1
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Desch S, Schweinhardt P, Seymour B, Flor H, Becker S. Evidence for dopaminergic involvement in endogenous modulation of pain relief. eLife 2023; 12:e81436. [PMID: 36722857 PMCID: PMC9988263 DOI: 10.7554/elife.81436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
Relief of ongoing pain is a potent motivator of behavior, directing actions to escape from or reduce potentially harmful stimuli. Whereas endogenous modulation of pain events is well characterized, relatively little is known about the modulation of pain relief and its corresponding neurochemical basis. Here, we studied pain modulation during a probabilistic relief-seeking task (a 'wheel of fortune' gambling task), in which people actively or passively received reduction of a tonic thermal pain stimulus. We found that relief perception was enhanced by active decisions and unpredictability, and greater in high novelty-seeking trait individuals, consistent with a model in which relief is tuned by its informational content. We then probed the roles of dopaminergic and opioidergic signaling, both of which are implicated in relief processing, by embedding the task in a double-blinded cross-over design with administration of the dopamine precursor levodopa and the opioid receptor antagonist naltrexone. We found that levodopa enhanced each of these information-specific aspects of relief modulation but no significant effects of the opioidergic manipulation. These results show that dopaminergic signaling has a key role in modulating the perception of pain relief to optimize motivation and behavior.
Collapse
Affiliation(s)
- Simon Desch
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Petra Schweinhardt
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of ZurichZurichSwitzerland
| | - Ben Seymour
- Wellcome Centre for Integrative Neuroimaging, John Radcliffe HospitalOxfordUnited Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Susanne Becker
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University DüsseldorfDüsseldorfGermany
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Wang Y, Wu Q, Zhou Q, Chen Y, Lei X, Chen Y, Chen Q. Circulating acyl and des-acyl ghrelin levels in obese adults: a systematic review and meta-analysis. Sci Rep 2022; 12:2679. [PMID: 35177705 PMCID: PMC8854418 DOI: 10.1038/s41598-022-06636-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Ghrelin is the only known orexigenic gut hormone, and its synthesis, secretion and degradation are affected by different metabolic statuses. This meta-analysis aimed to investigate the potential differences in plasma acyl ghrelin (AG) and des-acyl ghrelin (DAG) concentrations between normal weight and obese adults. Systematic literature searches of PubMed, Embase and Web of Science through October 2021 were conducted for articles reporting AG or DAG levels in obesity and normal weight, and 34 studies with 1863 participants who met the eligibility criteria were identified. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to evaluate group differences in circulating AG and DAG levels. Pooled effect size showed significantly lower levels of baseline AG (SMD: - 0.85; 95% CI: - 1.13 to - 0.57; PSMD < 0.001) and DAG (SMD: - 1.06; 95% CI: - 1.43 to - 0.69; PSMD < 0.001) in obese groups compared with healthy controls, and similar results were observed when subgroup analyses were stratified by the assay technique or storage procedure. Postprandial AG levels in obese subjects were significantly lower than those in controls when stratified by different time points (SMD 30 min: - 0.85, 95% CI: - 1.18 to - 0.53, PSMD < 0.001; SMD 60 min: - 1.00, 95% CI: - 1.37 to - 0.63, PSMD < 0.001; SMD 120 min: - 1.21, 95% CI: - 1.59 to - 0.83, PSMD < 0.001). In healthy subjects, a postprandial decline in AG was observed at 120 min (SMD: - 0.42; 95% CI: - 0.77 to - 0.06; PSMD = 0.021) but not in obese subjects (SMD: - 0.28; 95% CI: - 0.60 to 0.03; PSMD = 0.074). The mean change in AG concentration was similar in both the obese and lean health groups at each time point (ΔSMD30min: 0.31, 95% CI: - 0.35 to 0.97, PSMD = 0.359; ΔSMD60min: 0.17, 95% CI: - 0.12 to 0.46, PSMD = 0.246; ΔSMD120min: 0.21, 95% CI: - 0.13 to 0.54, PSMD = 0.224). This meta-analysis strengthens the clinical evidence supporting the following: lower baseline levels of circulating AG and DAG in obese individuals; declines in postprandial circulating AG levels, both for the healthy and obese individuals; a shorter duration of AG suppression in obese subjects after meal intake. These conclusions have significance for follow-up studies to elucidate the role of various ghrelin forms in energy homeostasis.
