1
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Ye Q, Zhang Y, Zhang Y, Chen Z, Yu C, Zheng C, Yu H, Zhou D, Li X. Low VGF is associated with executive dysfunction in patients with major depressive disorder. J Psychiatr Res 2022; 152:182-186. [PMID: 35738161 DOI: 10.1016/j.jpsychires.2022.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Executive dysfunction is considered to be one of the cognitive impairment dimensions that are easily observed in depression, but its underlying molecular mechanism is still unclear. Study have shown that the neuropeptide VGF (non-acronymic) plays an important role in the regulation of hippocampal neurogenesis and neuroplasticity. Previous studies have shown that VGF may be related to the psychopathology of depression and cognitive impairment. However, the correlation between VGF and executive dysfunction in MDD has not been investigated. METHODS A total of 35 MDD patients and 31 healthy control patients were enrolled in this study. The 17-item Hamilton Depression Rating Scale (HDRS) was used to measure the severity of depression, and the Wisconsin Card Sorting Test (WCST) was used to assess executive dysfunction. Double antibody sandwich enzyme-linked immunosorbent assay (ELISA) was used to determine serum VGF in peripheral blood. RESULTS The level of serum VGF in MDD patients was significantly lower compared to that in the healthy control group (p < 0.001). Moreover, Response Administered (RA) scores, Response preservative errors (RPE), and Non-response preservative errors (NRPE) were all higher in the MDD group (all p < 0.05). In contrast, Categories Completed (CC) and Response Correct (RC) scores were lower (all p < 0.05). Further results showed a significant correlation between serum VGF with RA (r = -0.372, p = 0.028) and RPE scores (r = 0.507, p = 0.002) in patients with depression, while serum VGF showed no correlation with the severity of depression in either group. CONCLUSIONS VGF may play an important role in executive function dysfunction in MDD patients, and VGF levels may become a new marker for predicting executive function dysfunction in depression.
Collapse
Affiliation(s)
- Qianwen Ye
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Yuanyuan Zhang
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Yan Zhang
- The Second People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Zan Chen
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Chang Yu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Chao Zheng
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China
| | - Haihang Yu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China.
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China.
| | - Xingxing Li
- Ningbo Kangning Hospital, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
3
|
Yeltekin AÇ, Ucar A, Parlak V, Özgeriş FB, Türkez H, Esenbuğa N, Atamanalp M, Alak G. Borax exerts protective effect against ferrocene-induced neurotoxicity in Oncorhynchus mykiss. J Trace Elem Med Biol 2022; 72:126996. [PMID: 35569284 DOI: 10.1016/j.jtemb.2022.126996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, therapeutic targets and the development of new drugs have shifted research towards inflammatory and oxidative stress pathways. Ferrocene (FcH) is a stable, small molecule that exhibits immunostimulatory and anti-tumor properties by a different mechanism and is effective at low doses in oral administration. However, it was surprising that there has been no performed investigation using FcH on aquaculture. On the other hand, recent papers reveal the key biological functions and health benefits due to daily boron intake in animals and humans. Therefore, we investigated the neurotoxic damage potential of FcH and its related neurotoxicity action mechanism in aquatic environments. In addition, the protective potential of borax (BX, or sodium borate) were evaluated againt in vivo neurotoxicity by FcH. METHODS Neurotoxicity assessment was performed in rainbow trout brain tissue, acutely under semi-static conditions via determining a vide range of parameters including catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) activities as well as glutathione (GSH), myeloperoxidase (MPO), glutathione (GSH), malondialdehyde (MDA levels), DNA damage (8-OHdG), apoptosis (caspase 3), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), nuclear factor erythroid-2 (Nrf-2), acetylcholinesterase (AChE) and brain-derived neurotrophic factor (BDNF) levels. In addition, the LC50 96 h level of FcH was determined for the first time in rainbow trout in this study. RESULTS In the obtained results, while FcH caused inhibition in enzyme activities, it showed an inducing effect on MDA, MPO, BDNF, Nrf2, TNF-α and IL-6 levels. It was determined that this oxidative damage related alterations were significantly different (p < 0.05) in comparison between FcH treated and controls. Again, the LC50 96 h value in rainbow trout was determined as 11.73 mg/L, which is approximately 5% less than the value given for freshwater fish (12.3 mg/L). On the contrary, it was observed that BX has a mitigating effect on FcH-induced neurotoxicity. CONCLUSION The present study suggests that borax may be useful for preventing or alleviating neurotoxicity induced by environmental contaminants or toxic chemicals.
Collapse
Affiliation(s)
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - Hasan Türkez
- Department of Basic Medical Sciences, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Nurinisa Esenbuğa
- Department of Animal Science, Faculty of Agriculture, Ataturk University, TR-25030 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
4
|
Wang S, Han Q, Wei Z, Wang Y, Xie J, Chen M. Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing the level of acetylcholine. Food Chem Toxicol 2022; 162:112904. [PMID: 35257813 DOI: 10.1016/j.fct.2022.112904] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/13/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
Microplastics pollution has become a growing environmental concern, but its potential neurotoxic effects remain unknown. In this study, we determined the effects of exposure to polystyrene microplastics (micro-PS) on learning and memory, and explored the underlying mechanisms. Kunming mice were orally exposed to 0.01, 0.1, 1 mg/d micro-PS or saline for four weeks. Employing the Morris water maze test, we observed that exposure to micro-PS affected the learning and exploration abilities of mice, and impaired their learning and memory functions. After exposure to micro-PS, the nerve cells in the hippocampus became loose and disordered, and the number of Nissl bodies decreased. Increases in the levels of ROS and MDA, and a decrease in levels of glutathione were found in the brain tissue of the mice exposed to micro-PS. Exposure to micro-PS also induced a reduction in the level of acetylcholine, and inhibited the CREB/BDNF pathway. Importantly, after treatment with the antioxidant, Vitamin E, the learning and memory abilities of the mice were restored, and the release of neurotransmitters rebounded. These results show that micro-PS exposure can affect the learning and memory functions through inducing oxidative stress and decreasing the levels of acetylcholine.
Collapse
Affiliation(s)
- Shuwei Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Jing Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
5
|
Velasco B, Mohamed E, Sato-Bigbee C. Endogenous and exogenous opioid effects on oligodendrocyte biology and developmental brain myelination. Neurotoxicol Teratol 2021; 86:107002. [PMID: 34126203 DOI: 10.1016/j.ntt.2021.107002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
The elevated presence of opioid receptors and their ligands throughout the developing brain points to the existence of maturational functions of the endogenous opioid system that still remain poorly understood. The alarmingly increasing rates of opioid use and abuse underscore the urgent need for clear identification of those functions and the cellular bases and molecular mechanisms underlying their physiological roles under normal and pathological conditions. This review is focused on current knowledge on the direct and indirect regulatory roles that opioids may have on oligodendrocyte development and their generation of myelin, a complex insulating membrane that not only facilitates rapid impulse conduction but also participates in mechanisms of brain plasticity and adaptation. Information is examined in relation to the importance of endogenous opioid function, as well as direct and indirect effects of opioid analogues, which like methadone and buprenorphine are used in medication-assisted therapies for opioid addiction during pregnancy and pharmacotherapy in neonatal abstinence syndrome. Potential opioid effects are also discussed regarding late myelination of the brain prefrontal cortex in adolescents and young adults. Such knowledge is fundamental for the design of safer pharmacological interventions for opioid abuse, minimizing deleterious effects in the developing nervous system.
