1
|
Shen Q, Ma S, Li L, Xia Y. Tanshinone IIA attenuates fluoride-induced spinal cord injury by inhibiting ferroptosis and inflammation. Heliyon 2024; 10:e40549. [PMID: 39687171 PMCID: PMC11648119 DOI: 10.1016/j.heliyon.2024.e40549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Excessive fluoride exposure can lead to health problems, such as fluorosis and neurotoxicity. However, effective therapeutic strategies for neurofluorosis remain elusive due to a limited understanding of the underlying molecular mechanisms. This study aimed to investigate the effects of Tanshinone IIA on spinal cord injury induced by high-fluoride exposure. To identify dysregulated genes associated with ferroptosis, we conducted an intersection analysis between differentially expressed genes in fluoride-treated HOS cells (GSE70719) and ferroptosis-related genes from the FerrDb database. A rat model of fluoride-induced spinal cord injury was established, revealing evidence of aberrant molecular and structural changes. Furthermore, the study demonstrated that Tanshinone IIA restored the altered expression of nine ferroptosis-related genes, eight fluorosis-related inflammatory indicators, and the observed structural changes. Overall, these findings suggest that Tanshinone IIA therapeutic potential in the treatment of fluoride-induced spinal cord injury by inhibiting ferroptosis and inflammation.
Collapse
Affiliation(s)
- Qingfeng Shen
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Shibo Ma
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Lingbo Li
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou, 434020, Hubei Province, China
| | - Yingpeng Xia
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| |
Collapse
|
2
|
Fan J, Du X, Chen M, Xu Y, Xu J, Lu L, Zhou S, Kong X, Xu K, Zhang H. Critical role of checkpoint kinase 1 in spinal cord injury-induced motor dysfunction in mice. Int Immunopharmacol 2024; 138:112521. [PMID: 38917519 DOI: 10.1016/j.intimp.2024.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurotraumatic condition characterized by severe motor dysfunction and paralysis. Accumulating evidence suggests that DNA damage is involved in SCI pathology. However, the underlying mechanisms remain elusive. Although checkpoint kinase 1 (Chk1)-regulated DNA damage is involved in critical cellular processes, its role in SCI regulation remains unclear. This study aimed to explore the role and potential mechanism of Chk1 in SCI-induced motor dysfunction. Adult female C57BL/6J mice subjected to T9-T10 spinal cord contusions were used as models of SCI. Western blotting, immunoprecipitation, histomorphology, and Chk1 knockdown or overexpression achieved by adeno-associated virus were performed to explore the underlying mechanisms. Levels of p-Chk1 and γ-H2AX (a cellular DNA damage marker) were upregulated, while ferroptosis-related protein levels, including glutathione peroxidase 4 (GPX4) and x-CT were downregulated, in the spinal cord and hippocampal tissues of SCI mice. Functional experiments revealed increased Basso Mouse Scale (BMS) scores, indicating that Chk1 downregulation promoted motor function recovery after SCI, whereas Chk1 overexpression aggravated SCI-induced motor dysfunction. In addition, Chk1 downregulation reversed the SCI-increased levels of GPX4 and x-CT expression in the spinal cord and hippocampus, while immunoprecipitation assays revealed strengthened interactions between p-Chk1 and GPX4 in the spinal cord after SCI. Finally, Chk1 downregulation promoted while Chk1 overexpression inhibited NeuN cellular immunoactivity in the spinal cord after SCI, respectively. Collectively, these preliminary results imply that Chk1 is a novel regulator of SCI-induced motor dysfunction, and that interventions targeting Chk1 may represent promising therapeutic targets for neurotraumatic diseases such as SCI.
Collapse
Affiliation(s)
- Junming Fan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China
| | - Xiaotong Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengfan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinyu Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leilei Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaoyan Zhou
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoxia Kong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ke Xu
- Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China.
| |
Collapse
|
3
|
Shang Z, Shi W, Fu H, Zhang Y, Yu T. Identification of key autophagy-related genes and pathways in spinal cord injury. Sci Rep 2024; 14:6553. [PMID: 38504116 PMCID: PMC10951339 DOI: 10.1038/s41598-024-56683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024] Open
Abstract
Spinal cord injury (SCI) can cause a range of functional impairments, and patients with SCI have limited potential for functional recovery. Previous studies have demonstrated that autophagy plays a role in the pathological process of SCI, but the specific mechanism of autophagy in this context remains unclear. Therefore, we explored the role of autophagy in SCI by identifying key autophagy-related genes and pathways. This study utilized the GSE132242 expression profile dataset, which consists of four control samples and four SCI samples; autophagy-related genes were sourced from GeneCards. R software was used to screen differentially expressed genes (DEGs) in the GSE132242 dataset, which were then intersected with autophagy-related genes to identify autophagy-related DEGs in SCI. Subsequently, the expression levels of these genes were confirmed and analyzed with gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). A protein-protein interaction (PPI) analysis was conducted to identify interaction genes, and the resulting network was visualized with Cytoscape. The MCODE plug-in was used to build gene cluster modules, and the cytoHubba plug-in was applied to screen for hub genes. Finally, the GSE5296 dataset was used to verify the reliability of the hub genes. We screened 129 autophagy-related DEGs, including 126 up-regulated and 3 down-regulated genes. GO and KEGG pathway enrichment analysis showed that these 129 genes were mainly involved in the process of cell apoptosis, angiogenesis, IL-1 production, and inflammatory reactions, the TNF signaling pathway and the p53 signaling pathway. PPI identified 10 hub genes, including CCL2, TGFB1, PTGS2, FN1, HGF, MYC, IGF1, CD44, CXCR4, and SERPINEL1. The GSE5296 dataset revealed that the control group exhibited lower expression levels than the SCI group, although only CD44 and TGFB1 showed significant differences. This study identified 129 autophagy-related genes that might play a role in SCI. CD44 and TGFB1 were identified as potentially important genes in the autophagy process after SCI. These findings provide new targets for future research and offer new perspectives on the pathogenesis of SCI.
Collapse
Affiliation(s)
- Zhen Shang
- Medical Department of Qingdao University, Qingdao, 266000, China
| | - Weipeng Shi
- Medical Department of Qingdao University, Qingdao, 266000, China
| | - Haitao Fu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingze Zhang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
- Shandong Institute of Traumatic Orthopedics, Qingdao, 266000, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, 266000, China.
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266000, China.
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
4
|
Martin LJ, Adams DA, Niedzwiecki MV, Wong M. Aberrant DNA and RNA Methylation Occur in Spinal Cord and Skeletal Muscle of Human SOD1 Mouse Models of ALS and in Human ALS: Targeting DNA Methylation Is Therapeutic. Cells 2022; 11:3448. [PMID: 36359844 PMCID: PMC9657572 DOI: 10.3390/cells11213448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease. Skeletal muscles and motor neurons (MNs) degenerate. ALS is a complex disease involving many genes in multiple tissues, the environment, cellular metabolism, and lifestyles. We hypothesized that epigenetic anomalies in DNA and RNA occur in ALS and examined this idea in: (1) mouse models of ALS, (2) human ALS, and (3) mouse ALS with therapeutic targeting of DNA methylation. Human superoxide dismutase-1 (hSOD1) transgenic (tg) mice were used. They expressed nonconditionally wildtype (WT) and the G93A and G37R mutant variants or skeletal muscle-restricted WT and G93A and G37R mutated forms. Age-matched non-tg mice were controls. hSOD1 mutant mice had increased DNA methyltransferase enzyme activity in spinal cord and skeletal muscle and increased 5-methylcytosine (5mC) levels. Genome-wide promoter CpG DNA methylation profiling in skeletal muscle of ALS mice identified hypermethylation notably in cytoskeletal genes. 5mC accumulated in spinal cord MNs and skeletal muscle satellite cells in mice. Significant increases in DNA methyltransferase-1 (DNMT1) and DNA methyltransferase-3A (DNMT3A) levels occurred in spinal cord nuclear and chromatin bound extracts of the different hSOD1 mouse lines. Mutant hSOD1 interacted with DNMT3A in skeletal muscle. 6-methyladenosine (6mA) RNA methylation was markedly increased or decreased in mouse spinal cord depending on hSOD1-G93A model, while fat mass and obesity associated protein was depleted and methyltransferase-like protein 3 was increased in spinal cord and skeletal muscle. Human ALS spinal cord had increased numbers of MNs and interneurons with nuclear 5mC, motor cortex had increased 5mC-positive neurons, while 6mA was severely depleted. Treatment of hSOD1-G93A mice with DNMT inhibitor improved motor function and extended lifespan by 25%. We conclude that DNA and RNA epigenetic anomalies are prominent in mouse and human ALS and are potentially targetable for disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Danya A. Adams
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark V. Niedzwiecki
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Scheijen EEM, Hendrix S, Wilson DM. Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence? Antioxidants (Basel) 2022; 11:antiox11091728. [PMID: 36139802 PMCID: PMC9495924 DOI: 10.3390/antiox11091728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress occurs at various phases of spinal cord injury (SCI), promoting detrimental processes such as free radical injury of proteins, nucleic acids, lipids, cytoskeleton, and organelles. Oxidative DNA damage is likely a major contributor to the pathogenesis of SCI, as a damaged genome cannot be simply turned over to avert detrimental molecular and cellular outcomes, most notably cell death. Surprisingly, the evidence to support this hypothesis is limited. There is some evidence that oxidative DNA damage is increased following SCI, mainly using comet assays and immunohistochemistry. However, there is great variability in the timing and magnitude of its appearance, likely due to differences in experimental models, measurement techniques, and the rigor of the approach. Evidence indicates that 8-oxodG is most abundant at 1 and 7 days post-injury (dpi), while DNA strand breaks peak at 7 and 28 dpi. The DNA damage response seems to be characterized by upregulation of PCNA and PARP1 but downregulation of APEX1. Significant improvements in the analysis of oxidative DNA damage and repair after SCI, including single-cell analysis at time points representative for each phase post-injury using new methodologies and better reporting, will uncover the role of DNA damage and repair in SCI.