Collapse
Affiliation(s)
- Yanmei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China.,Ya'an Polytechnic College, No. 130 Yucai Road, Yucheng District, Yaan, 625000, Sichuan, China
| | - Qianxian Wu
- Ya'an Polytechnic College, No. 130 Yucai Road, Yucheng District, Yaan, 625000, Sichuan, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Yuyu Chen
- Halifa Regional Centre for Education, No. 33 Spectacle Lake Dr, Dartmouth, NS, B3B1X7, Canada
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Yiding Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
4
|
Wiss DA, Avena N, Gold M. Food Addiction and Psychosocial Adversity: Biological Embedding, Contextual Factors, and Public Health Implications. Nutrients 2020; 12:E3521. [PMID: 33207612 PMCID: PMC7698089 DOI: 10.3390/nu12113521] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The role of stress, trauma, and adversity particularly early in life has been identified as a contributing factor in both drug and food addictions. While links between traumatic stress and substance use disorders are well documented, the pathways to food addiction and obesity are less established. This review focuses on psychosocial and neurobiological factors that may increase risk for addiction-like behaviors and ultimately increase BMI over the lifespan. Early childhood and adolescent adversity can induce long-lasting alterations in the glucocorticoid and dopamine systems that lead to increased addiction vulnerability later in life. Allostatic load, the hypothalamic-pituitary-adrenal axis, and emerging data on epigenetics in the context of biological embedding are highlighted. A conceptual model for food addiction is proposed, which integrates data on the biological embedding of adversity as well as upstream psychological, social, and environmental factors. Dietary restraint as a feature of disordered eating is discussed as an important contextual factor related to food addiction. Discussion of various public health and policy considerations are based on the concept that improved knowledge of biopsychosocial mechanisms contributing to food addiction may decrease stigma associated with obesity and disordered eating behavior.
Collapse
Affiliation(s)
- David A. Wiss
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Nicole Avena
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Mark Gold
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
5
|
Bellés L, Dimiziani A, Tsartsalis S, Millet P, Herrmann FR, Ginovart N. Dopamine D2/3 Receptor Availabilities and Evoked Dopamine Release in Striatum Differentially Predict Impulsivity and Novelty Preference in Roman High- and Low-Avoidance Rats. Int J Neuropsychopharmacol 2020; 24:239-251. [PMID: 33151278 PMCID: PMC7968620 DOI: 10.1093/ijnp/pyaa084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Impulsivity and novelty preference are both associated with an increased propensity to develop addiction-like behaviors, but their relationship and respective underlying dopamine (DA) underpinnings are not fully elucidated. METHODS We evaluated a large cohort (n = 49) of Roman high- and low-avoidance rats using single photon emission computed tomography to concurrently measure in vivo striatal D2/3 receptor (D2/3R) availability and amphetamine (AMPH)-induced DA release in relation to impulsivity and novelty preference using a within-subject design. To further examine the DA-dependent processes related to these traits, midbrain D2/3-autoreceptor levels were measured using ex vivo autoradiography in the same animals. RESULTS We replicated a robust inverse relationship between impulsivity, as measured with the 5-choice serial reaction time task, and D2/3R availability in ventral striatum and extended this relationship to D2/3R levels measured in dorsal striatum. Novelty preference was positively related to impulsivity and showed inverse associations with D2/3R availability in dorsal striatum and ventral striatum. A high magnitude of AMPH-induced DA release in striatum predicted both impulsivity and novelty preference, perhaps owing to the diminished midbrain D2/3-autoreceptor availability measured in high-impulsive/novelty-preferring Roman high-avoidance animals that may amplify AMPH effect on DA transmission. Mediation analyses revealed that while D2/3R availability and AMPH-induced DA release in striatum are both significant predictors of impulsivity, the effect of striatal D2/3R availability on novelty preference is fully mediated by evoked striatal DA release. CONCLUSIONS Impulsivity and novelty preference are related but mediated by overlapping, yet dissociable, DA-dependent mechanisms in striatum that may interact to promote the emergence of an addiction-prone phenotype.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, University of Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva, Switzerland
| | | | - Stergios Tsartsalis
- Faculty of Medicine, University of Geneva, Switzerland,Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University of Geneva, Switzerland,Faculty of Medicine, University of Geneva, Switzerland,Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - François R Herrmann
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Switzerland
| | - Nathalie Ginovart
- Department of Psychiatry, University of Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva, Switzerland,Correspondence: Nathalie Ginovart, PhD, Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, Room E07-2550A, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland ()
| |
Collapse
|
6
|
The impact of sugar consumption on stress driven, emotional and addictive behaviors. Neurosci Biobehav Rev 2019; 103:178-199. [DOI: 10.1016/j.neubiorev.2019.05.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/14/2019] [Accepted: 05/19/2019] [Indexed: 12/20/2022]
|
7
|
Yohn SE, Galbraith J, Calipari ES, Conn PJ. Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. ACS Chem Neurosci 2019; 10:2125-2143. [PMID: 30933466 PMCID: PMC7898461 DOI: 10.1021/acschemneuro.8b00601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulated data from clinical and preclinical studies suggest that, in drug addiction and states of overeating, such as obesity and binge eating disorder (BED), there is an imbalance in circuits that are critical for motivation, reward saliency, executive function, and self-control. Central to these pathologies and the extensive topic of this Review are the aberrations in dopamine (DA) and glutamate (Glu) within the mesolimbic pathway. Group I metabotropic glutamate receptors (mGlus) are highly expressed in the mesolimbic pathway and are poised in key positions to modulate disruptions in synaptic plasticity and neurotransmitter release observed in drug addiction, obesity, and BED. The use of allosteric modulators of group I mGlus has been studied in drug addiction, as they offer several advantages over traditional orthosteric agents. However, they have yet to be studied in obesity or BED. With the substantial overlap between the neurocircuitry involved in drug addiction and eating disorders, group I mGlus may also provide novel targets for obesity and BED.
