1
|
Karasko D. A systematic review and meta-analysis combining adolescent and adult data to evaluate weight loss and the effect of age following the laparoscopic sleeve gastrectomy. Obes Rev 2024; 25:e13770. [PMID: 38804033 DOI: 10.1111/obr.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
Obesity is a grave concern within the United States, resulting in lost productivity, increased medical costs, and comorbidities with lifelong repercussions. The laparoscopic sleeve gastrectomy is a treatment option for obesity. The following meta-analysis sought to combine adolescent and adult literature to determine the overall effect of the sleeve gastrectomy on weight loss, to evaluate the effect of age at the time of surgery on weight loss, and to describe and explore variation in weight loss by sample characteristics. Overall weight loss was assessed at proximal and distal points, a dichotomous moderator variable analysis was conducted with subjects ≤21 years of age and >21 years of age, and a meta-regression assessing % male, % female, and baseline BMI was conducted to assess moderator variables. The laparoscopic sleeve gastrectomy was effective at facilitating weight loss with effect sizes varying from 0.916 to2.816. Age, biological sex, and baseline BMI were not found to have an impact on weight loss. The clinical consequences of prolonged obesity are evident and earlier intervention may be justified to counter the long-term effects caused by obesity related comorbidities. Standardized reporting of comorbidities and the effect of bariatric surgery on comorbid conditions is essential to allow further analysis.
Collapse
Affiliation(s)
- Danielle Karasko
- University of Missouri, Columbia, Missouri, USA
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Soares GM, Balbo SL, Bronczek GA, Vettorazzi JF, Marmentini C, Zangerolamo L, Velloso LA, Carneiro EM. Vertical sleeve gastrectomy improves glucose-insulin homeostasis by enhancing β-cell function and survival via FGF15/19. Am J Physiol Endocrinol Metab 2024; 326:E134-E147. [PMID: 38117265 DOI: 10.1152/ajpendo.00218.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Vertical sleeve gastrectomy (VSG) restores glucose homeostasis in obese mice and humans. In addition, the increased fibroblast growth factor (FGF)15/19 circulating level postsurgery has been implicated in this effect. However, the impact of FGF15/19 on pancreatic islets remains unclear. Using a diet-induced obese mice model, we demonstrate that VSG attenuates insulin hypersecretion in isolated pancreatic islets, likely due to morphological alterations in the endocrine pancreas such as reduction in islet, β-cell, and α-cell mass. In addition, VSG relieves gene expression of endoplasmic reticulum (ER) stress and inflammation markers in islets from obese mice. Incubation of INS-1E β-cells with serum from obese mice induced dysfunction and cell death, whereas these conditions were not induced with serum from obese mice submitted to VSG, implicating the involvement of a humoral factor. Indeed, VSG increased FGF15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E cells treated with the serum from these mice. Moreover, exposing INS-1E cells to an FGFR inhibitor abolished the effects of VSG serum on insulin secretion and cell death. Also, recombinant FGF19 prevents INS-1E cells from dysfunction and death induced by serum from obese mice. These findings indicate that the amelioration of glucose-insulin homeostasis promoted by VSG is mediated, at least in part, by FGF15/19. Therefore, approaches promoting FGF15/19 release or action may restore pancreatic islet function in obesity.NEW & NOTEWORTHY Vertical sleeve gastrectomy (VSG) decreases insulin secretion, endoplasmic reticulum (ER) stress, and inflammation in pancreatic islets from obese mice. In addition, VSG increased fibroblast growth factor (FGF)15 circulating levels in obese mice, as well as the expression of FGF receptor 1 (Fgfr1) and its coreceptor β-klotho (Klb), both in pancreatic islets from VSG mice and in INS-1E β-cells treated with the serum from these mice. Serum from operated mice protects INS-1E cells from dysfunction and apoptosis, which was mediated by FGF15/19.