Collapse
Affiliation(s)
- Elle E. M. Scheijen
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Germany, Am Kaiserkai 1, 20457 Hamburg, Germany
- Correspondence: (S.H.); (D.M.W.III)
| | - David M. Wilson
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
- Correspondence: (S.H.); (D.M.W.III)
| |
Collapse
|
6
|
Kang X, Sun Y, Yi B, Jiang C, Yan X, Chen B, Lu L, Shi F, Luo Y, Chen Y, Wang Q, Shi R. Based on Network Pharmacology and Molecular Dynamics Simulations, Baicalein, an Active Ingredient of Yiqi Qingre Ziyin Method, Potentially Protects Patients With Atrophic Rhinitis From Cognitive Impairment. Front Aging Neurosci 2022; 14:880794. [PMID: 35754951 PMCID: PMC9226445 DOI: 10.3389/fnagi.2022.880794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Cognition may be improved by the active ingredients of the Yiqi Qingre Ziyin method in patients with atrophic rhinitis (AR). This study aimed to identify potential targets of the Yiqi Qingre Ziyin method for the treatment of patients with cognitive impairment. Nasal mucosal tissue samples from patients with AR were subjected to proteomic assays, and differentially expressed proteins were obtained. To explore the mechanism of AR leading to mild cognitive impairment (MCI), a differential analysis of AR related differential proteins in the MCI related GSE140831 dataset was performed. Most AR-related differential proteins are also differentially expressed in peripheral blood tissues of MCI, have similar biological functions and are enriched in similar pathways. These co-expressed differential factors in AR and MCI are known as common differential proteins of AR and MCI (CDPAM). Based on the analysis and validation of the random forest, support vector machine and neural network models, CDPAM acted as a diagnostic marker for MCI risk. Cytochrome C (CYCS) was significantly upregulated in the peripheral blood of patients with MCI. The active ingredients in the Yiqi Qingre Ziqin method were obtained and targeted 137 proteins. Among these targeted proteins, CYCS belong to the CDPAM set. Molecular docking and molecular dynamics analysis revealed that baicalein, an active ingredient in the Yiqi Qingre Ziyin method, stably targeted the CYCS protein. Results of the enrichment analysis revealed that the up-regulation of CYCS expression may have a defensive effect on the cells to resist foreign stimuli. Therefore, baicalein, an active ingredient in the Yiqi Qingre Ziyin method, may prevent the development and progression of MCI by targeting the CYCS protein.
Collapse
Affiliation(s)
- Xueran Kang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangze Shi
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Ear Institute Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanbo Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Ear Institute Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Martin LJ, Wong M. Skeletal Muscle-Restricted Expression of Human SOD1 in Transgenic Mice Causes a Fatal ALS-Like Syndrome. Front Neurol 2020; 11:592851. [PMID: 33381076 PMCID: PMC7767933 DOI: 10.3389/fneur.2020.592851] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal heterogeneous neurodegenerative disease that causes motor neuron (MN) loss and skeletal muscle paralysis. It is uncertain whether this degeneration of MNs is triggered intrinsically and is autonomous, or if the disease initiating mechanisms are extrinsic to MNs. We hypothesized that skeletal muscle is a primary site of pathogenesis in ALS that triggers MN degeneration. Some inherited forms of ALS are caused by mutations in the superoxide dismutase-1 (SOD1) gene, that encodes an antioxidant protein, so we created transgenic (tg) mice expressing wild-type-, G37R-, and G93A-human SOD1 gene variants only in skeletal muscle. Presence of human SOD1 (hSOD1) protein in skeletal muscle was verified by western blotting, enzyme activity gels, and immunofluorescence in myofibers and satellite cells. These tg mice developed limb weakness and paresis with motor deficits, limb and chest muscle wasting, diaphragm atrophy, and age-related fatal disease with a lifespan shortening of 10–16%. Brown and white adipose tissue also became wasted. Myofibers of tg mice developed crystalline-like inclusions, individualized sarcomere destruction, mitochondriopathy with vesiculation, DNA damage, and activated p53. Satellite cells became apoptotic. The diaphragm developed severe loss of neuromuscular junction presynaptic and postsynaptic integrity, including decreased innervation, loss of synaptophysin, nitration of synaptophysin, and loss of nicotinic acetylcholine receptor and scaffold protein rapsyn. Co-immunoprecipitation identified hSOD1 interaction with rapsyn. Spinal cords of tg mice developed gross atrophy. Spinal MNs formed cytoplasmic and nuclear inclusions, axonopathy, mitochondriopathy, accumulated DNA damage, activated p53 and cleaved caspase-3, and died. Tg mice had a 40–50% loss of MNs. This work shows that hSOD1 in skeletal muscle is a driver of pathogenesis in ALS, that involves myofiber and satellite cell toxicity, and apparent muscle-adipose tissue disease relationships. It also identifies a non-autonomous mechanism for MN degeneration explaining their selective vulnerability as likely a form of target-deprivation retrograde neurodegeneration.
Collapse
Affiliation(s)
- Lee J Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Margaret Wong
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Wang N, Yang Y, Pang M, Du C, Chen Y, Li S, Tian Z, Feng F, Wang Y, Chen Z, Liu B, Rong L. MicroRNA-135a-5p Promotes the Functional Recovery of Spinal Cord Injury by Targeting SP1 and ROCK. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1063-1077. [PMID: 33294293 PMCID: PMC7691148 DOI: 10.1016/j.omtn.2020.08.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 01/18/2023]
Abstract
Emerging evidence indicates that microRNAs play a pivotal role in neural remodeling after spinal cord injury (SCI). This study aimed to investigate the mechanisms of miR-135a-5p in regulating the functional recovery of SCI by impacting its target genes and downstream signaling. The gene transfection assay and luciferase reporter assay confirmed the target relationship between miR-135a-5p and its target genes (specificity protein 1 [SP1] and Rho-associated kinase [ROCK]1/2). By establishing the H2O2-induced injury model, miR-135a-5p transfection was found to inhibit the apoptosis of PC12 cells by downregulating the SP1 gene, which subsequently induced downregulation of pro-apoptotic proteins (Bax, cleaved caspase-3) and upregulation of anti-apoptotic protein Bcl-2. By measuring the neurite lengths of PC12 cells, miR-135a-5p transfection was found to promote axon outgrowth by downregulating the ROCK1/2 gene, which subsequently caused upregulation of phosphate protein kinase B (AKT) and phosphate glycogen synthase kinase 3β (GSK3β). Use of the rat SCI models showed that miR-135a-5p could increase the Basso, Beattie, and Bresnahan (BBB) scores, indicating neurological function recovery. In conclusion, the miR-135a-5p-SP1-Bax/Bcl-2/caspase-3 and miR-135a-5p-ROCK-AKT/GSK3β axes are involved in functional recovery of SCI by regulating neural apoptosis and axon regeneration, respectively, and thus can be promising effective therapeutic strategies in SCI.