Collapse
Affiliation(s)
- Samantha E. Yohn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Jordan Galbraith
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - Erin S. Calipari
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| |
Collapse
|
8
|
Guzzardi MA, Iozzo P. Brain functional imaging in obese and diabetic patients. Acta Diabetol 2019; 56:135-144. [PMID: 29959509 DOI: 10.1007/s00592-018-1185-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022]
Abstract
Obesity and type 2 diabetes are associated with greater risk of brain damage. Over the last decade, functional imaging techniques (functional magnetic resonance imaging, fMRI, positron emission tomography, PET, electroencephalography, magnetoencephalography, near infrared spectroscopy) have been exploited to better characterize behavioral and cognitive processes, by addressing cerebral reactions to a variety of stimuli or tasks, including hormones and substrates (e.g., glucose, insulin, gut peptides), environmental cues (e.g., presentation of sensory stimuli), and cognitive tasks. Among these techniques, fMRI and PET are most commonly used, and this review focuses on results obtained with these techniques in relation to brain substrate metabolism, appetite control and food intake, and cognitive decline in obesity and type 2 diabetes. The available knowledge indicates that there are a series of cerebral abnormalities associating with, or preceding obesity and type 2 diabetes, including impaired substrate handling, insulin resistance, disruption of inter-organ cross-talk and of resting state networking. Some of these abnormalities are reversed by metabolic interventions, suggesting that they are partly a consequence rather than cause of disease. Therefore, causal implications and mechanisms remain to be determined.
Collapse
Affiliation(s)
- Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy.
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
9
|
Ziomber A, Rokita E, Kaszuba-Zwoinska J, Romańska I, Michaluk J, Antkiewicz-Michaluk L. Repeated Transcranial Direct Current Stimulation Induces Behavioral, Metabolic and Neurochemical Effects in Rats on High-Calorie Diet. Front Behav Neurosci 2018; 11:262. [PMID: 29379423 PMCID: PMC5775234 DOI: 10.3389/fnbeh.2017.00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/29/2017] [Indexed: 11/13/2022] Open
Abstract
Due to its high prevalence, obesity is considered an epidemic, which stimulated research on non-invasive methods to reduce excess body fat. Transcranial direct current stimulation (tDCS) is a non-invasive technique used to modulate the activity of cerebral cortex, which has already found increasing interest in medicine as a promising methodology. The aim of this study was to analyze the impact of tDCS on feeding behavior, metabolic abnormalities and neurotransmitters in certain brain areas involved in appetite control of obese rats. The male Wistar rats were divided into five subgroups depending on consumed diet effect (lean, obese) and tDCS type (anodal, cathodal, sham, and no stimulation). Two 10-min daily sessions of tDCS for 8 consecutive days of the study were applied. Rats subjected to active tDCS (anodal right or cathodal left of the prefrontal cortex) had reduced appetite and showed lesser body weight gain than the animals subjected to sham procedure or those receiving no stimulation at all. Furthermore, tDCS contributed to reduction of epididymal fat pads and to a decrease in blood concentration of leptin. Neurochemical examination revealed that tDCS modulated serotonin pathways of the reward-related brain areas and contributed to a significant decrease in the density of D2 but not D1 dopamine receptors in the dorsal striatum, recorded 5 h after the last stimulation. No significant effect of tDCS on dopamine and it's metabolites in examined brain regions was observed. It seems that the hypothalamus was not affected by tDCS application as no changes in measured neurotransmitters were detected at any examined time point. However, these results do not exclude the possibility of the delayed response of the monoamines in the examined brain areas to tDCS application. Altogether, these findings imply that repeated tDCS of the prefrontal cortex may change feeding behavior of obese rats. Either right anodal or left cathodal tDCS were sufficient to decrease food intake, to reduce body adiposity and to normalize other metabolic anomalies. These beneficial effects can be at least partially explained by changes in serotoninergic and in lesser extent dopaminergic system activity within some brain areas belonging to reward system.