Collapse
Affiliation(s)
- Brandon Velasco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
6
|
Hammad AM, Swiss GMS, Hall FS, Hikmat S, Sari Y, Al-Qirim TM, Amawi HA. Ceftriaxone Reduces Waterpipe Tobacco Smoke Withdrawal-induced Anxiety in rats via Modulating the Expression of TNF-α/NFĸB, Nrf2, and GLT-1. Neuroscience 2021; 463:128-142. [PMID: 33836247 DOI: 10.1016/j.neuroscience.2021.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/01/2023]
Abstract
Tobacco exposure has been linked to neuroinflammation and adaptive/maladaptive changes in neurotransmitter systems, including in glutamatergic systems. We examined the effects of waterpipe tobacco smoke (WTS) on inflammatory mediators and astroglial glutamate transporters in mesocorticolimbic brain regions including the prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). The behavioral consequences of WTS exposure on withdrawal-induced anxiety-like behavior were assessed using elevated plus maze (EPM) and open field (OF) tests. Male Sprague-Dawley rats were randomly assigned to 3 experimental groups: a control group exposed only to standard room air, a WTS exposed group treated with saline vehicle, and a WTS exposed group treated with ceftriaxone. WTS exposure was performed for 2 h/day, 5 days/week, for 4 weeks. Behavioral tests (EPM and OF) were conducted weekly 24 h after WTS exposure, during acute withdrawal. During week 4, rats were given either saline or ceftriaxone (200 mg/kg i.p.) 30 min before WTS exposure. WTS increased withdrawal-induced anxiety, and ceftriaxone attenuated this effect. WTS exposure increased the relative mRNA levels for nuclear factor ĸB (NFĸB), tumor necrosis factor-α (TNF-α), and brain-derived neurotrophic factor (BDNF) in the PFC, NAc and VTA, and ceftriaxone treatment reversed these effects. In addition, WTS decreased the relative mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2), glutamate transporter 1 (GLT-1) and cystine-glutamate transporter (xCT) in PFC, NAc and VTA, and ceftriaxone treatment normalized their expression. WTS caused neuroinflammation, alteration in relative mRNA glutamate transport expression, and increased anxiety-like behavior, and these effects were attenuated by ceftriaxone treatment.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Ghadeer M S Swiss
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suhair Hikmat
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - T M Al-Qirim
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - H A Amawi
- Faculty of Pharmacy, Yarmouk University, Irbid 21110, Jordan
| |
Collapse
|
7
|
Mohamed E, Paisley CE, Meyer LC, Bigbee JW, Sato-Bigbee C. Endogenous opioid peptides and brain development: Endomorphin-1 and Nociceptin play a sex-specific role in the control of oligodendrocyte maturation and brain myelination. Glia 2020; 68:1513-1530. [PMID: 32065429 PMCID: PMC11006003 DOI: 10.1002/glia.23799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
The generation of fully functional oligodendrocytes, the myelinating cells of the central nervous system, is preceded by a complex maturational process. We previously showed that the timing of oligodendrocyte differentiation and rat brain myelination were altered by perinatal exposure to buprenorphine and methadone, opioid analogs used for the management of pregnant addicts. Those observations suggested the involvement of the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOR). However, it remained to be determined if these receptors and their endogenous ligands could indeed control the timing of myelination under normal physiological conditions of brain development. We now found that the endogenous MOR ligand endomorphin-1 (EM-1) exerts a striking stimulatory action on cellular and morphological maturation of rat pre-oligodendrocytes, but unexpectedly, these effects appear to be restricted to the cells from the female pups. Critically, this stimulation is abolished by coincubation with the endogenous NOR ligand nociceptin. Furthermore, NOR antagonist treatment of 9-day-old female pups results in accelerated brain myelination. Interestingly, the lack of sex-dependent differences in developmental brain levels of EM-1 and nociceptin, or oligodendroglial expression of MOR and NOR, suggests that the observed sex-specific responses may be highly dependent on important intrinsic differences between the male and female oligodendrocytes. The discovery of a significant effect of EM-1 and nociceptin in the developing female oligodendrocytes and brain myelination, underscores the need for further studies investigating brain sex-related differences and their implications in opioid use and abuse, pain control, and susceptibility and remyelinating capacity in demyelinating disease as multiple sclerosis.
Collapse
Affiliation(s)
- Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Caitlin E Paisley
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Logan C Meyer
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
8
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
9
|
Park JY, Chae S, Kim CS, Kim YJ, Yi HJ, Han E, Joo Y, Hong S, Yun JW, Kim H, Shin KH. Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:427-448. [PMID: 31680765 PMCID: PMC6819898 DOI: 10.4196/kjpp.2019.23.6.427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying K+ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.
Collapse
Affiliation(s)
- Jong Yung Park
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Suji Chae
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Chang Seop Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Yoon Jae Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyun Joo Yi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Eunjoo Han
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Youngshin Joo
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Surim Hong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Jae Won Yun
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyojung Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
10
|
Lejri I, Agapouda A, Grimm A, Eckert A. Mitochondria- and Oxidative Stress-Targeting Substances in Cognitive Decline-Related Disorders: From Molecular Mechanisms to Clinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9695412. [PMID: 31214285 PMCID: PMC6535827 DOI: 10.1155/2019/9695412] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting people mainly in their sixth decade of life and at a higher age. It is an extensively studied neurodegenerative disorder yet incurable to date. While its main postmortem brain hallmarks are the presence of amyloid-β plaques and hyperphosphorylated tau tangles, the onset of the disease seems to be largely correlated to mitochondrial dysfunction, an early event in the disease pathogenesis. AD is characterized by flawed energy metabolism in the brain and excessive oxidative stress, processes that involve less adenosine triphosphate (ATP) and more reactive oxygen species (ROS) production respectively. Mitochondria are at the center of both these processes as they are responsible for energy and ROS generation through mainly oxidative phosphorylation. Standardized Ginkgo biloba extract (GBE), resveratrol, and phytoestrogens as well as the neurosteroid allopregnanolone have shown not only some mitochondria-modulating properties but also significant antioxidant potential in in vitro and in vivo studies. According to our review of the literature, GBE, resveratrol, allopregnanolone, and phytoestrogens showed promising effects on mitochondria in a descending evidence order and, notably, this order pattern is in line with the existing clinical evidence level for each entity. In this review, the effects of these four entities are discussed with special focus on their mitochondria-modulating effects and their mitochondria-improving and antioxidant properties across the spectrum of cognitive decline-related disorders. Evidence from preclinical and clinical studies on their mechanisms of action are summarized and highlighted.
Collapse
Affiliation(s)
- Imane Lejri
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Anastasia Agapouda
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Amandine Grimm
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Anne Eckert
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
11
|
Abstract
Nociceptin/orphanin FQ (N/OFQ) is an endogenous neuropeptide of 17 amino acids, related to opioid peptides but with its own receptor, distinct from conventional opioid receptors, the ORL1 or NOP receptor. The NOP receptor is a G protein-coupled receptor which activates Gi/o proteins and thus induces an inhibition of neuronal activity. The peptide and its receptor are widely expressed in the central nervous system with a high density of receptors in regions involved in learning and memory. This review describes the consequences of the pharmacological manipulation of the N/OFQ system by NOP receptor ligands on learning processes and on the consolidation of various types of long-term memory. We also discuss the role of endogenous N/OFQ release in the modulation of learning and memory. Finally we propose several putative neuronal mechanisms taking place at the level of the hippocampus and amygdala and possibly underlying the behavioral amnestic or promnesic effects of NOP ligands.
Collapse
Affiliation(s)
- Lionel Moulédous
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
12
|
Abstract
Whilst the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) has similar intracellular coupling mechanisms to opioid receptors, it has distinct modulatory effects on physiological functions such as pain. These actions range from agonistic to antagonistic interactions with classical opioids within the spinal cord and brain, respectively. Understanding the electrophysiological actions of N/OFQ has been crucial in ascertaining the mechanisms by which these agonistic and antagonistic interactions occur. These similarities and differences between N/OFQ and opioids are due to the relative location of NOP versus opioid receptors on specific neuronal elements within these CNS regions. These mechanisms result in varied cellular actions including postsynaptic modulation of ion channels and presynaptic regulation of neurotransmitter release.