Collapse
Affiliation(s)
- Nanxiang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Cong Du
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yuyong Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Simin Li
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Feng Feng
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhenxiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
9
|
Kim BW, Jeong YE, Wong M, Martin LJ. DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol Commun 2020; 8:7. [PMID: 32005289 PMCID: PMC6995159 DOI: 10.1186/s40478-019-0874-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
DNA damage is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, relationships between DNA damage accumulation, DNA damage response (DDR), and upper and lower motor neuron vulnerability in human ALS are unclear; furthermore, it is unknown whether epigenetic silencing of DNA repair pathways contributes to ALS pathogenesis. We tested the hypotheses that DNA damage accumulates in ALS motor neurons along with diminished DDR, and that DNA repair genes undergo hypermethylation. Human postmortem CNS tissue was obtained from ALS cases (N = 34) and age-matched controls without neurologic disease (N = 15). Compared to age-matched controls, abasic sites accumulated in genomic DNA of ALS motor cortex and laser capture microdissection-acquired spinal motor neurons but not in motor neuron mitochondrial DNA. By immunohistochemistry, DNA damage accumulated significantly in upper and lower motor neurons in ALS cases as single-stranded DNA and 8-hydroxy-deoxyguanosine (OHdG) compared to age-matched controls. Significant DDR was engaged in ALS motor neurons as evidenced by accumulation of c-Abl, nuclear BRCA1, and ATM activation. DNA damage and DDR were present in motor neurons at pre-attritional stages and throughout the somatodendritic attritional stages of neurodegeneration. Motor neurons with DNA damage were also positive for activated p53 and cleaved caspase-3. Gene-specific promoter DNA methylation pyrosequencing identified the DNA repair genes Ogg1, Apex1, Pnkp and Aptx as hypomethylated in ALS. In human induced-pluripotent stem cell (iPSC)-derived motor neurons with familial ALS SOD1 mutations, DNA repair capacity was similar to isogenic control motor neurons. Our results show that vulnerable neurons in human ALS accumulate DNA damage, and contrary to our hypothesis, strongly activate and mobilize response effectors and DNA repair genes. This DDR in ALS motor neurons involves recruitment of c-Abl and BRCA1 to the nucleus in vivo, and repair of DNA double-strand breaks in human ALS motor neurons with SOD1 mutations in cell culture.
Collapse
Affiliation(s)
- Byung Woo Kim
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Eun Jeong
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA.
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Ruven C, Badea SR, Wong WM, Wu W. Combination Treatment With Exogenous GDNF and Fetal Spinal Cord Cells Results in Better Motoneuron Survival and Functional Recovery After Avulsion Injury With Delayed Root Reimplantation. J Neuropathol Exp Neurol 2019; 77:325-343. [PMID: 29420729 DOI: 10.1093/jnen/nly009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When spinal roots are torn off from the spinal cord, both the peripheral and central nervous system get damaged. As the motoneurons lose their axons, they start to die rapidly, whereas target muscles atrophy due to the denervation. In this kind of complicated injury, different processes need to be targeted in the search for the best treatment strategy. In this study, we tested glial cell-derived neurotrophic factor (GDNF) treatment and fetal lumbar cell transplantation for their effectiveness to prevent motoneuron death and muscle atrophy after the spinal root avulsion and delayed reimplantation. Application of exogenous GDNF to injured spinal cord greatly prevented the motoneuron death and enhanced the regeneration and axonal sprouting, whereas no effect was seen on the functional recovery. In contrast, cell transplantation into the distal nerve did not affect the host motoneurons but instead mitigated the muscle atrophy. The combination of GDNF and cell graft reunited the positive effects resulting in better functional recovery and could therefore be considered as a promising strategy for nerve and spinal cord injuries that involve the avulsion of spinal roots.
Collapse
Affiliation(s)
- Carolin Ruven
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Wai-Man Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wutian Wu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Re-Stem Biotechnology Co., Ltd, Jiangsu, China
| |
Collapse
|
11
|
Jiang BG, Han N, Rao F, Wang YL, Kou YH, Zhang PX. Advance of Peripheral Nerve Injury Repair and Reconstruction. Chin Med J (Engl) 2018; 130:2996-2998. [PMID: 29237933 PMCID: PMC5742928 DOI: 10.4103/0366-6999.220299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Bao-Guo Jiang
- Department Trauma and Orthopedics, Peking University People's Hospital, Beijing 100044, China
| | - Na Han
- Center Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Feng Rao
- Department Trauma and Orthopedics, Peking University People's Hospital, Beijing 100044, China
| | - Yi-Lin Wang
- Department Trauma and Orthopedics, Peking University People's Hospital, Beijing 100044, China
| | - Yu-Hui Kou
- Department Trauma and Orthopedics, Peking University People's Hospital, Beijing 100044, China
| | - Pei-Xun Zhang
- Department Trauma and Orthopedics, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
12
|
Martin LJ, Chang Q. DNA Damage Response and Repair, DNA Methylation, and Cell Death in Human Neurons and Experimental Animal Neurons Are Different. J Neuropathol Exp Neurol 2018; 77:636-655. [PMID: 29788379 PMCID: PMC6005106 DOI: 10.1093/jnen/nly040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders affecting individuals in infancy to old age elude interventions for meaningful protection against neurodegeneration, and preclinical work has not translated to humans. We studied human neuron responses to injury and death stimuli compared to those of animal neurons in culture under similar settings of insult (excitotoxicity, oxidative stress, and DNA damage). Human neurons were differentiated from a cortical neuron cell line and the embryonic stem cell-derived H9 line. Mouse neurons were differentiated from forebrain neural stem cells and embryonic cerebral cortex; pig neurons were derived from forebrain neural stem cells. Mitochondrial morphology was different in human and mouse neurons. Human and mouse neurons challenged with DNA-damaging agent camptothecin showed different chromatin condensation, cell death, and DNA damage sensor activation. DNA damage accumulation and repair kinetics differed among human, mouse, and pig neurons. Promoter CpG island methylation microarrays showed significant differential DNA methylation in human and mouse neurons after injury. Therefore, DNA damage response, DNA repair, DNA methylation, and autonomous cell death mechanisms in human neurons and experimental animal neurons are different.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology
- Pathobiology Graduate Training Program
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qing Chang
- Department of Pathology, Division of Neuropathology
| |
Collapse
|
13
|
Abstract
We present the hypothesis that an accumulation of dysfunctional mitochondria initiates a signaling cascade leading to motor neuron and muscle fiber death and culminating in sarcopenia. Interactions between neural and muscle cells that contain dysfunctional mitochondria exacerbate sarcopenia. Preventing sarcopenia will require identifying mitochondrial sources of dysfunction that are reversible.
Collapse
Affiliation(s)
- Stephen E Alway
- 1Division of Exercise Physiology; 2Center for Cardiovascular and Respiratory Sciences, and Mitochondria, Metabolism, and Bioenergetics; and 3Centers for Neuroscience, West Virginia University School of Medicine, Morgantown, WV
| | | | | |
Collapse
|
14
|
A BRCA1-Dependent DNA Damage Response in the Regenerating Adult Peripheral Nerve Milieu. Mol Neurobiol 2017; 55:4051-4067. [PMID: 28585187 DOI: 10.1007/s12035-017-0574-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
It is not generally appreciated that DNA repair machinery has a critical role in the remodeling of neurons that adopt a regenerative phenotype. We identified that breast cancer 1 (BRCA1)-dependent DNA activity, previously well known to repair cancer cells, is active in adult peripheral neurons and Schwann cells during their injury and regeneration response. Temporary or partial loss of BRCA1 or blockade of its intraneuronal nuclear entry impaired outgrowth in neurons in vitro and impacted nerve regeneration and functional recovery in vivo. We found that distal axonal injury triggered a BRCA1-dependent DNA damage response (DDR) signal in neuronal soma. BRCA1 also supported an enabling transcriptional program of injured neurons and supporting Schwann cells. Our findings indicate that BRCA1 offers prominent functional roles in neurons and glial cells including key support for their physical and molecular integrity. Since BRCA1 mutations are common in humans, this function of BRCA1 in peripheral neurons and their glial partners warrants attention.
Collapse
|
15
|
N-Acetylcysteine Prevents Retrograde Motor Neuron Death after Neonatal Peripheral Nerve Injury. Plast Reconstr Surg 2017; 139:1105e-1115e. [DOI: 10.1097/prs.0000000000003257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Wiberg R, Kingham PJ, Novikova LN. A Morphological and Molecular Characterization of the Spinal Cord after Ventral Root Avulsion or Distal Peripheral Nerve Axotomy Injuries in Adult Rats. J Neurotrauma 2016; 34:652-660. [PMID: 27297543 DOI: 10.1089/neu.2015.4378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Retrograde cell death in sensory dorsal root ganglion cells following peripheral nerve injury is well established. However, available data regarding the underlying mechanism behind injury induced motoneuron death are conflicting. By comparing morphological and molecular changes in spinal motoneurons after L4-L5 ventral root avulsion (VRA) and distal peripheral nerve axotomy (PNA) 7 and 14 days postoperatively, we aimed to gain more insight about the mechanism behind injury-induced motoneuron degeneration. Morphological changes in spinal cord were assessed by using quantitative immunohistochemistry. Neuronal degeneration was revealed by decreased immunostaining for microtubule-associated protein-2 in dendrites and synaptophysin in presynaptic boutons after both VRA and PNA. Significant motoneuron atrophy was already observed at 7 days post-injury, independently of injury type. Immunostaining for ED1 reactive microglia was significantly elevated in all experimental groups, as well as the astroglial marker glial fibrillary acidic protein (GFAP). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the ventral horn from L4-L5 spinal cord segments revealed a significant upregulation of genes involved in programmed cell death including caspase-3, caspase-8, and related death receptors TRAIL-R, tumor necrosis factor (TNF)-R, and Fas following VRA. In contrast, following PNA, caspase-3 and the death receptor gene expression levels did not differ from the control, and there was only a modest increased expression of caspase-8. Moreover, the altered gene expression correlated with protein changes. These results show that the spinal motoneurons reacted in a similar fashion with respect to morphological changes after both proximal and distal injury. However, the increased expression of caspase-3, caspase-8, and related death receptors after VRA suggest that injury- induced motoneuron degeneration is mediated through an apoptotic mechanism, which might involve both the intrinsic and the extrinsic pathways.