Collapse
Affiliation(s)
- Gabriela M Soares
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Sandra L Balbo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Endocrine Physiology and Metabolism, Biological Sciences and Health Center, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| | - Gabriela A Bronczek
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jean F Vettorazzi
- Latin-American Institute of Life and Nature Sciences, Federal University of Latin-American Integration (UNILA), Foz do Iguacu, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas Zangerolamo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lício A Velloso
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
Chaiyasoot K, Khumkhana N, Deekum W, Chaichana C, Taweerutchana V, Srisuworanan N, Pramyothin P. Alteration of BDNF, SPARC, FGF-21, and GDF-15 circulating levels after 1 year of anti-obesity treatments and their association with 1-year weight loss. Endocrine 2023; 82:57-68. [PMID: 37436597 PMCID: PMC10462550 DOI: 10.1007/s12020-023-03435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Emerging evidence revealed that brain-derived neurotrophic factor (BDNF), secreted protein acidic and rich in cysteine (SPARC), fibroblast growth factor 21(FGF-21) and growth differentiation factor 15 (GDF-15) are involved in energy metabolism and body weight regulation. Our study aimed at examining their association with BMI, their alterations after anti-obesity treatments, and their association with 1-year weight loss. METHODS A prospective observational study of 171 participants with overweight and obesity and 46 lean controls was established. All participants received lifestyle educational intervention (LEI) with or without anti-obesity treatments (LEI + bariatric/metabolic surgery, n = 41; LEI + topiramate, n = 46; LEI + liraglutide, n = 31; LEI + orlistat, n = 12; and LEI alone, n = 41). Anthropometric and metabolic parameters, insulin sensitivity, C-reactive protein (CRP), fasting plasma levels of BDNF, SPARC, GDF-15, and FGF-21 were measured at baseline and 1 year. RESULTS Multiple linear regression showed that fasting levels of SPARC, FGF-21, and GDF-15 were significantly associated with baseline BMI after adjustment for age and sex. At 1 year, the average weight loss was 4.8% in the entire cohort with a significant improvement in glycemia, insulin sensitivity, and CRP. Multiple linear regression adjusted for age, sex, baseline BMI, type of treatment, and presence of T2DM revealed that the decrease in log10FGF-21 and log10GDF-15 at 1 year from baseline was significantly associated with a greater percentage of weight loss at 1 year. CONCLUSIONS This study highlights the association of SPARC, FGF-21, and GDF-15 levels with BMI. Decreased circulating levels of GDF-15 and FGF-21 were associated with greater weight loss at 1 year, regardless of the types of anti-obesity modalities.
Collapse
Affiliation(s)
- Kusuma Chaiyasoot
- Division of Nutrition, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Nanta Khumkhana
- Division of Nutrition, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Wanjan Deekum
- Division of Nutrition, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Chartchai Chaichana
- Siriraj Center of Research Excellence for Diabetes and Obesity, Mahidol University, Bangkok, Thailand
| | - Voraboot Taweerutchana
- Division of Minimal Invasive Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nicha Srisuworanan
- Division of Minimal Invasive Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpoj Pramyothin
- Division of Nutrition, Department of Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14:632-655. [PMID: 37383590 PMCID: PMC10294061 DOI: 10.4239/wjd.v14.i6.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity increases the risk of T2DM, and as obesity is becoming increasingly common, more individuals suffer from T2DM, which poses a considerable burden on health systems. Traditionally, pharmaceutical therapy together with lifestyle changes is used to treat obesity and T2DM to decrease the incidence of comorbidities and all-cause mortality and to increase life expectancy. Bariatric surgery is increasingly replacing other forms of treatment of morbid obesity, especially in patients with refractory obesity, owing to its many benefits including good long-term outcomes and almost no weight regain. The bariatric surgery options have markedly changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining popularity. LSG has become an effective and safe treatment for type-2 diabetes and morbid obesity, with a high cost-benefit ratio. Here, we review the me-chanism associated with LSG treatment of T2DM, and we discuss clinical studies and animal experiments with regard to gastrointestinal hormones, gut microbiota, bile acids, and adipokines to clarify current treatment modalities for patients with obesity and T2DM.