Collapse
|
13
|
Javdani M, Ahmadi Dastjerdi M, Shirian S. Effect of Boswellia serrata extract on tissue inflammation and white blood cells responses of spinal cord injury in rat model. JOURNAL OF HERBMED PHARMACOLOGY 2018. [DOI: 10.15171/jhp.2018.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
14
|
Bruna B, Lobos P, Herrera-Molina R, Hidalgo C, Paula-Lima A, Adasme T. The signaling pathways underlying BDNF-induced Nrf2 hippocampal nuclear translocation involve ROS, RyR-Mediated Ca 2+ signals, ERK and PI3K. Biochem Biophys Res Commun 2018; 505:201-207. [PMID: 30243728 DOI: 10.1016/j.bbrc.2018.09.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023]
Abstract
The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) induces complex neuronal signaling cascades that are critical for the cellular changes underlying synaptic plasticity. These pathways include activation of Ca2+ entry via N-methyl-D-aspartate receptors and sequential activation of nitric oxide synthase and NADPH oxidase, which via generation of reactive nitrogen/oxygen species stimulate Ca2+-induced Ca2+ release mediated by Ryanodine Receptor (RyR) channels. These sequential events underlie BDNF-induced spine remodeling and type-2 RyR up-regulation. In addition, BDNF induces the nuclear translocation of the transcription factor Nrf2, a master regulator of antioxidant protein expression that protects cells against the oxidative damage caused by injury and inflammation. To investigate the possible BDNF-induced signaling cascades that mediate Nrf2 nuclear translocation in primary hippocampal cultures, we tested here whether reactive oxygen species, RyR-mediated Ca2+ release, ERK or PI3K contribute to this response. We found that pre-incubation of cultures with inhibitory ryanodine to suppress RyR-mediated Ca2+ release, with the reducing agent N-acetylcysteine or with inhibitors of ERK or PI3K activity, prevented the nuclear translocation of Nrf2 induced by incubation for 6 h with BFNF. Based on these combined results, we propose that the key role played by BDNF as an inducer of neuronal antioxidant responses, characterized by BDNF-induced Nfr2 nuclear translocation, entails crosstalk between reactive oxygen species and RyR-mediated Ca2+ release, and the participation of ERK and PI3K activities.
Collapse
Affiliation(s)
- Bárbara Bruna
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
15
|
Corbière A, Walet-Balieu ML, Chan P, Basille-Dugay M, Hardouin J, Vaudry D. A Peptidomic Approach to Characterize Peptides Involved in Cerebellar Cortex Development Leads to the Identification of the Neurotrophic Effects of Nociceptin. Mol Cell Proteomics 2018; 17:1737-1749. [PMID: 29895708 PMCID: PMC6126386 DOI: 10.1074/mcp.ra117.000184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is a brain structure involved in motor and cognitive functions. The development of the cerebellar cortex (the external part of the cerebellum) is under the control of numerous factors. Among these factors, neuropeptides including PACAP or somatostatin modulate the survival, migration and/or differentiation of cerebellar granule cells. Interestingly, such peptides contributing to cerebellar ontogenesis usually exhibit a specific transient expression profile with a low abundance at birth, a high expression level during the developmental processes, which take place within the first two postnatal weeks in rodents, and a gradual decline toward adulthood. Thus, to identify new peptides transiently expressed in the cerebellum during development, rat cerebella were sampled from birth to adulthood, and analyzed by a semi-quantitative peptidomic approach. A total of 33 peptides were found to be expressed in the cerebellum. Among these 33 peptides, 8 had a clear differential expression pattern during development, 4 of them i.e. cerebellin 2, nociceptin, somatostatin and VGF [353-372], exhibiting a high expression level during the first two postnatal weeks followed by a significative decrease at adulthood. A focus by a genomic approach on nociceptin, confirmed that its precursor mRNA is transiently expressed during the first week of life in granule neurons within the internal granule cell layer of the cerebellum, and showed that the nociceptin receptor is also actively expressed between P8 and P16 by the same neurons. Finally, functional studies revealed a new role for nociceptin, acting as a neurotrophic peptide able to promote the survival and differentiation of developing cerebellar granule neurons.
Collapse
Affiliation(s)
- Auriane Corbière
- From the ‡Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal death and Cell plasticity team, 76000 Rouen, France
| | - Marie-Laure Walet-Balieu
- §Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Philippe Chan
- §Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Magali Basille-Dugay
- From the ‡Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal death and Cell plasticity team, 76000 Rouen, France
| | - Julie Hardouin
- §Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - David Vaudry
- From the ‡Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal death and Cell plasticity team, 76000 Rouen, France;
- §Normandie Univ, UNIROUEN, Rouen Proteomic Platform (PISSARO), Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
- ¶Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), 76000 Rouen, France
| |
Collapse
|
16
|
Neuropeptide VGF Promotes Maturation of Hippocampal Dendrites That Is Reduced by Single Nucleotide Polymorphisms. Int J Mol Sci 2017; 18:ijms18030612. [PMID: 28287464 PMCID: PMC5372628 DOI: 10.3390/ijms18030612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide VGF (non-acronymic) is induced by brain-derived neurotrophic factor and promotes hippocampal neurogenesis, as well as synaptic activity. However, morphological changes induced by VGF have not been elucidated. Developing hippocampal neurons were exposed to VGF through bath application or virus-mediated expression in vitro. VGF-derived peptide, TLQP-62, enhanced dendritic branching, and outgrowth. Furthermore, VGF increased dendritic spine density and the proportion of immature spines. Spine formation was associated with increased synaptic protein expression and co-localization of pre- and postsynaptic markers. Three non-synonymous single nucleotide polymorphisms (SNPs) were selected in human VGF gene. Transfection of N2a cells with plasmids containing these SNPs revealed no relative change in protein expression levels and normal protein size, except for a truncated protein from the premature stop codon, E525X. All three SNPs resulted in a lower proportion of N2a cells bearing neurites relative to wild-type VGF. Furthermore, all three mutations reduced the total length of dendrites in developing hippocampal neurons. Taken together, our results suggest VGF enhances dendritic maturation and that these effects can be altered by common mutations in the VGF gene. The findings may have implications for people suffering from psychiatric disease or other conditions who may have altered VGF levels.
Collapse
|
17
|
Majdinasab N, Siahpush A, Mousavinejad SK, Malayeri A, Sajedi SA, Bizhanzadeh P. Effect of Boswellia serrata on cognitive impairment in multiple sclerosis patients. J Herb Med 2016. [DOI: 10.1016/j.hermed.2016.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Abdanipour A, Schluesener HJ, Tiraihi T, Noori-Zadeh A. Systemic administration of valproic acid stimulates overexpression of microtubule-associated protein 2 in the spinal cord injury model to promote neurite outgrowth. Neurol Res 2014; 37:223-8. [DOI: 10.1179/1743132814y.0000000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
The neuronal activity-driven transcriptome. Mol Neurobiol 2014; 51:1071-88. [PMID: 24935719 DOI: 10.1007/s12035-014-8772-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Activity-driven transcription is a key event associated with long-lasting forms of neuronal plasticity. Despite the efforts to investigate the regulatory mechanisms that control this complex process and the important advances in the knowledge of the function of many activity-induced genes in neurons, as well as the specific contribution of activity-regulated transcription factors, our understanding of how activity-driven transcription operates at the systems biology level is still very limited. This review focuses on the research of neuronal activity-driven transcription from an "omics" perspective. We will discuss the different high-throughput approaches undertaken to characterize the gene programs downstream of specific activity-regulated transcription factors, including CREB, SRF, MeCP2, Fos, Npas4, and others, and the interplay between epigenetic and transcriptional mechanisms underlying neuronal plasticity changes. Although basic questions remain unanswered and important challenges still lie ahead, the refinement of genome-wide techniques for investigating the neuronal transcriptome and epigenome promises great advances.