Collapse
Affiliation(s)
- Rebecca Wiberg
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden .,2 Department of Surgical and Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University , Umeå, Sweden
| | - Paul J Kingham
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden
| | - Liudmila N Novikova
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden
| |
Collapse
|
17
|
Martin LJ, Wong M. Enforced DNA repair enzymes rescue neurons from apoptosis induced by target deprivation and axotomy in mouse models of neurodegeneration. Mech Ageing Dev 2016; 161:149-162. [PMID: 27364693 DOI: 10.1016/j.mad.2016.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
It is unknown whether DNA damage accumulation is an upstream instigator or secondary effect of the cell death process in different populations of adult postmitotic neurons in the central nervous system. In two different mouse models of injury-induced neurodegeneration characterized by relatively synchronous accumulation of mitochondria, oxidative stress, and DNA damage prior to neuronal apoptosis, we enforced the expression of human 8-oxoguanine DNA glycosylase (hOGG1) and human apurinic-apyrimidinic endonuclease-1/Ref1 (hAPE) using recombinant adenoviruses (Ad). Thalamic lateral geniculate neurons and lumbar spinal cord motor neurons were transduced by Ad-hOGG1 and Ad-hAPE injections into the occipital cortex and skeletal muscle, respectively, prior to their target deprivation- and axotomy-induced retrograde apoptosis. Enforced expression of hOGG1 and hAPE in thalamus and spinal cord was confirmed by western blotting and immunohistochemistry. In injured populations of neurons in thalamus and spinal cord, a DNA damage response (DDR) was registered, as shown by localization of phospho-activated p53, Rad17, and replication protein A-32 immunoreactivities, and this DDR was attenuated more effectively by enforced hAPE expression than by hOGG1 expression. Enforced expression of hOGG1 and hAPE significantly protected thalamic neurons and motor neurons from retrograde apoptosis induced by target deprivation and axotomy. We conclude that a DDR response is engaged pre-apoptotically in different types of injured mature CNS neurons and that DNA repair enzymes can regulate the survival of retrogradely dying neurons, suggesting that DNA damage and activation of DDR are upstream mechanisms for this form of adult neurodegeneration in vivo, thus identifying DNA repair as a therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
KEILHOFF GERBURG, LUCAS BENJAMIN, UHDE KATJA, FANSA HISHAM. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med 2016; 11:1685-1699. [PMID: 27168790 PMCID: PMC4840837 DOI: 10.3892/etm.2016.3130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels in vivo. Minocycline was also shown to have inhibitory effects. The nuclear factor-κB signalling pathway may be a possible target of minocycline.
Collapse
Affiliation(s)
- GERBURG KEILHOFF
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - BENJAMIN LUCAS
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
- Department of Trauma Surgery, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - KATJA UHDE
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - HISHAM FANSA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Bielefeld D-33604, Germany
| |
Collapse
|
19
|
Lavandula angustifolia Extract Improves the Result of Human Umbilical Mesenchymal Wharton's Jelly Stem Cell Transplantation after Contusive Spinal Cord Injury in Wistar Rats. Stem Cells Int 2016; 2016:5328689. [PMID: 27057171 PMCID: PMC4769777 DOI: 10.1155/2016/5328689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/10/2016] [Indexed: 11/17/2022] Open
Abstract
Introduction. The primary trauma of spinal cord injury (SCI) results in severe damage to nervous functions. At the cellular level, SCI causes astrogliosis. Human umbilical mesenchymal stem cells (HUMSCs), isolated from Wharton's jelly of the umbilical cord, can be easily obtained. Previously, we showed that the neuroprotective effects of Lavandula angustifolia can lead to improvement in a contusive SCI model in rats. Objective. The aim of this study was to investigate the effect of L. angustifolia (Lav) on HUMSC transplantation after acute SCI. Materials and Methods. Sixty adult female rats were randomly divided into eight groups. Every week after SCI onset, all animals were evaluated for behavior outcomes. H&E staining was performed to examine the lesions after injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results. Behavioral tests showed that the HUMSC group improved in comparison with the SCI group, but HUMSC + Lav 400 was very effective, resulting in a significant increase in locomotion activity. Sensory tests and histomorphological and immunohistochemistry analyses verified the potentiation effects of Lav extract on HUMSC treatment. Conclusion. Transplantation of HUMSCs is beneficial for SCI in rats, and Lav extract can potentiate the functional and cellular recovery with HUMSC treatment in rats after SCI.
Collapse
|
20
|
Kaka G, Yaghoobi K, Davoodi S, Hosseini SR, Sadraie SH, Mansouri K. Assessment of the Neuroprotective Effects of Lavandula angustifolia Extract on the Contusive Model of Spinal Cord Injury in Wistar Rats. Front Neurosci 2016; 10:25. [PMID: 26903793 PMCID: PMC4744928 DOI: 10.3389/fnins.2016.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
Introduction: Spinal cord injury (SCI) involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP) is a major index. Objective: The aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav) on the repair of spinal cord injuries in Wistar rats. Materials and Methods: Forty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI), Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB) score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results: BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups. Conclusion: Lav at doses of 200 and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of SCI in Wistar rats.
Collapse
Affiliation(s)
- Gholamreza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Kayvan Yaghoobi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Shaghayegh Davoodi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Seyed R Hosseini
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Seyed H Sadraie
- Department of Anatomy, School of Medicine, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Korosh Mansouri
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences Tehran, Iran
| |
Collapse
|
21
|
Baky NAA, Fadda L, Al-Rasheed NM, Al-Rasheed NM, Mohamed A, Yacoub H. Neuroprotective effect of carnosine and cyclosporine-A against inflammation, apoptosis, and oxidative brain damage after closed head injury in immature rats. Toxicol Mech Methods 2015; 26:1-10. [DOI: 10.3109/15376516.2015.1070224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Krishnan A, Duraikannu A, Zochodne DW. Releasing 'brakes' to nerve regeneration: intrinsic molecular targets. Eur J Neurosci 2015; 43:297-308. [PMID: 26174154 DOI: 10.1111/ejn.13018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
Restoring critical neuronal architecture after peripheral nerve injury is challenging. Although immediate regenerative responses to peripheral axon injury involve the synthesis of regeneration-associated proteins in neurons and Schwann cells, an unfavorable balance between growth facilitatory and growth inhibitory signaling impairs the growth continuum of injured peripheral nerves. Molecules involved with the signaling network of tumor suppressors play crucial roles in shifting the balance between growth and restraint during axon regeneration. An understanding of the molecular framework of tumor suppressor molecules in injured neurons and its impact on stage-specific regeneration events may expose therapeutic intervention points. In this review we discuss how signaling networks of the specific tumor suppressors PTEN, Rb1, p53, p27 and p21 are altered in injured peripheral nerves and how this impacts peripheral nerve regeneration. Insights into the roles and importance of these pathways may open new avenues for improving the neurological deficits associated with nerve injury.