Collapse
Affiliation(s)
- Agata Ziomber
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Eugeniusz Rokita
- Chair of Physiology, Department of Biophysics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jolanta Kaszuba-Zwoinska
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Irena Romańska
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Jerzy Michaluk
- Department of Neurochemistry, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | | |
Collapse
|
10
|
Coleman K, Robertson ND, Maier A, Bethea CL. Effects of Immediate or Delayed Estradiol on Behavior in Old Menopausal Macaques on Obesogenic Diet. J Obes 2018; 2018:1810275. [PMID: 30363801 PMCID: PMC6181005 DOI: 10.1155/2018/1810275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/12/2018] [Accepted: 07/22/2018] [Indexed: 01/05/2023] Open
Abstract
Macaques have served as effective models of human disease, including pathological processes associated with obesity and the metabolic syndrome. This study approached several questions: (1) does a western-style diet (WSD) contribute to sedentary behavior or is sedentary behavior a consequence of obesity and (2) does estradiol (E) hormone therapy offset WSD or ameliorate sedentary behavior? We further questioned whether the timing of E administration (immediately following hysterectomy, ImE; or after a 2-year delay, DE) would impact behavior. Focal observations were taken on the animals in social housing over a period of 2.5 years before and after initiation of the WSD and hysterectomy. In addition, anxiety was assessed through the Human Intruder and Novel Object Tests. All animals gained weight, but ImE delayed the time to maximum weight achieved at 18 months. Over the course of the study, ImE-treated monkeys spent more time "alone" and less time in "close social" contact than placebo-controls. The DE-treated monkeys were not different from placebo-controls in these 2 outcomes. The placebo-control group exhibited more "self-groom" behavior, an indicator of anxiety, than did the ImE-treated group, and DE-treated animals approached levels observed in the ImE-treated animals. All animals exhibited an increase in "consume" behavior over time with no statistical difference between the groups. By the end of the protocol, the placebo-control group exhibited less activity compared to ImE + DE-treated animals combined. Animals also showed increased anxiety after starting on the WSD in the Human Intruder Test and the Novel Object Test. In summary, the data indicated that WSD per se promoted increased consummatory behavior, sedentary behavior, and anxiety-type behaviors, whereas ImE promoted activity. Thus, WSD may precipitate the behaviors observed in humans who then become obese, sedentary, anxious, and socially isolated. ImE replacement ameliorates some of these behaviors, but not all.
Collapse
Affiliation(s)
- Kristine Coleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Nicola D. Robertson
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Adriane Maier
- Division of Comparative Medicine, Behavioral Sciences Unit, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Cynthia L. Bethea
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, USA
| |
Collapse
|
11
|
The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci Biobehav Rev 2017; 80:457-475. [PMID: 28669754 DOI: 10.1016/j.neubiorev.2017.06.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/08/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023]
Abstract
The brain-gut-axis is an interdependent system affecting neural functions and controlling our eating behaviour. In recent decades, neuroimaging techniques have facilitated its investigation. We systematically looked into functional and neurochemical brain imaging studies investigating how key molecules such as ghrelin, glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY), cholecystokinin (CCK), leptin, glucose and insulin influence the function of brain regions regulating appetite and satiety. Of the 349 studies published before July 2016 identified in the database search, 40 were included (27 on healthy and 13 on obese subjects). Our systematic review suggests that the plasma level of ghrelin, the gut hormone promoting appetite, is positively correlated with activation in the pre-frontal cortex (PFC), amygdala and insula and negatively correlated with activation in subcortical areas such as the hypothalamus. In contrast, the plasma levels of glucose, insulin, leptin, PYY, GLP-1 affect the same brain regions conversely. Our study integrates previous investigations of the gut-brain matrix during food-intake and homeostatic regulation and may be of use for future meta-analyses of brain-gut interactions.
Collapse
|
12
|
Jaworska N, Cox SM, Casey KF, Boileau I, Cherkasova M, Larcher K, Dagher A, Benkelfat C, Leyton M. Is there a relation between novelty seeking, striatal dopamine release and frontal cortical thickness? PLoS One 2017; 12:e0174219. [PMID: 28346539 PMCID: PMC5367687 DOI: 10.1371/journal.pone.0174219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/05/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Novelty-seeking (NS) and impulsive personality traits have been proposed to reflect an interplay between fronto-cortical and limbic systems, including the limbic striatum (LS). Although neuroimaging studies have provided some evidence for this, most are comprised of small samples and many report surprisingly large effects given the challenges of trying to relate a snapshot of brain function or structure to an entity as complex as personality. The current work tested a priori hypotheses about associations between striatal dopamine (DA) release, cortical thickness (CT), and NS in a large sample of healthy adults. METHODS Fifty-two healthy adults (45M/7F; age: 23.8±4.93) underwent two positron emission tomography scans with [11C]raclopride (specific for striatal DA D2/3 receptors) with or without amphetamine (0.3 mg/kg, p.o.). Structural magnetic resonance image scans were acquired, as were Tridimensional Personality Questionnaire data. Amphetamine-induced changes in [11C]raclopride binding potential values (ΔBPND) were examined in the limbic, sensorimotor (SMS) and associative (AST) striatum. CT measures, adjusted for whole brain volume, were extracted from the dorsolateral sensorimotor and ventromedial/limbic cortices. RESULTS BPND values were lower in the amphetamine vs. no-drug sessions, with the largest effect in the LS. When comparing low vs. high LS ΔBPND groups (median split), higher NS2 (impulsiveness) scores were found in the high ΔBPND group. Partial correlations (age and gender as covariates) yielded a negative relation between ASTS ΔBPND and sensorimotor CT; trends for inverse associations existed between ΔBPND values in other striatal regions and frontal CT. In other words, the greater the amphetamine-induced striatal DA response, the thinner the frontal cortex. CONCLUSIONS These data expand upon previously reported associations between striatal DA release in the LS and both NS related impulsiveness and CT in the largest sample reported to date. The findings add to the plausibility of these associations while suggesting that the effects are likely weaker than has been previously proposed.