Collapse
|
20
|
Vallès A, Granic I, De Weerd P, Martens GJM. Molecular correlates of cortical network modulation by long-term sensory experience in the adult rat barrel cortex. Learn Mem 2014; 21:305-10. [PMID: 25171421 PMCID: PMC4024621 DOI: 10.1101/lm.034827.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment up-regulates cortical expression of neuropeptide mRNAs and down-regulates immediate-early gene (IEG) mRNAs specifically in the barrel cortex, and not in other brain regions. The present data suggest a central role of neuropeptides in the fine-tuning of sensory cortical circuits by long-term experience.
Collapse
Affiliation(s)
- Astrid Vallès
- Department of Neurocognition, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands Department of Molecular Animal Physiology, Radboud University, Donders Institute for Brain, Cognition and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Ivica Granic
- Department of Neurocognition, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands Department of Molecular Animal Physiology, Radboud University, Donders Institute for Brain, Cognition and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Peter De Weerd
- Department of Neurocognition, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands Department of Molecular Animal Physiology, Radboud University, Donders Institute for Brain, Cognition and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Radboud University, Donders Institute for Brain, Cognition and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
21
|
Jain P, Bhalla US. Transcription control pathways decode patterned synaptic inputs into diverse mRNA expression profiles. PLoS One 2014; 9:e95154. [PMID: 24787753 PMCID: PMC4006808 DOI: 10.1371/journal.pone.0095154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity requires transcription and translation to establish long-term changes that form the basis for long term memory. Diverse stimuli, such as synaptic activity and growth factors, trigger synthesis of mRNA to regulate changes at the synapse. The palette of possible mRNAs is vast, and a key question is how the cell selects which mRNAs to synthesize. To address this molecular decision-making, we have developed a biochemically detailed model of synaptic-activity triggered mRNA synthesis. We find that there are distinct time-courses and amplitudes of different branches of the mRNA regulatory signaling pathways, which carry out pattern-selective combinatorial decoding of stimulus patterns into distinct mRNA subtypes. Distinct, simultaneously arriving input patterns that impinge on the transcriptional control network interact nonlinearly to generate novel mRNA combinations. Our model combines major regulatory pathways and their interactions connecting synaptic input to mRNA synthesis. We parameterized and validated the model by incorporating data from multiple published experiments. The model replicates outcomes of knockout experiments. We suggest that the pattern-selectivity mechanisms analyzed in this model may act in many cell types to confer the capability to decode temporal patterns into combinatorial mRNA expression.
Collapse
Affiliation(s)
- Pragati Jain
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
22
|
Zhang L, Xie JW, Yang J, Cao YP. Tyrosine phosphatase STEP61negatively regulates amyloid β-mediated ERK/CREB signaling pathways via α7 nicotinic acetylcholine receptors. J Neurosci Res 2013; 91:1581-90. [PMID: 24123152 DOI: 10.1002/jnr.23263] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/13/2013] [Accepted: 06/01/2013] [Indexed: 01/14/2023]
Affiliation(s)
- Lin Zhang
- Department of Neurology; The First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| | - Jing-Wei Xie
- Department of Pathophysiology; China Medical University; Shenyang People's Republic of China
| | - Jing Yang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research; Liaoning Medical College; Jinzhou People's Republic of China
| | - Yun-Peng Cao
- Department of Neurology; The First Affiliated Hospital of China Medical University; Shenyang People's Republic of China
| |
Collapse
|
23
|
Alder J, Kallman S, Palmieri A, Khadim F, Ayer JJ, Kumar S, Tsung K, Grinberg I, Thakker-Varia S. Neuropeptide orphanin FQ inhibits dendritic morphogenesis through activation of RhoA. Dev Neurobiol 2013; 73:769-84. [PMID: 23821558 DOI: 10.1002/dneu.22101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a facilitatory role in neuronal development and promotion of differentiation. Mechanisms that oppose BDNF's stimulatory effects create balance and regulate dendritic growth. However, these mechanisms have not been studied. We have focused our studies on the BDNF-induced neuropeptide OrphaninFQ/ Nociceptin (OFQ); while BDNF is known to enhance synaptic activity, OFQ has opposite effects on activity, learning, and memory. We have now examined whether OFQ provides a balance to the stimulatory effects of BDNF on neuronal differentiation in the hippocampus. Golgi staining in OFQ knockout (KO) mice revealed an increase in primary dendrite length as well as spine density, suggesting that endogenous OFQ inhibits dendritic morphology. We have also used cultured hippocampal neurons to demonstrate that exogenous OFQ has an inhibitory effect on dendritic growth and that the neuropeptide alters the response to BDNF when pre-administered. To determine if BDNF and OFQ act in a feedback loop, we inhibited the actions of the BDNF and OFQ receptors, TrkB and NOP using ANA-12 and NOP KO mice respectively but our data suggest that the two factors do not act in a negative feedback loop. We found that the inhibition of dendritic morphology induced by OFQ is via enhanced RhoA activity. Finally, we have evidence that RhoA activation is required for the inhibitory effects of OFQ on dendritic morphology. Our results reveal basic mechanisms by which neurons not only regulate the formation of proper dendritic growth during development but also control plasticity in the mature nervous system.
Collapse
Affiliation(s)
- Janet Alder
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Beck B, Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev 2013; 71:541-61. [PMID: 23865799 DOI: 10.1111/nure.12045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hippocampus is a brain region of primary importance for neurogenesis, which occurs during early developmental states as well as during adulthood. Increases in neuronal proliferation and in neuronal death with age have been associated with drastic changes in memory and learning. Numerous neurotransmitters are involved in these processes, and some neuropeptides that mediate neurogenesis also modulate feeding behavior. Concomitantly, feeding peptides, which act primarily in the hypothalamus, are also present in the hippocampus. This review aims to ascertain the role of several important feeding peptides in cognitive functions, either through their local synthesis in the hippocampus or through their actions via specific receptors in the hippocampus. A link between neurogenesis and the orexigenic or anorexigenic properties of feeding peptides is discussed.
Collapse
Affiliation(s)
- Bernard Beck
- INSERM U954, Nutrition, Génétique et Expositions aux Risques Environnementaux, Faculté de Médecine, Vandœuvre, France.
| | | |
Collapse
|
25
|
Abstract
It has been suggested that long-term modifications of synaptic transmission constitute the foundation of the processes by which information is stored in the central nervous system. A group of proteins called neurotrophins are considered powerful molecular mediators in central synaptic plasticity. Among these, brain-derived neurotrophic factor (BDNF) as well as neurotrophin-3 (NT-3) have emerged as having key roles in the neurobiological mechanisms related to learning and memory. In this chapter, we review the studies that have represented a significant step forward in understanding the role played by BDNF and NT-3 in long-term synaptic plasticity. The effects of BDNF and NT-3 on synaptic plasticity can be of a permissive nature, establishing the conditions under which plastic changes can take place, or it may be instructive, directly modifying the communication and morphology of synapses. The actions carried out by BDNF include its capacity to contribute to the stabilization and maturation of already-existing synapses, as well as to generate new synaptic contacts. One important finding that highlights the participation of these neurotrophins in synaptic plasticity is the observation that adding BDNF or NT-3 gives rise to drastic long-term increases in synaptic transmission, similar to the long-term potentiation in the hippocampus and neocortex of mammals. Because neurotrophins modulate both the electrical properties and the structural organization of the synapse, these proteins have been considered important biological markers of learning and memory processes.