Collapse
Affiliation(s)
- Anand Krishnan
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Arul Duraikannu
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
23
|
Casas C, Isus L, Herrando-Grabulosa M, Mancuso FM, Borrás E, Sabidó E, Forés J, Aloy P. Network-based proteomic approaches reveal the neurodegenerative, neuroprotective and pain-related mechanisms involved after retrograde axonal damage. Sci Rep 2015; 5:9185. [PMID: 25784190 PMCID: PMC5378195 DOI: 10.1038/srep09185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/05/2015] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative processes are preceded by neuronal dysfunction and synaptic disconnection. Disconnection between spinal motoneuron (MN) soma and synaptic target leads either to a retrograde degenerative process or to a regenerative reaction, depending injury proximity among other factors. Distinguished key events associated with one or other processes may give some clues towards new therapeutical approaches based on boosting endogenous neuroprotective mechanisms. Root mechanical traction leads to retrograde MN degeneration, but share common initial molecular mechanisms with a regenerative process triggered by distal axotomy and suture. By 7 days post-injury, key molecular events starts to diverge and sign apart each destiny. We used comparative unbiased proteomics to define these signatures, coupled to a novel network-based analysis to get biological meaning. The procedure implicated the previous generation of combined topological information from manual curated 19 associated biological processes to be contrasted with the proteomic list using gene enrichment analysis tools. The novel and unexpected results suggested that motoneurodegeneration is better explained mainly by the concomitant triggering of anoikis, anti-apoptotic and neuropathic-pain related programs. In contrast, the endogenous neuroprotective mechanisms engaged after distal axotomy included specifically rather anti-anoikis and selective autophagy. Validated protein-nodes and processes are highlighted across discussion.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Barcelona, Spain
| | - Laura Isus
- Joint IRB-BSC-CRG Program in Computational Biology. Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Catalonia, Spain
| | - Mireia Herrando-Grabulosa
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Bellaterra, Barcelona, Spain
| | - Francesco M. Mancuso
- Proteomic Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eva Borrás
- Proteomic Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduardo Sabidó
- Proteomic Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Joaquim Forés
- Hand and Peripheral Nerve Unit, Hospital Clínic i Provincial, Universitat de Barcelona, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology. Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
24
|
Chu TH, Guo A, Wu W. Down-regulation of apurinic/apyrimidinic endonuclease 1 (APE1) in spinal motor neurones under oxidative stress. Neuropathol Appl Neurobiol 2015; 40:435-51. [PMID: 23808792 DOI: 10.1111/nan.12071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 06/25/2013] [Indexed: 12/24/2022]
Abstract
AIM Apurinic/apyrimidinic endonuclease 1 (APE1) is an intermediate enzyme in base excision repair which is important for removing damaged nucleotides under normal and pathological conditions. Accumulation of damaged bases causes genome instability and jeopardizes cell survival. Our study is to examine APE1 regulation under oxidative stress in spinal motor neurones which are vulnerable to oxidative insult. METHODS We challenged the motor neurone-like cell line NSC-34 with hydrogen peroxide and delineated APE1 function by applying various inhibitors. We also examined the expression of APE1 in spinal motor neurones after spinal root avulsion in adult rats. RESULTS We showed that hydrogen peroxide induced APE1 down-regulation and cell death in a differentiated motor neurone-like cell line. Inhibiting the two functional domains of APE1, namely, DNA repair and redox domains potentiated hydrogen peroxide induced cell death. We further showed that p53 phosphorylation early after hydrogen peroxide treatment might contribute to the down-regulation of APE1. Our in vivo results similarly showed that APE1 was down-regulated after root avulsion injury in spinal motor neurones. Delay of motor neurone death suggested that APE1 might not cause immediate cell death but render motor neurones vulnerable to further oxidative insults. CONCLUSION We conclude that spinal motor neurones down-regulate APE1 upon oxidative stress. This property renders motor neurones susceptible to continuous challenge of oxidative stress in pathological conditions.
Collapse
Affiliation(s)
- Tak-Ho Chu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong, China; Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
25
|
Martin LJ, Semenkow S, Hanaford A, Wong M. Mitochondrial permeability transition pore regulates Parkinson's disease development in mutant α-synuclein transgenic mice. Neurobiol Aging 2013; 35:1132-52. [PMID: 24325796 DOI: 10.1016/j.neurobiolaging.2013.11.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/07/2013] [Accepted: 11/10/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is a movement disorder caused by neurodegeneration in neocortex, substantia nigra and brainstem, and synucleinopathy. Some inherited PD is caused by mutations in α-synuclein (αSyn), and inherited and idiopathic PD is associated with mitochondrial perturbations. However, the mechanisms of pathogenesis are unresolved. We characterized a human αSyn transgenic mouse model and tested the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the disease mechanisms. C57BL/6 mice expressing human A53T-mutant αSyn driven by a thymic antigen-1 promoter develop a severe, age-related, fatal movement disorder involving ataxia, rigidity, and postural instability. These mice develop synucleinopathy and neocortical, substantia nigra, and cerebello-rubro-thalamic degeneration involving mitochondriopathy and apoptotic and non-apoptotic neurodegeneration. Interneurons undergo apoptotic degeneration in young mice. Mutant αSyn associated with dysmorphic neuronal mitochondria and bound voltage-dependent anion channels. Genetic ablation of cyclophilin D, an mPTP modulator, delayed disease onset, and extended lifespans of mutant αSyn mice. Thus, mutant αSyn transgenic mice on a C57BL/6 background develop PD-like phenotypes, and the mPTP is involved in their disease mechanisms.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Samantha Semenkow
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allison Hanaford
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Margaret Wong
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Brochier C, Langley B. Chromatin modifications associated with DNA double-strand breaks repair as potential targets for neurological diseases. Neurotherapeutics 2013; 10:817-30. [PMID: 24072514 PMCID: PMC3805873 DOI: 10.1007/s13311-013-0210-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. Neurons, due to their post-mitotic state, high metabolism, and longevity are particularly prone to the accumulation of DNA lesions. Indeed, DNA damage has been suggested as a major contributor to both age-associated neurodegenerative diseases and acute neurological injury. The DNA damage response is a key factor in maintaining genome integrity. It relies on highly dynamic posttranslational modifications of the chromatin and DNA repair proteins to allow signaling, access, and repair of the lesion. Drugs that modulate the activity of the enzymes responsible for these modifications have emerged as attractive therapeutic compounds to treat neurodegeneration. In this review, we discuss the role of DNA double-strand breaks and abnormal chromatin modification patterns in a range of neurodegenerative conditions, and the chromatin modifiers that might ameliorate them. Finally, we suggest that understanding the epigenetic modifications specific to neuronal DNA repair is crucial for the development of efficient neurotherapeutic strategies.
Collapse
Affiliation(s)
- Camille Brochier
- The Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA,
| | | |
Collapse
|
27
|
Salazar JJ, Gallego-Pinazo R, de Hoz R, Pinazo-Durán MD, Rojas B, Ramírez AI, Serrano M, Ramírez JM. "Super p53" mice display retinal astroglial changes. PLoS One 2013; 8:e65446. [PMID: 23762373 PMCID: PMC3676457 DOI: 10.1371/journal.pone.0065446] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/24/2013] [Indexed: 12/17/2022] Open
Abstract
Tumour-suppressor genes, such as the p53 gene, produce proteins that inhibit cell division under adverse conditions, as in the case of DNA damage, radiation, hypoxia, or oxidative stress (OS). The p53 gene can arrest proliferation and trigger death by apoptosis subsequent to several factors. In astrocytes, p53 promotes cell-cycle arrest and is involved in oxidative stress-mediated astrocyte cell death. Increasingly, astrocytic p53 is proving fundamental in orchestrating neurodegenerative disease pathogenesis. In terms of ocular disease, p53 may play a role in hypoxia due to ischaemia and may be involved in the retinal response to oxidative stress (OS). We studied the influence of the p53 gene in the structural and quantitative characteristics of astrocytes in the retina. Adult mice of the C57BL/6 strain (12 months old) were distributed into two groups: 1) mice with two extra copies of p53 (“super p53”; n = 6) and 2) wild-type p53 age-matched control, as the control group (WT; n = 6). Retinas from each group were immunohistochemically processed to locate the glial fibrillary acidic protein (GFAP). GFAP+ astrocytes were manually counted and the mean area occupied for one astrocyte was quantified. Retinal-astrocyte distribution followed established patterns; however, morphological changes were seen through the retinas in relation to p53 availability. The mean GFAP+ area occupied by one astrocyte in “super p53” eyes was significantly higher (p<0.05; Student’s t-test) than in the WT. In addition, astroglial density was significantly higher in the “super p53” retinas than in the WT ones, both in the whole-retina (p<0,01 Student’s t-test) and in the intermediate and peripheral concentric areas of the retina (p<0.05 Student’s t-test). This fact might improve the resistance of the retinal cells against OS and its downstream signalling pathways.
Collapse
Affiliation(s)
- Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Gallego-Pinazo
- Ophthalmology Department of the University and Polytechnic Hospital La Fe, Valencia, Spain
- Ophthalmic Research Unit “Santiago Grisolia” Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolia” Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Blanca Rojas
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | | | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas “Ramón Castroviejo”, Universidad Complutense de Madrid, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
28
|
Smith JA, Park S, Krause JS, Banik NL. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int 2013; 62:764-75. [PMID: 23422879 DOI: 10.1016/j.neuint.2013.02.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 01/19/2023]
Abstract
Oxidative stress has been identified as an important contributor to neurodegeneration associated with acute CNS injuries and diseases such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic stroke. In this review, we briefly detail the damaging effects of oxidative stress (lipid peroxidation, protein oxidation, etc.) with a particular emphasis on DNA damage. Evidence for DNA damage in acute CNS injuries is presented along with its downstream effects on neuronal viability. In particular, unchecked oxidative DNA damage initiates a series of signaling events (e.g. activation of p53 and PARP-1, cell cycle re-activation) which have been shown to promote neuronal loss following CNS injury. These findings suggest that preventing DNA damage might be an effective way to promote neuronal survival and enhance neurological recovery in these conditions. Finally, we identify the telomere and telomere-associated proteins (e.g. telomerase) as novel therapeutic targets in the treatment of neurodegeneration due to their ability to modulate the neuronal response to both oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Joshua A Smith
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas St., Clinical Sciences Building Room 309, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
DNA methylation is an epigenetic mechanism for gene silencing engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to cytosine residues in gene-regulatory regions. It is unknown whether aberrant DNA methylation can cause neurodegeneration. We tested the hypothesis that Dnmts can mediate neuronal cell death. Enforced expression of Dnmt3a induced degeneration of cultured NSC34 cells. During apoptosis of NSC34 cells induced by camptothecin, levels of Dnmt1 and Dnmt3a increased fivefold and twofold, respectively, and 5-methylcytosine accumulated in nuclei. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocked apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with RG108 and procainamide protected cultured neurons from excessive DNA methylation and apoptosis. In vivo, Dnmt1 and Dnmt3a are expressed differentially during mouse brain and spinal cord maturation and in adulthood when Dnmt3a is abundant in synapses and mitochondria. Dnmt1 and Dnmt3a are expressed in motor neurons of adult mouse spinal cord, and, during their apoptosis induced by sciatic nerve avulsion, nuclear and cytoplasmic 5-methylcytosine immunoreactivity, Dnmt3a protein levels and Dnmt enzyme activity increased preapoptotically. Inhibition of Dnmts with RG108 blocked completely the increase in 5-methycytosine and the apoptosis of motor neurons in mice. In human amyotrophic lateral sclerosis (ALS), motor neurons showed changes in Dnmt1, Dnmt3a, and 5-methylcytosine similar to experimental models. Thus, motor neurons can engage epigenetic mechanisms to drive apoptosis, involving Dnmt upregulation and increased DNA methylation. These cellular mechanisms could be relevant to human ALS pathobiology and disease treatment.