Collapse
Affiliation(s)
- Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Institue of Mental Health Research, Ottawa, Ontario, Canada
| | - Sylvia M. Cox
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kevin F. Casey
- Le Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada
| | - Isabelle Boileau
- Centre for Addiction & Mental Health (CAMH), Toronto, Ontario, Canada
| | - Mariya Cherkasova
- University of British Columbia, Division of Neurology, Vancouver, British Columbia, Canada
| | - Kevin Larcher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Alain Dagher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
Gaiser EC, Gallezot JD, Worhunsky PD, Jastreboff AM, Pittman B, Kantrovitz L, Angarita GA, Cosgrove KP, Potenza MN, Malison RT, Carson RE, Matuskey D. Elevated Dopamine D 2/3 Receptor Availability in Obese Individuals: A PET Imaging Study with [ 11C](+)PHNO. Neuropsychopharmacology 2016; 41:3042-3050. [PMID: 27374277 PMCID: PMC5101552 DOI: 10.1038/npp.2016.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/27/2016] [Accepted: 06/27/2016] [Indexed: 01/09/2023]
Abstract
Most prior work with positron emission tomography (PET) dopamine subtype 2/3 receptor (D2/3R) non-selective antagonist tracers suggests that obese (OB) individuals exhibit lower D2/3Rs when compared with normal weight (NW) individuals. A D3-preferring D2/3R agonist tracer, [11C](+)PHNO, has demonstrated that body mass index (BMI) was positively associated with D2/3R availability within striatal reward regions. To date, OB individuals have not been studied with [11C](+)PHNO. We assessed D2/3R availability in striatal and extrastriatal reward regions in 14 OB and 14 age- and gender-matched NW individuals with [11C](+)PHNO PET utilizing a high-resolution research tomograph. Additionally, in regions where group D2/3R differences were observed, secondary analyses of 42 individuals that constituted an overweight cohort was done to study the linear association between BMI and D2/3R availability in those respective regions. A group-by-brain region interaction effect (F7, 182=2.08, p=0.047) was observed. Post hoc analyses revealed that OB individuals exhibited higher tracer binding in D3-rich regions: the substantia nigra/ventral tegmental area (SN/VTA) (+20%; p=0.02), ventral striatum (VST) (+14%; p<0.01), and pallidum (+11%; p=0.02). BMI was also positively associated with D2/3R availability in the SN/VTA (r=0.34, p=0.03), VST (r=0.36, p=0.02), and pallidum (r=0.30, p=0.05) across all subjects. These data suggest that individuals who are obese have higher D2/3R availability in brain reward regions densely populated with D3Rs, potentially identifying a novel pharmacologic target for the treatment of obesity.
Collapse
Affiliation(s)
- Edward C Gaiser
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Patrick D Worhunsky
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Ania M Jastreboff
- Department of Internal Medicine, Endocrinology, Yale University, New Haven, CT, USA,Department of Pediatrics, Pediatric Endocrinology, Yale University, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | | | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University, New Haven, CT, USA,CASAColumbia and Departments of Neuroscience and Child Study Center, Yale University, New Haven, CT, USA
| | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, New Haven, CT, USA,Departments of Psychiatry and Diagnostic Radiology, Yale School of Medicine, 801 Howard Ave, New Haven, CT 06520, USA, Tel: +1 203 737 6316, Fax: +1 203 785 2994, E-mail:
| |
Collapse
|
14
|
van der Zwaal EM, de Weijer BA, van de Giessen EM, Janssen I, Berends FJ, van de Laar A, Ackermans MT, Fliers E, la Fleur SE, Booij J, Serlie MJ. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol 2016; 26:1190-200. [PMID: 27184782 DOI: 10.1016/j.euroneuro.2016.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
In several studies reduced striatal dopamine D2/3 receptor (D2/3R) availability was reported in obese subjects compared to lean controls. Whether this is a reversible phenomenon remained uncertain. We previously determined the short-term effect of Roux-en-Y gastric bypass surgery (RYGB) on striatal D2/3R availability (using [(123)I]IBZM SPECT) in 20 morbidly obese women. Striatal D2/3R availability was lower compared to controls at baseline, and remained unaltered after 6 weeks, despite significant weight loss. To determine whether long-term bariatric surgery-induced weight loss normalizes striatal D2/3R binding, we repeated striatal D2/3R binding measurements at least 2 years after RYGB in 14 subjects of the original cohort. In addition, we assessed long-term changes in body composition, eating behavior and fasting plasma levels of leptin, ghrelin, insulin and glucose. Mean body mass index declined from 46±7kg/m(2) to 32±6kg/m(2), which was accompanied by a significant increase in striatal D2/3R availability (p=0.031). Striatal D2/3R availability remained significantly reduced compared to the age-matched controls (BMI 22±2kg/m(2); p=0.01). Changes in striatal D2/3R availability did not correlate with changes in body weight/fat, insulin sensitivity, ghrelin or leptin levels. Scores on eating behavior questionnaires improved and changes in the General Food Craving Questionnaire-State showed a borderline significant correlation with changes in striatal D2/3R availability. These findings show that striatal D2/3R availability increases after long-term bariatric-surgery induced weight loss, suggesting that reduced D2/3R availability in obesity is a reversible phenomenon.