Collapse
Affiliation(s)
- Andrea Gómez-Palacio-Schjetnan
- División de Investigación y Estudios de Posgrado, Facultad de Psicologia, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico
| | | |
Collapse
|
26
|
Bitner RS, Markosyan S, Nikkel AL, Brioni JD. In-vivo histamine H3 receptor antagonism activates cellular signaling suggestive of symptomatic and disease modifying efficacy in Alzheimer’s disease. Neuropharmacology 2011; 60:460-6. [DOI: 10.1016/j.neuropharm.2010.10.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
|
27
|
Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation. Proc Natl Acad Sci U S A 2011; 108:3029-34. [PMID: 21282625 DOI: 10.1073/pnas.1013580108] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB receptors, BDNF initiates complex signaling pathways that modify synaptic structure and function. Here, we show that BDNF-induced remodeling of hippocampal dendritic spines required functional RyR. Additionally, incubation with BDNF enhanced the expression of RyR2, RyR3, and PKMζ, an atypical protein kinase C isoform with key roles in hippocampal memory consolidation. Consistent with their increased RyR protein content, BDNF-treated neurons generated larger RyR-mediated calcium signals than controls. Selective inhibition of RyR-mediated calcium release with inhibitory ryanodine concentrations prevented the PKMζ, RyR2, and RyR3 protein content enhancement induced by BDNF. Intrahippocampal injection of BDNF or training rats in a spatial memory task enhanced PKMζ, RyR2, RyR3, and BDNF hippocampal protein content, while injection of ryanodine at concentrations that stimulate RyR-mediated calcium release improved spatial memory learning and enhanced memory consolidation. We propose that RyR-generated calcium signals are key features of the complex neuronal plasticity processes induced by BDNF, which include increased expression of RyR2, RyR3, and PKMζ and the spine remodeling required for spatial memory formation.
Collapse
|
28
|
Cazzin C, Mion S, Caldara F, Rimland JM, Domenici E. Microarray analysis of cultured rat hippocampal neurons treated with brain derived neurotrophic factor. Mol Biol Rep 2010; 38:983-90. [PMID: 20535563 DOI: 10.1007/s11033-010-0193-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/21/2010] [Indexed: 01/06/2023]
Abstract
Brain derived neurotrophic factor (BDNF) has been shown to exert multiple actions on neurons. It plays a role in neuronal growth and maintenance and use-dependent plasticity, such as long-term potentiation and learning. This neurotrophin is believed to regulate neuronal plasticity by modifying neuronal excitability and morphology. There is experimental evidence for both an acute and a long-term effect of BDNF on synaptic transmission and structure but the molecular mechanisms underlying these events have not been completely clarified. In order to study the BDNF-induced molecular changes, the set of genes modulated in cultured hippocampal neurons by BDNF treatment was investigated after subchronic treatment with the neurotrophin. Microarray analysis performed with these cells, revealed increased expression of mRNA encoding the neuropeptides neuropeptide Y and somatostatin, and of the secreted peptide VGF (non acronymic), all of which participate in neurotransmission. In addition, the expression of genes apolipoprotein E (ApoE), delta-6 fatty acid desaturase (Fads2) and matrix metalloproteinase 14 (Mmp14), which play a role in neuronal remodelling, was also enhanced. More studies are needed to investigate and confirm the role of these genes in synaptic plasticity, but the results reported in this paper show that microarray analysis of hippocampal cultures can be used to expand our current knowledge of the molecular events triggered by BDNF in the hippocampus.
Collapse
Affiliation(s)
- Chiara Cazzin
- Neuroscience Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Center, via Fleming, 4, 37135, Verona, Italy.
| | | | | | | | | |
Collapse
|
29
|
Bitner RS, Bunnelle WH, Decker MW, Drescher KU, Kohlhaas KL, Markosyan S, Marsh KC, Nikkel AL, Browman K, Radek R, Anderson DJ, Buccafusco J, Gopalakrishnan M. In Vivo Pharmacological Characterization of a Novel Selective α7 Neuronal Nicotinic Acetylcholine Receptor Agonist ABT-107: Preclinical Considerations in Alzheimer's Disease. J Pharmacol Exp Ther 2010; 334:875-86. [DOI: 10.1124/jpet.110.167213] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
30
|
Pegoraro S, Broccard FD, Ruaro ME, Bianchini D, Avossa D, Pastore G, Bisson G, Altafini C, Torre V. Sequential steps underlying neuronal plasticity induced by a transient exposure to gabazine. J Cell Physiol 2010; 222:713-28. [PMID: 20027606 DOI: 10.1002/jcp.21998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Periods of intense electrical activity can initiate neuronal plasticity leading to long lasting changes of network properties. By combining multielectrode extracellular recordings with DNA microarrays, we have investigated in rat hippocampal cultures the temporal sequence of events of neuronal plasticity triggered by a transient exposure to the GABA(A) receptor antagonist gabazine (GabT). GabT induced a synchronous bursting pattern of activity. The analysis of electrical activity identified three main phases during neuronal plasticity induced by GabT: (i) immediately after termination of GabT, an early synchronization (E-Sync) of the spontaneous electrical activity appears that progressively decay after 3-6 h. E-Sync is abolished by inhibitors of the ERK1/2 pathway but not by inhibitors of gene transcription; (ii) the evoked response (induced by a single pulse of extracellular electrical stimulation) was maximally potentiated 3-10 h after GabT (M-LTP); and (iii) at 24 h the spontaneous electrical activity became more synchronous (L-Sync). The genome-wide analysis identified three clusters of genes: (i) an early rise of transcription factors (Cluster 1), primarily composed by members of the EGR and Nr4a families, maximally up-regulated 1.5 h after GabT; (ii) a successive up-regulation of some hundred genes, many of which known to be involved in LTP (Cluster 2), 3 h after GabT likely underlying M-LTP. Moreover, in Cluster 2 several genes coding for K(+) channels are down-regulated at 24 h. (iii) Genes in Cluster 3 are up-regulated at 24 h and are involved in cellular homeostasis. This approach allows relating different steps of neuronal plasticity to specific transcriptional profiles.
Collapse
Affiliation(s)
- Silvia Pegoraro
- International School for Advanced Studies, Area Science Park, Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Aid-Pavlidis T, Pavlidis P, Timmusk T. Meta-coexpression conservation analysis of microarray data: a "subset" approach provides insight into brain-derived neurotrophic factor regulation. BMC Genomics 2009; 10:420. [PMID: 19737418 PMCID: PMC2748098 DOI: 10.1186/1471-2164-10-420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 09/08/2009] [Indexed: 11/26/2022] Open
Abstract
Background Alterations in brain-derived neurotrophic factor (BDNF) gene expression contribute to serious pathologies such as depression, epilepsy, cancer, Alzheimer's, Huntington and Parkinson's disease. Therefore, exploring the mechanisms of BDNF regulation represents a great clinical importance. Studying BDNF expression remains difficult due to its multiple neural activity-dependent and tissue-specific promoters. Thus, microarray data could provide insight into the regulation of this complex gene. Conventional microarray co-expression analysis is usually carried out by merging the datasets or by confirming the re-occurrence of significant correlations across datasets. However, co-expression patterns can be different under various conditions that are represented by subsets in a dataset. Therefore, assessing co-expression by measuring correlation coefficient across merged samples of a dataset or by merging datasets might not capture all correlation patterns. Results In our study, we performed meta-coexpression analysis of publicly available microarray data using BDNF as a "guide-gene" introducing a "subset" approach. The key steps of the analysis included: dividing datasets into subsets with biologically meaningful sample content (e.g. tissue, gender or disease state subsets); analyzing co-expression with the BDNF gene in each subset separately; and confirming co- expression links across subsets. Finally, we analyzed conservation in co-expression with BDNF between human, mouse and rat, and sought for conserved over-represented TFBSs in BDNF and BDNF-correlated genes. Correlated genes discovered in this study regulate nervous system development, and are associated with various types of cancer and neurological disorders. Also, several transcription factor identified here have been reported to regulate BDNF expression in vitro and in vivo. Conclusion The study demonstrates the potential of the "subset" approach in co-expression conservation analysis for studying the regulation of single genes and proposes novel regulators of BDNF gene expression.