Collapse
|
30
|
Jebelli JD, Hooper C, Garden GA, Pocock JM. Emerging roles of p53 in glial cell function in health and disease. Glia 2011; 60:515-25. [PMID: 22105777 DOI: 10.1002/glia.22268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that p53, a tumor suppressor protein primarily involved in cancer biology, coordinates a wide range of novel functions in the CNS including the mediation of pathways underlying neurodegenerative disease pathogenesis. Moreover, an evolving concept in cell and molecular neuroscience is that glial cells are far more fundamental to disease progression than previously thought, which may occur via a noncell-autonomous mechanism that is heavily dependent on p53 activities. As a crucial hub connecting many intracellular control pathways, including cell-cycle control and apoptosis, p53 is ideally placed to coordinate the cellular response to a range of stresses. Although neurodegenerative diseases each display a distinct and diverse molecular pathology, apoptosis is a widespread hallmark feature and the multimodal capacity of the p53 system to orchestrate apoptosis and glial cell behavior highlights p53 as a potential unifying target for therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Joseph D Jebelli
- Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
31
|
Gould TW, Oppenheim RW. Motor neuron trophic factors: therapeutic use in ALS? BRAIN RESEARCH REVIEWS 2011; 67:1-39. [PMID: 20971133 PMCID: PMC3109102 DOI: 10.1016/j.brainresrev.2010.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 10/12/2010] [Accepted: 10/18/2010] [Indexed: 12/12/2022]
Abstract
The modest effects of neurotrophic factor (NTF) treatment on lifespan in both animal models and clinical studies of Amyotropic Lateral Sclerosis (ALS) may result from any one or combination of the four following explanations: 1.) NTFs block cell death in some physiological contexts but not in ALS; 2.) NTFs do not rescue motoneurons (MNs) from death in any physiological context; 3.) NTFs block cell death in ALS but to no avail; and 4.) NTFs are physiologically effective but limited by pharmacokinetic constraints. The object of this review is to critically evaluate the role of both NTFs and the intracellular cell death pathway itself in regulating the survival of spinal and cranial (lower) MNs during development, after injury and in response to disease. Because the role of molecules mediating MN survival has been most clearly resolved by the in vivo analysis of genetically engineered mice, this review will focus on studies of such mice expressing reporter, null or other mutant alleles of NTFs, NTF receptors, cell death or ALS-associated genes.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | |
Collapse
|
32
|
Northington FJ, Chavez-Valdez R, Martin LJ. Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 2011; 69:743-58. [PMID: 21520238 DOI: 10.1002/ana.22419] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of mortality and morbidity in infants and young children. Therapeutic opportunities are very limited for neonatal and pediatric HIE. Specific neural systems and populations of cells are selectively vulnerable in HIE; however, the mechanisms of degeneration are unresolved. These mechanisms involve oxidative stress, excitotoxicity, inflammation, and the activation of several different cell death pathways. Decades ago the structural and mechanistic basis of the cellular degeneration in HIE was thought to be necrosis. Subsequently, largely due to advances in cell biology and to experimental animal studies, emphasis has been switched to apoptosis or autophagy mediated by programmed cell death (PCD) mechanisms as important forms of degeneration in HIE. We have conceptualized based on morphological and biochemical data that this degeneration is better classified according to an apoptosis-necrosis cell death continuum and that programmed cell necrosis has prominent contribution in the neurodegeneration of HIE in animal models. It is likely that neonatal HIE evolves through many cell death chreodes influenced by the dynamic injury landscape. The relevant injury mechanisms remain to be determined in human neonatal HIE, though preliminary work suggests a complexity in the cell death mechanisms greater than that anticipated from experimental animal models. The accurate identification of the various cell death chreodes and their mechanisms unfolding within the immature brain matrix could provide fresh insight for developing meaningful therapies for neonatal and pediatric HIE.
Collapse
Affiliation(s)
- Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
33
|
Chopek JW, Gardiner PF. Life-long caloric restriction: Effect on age-related changes in motoneuron numbers, sizes and apoptotic markers. Mech Ageing Dev 2010; 131:650-9. [DOI: 10.1016/j.mad.2010.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 08/26/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
34
|
Abstract
Deoxyribonucleic acid (DNA) damage has been implicated in ageing and neurodegenerative disorders including Alzheimer's disease (AD) for a few decades. Although it is an established finding, yet there are limited studies on DNA damage. In both nucleus and mitochondria, DNA damage is primarily free radical mediated. It has been proven that mitochondrial DNA is more vulnerable to damage compared to the nuclear DNA. A few studies summarized in this review throw light on the mechanisms of free radical mediated DNA damage and impairment of DNA repair mechanisms in AD. There is a growing need to initiate studies on DNA damage and repair and unravel the molecular underpinnings entailed in the etiopathogenesis of the disease. The outcome of such studies substantiates the corner stone streamlined to employ therapeutic strategies.
Collapse
Affiliation(s)
- M Obulesu
- Department of Biotechnology, Srikrishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | |
Collapse
|
35
|
Xu QG, Forden J, Walsh SK, Gordon T, Midha R. Motoneuron survival after chronic and sequential peripheral nerve injuries in the rat. J Neurosurg 2010; 112:890-9. [PMID: 19764828 DOI: 10.3171/2009.8.jns09812] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECT Surgical repair of peripheral nerves following chronic nerve injury is associated with poor axonal regeneration and outcome. An underlying possibility is that chronic injuries may increase motoneuron cell death. The hypothesis that substantial motoneuron death follows chronic and sequential nerve injuries was tested in adult rats in this study. METHODS Thirty adult male Lewis rats underwent bilateral multistage surgeries. At initial surgery, Fast Blue (FB) tracer was injected at a nerve-crush injury site in the right control femoral motor nerve. The left femoral motor nerve was transected at the same level and either capped to prevent regeneration (Group 1), or repaired to allow axonal regeneration and reinnervation of the target quadriceps muscle (Group 2) (15 rats in each group). After 8 weeks in 6 rats/group, the left femoral nerve was cut and exposed to FB just proximal to prior nerve capping or repair and the rats were evaluated for FB-labeled motoneuron counts bilaterally in the spinal cord (this was considered survival after initial injury). In the remaining 9 animals/group, the left nerve was recut (sequential injury), exposed to FB, and repaired to a fresh distal saphenous nerve stump to permit axonal regeneration. Following another 6 weeks, Fluoro-Gold, a second retrograde tracer, was applied to the cut distal saphenous nerve. This allowed us to evaluate the number of motoneurons that survived (maintained FB labeling) and the number of motoneurons that survived but that also regenerated axons (double labeled with FB and Fluoro-Gold). RESULTS A mean number of 350 and 392 FB-labeled motoneurons were found after 8 weeks of nerve injury on the right and the left sides, respectively. This indicated no significant cell death due to initial nerve injury alone. A similar number (mean 390) of motoneurons were counted at final end point at 14 weeks, indicating no significant cell death after sequential and chronic nerve injury. However, only 50% (mean 180) of the surviving motoneurons were double labeled, indicating that only half of the population regenerated their axons. CONCLUSIONS The hypothesis that significant motoneuron cell death occurs after chronic and or sequential nerve injury was rejected. Despite cell survival, only 50% of motoneurons are capable of exhibiting a regenerative response, consistent with our previous findings of reduced regeneration after chronic axotomy.
Collapse
Affiliation(s)
- Qing-Gui Xu
- Division of Neurosurgery, Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
36
|
Dagci T, Konyalioglu S, Keser A, Kayalioglu G. Effects of Embryonic Neural Stem Cell Transplantation on DNA Damage in the Brain and Spinal Cord Following Spinal Cord Injury. NEUROPHYSIOLOGY+ 2010. [DOI: 10.1007/s11062-010-9120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.