Collapse
Affiliation(s)
- Fa-Shun Liu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Song Wang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Xian-Shan Guo
- Department of Endocrinology, Xinxiang Central Hospital, Xinxiang 453000, Henan Province, China
| | - Zhen-Xiong Ye
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hong-Ya Zhang
- Central Laboratory, Yangpu District Control and Prevention Center, Shanghai 200090, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
5
|
Wang M, Huang Y, Xin M, Li T, Wang X, Fang Y, Liang S, Cai T, Xu X, Dong L, Wang C, Xu Z, Song X, Li J, Zheng Y, Sun W, Li L. The impact of microbially modified metabolites associated with obesity and bariatric surgery on antitumor immunity. Front Immunol 2023; 14:1156471. [PMID: 37266441 PMCID: PMC10230250 DOI: 10.3389/fimmu.2023.1156471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity is strongly associated with the occurrence and development of many types of cancers. Patients with obesity and cancer present with features of a disordered gut microbiota and metabolism, which may inhibit the physiological immune response to tumors and possibly damage immune cells in the tumor microenvironment. In recent years, bariatric surgery has become increasingly common and is recognized as an effective strategy for long-term weight loss; furthermore, bariatric surgery can induce favorable changes in the gut microbiota. Some studies have found that microbial metabolites, such as short-chain fatty acids (SCFAs), inosine bile acids and spermidine, play an important role in anticancer immunity. In this review, we describe the changes in microbial metabolites initiated by bariatric surgery and discuss the effects of these metabolites on anticancer immunity. This review attempts to clarify the relationship between alterations in microbial metabolites due to bariatric surgery and the effectiveness of cancer treatment. Furthermore, this review seeks to provide strategies for the development of microbial metabolites mimicking the benefits of bariatric surgery with the aim of improving therapeutic outcomes in cancer patients who have not received bariatric surgery.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Steenackers N, Vanuytsel T, Augustijns P, Deleus E, Deckers W, Deroose CM, Falony G, Lannoo M, Mertens A, Mols R, Vangoitsenhoven R, Wauters L, Van der Schueren B, Matthys C. Effect of sleeve gastrectomy and Roux-en-Y gastric bypass on gastrointestinal physiology. Eur J Pharm Biopharm 2023; 183:92-101. [PMID: 36603693 DOI: 10.1016/j.ejpb.2022.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Knowledge regarding the gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass is urgently needed to understand, prevent and treat the nutritional and pharmacological complications of bariatric surgery. AIM To investigate the effect of sleeve gastrectomy and Roux-en-Y gastric bypass on gastrointestinal motility (e.g., transit and pressure), pH, and intestinal bile acid concentration. MATERIAL AND METHODS An exploratory cross-sectional study was performed in six participants living with obesity, six participants who underwent sleeve gastrectomy, and six participants who underwent Roux-en-Y gastric bypass. During the first visit, a wireless motility capsule (SmartPill©) was ingested after an overnight fast to measure gastrointestinal transit, pH, and pressure. During the second visit, a gastric emptying scintigraphy test of a nutritional drink labeled with 99mTc-colloid by a dual-head SPECT gamma camera was performed to measure gastric emptying half-time (GET1/2). During the third visit, two customized multiple lumen aspiration catheters were positioned to collect fasting and postprandial intestinal fluids to measure bile acid concentration. RESULTS Immediate pouch emptying (P = 0.0007) and a trend for faster GET1/2 (P = 0.09) were observed in both bariatric groups. There was a tendency for a shorter orocecal transit in participants with sleeve gastrectomy and Roux-en-Y gastric bypass (P = 0.08). The orocecal segment was characterized by a higher 25th percentile pH (P = 0.004) and a trend for a higher median pH in both bariatric groups (P = 0.07). Fasting total bile acid concentration was 7.5-fold higher in the common limb after Roux-en-Y gastric bypass (P < 0.0001) and 3.5-fold higher in the jejunum after sleeve gastrectomy (P = 0.009) compared to obesity. Postprandial bile acid concentration was 3-fold higher in the jejunum after sleeve gastrectomy (P = 0.0004) and 6.5-fold higher in the common limb after Roux-en-Y gastric bypass (P < 0.0001) compared to obesity. CONCLUSION The anatomical alterations of sleeve gastrectomy and Roux-en-Y gastric bypass have an important impact on gastrointestinal physiology. This data confirms changes in transit and pH and provides the first evidence for altered intraluminal bile acid concentration.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Ellen Deleus