Collapse
Affiliation(s)
- Tamara Aid-Pavlidis
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 19086 Tallinn, Estonia.
| | | | | |
Collapse
|
32
|
Haeger P, Alvarez A, Leal N, Adasme T, Núñez MT, Hidalgo C. Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training. Neurotox Res 2009; 17:238-47. [PMID: 19655216 DOI: 10.1007/s12640-009-9096-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/15/2009] [Accepted: 07/21/2009] [Indexed: 11/29/2022]
Abstract
Iron is essential for crucial neuronal functions but is also highly toxic in excess. Neurons acquire iron through transferrin receptor-mediated endocytosis and via the divalent metal transporter 1 (DMT1). The N-terminus (1A, 1B) and C-terminus (+IRE, -IRE) splice variants of DMT1 originate four protein isoforms, all of which supply iron to cells. Diverse physiological or pathological conditions induce differential DMT1 variant expression, which are cell-type dependent. Hence, it becomes relevant to ascertain if activation of neuronal plasticity processes that require functional N-methyl D: -aspartate (NMDA) receptors, including in vitro stimulation of NMDA receptor-mediated signaling and spatial memory training, selectively modify DMT1 variant expression. Here, we report for the first time that brief (5 min) exposure of primary hippocampal cultures to NMDA (50 muM) increased 24 h later the expression of DMT1-1B and DMT1+IRE, but not of DMT1-IRE mRNA. In contrast, endogenous DMT1 mRNA levels remained unaffected following 6 h incubation with brain-derived nerve factor. NMDA (25-50 muM) also enhanced DMT1 protein expression 24-48 h later; this enhancement was abolished by the transcription inhibitor actinomycin D and by the NMDA receptor antagonist MK-801, implicating NMDA receptors in de novo DMT1 expression. Additionally, spatial memory training enhanced DMT1-1B and DMT1+IRE expression and increased DMT1 protein content in rat hippocampus, where the exon1A variant was not found. These results suggest that NMDA receptor-dependent plasticity processes stimulate expression of the iron transporter DMT1-1B+IRE isoform, which presumably plays a significant role in hippocampal spatial memory formation.
Collapse
Affiliation(s)
- Paola Haeger
- Centro FONDAP de Estudios Moleculares de la Célula, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
33
|
Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J Neuroimmunol 2009; 210:40-51. [DOI: 10.1016/j.jneuroim.2009.02.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 12/14/2022]
|
34
|
Gokce O, Runne H, Kuhn A, Luthi-Carter R. Short-term striatal gene expression responses to brain-derived neurotrophic factor are dependent on MEK and ERK activation. PLoS One 2009; 4:e5292. [PMID: 19390590 PMCID: PMC2669182 DOI: 10.1371/journal.pone.0005292] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/26/2009] [Indexed: 12/25/2022] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) is believed to be an important regulator of striatal neuron survival, differentiation, and plasticity. Moreover, reduction of BDNF delivery to the striatum has been implicated in the pathophysiology of Huntington's disease. Nevertheless, many essential aspects of BDNF responses in striatal neurons remain to be elucidated. Methodology/Principal Findings In this study, we assessed the relative contributions of multipartite intracellular signaling pathways to the short-term induction of striatal gene expression by BDNF. To identify genes regulated by BDNF in these GABAergic cells, we first used DNA microarrays to quantify their transcriptomic responses following 3 h of BDNF exposure. The signal transduction pathways underlying gene induction were subsequently dissected using pharmacological agents and quantitative real-time PCR. Gene expression responses to BDNF were abolished by inhibitors of TrkB (K252a) and calcium (chelator BAPTA-AM and transient receptor potential cation channel [TRPC] antagonist SKF-96365). Interestingly, inhibitors of mitogen-activated protein kinase kinases 1 and 2 (MEK1/2) and extracellular signal-regulated kinase ERK also blocked the BDNF-mediated induction of all tested BDNF-responsive genes. In contrast, inhibitors of nitric oxide synthase (NOS), phosphotidylinositol-3-kinase (PI3K), and CAMK exhibited less prevalent, gene-specific effects on BDNF-induced RNA expression. At the nuclear level, the activation of both Elk-1 and CREB showed MEK dependence. Importantly, MEK-dependent activation of transcription was shown to be required for BDNF-induced striatal neurite outgrowth, providing evidence for its contribution to striatal neuron plasticity. Conclusions These results show that the MEK/ERK pathway is a major mediator of neuronal plasticity and other important BDNF-dependent striatal functions that are fulfilled through the positive regulation of gene expression.
Collapse
Affiliation(s)
- Ozgun Gokce
- Laboratory of Functional Neurogenomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Heike Runne
- Laboratory of Functional Neurogenomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Kuhn
- Laboratory of Functional Neurogenomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ruth Luthi-Carter
- Laboratory of Functional Neurogenomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Santos ARA, Duarte CB. Validation of internal control genes for expression studies: Effects of the neurotrophin BDNF on hippocampal neurons. J Neurosci Res 2008; 86:3684-92. [DOI: 10.1002/jnr.21796] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Hindmarch C, Fry M, Yao ST, Smith PM, Murphy D, Ferguson AV. Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1914-20. [DOI: 10.1152/ajpregu.90560.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have employed microarray technology using Affymetrix 230 2.0 genome chips to initially catalog the transcriptome of the subfornical organ (SFO) under control conditions and to also evaluate the changes (common and differential) in gene expression induced by the challenges of fluid and food deprivation. We have identified a total of 17,293 genes tagged as present in one of our three experimental conditions, transcripts, which were then used as the basis for further filtering and statistical analysis. In total, the expression of 46 genes was changed in the SFO following dehydration compared with control animals (22 upregulated and 24 downregulated), with the largest change being the greater than fivefold increase in brain-derived neurotrophic factor (BDNF) expression, while significant changes in the expression of the calcium-sensing (upregulated) and apelin (downregulated) receptors were also reported. In contrast, food deprivation caused greater than twofold changes in a total of 687 transcripts (222 upregulated and 465 downregulated), including significant reductions in vasopressin, oxytocin, promelanin concentrating hormone, cocaine amphetamine-related transcript (CART), and the endothelin type B receptor, as well as increases in the expression of the GABAB receptor. Of these regulated transcripts, we identified 37 that are commonly regulated by fasting and dehydration, nine that were uniquely regulated by dehydration, and 650 that are uniquely regulated by fasting. We also found five transcripts that were differentially regulated by fasting and dehydration including BDNF and CART. In these studies we have for the first time described the transcriptome of the rat SFO and have in addition identified genes, the expression of which is significantly modified by either water or food deprivation.
Collapse
|
37
|
Thakker-Varia S, Alder J. Neuropeptides in depression: role of VGF. Behav Brain Res 2008; 197:262-78. [PMID: 18983874 DOI: 10.1016/j.bbr.2008.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/05/2008] [Indexed: 12/20/2022]
Abstract
The monoamine hypothesis of depression is increasingly called into question by newer theories that revolve around changes in neuronal plasticity, primarily in the hippocampus, at both the structural and the functional levels. Chronic stress negatively regulates hippocampal function while antidepressants ameliorate the effects of stress on neuronal morphology and activity. Both stress and antidepressants have been shown to affect levels of brain-derived neurotrophic factor (BDNF) whose transcription is dependent on cAMP response element binding protein (CREB). BDNF itself has antidepressant-like actions and can induce transcription of a number of molecules. One class of genes regulated by both BDNF and serotonin (5-HT) are neuropeptides including VGF (non-acryonimic) which has a novel role in depression. Neuropeptides are important modulators of neuronal function but their role in affective disorders is just emerging. Recent studies demonstrate that VGF, which is also a CREB-dependent gene, is upregulated by antidepressant drugs and voluntary exercise and is reduced in animal models of depression. VGF enhances hippocampal synaptic plasticity as well as neurogenesis in the dentate gyrus but the mechanisms of antidepressant-like actions of VGF in behavioral paradigms are not known. We summarize experimental data describing the roles of BDNF, VGF and other neuropeptides in depression and how they may be acting through the generation of new neurons and altered synaptic activity. Understanding the molecular and cellular changes that underlie the actions of neuropeptides and how these adaptations result in antidepressant-like effects will aid in developing drugs that target novel pathways for major depressive disorders.