Collapse
|
38
|
Chen K, Northington FJ, Martin LJ. Inducible nitric oxide synthase is present in motor neuron mitochondria and Schwann cells and contributes to disease mechanisms in ALS mice. Brain Struct Funct 2010; 214:219-34. [PMID: 19888600 PMCID: PMC3010349 DOI: 10.1007/s00429-009-0226-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/19/2009] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs). The molecular pathogenesis of ALS is not understood, thus effective therapies for this disease are lacking. Some forms of ALS are inherited by mutations in the superoxide dismutase-1 (SOD1) gene. Transgenic mice expressing human Gly93 --> Ala (G93A) mutant SOD1 (mSOD1) develop severe MN disease, oxidative and nitrative damage, and mitochondrial pathology that appears to involve nitric oxide-mediated mechanisms. We used G93A-mSOD1 mice to test the hypothesis that the degeneration of MNs is associated with an aberrant up-regulation of the inducible form of nitric oxide synthase (iNOS or NOS2) activity within MNs. Western blotting and immunoprecipitation showed that iNOS protein levels in mitochondrial-enriched membrane fractions of spinal cord are increased significantly in mSOD1 mice at pre-symptomatic stages of disease. The catalytic activity of iNOS was also increased significantly in mitochondrial-enriched membrane fractions of mSOD1 mouse spinal cord at pre-symptomatic stages of disease. Reverse transcription-PCR showed that iNOS mRNA was present in the spinal cord and brainstem MN regions in mice and was increased in pre-symptomatic and early symptomatic mice. Immunohistochemistry showed that iNOS immunoreactivty was up-regulated first in spinal cord and brainstem MNs in pre-symptomatic and early symptomatic mice and then later in the course of disease in numerous microglia and few astrocytes. iNOS accumulated in the mitochondria in mSOD1 mouse MNs. iNOS immunoreactivity was also up-regulated in Schwann cells of peripheral nerves and was enriched particularly at the paranodal regions of the nodes of Ranvier. Drug inhibitors of iNOS delayed disease onset and significantly extended the lifespan of G93A-mSOD1 mice. This work identifies two new potential early mechanisms for MN degeneration in mouse ALS involving iNOS at MN mitochondria and Schwann cells and suggests that therapies targeting iNOS might be beneficial in treating human ALS.
Collapse
Affiliation(s)
- Kevin Chen
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MA 21205-2196, USA
| | - Frances J. Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Lee J. Martin
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MA 21205-2196, USA, Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MA, USA, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| |
Collapse
|
39
|
Theophylline treatment improves mitochondrial function after upper cervical spinal cord hemisection. Exp Neurol 2010; 223:523-8. [PMID: 20144890 DOI: 10.1016/j.expneurol.2010.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 01/28/2010] [Accepted: 01/31/2010] [Indexed: 12/12/2022]
Abstract
The importance of mitochondria in spinal cord injury has mainly been attributed to their participation in apoptosis at the site of injury. But another aspect of mitochondrial function is the generation of more than 90% of cellular energy in the form of ATP, mediated by the oxidative phosphorylation (OxPhos) process. Cytochrome c oxidase (CcO) is a central OxPhos component and changes in its activity reflect changes in energy demand. A recent study suggests that respiratory muscle function in chronic obstructive pulmonary disease (COPD) patients is compromised via alterations in mitochondrial function. In an animal model of cervical spinal cord hemisection (C2HS) respiratory dysfunction, we have shown that theophylline improves respiratory function. In the present study, we tested the hypothesis that theophylline improves respiratory function at the cellular level via improved mitochondrial function in the C2HS model. We demonstrate that CcO activity was significantly (33%) increased in the spinal cord adjacent to the site of injury (C3-C5), and that administration of theophylline (20mg/kg 3x daily orally) after C2HS leads to an even more pronounced increase in CcO activity of 62% compared to sham-operated animals. These results are paralleled by a significant increase in cellular ATP levels (51% in the hemidiaphragm ipsilateral to the hemisection). We conclude that C2HS increases energy demand and activates mitochondrial respiration, and that theophylline treatment improves energy levels through activation of the mitochondrial OxPhos process to provide energy for tissue repair and functional recovery after paralysis in the C2HS model.
Collapse
|
40
|
Wang J, Yan L, Zhao X, Wu W, Zhou LH. The diversity of nNOS gene expression in avulsion-injured spinal motoneurons among laboratory rodents. Nitric Oxide 2010; 22:37-42. [DOI: 10.1016/j.niox.2009.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 10/27/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
|
41
|
Martin LJ. The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy. Biochim Biophys Acta Mol Basis Dis 2009; 1802:186-97. [PMID: 19651206 DOI: 10.1016/j.bbadis.2009.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 01/23/2023]
Abstract
Effective therapies are needed for the treatment of amyotrophic lateral sclerosis (ALS), a fatal type of motor neuron disease. Morphological, biochemical, molecular genetic, and cell/animal model studies suggest that mitochondria have potentially diverse roles in neurodegenerative disease mechanisms and neuronal cell death. In human ALS, abnormalities have been found in mitochondrial structure, mitochondrial respiratory chain enzymes, and mitochondrial cell death proteins indicative of some non-classical form of programmed cell death. Mouse models of ALS are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria. This minireview summarizes work on the how malfunctioning mitochondria might contribute to neuronal death in ALS through the biophysical entity called the mitochondrial permeability pore (mPTP). The major protein components of the mPTP are enriched in mouse motor neurons. Early in the course of disease in ALS mice expressing human mutant superoxide dismutase-1, mitochondria in motor neurons undergo trafficking abnormalities and dramatic remodeling resulting in the formation of mega-mitochondria and coinciding with increased protein carbonyl formation and nitration of mPTP components. The genetic deletion of a major mPTP component, cyclophilin D, has robust effects in ALS mice by delaying disease onset and extending survival. Thus, attention should be directed to the mPTP as a rational target for the development of drugs designed to treat ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| |
Collapse
|
42
|
Martin LJ, Gertz B, Pan Y, Price AC, Molkentin JD, Chang Q. The mitochondrial permeability transition pore in motor neurons: involvement in the pathobiology of ALS mice. Exp Neurol 2009; 218:333-46. [PMID: 19272377 PMCID: PMC2710399 DOI: 10.1016/j.expneurol.2009.02.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 12/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons (MNs) that causes paralysis. Some forms of ALS are inherited, caused by mutations in the superoxide dismutase-1 (SOD1) gene. The mechanisms of human mutant SOD1 (mSOD1) toxicity to MNs are unresolved. Mitochondria in MNs might be key sites for ALS pathogenesis, but cause-effect relationships between mSOD1 and mitochondriopathy need further study. We used transgenic mSOD1 mice to test the hypothesis that the mitochondrial permeability transition pore (mPTP) is involved in the MN degeneration of ALS. Components of the multi-protein mPTP are expressed highly in mouse MNs, including the voltage-dependent anion channel, adenine nucleotide translocator (ANT), and cyclophilin D (CyPD), and are present in mitochondria marked by manganese SOD. MNs in pre-symptomatic mSOD1-G93A mice form swollen megamitochondria with CyPD immunoreactivity. Early disease is associated with mitochondrial cristae remodeling and matrix vesiculation in ventral horn neuron dendrites. MN cell bodies accumulate mitochondria derived from the distal axons projecting to skeletal muscle. Incipient disease in spinal cord is associated with increased oxidative and nitrative stress, indicated by protein carbonyls and nitration of CyPD and ANT. Reducing the levels of CyPD by genetic ablation significantly delays disease onset and extends the lifespan of G93A-mSOD1 mice expressing high and low levels of mutant protein in a gender-dependent pattern. These results demonstrate that mitochondria have causal roles in the disease mechanisms in MNs in ALS mice. This work defines a new mitochondrial mechanism for MN degeneration in ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Lam PY, Cadenas E. Compromised proteasome degradation elevates neuronal nitric oxide synthase levels and induces apoptotic cell death. Arch Biochem Biophys 2008; 478:181-6. [PMID: 18706882 DOI: 10.1016/j.abb.2008.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 02/04/2023]
Abstract
The significance of impairment of proteasome activity in PC12 cells was examined in connection with nitrative/nitrosative stress and apoptotic cell death. Treatment of differentiated PC12 cells with MG132, a proteasome inhibitor, elicited a dose- and time-dependent increase in neuronal nitric oxide synthase (nNOS) protein levels, decreased cell viability, and increased cytotoxicity. Viability and cytotoxicity were ameliorated by L-NAME (a broad NOS inhibitor). Nitric oxide/peroxynitrite formation was increased upon treatment of PC12 cells with MG132 and decreased upon treatment with the combination of MG132 and 7-NI (a specific inhibitor of nNOS). The decreases in cell viability appeared to be effected by an activation of JNK and its effect on mitochondrial Bcl-x(L) phosphorylation. These effects are strengthened by the activation of caspase-9 along with increased caspase-3 activity upon treatment of PC12 cells with MG132. These results suggest that impairment of proteasome activity and consequent increases in nNOS levels lead to a nitrative stress that involves the coordinated response of JNK cytosolic signaling and mitochondrion-driven apoptotic pathways.