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Wies Deckers
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Gwen Falony
- Institute, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; Center for Microbiology, VIB, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Raf Mols
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Roman Vangoitsenhoven
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Reversal of NAFLD After VSG Is Independent of Weight-Loss but RYGB Offers More Efficacy When Maintained on a High-Fat Diet. Obes Surg 2022; 32:2010-2022. [PMID: 35419698 DOI: 10.1007/s11695-022-06053-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Bariatric surgery is emerging as an effective treatment for obesity and the metabolic syndrome. Recently, we demonstrated that Roux-en-Y gastric bypass (RYGB), but not vertical sleeve gastrectomy (VSG), resulted in improvements to white adipose physiology and enhanced brown adipose functioning. Since beneficial alterations to liver health are also expected after bariatric surgery, comparing the post-operative effects of RYGB and VSG on liver physiology is essential to their application in the treatment of non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS The effects of RYGB and VSG on liver physiology were compared using diet induced mouse model of obesity. High-fat diet (HFD) was administered for 12 weeks after surgery and alterations to liver physiology were assessed. RESULTS Both RYGB and VSG showed decreased liver weight as well as reductions to hepatic cholesterol and triglyceride levels. There were demonstrable improvements to NAFLD activity score (NAS) and fibrosis stage scoring after both surgeries. In RYGB, these beneficial changes to liver function resulted from the downregulation of pro-fibrotic and upregulation anti-fibrotic genes, as well as increased fatty acid oxidation and bile acid flux. For VSG, though similar alterations were observed, they were less potent. However, VSG did significantly downregulate pro-fibrotic genes and showed increased glycogen content paralleled by decreased glycogenolysis which may have contributed to the resolution of NAFLD. CONCLUSION RYGB and VSG improve liver physiology and function, but RYGB is more efficacious. Resolutions of NAFLD in RYGB and VSG are achieved through different processes, independent of weight loss.
Collapse
|
8
|
Yang C, Brecht J, Weiß C, Reissfelder C, Otto M, Buchwald JN, Vassilev G. Serum Glucagon, Bile Acids, and FGF-19: Metabolic Behavior Patterns After Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. Obes Surg 2021; 31:4939-4946. [PMID: 34471996 DOI: 10.1007/s11695-021-05677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metabolic/bariatric surgery is a highly effective treatment for obesity and metabolic diseases. Serum glucagon, bile acids, and FGF-19 are key effectors of various metabolic processes and may play central roles in bariatric surgical outcomes. It is unclear whether these factors behave similarly after Roux-en-Y gastric bypass (RYGB) vs vertical sleeve gastrectomy (VSG). METHODS Serum glucagon, bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA]), and FGF-19 were analyzed in samples of fasting blood collected before bariatric surgery, on postoperative days 2 and 10, and at 3- and 6-month follow-up. RESULTS From September 2016 to July 2017, patients with obesity underwent RYGB or VSG; 42 patients (RYGB n = 21; VSG n = 21) were included in the analysis. In the RYGB group, glucagon, CA, and CDCA increased continuously after surgery (p = 0.0003, p = 0.0009, p = 0.0001, respectively); after an initial decrease (p = 0.04), DCA increased significantly (p = 0.0386). Serum FGF-19 was unchanged. In the VSG group, glucagon increased on day 2 (p = 0.0080), but decreased over the 6-month study course (p = 0.0025). Primary BAs (CA and CDCA) decreased immediately after surgery (p = 0.0016, p = 0.0091) and then rose (p = 0.0350, p = 0.0350); DCA followed the curve of the primary BAs until it fell off at 6 months (p = 0.0005). VSG group serum FGF-19 trended upward. CONCLUSION RYGB and VSG involve different surgical techniques and final anatomical configurations. Between postoperative day 2 and 6-month follow-up, RYGB and VSG resulted in divergent patterns of change in serum glucagon, bile acids, and FGF-19.