Collapse
Affiliation(s)
- Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 683 Hoes Lane West, Robert Wood Johnson-School of Public Health 357A, Piscataway, NJ 08854-5635, United States
| | | |
Collapse
|
38
|
Nociceptin-receptor deficiency prevents postherpetic pain without effects on acute herpetic pain in mice. Neuroreport 2008; 19:83-6. [PMID: 18281898 DOI: 10.1097/wnr.0b013e3282f35839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using nociceptin-receptor-deficient mice, we studied the participation of nociceptin in herpetic and postherpetic allodynia in mice. Although nociceptin-receptor deficiency did not affect the development of skin lesions and herpetic allodynia, it prevented postherpetic allodynia. Messenger ribonucleic acid (mRNA) of pronociceptin increased in the dorsal horn of lumbar enlargement on day 6, but not on day 40, after inoculation. No changes were observed in the mRNA of the nociceptin receptor. Inhibition of herpetic allodynia by repeated oral administration of gabapentin (100 mg/kg) alleviated the overexpression of mRNA of pronociceptin, as well as the severity of postherpetic allodynia. These results suggest that the spinal nociceptin system is involved in the transitional process from herpetic allodynia to postherpetic allodynia.
Collapse
|
39
|
Sakoori K, Murphy NP. Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology 2008; 33:877-91. [PMID: 17522627 DOI: 10.1038/sj.npp.1301459] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The opioid peptide nociceptin (orphanin FQ) suppresses drug reward, drug self-administration, and impedes some of the processes believed to underlie the transition to addiction. As virtually all previous studies have used administration of nociceptin receptor agonists to evaluate the role of nociceptin on addiction-like behavior, the current study used a pharmacological (nociceptin receptor antagonist) and genetic (nociceptin receptor knockout mice) approach to elucidate the role of endogenous nociceptin. The nociceptin receptor antagonist UFP-101 induced a modest place preference, and enhanced the conditioned place preference induced by methamphetamine. In agreement with this, nociceptin receptor knockout mice had slightly enhanced methamphetamine and ethanol conditioned place preferences compared to wild-type mice. This effect did not appear to depend on differences in learning ability, as nociceptin receptor knockout mice had slightly weaker-conditioned place aversions to lithium chloride, the kappa-opioid receptor agonist, U50488H, and the general opiate antagonist, naloxone. The development of behavioral sensitization to methamphetamine was lower in nociceptin receptor knockout mice, and attenuated by UFP-101 administration to wild-type mice. Additionally, ethanol consumption and preference in a two-bottle choice test was lower in nociceptin receptor knockout mice, though ethanol-stimulated locomotion was stronger. Whereas the rewarding effect of methamphetamine and ethanol following chronic treatment, as measured by place conditioning, strengthened in wild-type mice, this effect was absent in nociceptin receptor knockout mice. These results suggest that endogenous N/OFQ suppresses basal and drug-stimulated increases in hedonic state, and plays either a permissive or facilitatory role in the development of addiction.
Collapse
Affiliation(s)
- Kazuto Sakoori
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan
| | | |
Collapse
|
40
|
The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 2007; 27:12156-67. [PMID: 17989282 DOI: 10.1523/jneurosci.1898-07.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is upregulated in the hippocampus by antidepressant treatments, and BDNF produces antidepressant-like effects in behavioral models of depression. In our previous work, we identified genes induced by BDNF and defined their specific roles in hippocampal neuronal development and plasticity. To identify genes downstream of BDNF that may play roles in psychiatric disorders, we examined a subset of BDNF-induced genes also regulated by 5-HT (serotonin), which includes the neuropeptide VGF (nonacronymic). To explore the function of VGF in depression, we first investigated the expression of the neuropeptide in animal models of depression. VGF was downregulated in the hippocampus after both the learned helplessness and forced swim test (FST) paradigms. Conversely, VGF infusion in the hippocampus of mice subjected to FST reduced the time spent immobile for up to 6 d, thus demonstrating a novel role for VGF as an antidepressant-like agent. Recent evidence indicates that chronic treatment of rodents with antidepressants increases neurogenesis in the adult dentate gyrus and that neurogenesis is required for the behavioral effects of antidepressants. Our studies using [(3)H]thymidine and bromodeoxyuridine as markers of DNA synthesis indicate that chronic VGF treatment enhances proliferation of hippocampal progenitor cells both in vitro and in vivo with survival up to 21 d. By double immunocytochemical analysis of hippocampal neurons, we demonstrate that VGF increases the number of dividing cells that express neuronal markers in vitro. Thus, VGF may act downstream of BDNF and exert its effects as an antidepressant-like agent by enhancing neurogenesis in the hippocampus.
Collapse
|
41
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
42
|
Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, Li J, Malysz J, Markosyan S, Marsh K, Meyer MD, Nikkel AL, Radek RJ, Robb HM, Timmermann D, Sullivan JP, Gopalakrishnan M. Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci 2007; 27:10578-87. [PMID: 17898229 PMCID: PMC6673141 DOI: 10.1523/jneurosci.2444-07.2007] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel alpha7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat (Ki = 10.8 nM) and human (Ki = 16.7 nM) alpha7 nAChRs, A-582941 enhanced cognitive performance in behavioral assays including the monkey delayed matching-to-sample, rat social recognition, and mouse inhibitory avoidance models that capture domains of working memory, short-term recognition memory, and long-term memory consolidation, respectively. In addition, A-582941 normalized sensory gating deficits induced by the alpha7 nAChR antagonist methyllycaconitine in rats, and in DBA/2 mice that exhibit a natural sensory gating deficit. Examination of signaling pathways known to be involved in cognitive function revealed that alpha7 nAChR agonism increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation in PC12 cells. Furthermore, increases in ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation were observed in mouse cingulate cortex and/or hippocampus after acute A-582941 administration producing plasma concentrations in the range of alpha7 binding affinities and behavioral efficacious doses. The MEK inhibitor SL327 completely blocked alpha7 agonist-evoked ERK1/2 phosphorylation. Our results demonstrate that alpha7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Robert S Bitner
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fantin M, Fischetti C, Trapella C, Morari M. Nocistatin inhibits 5-hydroxytryptamine release in the mouse neocortex via presynaptic Gi/o protein linked pathways. Br J Pharmacol 2007; 152:549-55. [PMID: 17618307 PMCID: PMC2050818 DOI: 10.1038/sj.bjp.0707377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Nocistatin (NST) is a neuropeptide generated from cleavage of the nociceptin/orphanin FQ (N/OFQ) precursor. Evidence has been presented that NST acts as a functional antagonist of N/OFQ, although NST receptor and transduction pathways have not yet been identified. We previously showed that N/OFQ inhibited [(3)H]5-hydroxytryptamine ([(3)H]5-HT) release from mouse cortical synaptosomes via activation of NOP receptors. We now investigate whether NST regulates [(3)H]5-HT release in the same preparation. EXPERIMENTAL APPROACH Mouse and rat cerebrocortical synaptosomes in superfusion, preloaded with [(3)H]5-HT and stimulated with 1 min pulses of 10 mM KCl, were used. KEY RESULTS Bovine NST (b-NST) inhibited the K(+)-induced [(3)H]5-HT release, displaying similar efficacy but lower potency than N/OFQ. b-NST action underwent concentration-dependent and time-dependent desensitization, and was not prevented either by the NOP receptor antagonist [Nphe(1) Arg(14),Lys(15)]N/OFQ(1-13)-NH(2) (UFP-101) or by the non-selective opioid receptor antagonist, naloxone. Contrary to N/OFQ, b-NST reduced [(3)H]5-HT release from synaptosomes obtained from NOP receptor knockout mice. However, both N/OFQ and NST were ineffective in synaptosomes pre-treated with the G(i/o) protein inhibitor, Pertussis toxin. NST-N/OFQ interactions were also investigated. Co-application of maximal concentrations of both peptides did not result in additive effects, whereas pre-application of maximal b-NST concentrations partially attenuated N/OFQ inhibition. CONCLUSIONS AND IMPLICATIONS We conclude that b-NST inhibits [(3)H]5-HT release via activation of G(i/o) protein linked pathways, not involving classical opioid receptors and the NOP receptor. The present data strengthen the view that b-NST is, per se, a biologically active peptide endowed with agonist activity.