Collapse
Affiliation(s)
| | - Barbara A de Weijer
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Ignace Janssen
- Department of Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Frits J Berends
- Department of Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Mariette T Ackermans
- Department of Clinical Chemistry, laboratory of Endocrinology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Sharpe MJ, Clemens KJ, Morris MJ, Westbrook RF. Daily Exposure to Sucrose Impairs Subsequent Learning About Food Cues: A Role for Alterations in Ghrelin Signaling and Dopamine D2 Receptors. Neuropsychopharmacology 2016; 41:1357-65. [PMID: 26365954 PMCID: PMC4793120 DOI: 10.1038/npp.2015.287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023]
Abstract
The prevalence of hedonic foods and associated advertising slogans has contributed to the rise of the obesity epidemic in the modern world. Research has shown that intake of these foods disrupt dopaminergic systems. It may be that a disruption of these circuits produces aberrant learning about food-cue relationships. We found that rodents given 28 days of intermittent access to sucrose exhibited a deficit in the ability to block learning about a stimulus when it is paired in compound with food and another stimulus that has already been established as predictive of the food outcome. This deficit was characterized by an approach to a cue signaling food delivery that is usually blocked by prior learning, an effect dependent on dopaminergic prediction-error signaling in the midbrain. Administering the D2 agonist quinpirole during learning restored blocking in animals with a prior history of sucrose exposure. Further, repeated central infusions of ghrelin produced a deficit in blocking in the same manner as sucrose exposure. We argue that changes in dopaminergic systems resulting from sucrose exposure are mediated by a disruption of ghrelin signaling as rodents come to anticipate delivery of the highly palatable sucrose outside of normal feeding schedules. This suggestion is supported by our finding that both sucrose and ghrelin treatments resulted in increases in amphetamine-induced locomotor responding. Thus, for the first time, we have provided evidence of a potential link between alterations in D2 receptors caused by the intake of hedonic foods and aberrant learning about cue-food relationships capable of promoting inappropriate feeding habits. In addition, we have found preliminary evidence to suggest that this is mediated by changes in ghrelin signaling, a finding that should stimulate further research into modulation of ghrelin activity to treat obesity.
Collapse
Affiliation(s)
- M J Sharpe
- School of Psychology, UNSW, Australia,National Institute on Drug Abuse, 251 Bayview Boulevard, Baltimore, MD 21224, USA, Tel: +14156291740, E-mail:
| | | | - M J Morris
- Department of Pharmacology, Medical Sciences, UNSW, Australia
| | | |
Collapse
|
16
|
Love T, Laier C, Brand M, Hatch L, Hajela R. Neuroscience of Internet Pornography Addiction: A Review and Update. Behav Sci (Basel) 2015; 5:388-433. [PMID: 26393658 PMCID: PMC4600144 DOI: 10.3390/bs5030388] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/29/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
Many recognize that several behaviors potentially affecting the reward circuitry in human brains lead to a loss of control and other symptoms of addiction in at least some individuals. Regarding Internet addiction, neuroscientific research supports the assumption that underlying neural processes are similar to substance addiction. The American Psychiatric Association (APA) has recognized one such Internet related behavior, Internet gaming, as a potential addictive disorder warranting further study, in the 2013 revision of their Diagnostic and Statistical Manual. Other Internet related behaviors, e.g., Internet pornography use, were not covered. Within this review, we give a summary of the concepts proposed underlying addiction and give an overview about neuroscientific studies on Internet addiction and Internet gaming disorder. Moreover, we reviewed available neuroscientific literature on Internet pornography addiction and connect the results to the addiction model. The review leads to the conclusion that Internet pornography addiction fits into the addiction framework and shares similar basic mechanisms with substance addiction. Together with studies on Internet addiction and Internet Gaming Disorder we see strong evidence for considering addictive Internet behaviors as behavioral addiction. Future research needs to address whether or not there are specific differences between substance and behavioral addiction.
Collapse
Affiliation(s)
- Todd Love
- Society for the Advancement of Sexual Health, Ardmore, PA 19003, USA.
| | - Christian Laier
- Department of General Psychology: Cognition, University of Duisburg-Essen, Duisburg 47057, Germany.
| | - Matthias Brand
- Department of General Psychology: Cognition, University of Duisburg-Essen, Duisburg 47057, Germany.
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen 45141, Germany.
| | - Linda Hatch
- Private Practice, Santa Barbara, CA 93103, USA.
| | - Raju Hajela
- Health Upwardly Mobile Inc., Calgary, AB T2S 0J2, Canada.