Collapse
Affiliation(s)
- Cui Yang
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Julia Brecht
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mirko Otto
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jane N Buchwald
- Division of Scientific Research Writing, Medwrite Medical Communications, Maiden Rock, WI, 54750, USA
| | - Georgi Vassilev
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
9
|
Jin ZL, Liu W. Progress in treatment of type 2 diabetes by bariatric surgery. World J Diabetes 2021; 12:1187-1199. [PMID: 34512886 PMCID: PMC8394224 DOI: 10.4239/wjd.v12.i8.1187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of type 2 diabetes (T2D) is increasing at an alarming rate worldwide. Bariatric surgical procedures, such as the vertical sleeve gastrectomy and Roux-en-Y gastric bypass, are the most efficient approaches to obtain substantial and durable remission of T2D. The benefits of bariatric surgery are realized through the consequent increased satiety and alterations in gastrointestinal hormones, bile acids, and the intestinal microbiota. A comprehensive understanding of the mechanisms by which various bariatric surgical procedures exert their benefits on T2D could contribute to the design of better non-surgical treatments for T2D. In this review, we describe the classification and evolution of bariatric surgery and explore the multiple mechanisms underlying the effect of bariatric surgery on insulin resistance. Based upon our summarization of the current knowledge on the underlying mechanisms, we speculate that the gut might act as a new target for improving T2D. Our ultimate goal with this review is to provide a better understanding of T2D pathophysiology in order to support development of T2D treatments that are less invasive and more scalable.
Collapse
Affiliation(s)
- Zhang-Liu Jin
- Department of General Surgery & Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei Liu
- Department of General Surgery & Department of Biliopancreatic and Metabolic Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
10
|
Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nat Commun 2021; 12:4768. [PMID: 34362888 PMCID: PMC8346483 DOI: 10.1038/s41467-021-24914-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Bariatric surgeries such as the Vertical Sleeve Gastrectomy (VSG) are invasive but provide the most effective improvements in obesity and Type 2 diabetes. We hypothesized a potential role for the gut hormone Fibroblast-Growth Factor 15/19 which is increased after VSG and pharmacologically can improve energy homeostasis and glucose handling. We generated intestinal-specific FGF15 knockout (FGF15INT-KO) mice which were maintained on high-fat diet. FGF15INT-KO mice lost more weight after VSG as a result of increased lean tissue loss. FGF15INT-KO mice also lost more bone density and bone marrow adipose tissue after VSG. The effect of VSG to improve glucose tolerance was also absent in FGF15INT-KO. VSG resulted in increased plasma bile acid levels but were considerably higher in VSG-FGF15INT-KO mice. These data point to an important role after VSG for intestinal FGF15 to protect the organism from deleterious effects of VSG potentially by limiting the increase in circulating bile acids. The mechanisms that mediate the effects of weight loss surgeries such as vertical sleeve gastrectomy (VSG) are incompletely understood. Here the authors show that intestinal FGF15 is necessary to improve glucose tolerance and to prevent the loss of muscle and bone mass after VSG, potentially via protection against bile acid toxicity.