Collapse
Affiliation(s)
- M Fantin
- Department of Experimental and Clinical Medicine, Section of Pharmacology, Istituto Nazionale di Neuroscienze, University of Ferrara Ferrara, Italy
| | - C Fischetti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, Istituto Nazionale di Neuroscienze, University of Ferrara Ferrara, Italy
| | - C Trapella
- Department of Pharmaceutical Sciences and Biotechnology CenterUniversity of Ferrara Ferrara, Italy
| | - M Morari
- Department of Experimental and Clinical Medicine, Section of Pharmacology, Istituto Nazionale di Neuroscienze, University of Ferrara Ferrara, Italy
- Author for correspondence:
| |
Collapse
|
44
|
Herradon G, Ezquerra L, Nguyen T, Wang C, Siso A, Franklin B, Dilorenzo L, Rossenfeld J, Alguacil LF, Silos-Santiago I. Changes in BDNF gene expression correlate with rat strain differences in neuropathic pain. Neurosci Lett 2007; 420:273-6. [PMID: 17556103 DOI: 10.1016/j.neulet.2007.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/17/2007] [Accepted: 05/06/2007] [Indexed: 10/23/2022]
Abstract
The Fischer 344 (F344) rat inbred strain differs from the inbred Lewis and the outbred Sprague-Dawley (SD) in the response to different pain stimuli, which has been partially attributed to differences in the endogenous opioid and noradrenergic systems. Since brain-derived neutrophic factor (BDNF) modulates both the endogenous opioid and noradrenergic systems, we have now studied specific changes in BDNF gene expression related to the maintenance of neuropathic pain in the three rat strains. F344 rats were found to be the only strain that completely recovered from neuropathic pain (mechanical allodynia) 28 days after chronic constriction injury (CCI) of the sciatic nerve. Real time RT-PCR studies revealed minimal changes in the expression of BDNF in the spinal cord after CCI despite the strain considered, but marked changes in dorsal root ganglia (DRG) were observed. A significant upregulation of BDNF gene expression was found only in injured DRG of F344 rats, thus correlating with higher resistance to neuropathic pain. The data suggest that BDNF could be involved in strain differences concerning CCI resistance.
Collapse
Affiliation(s)
- Gonzalo Herradon
- Lab. Pharmacology, Universidad San Pablo-CEU, Cta. Boadilla Km. 5300, Boadilla, Madrid 28668, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kemmerling U, Muñoz P, Müller M, Sánchez G, Aylwin ML, Klann E, Carrasco MA, Hidalgo C. Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons. Cell Calcium 2007; 41:491-502. [PMID: 17074386 DOI: 10.1016/j.ceca.2006.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/21/2006] [Accepted: 10/02/2006] [Indexed: 11/20/2022]
Abstract
Hydrogen peroxide, which stimulates ERK phosphorylation and synaptic plasticity in hippocampal neurons, has also been shown to stimulate calcium release in muscle cells by promoting ryanodine receptor redox modification (S-glutathionylation). We report here that exposure of N2a cells or rat hippocampal neurons in culture to 200 microM H2O2 elicited calcium signals, increased ryanodine receptor S-glutathionylation, and enhanced both ERK and CREB phosphorylation. In mouse hippocampal slices, H2O2 (1 microM) also stimulated ERK and CREB phosphorylation. Preincubation with ryanodine (50 microM) largely prevented the effects of H2O2 on calcium signals and ERK/CREB phosphorylation. In N2a cells, the ERK kinase inhibitor U0126 suppressed ERK phosphorylation and abolished the stimulation of CREB phosphorylation produced by H2O2, suggesting that H2O2 enhanced CREB phosphorylation via ERK activation. In N2a cells in calcium-free media, 200 microM H2O2 stimulated ERK and CREB phosphorylation, while preincubation with thapsigargin prevented these enhancements. These combined results strongly suggest that H2O2 promotes ryanodine receptors redox modification; the resulting calcium release signals, by enhancing ERK activity, would increase CREB phosphorylation. We propose that ryanodine receptor stimulation by activity-generated redox species produces calcium release signals that may contribute significantly to hippocampal synaptic plasticity, including plasticity that requires long-lasting ERK-dependent CREB phosphorylation.
Collapse
Affiliation(s)
- Ulrike Kemmerling
- Centro FONDAP de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LRM, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 2007; 53:261-77. [PMID: 17224407 DOI: 10.1016/j.neuron.2006.11.025] [Citation(s) in RCA: 470] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 09/20/2006] [Accepted: 11/27/2006] [Indexed: 12/25/2022]
Abstract
Persistence is the most characteristic attribute of long-term memory (LTM). To understand LTM, we must understand how memory traces persist over time despite the short-lived nature and rapid turnover of their molecular substrates. It is widely accepted that LTM formation is dependent upon hippocampal de novo protein synthesis and Brain-Derived Neurotrophic Factor (BDNF) signaling during or early after acquisition. Here we show that 12 hr after acquisition of a one-trial associative learning task, there is a novel protein synthesis and BDNF-dependent phase in the rat hippocampus that is critical for the persistence of LTM storage. Our findings indicate that a delayed stabilization phase is specifically required for maintenance, but not formation, of the memory trace. We propose that memory formation and memory persistence share some of the same molecular mechanisms and that recurrent rounds of consolidation-like events take place in the hippocampus for maintenance of the memory trace.
Collapse
Affiliation(s)
- Pedro Bekinschtein
- Instituto de Biología Celular y Neurociencias, UBA, Buenos Aires (C1121ABG), Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Hidalgo C, Carrasco MA, Muñoz P, Núñez MT. A role for reactive oxygen/nitrogen species and iron on neuronal synaptic plasticity. Antioxid Redox Signal 2007; 9:245-55. [PMID: 17115937 DOI: 10.1089/ars.2007.9.245] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A great body of experimental evidence collected over many years indicates that calcium has a central role in a variety of neuronal functions. In particular, calcium participates in synaptic plasticity, a neuronal process presumably correlated with cognitive brain functions such as learning and memory. In contrast, only recently, evidence has begun to emerge supporting a physiological role of reactive oxygen (ROS) and nitrogen (RNS) species in synaptic plasticity. This subject will be the central topic of this review. The authors also present recent results showing that, in hippocampal neurons, ROS/RNS, including ROS generated by iron through the Fenton reaction, stimulate ryanodine receptor-mediated calcium release, and how the resulting calcium signals activate the signaling cascades that lead to the transcription of genes known to participate in synaptic plasticity. They discuss the possible participation of ryanodine receptors jointly stimulated by calcium and ROS/RNS in the normal signaling cascades needed for synaptic plasticity, and how too much ROS production may contribute to neurodegeneration via excessive calcium release. In addition, the dual role of iron as a necessary, but potentially toxic, element for normal neuronal function is discussed.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Centro FONDAP de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
48
|
Hidalgo C, Carrasco MA, Muñoz P, Núñez MT. A Role for Reactive Oxygen/Nitrogen Species and Iron on Neuronal Synaptic Plasticity. Antioxid Redox Signal 2006. [DOI: 10.1089/ars.2007.9.ft-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|