- Diagnostic and Descriptive Terminology Action Group (DDTAG), American Society of Addiction Medicine (ASAM), Chevy Chase, MD 93101, USA.
| |
Collapse
|
17
|
Gold MS, Badgaiyan RD, Blum K. A Shared Molecular and Genetic Basis for Food and Drug Addiction: Overcoming Hypodopaminergic Trait/State by Incorporating Dopamine Agonistic Therapy in Psychiatry. Psychiatr Clin North Am 2015; 38:419-62. [PMID: 26300032 DOI: 10.1016/j.psc.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This article focuses on the shared molecular and neurogenetics of food and drug addiction tied to the understanding of reward deficiency syndrome. Reward deficiency syndrome describes a hypodopaminergic trait/state that provides a rationale for commonality in approaches for treating long-term reduced dopamine function across the reward brain regions. The identification of the role of DNA polymorphic associations with reward circuitry has resulted in new understanding of all addictive behaviors.
Collapse
Affiliation(s)
- Mark S Gold
- Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Rivermend Health Scientific Advisory Board, 2300 Windy Ridge Parkway South East, Suite 210S, Atlanta, GA 30339, USA; Drug Enforcement Administration (DEA) Educational Foundation, Washington, DC, USA.
| | - Rajendra D Badgaiyan
- Laboratory of Advanced Radiochemistry and Molecular and Functioning Imaging, Department of Psychiatry, College of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA; Department of Psychiatry, Center for Clinical & Translational Science, Community Mental Health Institute, University of Vermont College of Medicine, University of Vermont, Burlington, VT, USA; Division of Applied Clinical Research, Dominion Diagnostics, LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA; Rivermend Health Scientific Advisory Board, Atlanta, GA, USA
| |
Collapse
|
18
|
Eisenstein SA, Bischoff AN, Gredysa DM, Antenor-Dorsey JAV, Koller JM, Al-Lozi A, Pepino MY, Klein S, Perlmutter JS, Moerlein SM, Black KJ, Hershey T. Emotional Eating Phenotype is Associated with Central Dopamine D2 Receptor Binding Independent of Body Mass Index. Sci Rep 2015; 5:11283. [PMID: 26066863 PMCID: PMC4464302 DOI: 10.1038/srep11283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/21/2015] [Indexed: 01/11/2023] Open
Abstract
PET studies have provided mixed evidence regarding central D2/D3 dopamine receptor binding and its relationship with obesity as measured by body mass index (BMI). Other aspects of obesity may be more tightly coupled to the dopaminergic system. We characterized obesity-associated behaviors and determined if these related to central D2 receptor (D2R) specific binding independent of BMI. Twenty-two obese and 17 normal-weight participants completed eating- and reward-related questionnaires and underwent PET scans using the D2R-selective and nondisplaceable radioligand (N-[11C]methyl)benperidol. Questionnaires were grouped by domain (eating related to emotion, eating related to reward, non-eating behavior motivated by reward or sensitivity to punishment). Normalized, summed scores for each domain were compared between obese and normal-weight groups and correlated with striatal and midbrain D2R binding. Compared to normal-weight individuals, the obese group self-reported higher rates of eating related to both emotion and reward (p < 0.001), greater sensitivity to punishment (p = 0.06), and lower non-food reward behavior (p < 0.01). Across normal-weight and obese participants, self-reported emotional eating and non-food reward behavior positively correlated with striatal (p < 0.05) and midbrain (p < 0.05) D2R binding, respectively. In conclusion, an emotional eating phenotype may reflect altered central D2R function better than other commonly used obesity-related measures such as BMI.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison N Bischoff
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Danuta M Gredysa
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jo Ann V Antenor-Dorsey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan M Koller
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amal Al-Lozi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marta Y Pepino
- Departments of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Klein
- Departments of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- 1] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Anatomy &Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA [4] Departments of Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA [5] Departments of Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen M Moerlein
- 1] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin J Black
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA [4] Departments of Anatomy &Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Hershey
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Novelty seeking is related to individual risk preference and brain activation associated with risk prediction during decision making. Sci Rep 2015; 5:10534. [PMID: 26065910 PMCID: PMC4464254 DOI: 10.1038/srep10534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/23/2015] [Indexed: 01/10/2023] Open
Abstract
Novelty seeking (NS) is a personality trait reflecting excitement in response to novel stimuli. High NS is usually a predictor of risky behaviour such as drug abuse. However, the relationships between NS and risk-related cognitive processes, including individual risk preference and the brain activation associated with risk prediction, remain elusive. In this fMRI study, participants completed the Tridimensional Personality Questionnaire to measure NS and performed a probabilistic decision making task. Using a mathematical model, we estimated individual risk preference. Brain regions associated with risk prediction were determined via fMRI. The NS score showed a positive correlation with risk preference and a negative correlation with the activation elicited by risk prediction in the right posterior insula (r-PI), left anterior insula (l-AI), right striatum (r-striatum) and supplementary motor area (SMA). Within these brain regions, only the activation associated with risk prediction in the r-PI showed a correlation with NS after controlling for the effect of risk preference. Resting-state functional connectivity between the r-PI and r-striatum/l-AI was negatively correlated with NS. Our results suggest that high NS may be associated with less aversion to risk and that the r-PI plays an important role in relating risk prediction to NS.