Collapse
Affiliation(s)
- Philip Y Lam
- Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | | |
Collapse
|
44
|
Hoang TX, Akhavan M, Wu J, Havton LA. Minocycline protects motor but not autonomic neurons after cauda equina injury. Exp Brain Res 2008; 189:71-7. [PMID: 18478214 DOI: 10.1007/s00221-008-1398-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 04/21/2008] [Indexed: 12/22/2022]
Abstract
Conus medullaris/cauda equina injuries typically result in loss of bladder, bowel, and sexual functions, partly as a consequence of autonomic and motor neuron death. To mimic these injuries, we previously developed a rodent lumbosacral ventral root avulsion (VRA) injury model, where both autonomic and motor neurons progressively die over several weeks. Here, we investigate whether minocycline, an antibiotic with putative neuroprotective effects, may rescue degenerating autonomic and motor neurons after VRA injury. Adult female rats underwent lumbosacral VRA injuries followed by a 2-week treatment with either minocycline or vehicle injected intraperitoneally. The sacral segment of the spinal cord was studied immunohistochemically using choline acetyltransferase (ChAT) and activated caspase-3 at 4 weeks post-operatively. Minocycline increased the survival of motoneurons but not preganglionic parasympathetic neurons (PPNs). Further investigations demonstrated that a larger proportion of motoneurons expressed activated caspase-3 compared to PPNs after VRA injury and indicated an association with minocycline's differential neuroprotective effect. Our findings suggest that minocycline may protect degenerating motoneurons and expand the therapeutic window of opportunity for surgical repair of proximal root lesions affecting spinal motoneurons.
Collapse
Affiliation(s)
- Thao X Hoang
- Department of Neurology, David Geffen School of Medicine at UCLA, Neuroscience Research Building, 635 Charles E. Young Drive South, Los Angeles, CA 90095-7334, USA
| | | | | | | |
Collapse
|
45
|
Abstract
DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling nonneuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| |
Collapse
|
46
|
Nocentini G, Cuzzocrea S, Genovese T, Bianchini R, Mazzon E, Ronchetti S, Esposito E, Rosanna DP, Bramanti P, Riccardi C. Glucocorticoid-Induced Tumor Necrosis Factor Receptor-Related (GITR)-Fc Fusion Protein Inhibits GITR Triggering and Protects from the Inflammatory Response after Spinal Cord Injury. Mol Pharmacol 2008; 73:1610-21. [DOI: 10.1124/mol.107.044354] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
47
|
Li Y, Ozaki T, Kikuchi H, Yamamoto H, Ohira M, Nakagawara A. A novel HECT-type E3 ubiquitin protein ligase NEDL1 enhances the p53-mediated apoptotic cell death in its catalytic activity-independent manner. Oncogene 2008; 27:3700-9. [PMID: 18223681 DOI: 10.1038/sj.onc.1211032] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
NEDL1 (NEDD4-like ubiquitin protein ligase-1) is a newly identified HECT-type E3 ubiquitin protein ligase highly expressed in favorable neuroblastomas as compared with unfavorable ones. In this study, we found that NEDL1 cooperates with p53 to induce apoptosis. During cisplatin (CDDP)-mediated apoptosis in neuroblastoma SH-SY5Y cells, p53 was induced to accumulate in association with an increase in expression levels of NEDL1. Enforced expression of NEDL1 resulted in a decrease in number of G418-resistant colonies in SH-SY5Y and U2OS cells bearing wild-type p53, whereas NEDL1 had undetectable effect on p53-deficient H1299 and SAOS-2 cells. Similarly, enforced expression of NEDL1 increased number of U2OS cells with sub-G1 DNA content. Co-immunoprecipitation and in vitro binding assays revealed that NEDL1 binds to the COOH-terminal region of p53. Luciferase reporter assay showed that NEDL1 has an ability to enhance the transcriptional activity of p53. Small interfering RNA-mediated knockdown of the endogenous NEDL1 conferred the resistance of U2OS cells to adriamycin. It is noteworthy that NEDL1 enhanced pro-apoptotic activity of p53 in its catalytic activity-independent manner. Taken together, our present findings suggest that functional interaction of NEDL1 with p53 might contribute to the induction of apoptosis in cancerous cells bearing wild-type p53.
Collapse
Affiliation(s)
- Y Li
- Division of Biochemistry, Chiba Cancer Center Research Institute, Nitona, Chuou-Ku, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Adult Olfactory Bulb Neural Precursor Cell Grafts Provide Temporary Protection From Motor Neuron Degeneration, Improve Motor Function, and Extend Survival in Amyotrophic Lateral Sclerosis Mice. J Neuropathol Exp Neurol 2007; 66:1002-18. [DOI: 10.1097/nen.0b013e318158822b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Park OH, Lee KJ, Rhyu IJ, Geum D, Kim H, Buss R, Oppenheim RW, Sun W. Bax-dependent and -independent death of motoneurons after facial nerve injury in adult mice. Eur J Neurosci 2007; 26:1421-32. [PMID: 17822434 DOI: 10.1111/j.1460-9568.2007.05787.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nerve injury-induced neuronal death may occur after accidental trauma or nerve inflammation. Although the response to facial root avulsion has been examined in rodent models, there are conflicting results as to whether motoneuron (MN) death is mediated by apoptosis or necrosis. We examined the response of MNs and proximal nerves after facial nerve avulsion in adult mice. Following facial nerve avulsion in 4-5-week-old mice, we observed a progressive reduction of MNs such that by 4 weeks less than 10% of avulsed MNs remained compared with the control side. The profile of MN degeneration was distinct from axotomy-induced responses. For example, the onset of MN death was more rapid, and the extent of MN loss was greater compared with axotomy. Furthermore, the degeneration of oligodendrocytes and the activation of microglia were increased in the proximal nerve after avulsion. Ultrastructural observations suggested that root avulsion mainly induces non-apoptotic neuronal death, although a small subset of neurons appeared to die via apoptosis. To evaluate the contribution of apoptotic death, we evaluated MN responses in Bax-knockout (KO) mice in which neurons are rescued from apoptotic death. Surprisingly, although the majority of Bax-KO mice exhibited only a moderate MN loss after avulsion, a subset of Bax-KO mice (25%) exhibited extensive MN death and injury-induced changes in the nerve that were indistinguishable from events in wild-type littermates. These results suggest that both Bax-dependent and -independent forms of cell death are evoked by root avulsion, and that programmed cell death may be involved in triggering a robust necrotic response.
Collapse
Affiliation(s)
- Ok-hee Park
- Department of Anatomy, College of Medicine, Korea University, 126-1 Anam-Dong, Sungbuk-Gu, Seoul, Korea 136-705
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Martin LJ. Transgenic mice with human mutant genes causing Parkinson's disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration. Rev Neurosci 2007; 18:115-36. [PMID: 17593875 DOI: 10.1515/revneuro.2007.18.2.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A variety of gene mutations can cause familial forms of Parkinson's disease (PD) or amyotrophic lateral sclerosis (ALS). Mutations in the synaptic protein alpha-synuclein (alpha-Syn) cause PD. Mutations in the antioxidant enzyme superoxide dismutase-1 (SOD1) cause ALS. The mechanisms of human mutant a-Syn and SOD1 toxicity to neurons are not known. Transgenic (tg) mice expressing human mutant alpha-Syn or SOD1 develop profound fatal neurologic disease characterized by progressive motor deficits, paralysis, and neurodegeneration. Ala-53-->Thr (A53T)-mutant alpha-Syn and Gly-93-->Ala (G93A)-mutant SOD1 tg mice develop prominent mitochondrial abnormalities. Interestingly, although nigral neurons in A53T mice are relatively preserved, spinal motor neurons (MNs) undergo profound degeneration. In A53T mice, mitochondria degenerate in neurons, and complex IV activity is reduced. Furthermore, mitochondria in neurons develop DNA breaks and have p53 targeted to the outer membrane. Nitrated a-Syn accumulates in degenerating MNs in A53T mice. mSOD1 mouse MNs accumulate mitochondria from the axon terminals and generate higher levels of reactive oxygen/nitrogen species than MNs in control mice. mSOD1 mouse MNs accumulate DNA single-strand breaks prior to double-strand breaks occurring in nuclear and mitochondrial DNA. Nitrated and aggregated cytochrome c oxidase subunit-I and nitrated SOD2 accumulate in mSOD1 mouse spinal cord. Mitochondria in mSOD1 mouse MNs accumulate NADPH diaphorase and inducible NOS (iNOS)-like immunoreactivity, and iNOS gene deletion significantly extends the lifespan of G93A-mSOD1 mice. Mitochondrial changes develop long before symptoms emerge. These experiments reveal that mitochondrial nitrative stress and perturbations in mitochondrial trafficking may be antecedents of neuronal cell death in animal models of PD and ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Department of Neuroscience, Johns Hopkins University School ofMedicine, Baltimore, MD 21205-2196, USA.
| |
Collapse
|