Collapse
|
11
|
Melhem S, Steven S, Taylor R, Al-Mrabeh A. Effect of Weight Loss by Low-Calorie Diet on Cardiovascular Health in Type 2 Diabetes: An Interventional Cohort Study. Nutrients 2021; 13:1465. [PMID: 33925808 PMCID: PMC8146720 DOI: 10.3390/nu13051465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major problem for people with type 2 diabetes (T2DM), and the leading cause of death worldwide. We aimed to determine cardiovascular benefits of weight loss with or without remission of diabetes, and to assess utility of plasma biomarkers. 29 people with T2DM were studied at baseline and after dietary weight loss. Change in plasma adipokines and lipid related markers was examined in relation to weight loss, diabetes remission, 10-year cardiovascular risk (QRISK), and duration of diabetes. QRISK decreased markedly after weight loss (18.9 ± 2.2 to 11.2 ± 1.6%, p < 0.0001) in both responders and non-responders, but non-responders remained at higher risk (15.0 ± 2.0 vs. 5.8 ± 1.6%, p < 0.0001). At baseline, plasma GDF-15 was higher in longer diabetes duration (1.19 ± 0.14 vs. 0.82 ± 0.09 ng/mL, p = 0.034), as was the QRISK (22.8 ± 2.6 vs. 15.3 ± 3.4%, p = 0.031). Leptin, GDF-15 and FGF-21 decreased whereases adiponectin increased after weight loss in responders and non-responders. However, the level of FGF-21 remained higher in non-responders (0.58 [0.28-0.71] vs. 0.25 [0.15-0.42] ng/mL, p = 0.007). QRISK change correlated with change in plasma VLDL1-TG (r = 0.489, p = 0.007). There was a positive correlation between rise in HDL cholesterol and the decrease in leptin (r = 0.57, p = 0.001), or rise in adiponectin (r = 0.58, p = 0.001) levels. In conclusion, weight loss markedly decreases cardiometabolic risk particularly when remission of diabetes is achieved. Leptin, adiponectin, GDF-15 and FGF-21 changes were related to weight loss not remission of diabetes. Normalization of 10-year cardiovascular risk and heart age is possible after substantial dietary weight loss and remission of T2DM.
Collapse
Affiliation(s)
- Shaden Melhem
- Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (S.M.); (S.S.); (R.T.)
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sarah Steven
- Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (S.M.); (S.S.); (R.T.)
- Manchester Diabetes & Endocrinology Centre, Manchester Royal Infirmary, Manchester M13 9WL, UK
| | - Roy Taylor
- Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (S.M.); (S.S.); (R.T.)
| | - Ahmad Al-Mrabeh
- Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, UK; (S.M.); (S.S.); (R.T.)
| |
Collapse
|
12
|
Steenackers N, Vanuytsel T, Augustijns P, Tack J, Mertens A, Lannoo M, Van der Schueren B, Matthys C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol Hepatol 2021; 6:225-237. [PMID: 33581761 DOI: 10.1016/s2468-1253(20)30302-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
Linked to the growing obesity epidemic, demand for bariatric and metabolic surgery has increased, the most common procedures being sleeve gastrectomy and Roux-en-Y gastric bypass. Originally, bariatric procedures were described as purely restrictive, malabsorptive, or combined restrictive-malabsorptive procedures limiting food intake, nutrient absorption, or both. Nowadays, anatomical alterations are known to affect gastrointestinal physiology, which in turn affects the digestion and absorption of nutrients and drugs. Therefore, understanding gastrointestinal physiology is crucial to prevent postoperative nutritional deficiencies and to optimise postoperative drug therapy. Preclinical and clinical research indicates that sleeve gastrectomy accelerates liquid and solid gastric emptying and small intestinal transit, and increases bile acid serum levels, whereas its effects on gastrointestinal acidity, gastric and pancreatic secretions, surface area, and colonic transit remain largely unknown. Roux-en-Y gastric bypass diminishes gastric acid secretion, accelerates liquid gastric emptying, and increases bile acid serum levels, but its effects on intestinal pH, solid gastric emptying, intestinal transit time, gastric enzyme secretions, and surface area remain largely unknown. In this Review, we summarise current knowledge of the effects of these two procedures on gastrointestinal physiology and assess the knowledge gaps.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Chronic Diseases and Metabolism, and Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