Collapse
|
20
|
Blum K, Thanos PK, Gold MS. Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol 2014; 5:919. [PMID: 25278909 PMCID: PMC4166230 DOI: 10.3389/fpsyg.2014.00919] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/01/2014] [Indexed: 01/08/2023] Open
Abstract
Obesity as a result of overeating as well as a number of well described eating disorders has been accurately considered to be a world-wide epidemic. Recently a number of theories backed by a plethora of scientifically sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Our laboratory has published on the concept known as Reward Deficiency Syndrome (RDS) which is a genetic and epigenetic phenomena leading to impairment of the brain reward circuitry resulting in a hypo-dopaminergic function. RDS involves the interactions of powerful neurotransmitters and results in abnormal craving behavior. A number of important facts which could help translate to potential therapeutic targets espoused in this focused review include: (1) consumption of alcohol in large quantities or carbohydrates binging stimulates the brain’s production of and utilization of dopamine; (2) in the meso-limbic system the enkephalinergic neurons are in close proximity, to glucose receptors; (3) highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; (4) a significant correlation between blood glucose and cerebrospinal fluid concentrations of homovanillic acid the dopamine metabolite; (5) 2-deoxyglucose (2DG), the glucose analog, in pharmacological doses is associated with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and fMRI in humans support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and for the most part, implicate the involvement of DA-modulated reward circuits in pathologic eating behaviors. Based on a consensus of neuroscience research treatment of both glucose and drug like cocaine, opiates should incorporate dopamine agonist therapy in contrast to current theories and practices that utilizes dopamine antagonistic therapy. Considering that up until now clinical utilization of powerful dopamine D2 agonists have failed due to chronic down regulation of D2 receptors newer targets based on novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of reward deficiency.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville FL, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center Malibu Beach, CA, USA
| | - Panayotis K Thanos
- Behavior Neuropharmacology and Neuroimaging Lab, Department of Psychology, State University of New York Stony Brook, NY, USA
| | - Mark S Gold
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville FL, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center Malibu Beach, CA, USA
| |
Collapse
|
21
|
BLUM KENNETH, FEBO MARCELO, MCLAUGHLIN THOMAS, CRONJÉ FRANSJ, HAN DAVID, GOLD SMARK. Hatching the behavioral addiction egg: Reward Deficiency Solution System (RDSS)™ as a function of dopaminergic neurogenetics and brain functional connectivity linking all addictions under a common rubric. J Behav Addict 2014; 3:149-56. [PMID: 25317338 PMCID: PMC4189308 DOI: 10.1556/jba.3.2014.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Following the first association between the dopamine D2 receptor gene polymorphism and severe alcoholism, there has been an explosion of research reports in the psychiatric and behavioral addiction literature and neurogenetics. With this increased knowledge, the field has been rife with controversy. Moreover, with the advent of Whole Genome-Wide Studies (GWAS) and Whole Exome Sequencing (WES), along with Functional Genome Convergence, the multiple-candidate gene approach still has merit and is considered by many as the most prudent approach. However, it is the combination of these two approaches that will ultimately define real, genetic allelic relationships, in terms of both risk and etiology. Since 1996, our laboratory has coined the umbrella term Reward Deficiency Syndrome (RDS) to explain the common neurochemical and genetic mechanisms involved with both substance and non-substance, addictive behaviors. METHODS This is a selective review of peer-reviewed papers primary listed in Pubmed and Medline. RESULTS A review of the available evidence indicates the importance of dopaminergic pathways and resting-state, functional connectivity of brain reward circuits. DISCUSSION Importantly, the proposal is that the real phenotype is RDS and impairments in the brain's reward cascade, either genetically or environmentally (epigenetically) induced, influence both substance and non-substance, addictive behaviors. Understanding shared common mechanisms will ultimately lead to better diagnosis, treatment and prevention of relapse. While, at this juncture, we cannot as yet state that we have "hatched the behavioral addiction egg", we are beginning to ask the correct questions and through an intense global effort will hopefully find a way of "redeeming joy" and permitting homo sapiens live a life, free of addiction and pain.
Collapse
Affiliation(s)
- KENNETH BLUM
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA,Department of Clinical Medicine, Malibu Beach Recovery Center, Malibu Beach, CA, USA,Department of Personalized Medicine, IGENE, LLC, Austin, TX, USA,Corresponding author: Kenneth Blum, PhD; Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, PO Box 103424 Gainesville, Florida, USA, 32610-3424; Phone: +-619-890-2167; Fax: +-352-392-9887; E-mail:
| | - MARCELO FEBO
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | | | | | - DAVID HAN
- Department of Management Science and Statistics, University of Texas at San Antonio, Texas, USA
| | - S. MARK GOLD
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA,Department of Clinical Medicine, Malibu Beach Recovery Center, Malibu Beach, CA, USA
| |
Collapse
|