAcC, NAcSh, VP, CeA, LH and BLA have important roles in the memory retrieval of CTA.
Collapse
Affiliation(s)
- C Inui-Yamamoto
- High Performance Bioimaging Research Facility, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Ultrasound biomicroscopy (UBM) and magnetic resonance microimaging (micro-MRI) provide noninvasive, high-resolution images in mouse embryos and neonates, enabling volumetric and functional analyses of phenotypes, including longitudinal imaging of individual mice over critical stages of in utero and early-postnatal development. In this chapter, we describe the underlying principles of UBM and micro-MRI, including the advantages and limitations of these approaches for studies of mouse development, and providing a number of examples to illustrate their use. To date, most imaging studies have focused on the developing nervous and cardiovascular systems, which are also reflected in the examples shown in this chapter, but we also discuss the future application of these methods to other organ systems.
Collapse
Affiliation(s)
- Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | |
Collapse
|
49
|
Boretius S, Kasper L, Tammer R, Michaelis T, Frahm J. MRI of cellular layers in mouse brain in vivo. Neuroimage 2009; 47:1252-60. [PMID: 19520174 DOI: 10.1016/j.neuroimage.2009.05.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/06/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022] Open
Abstract
Noninvasive imaging of the brain of animal models demands the detection of increasingly smaller structures by in vivo MRI. The purpose of this work was to elucidate the spatial resolution and structural contrast that can be obtained for studying the brain of C57BL/6J mice by optimized T2-weighted fast spin-echo MRI at 9.4 T. As a prerequisite for high-resolution imaging in vivo, motion artifacts were abolished by combining volatile anesthetics and positive pressure ventilation with a specially designed animal bed for fixation. Multiple substructures in the cortex, olfactory bulb, hippocampus, and cerebellum were resolved at 30 to 40 microm in-plane resolution and 200 to 300 microm section thickness as well as for relatively long echo times of 65 to 82 ms. In particular, the approach resulted in the differentiation of up to five cortical layers. In the olfactory bulb the images unraveled the mitral cell layer which has a thickness of mostly single cells. In the hippocampus at least five substructures could be separated. The molecular layer, Purkinje layer, and granular layer of the cerebellum could be clearly differentiated from the white matter. In conclusion, even without the use of a contrast agent, suitable adjustments of a widely available T2-weighted MRI sequence at high field allow for structural MRI of living mice at near single-cell layer resolution.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
50
|
Ronald JA, Chen Y, Bernas L, Kitzler HH, Rogers KA, Hegele RA, Rutt BK. Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits. ACTA ACUST UNITED AC 2009; 132:1346-54. [PMID: 19293239 PMCID: PMC2677794 DOI: 10.1093/brain/awp031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol-fed and control rabbit brains corroborated our qualitative observations. In conclusion, long-term, low-level cholesterol feeding was sufficient to promote the formation of extracellular β-amyloid plaque formation in rabbits, supporting the integral role of cholesterol in the aetiology of Alzheimer's disease. We also present the first evidence that MRI is capable of detecting iron-associated β-amyloid plaques in a rabbit model of Alzheimer's disease and have advanced the sensitivity of MRI for plaque detection to a new level, allowing clinical field-strength scanners to be employed. We believe extension of these technologies to an in vivo setting in rabbits is feasible and that our results support future work exploring the role of MRI as a leading imaging tool for this debilitating and life-threatening disease.
Collapse
Affiliation(s)
- John A Ronald
- Robarts Research Institute, University of Western Ontario, 100 Perth Drive, 1st Floor, London, ON, Canada N6A 5K8.
| | | | | | | | | | | | | |
Collapse
|