13
|
Alizadeh S. Letter to the editor on "Targeting bile acid metabolism in obesity reduction: A systematic review and meta-analysis". Obes Rev 2020; 21:e13071. [PMID: 32596963 DOI: 10.1111/obr.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Shahab Alizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
So SSY, Yeung CHC, Schooling CM, El-Nezami H. Reply to Alizadeh's letter to the editor on "Targeting bile acid metabolism in obesity reduction: A systematic review and meta-analysis". Obes Rev 2020; 21:e13075. [PMID: 32512651 DOI: 10.1111/obr.13075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Stephanie Sik Yu So
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chris Ho Ching Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Graduate School of Public Health and Health Policy, City University of New York, New York, New York, USA
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Ryan PM, Hayward NE, Sless RT, Garwood P, Rahmani J. Effect of bariatric surgery on circulating FGF-19: A systematic review and meta-analysis. Obes Rev 2020; 21:e13038. [PMID: 32329176 DOI: 10.1111/obr.13038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor-19 (FGF-19) is a gut hormone which interacts with metabolism and is depleted in obesity. There is some indication that the hormone undergoes a resurgence following bariatric surgery (BS), an effect which may contribute to the beneficial outcomes of such procedures. This systematic review and meta-analysis aims to synthesize the available literature on FGF-19 levels before and after BS. MEDLINE, Scopus and Web of Science databases were searched, and the effect of different surgical procedures and degrees of body mass index (BMI) reduction on FGF-19 levels was assessed by DerSimonian and Laird random-effects model in meta-analysis and dose-response analyses. This meta-analysis, which included 474 patients from 25 arms undergoing one of five BS procedures, revealed a significant increase in the levels of circulating FGF-19 following all-type BS. Vertical sleeve gastrectomy, duodenal-jejunal bypass liner and Roux-en-Y gastric bypass all significantly increased circulating FGF-19 levels from baseline. However, gastric banding failed to achieve the same, and in fact, biliopancreatic diversion was associated with decreased circulating FGF-19. Finally, an inverse association between FGF-19 and the degree of BMI-reduction post-operatively was noted. FGF-19 is increased by BS and may represent a pharmaceutical target in efforts to reproduce the beneficial effects of BS in a medical setting.
Collapse
Affiliation(s)
- Paul M Ryan
- Brookfield School of Medicine and Health, University College Cork, Cork, Ireland
| | - Nathaniel E Hayward
- Brookfield School of Medicine and Health, University College Cork, Cork, Ireland
| | - Ryan T Sless
- Brookfield School of Medicine and Health, University College Cork, Cork, Ireland
| | - Philip Garwood
- Brookfield School of Medicine and Health, University College Cork, Cork, Ireland
| | - Jamal Rahmani
- Department of Community Nutrition, Student Research Committee, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Surgery-Induced Weight Loss and Changes in Hormonally Active Fibroblast Growth Factors: a Systematic Review and Meta-Analysis. Obes Surg 2020; 30:4046-4060. [PMID: 32621056 DOI: 10.1007/s11695-020-04807-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This systematic review and meta-analysis was performed to investigate the possible changes of FGF-19 and FGF-21 after bariatric surgery (BS). Electronic databases including PubMed and Scopus were systematically searched up to February 2020 to identify pertinent studies. A total of 25 different studies were included. The overall pooled analysis identified that BS caused a significant increase in FGF-19, but had no significant effect on FGF-21. For FGF-19, this finding was supported in the subgroup analyses. For FGF-21, Roux-en-Y gastric bypass (RYGB) surgery significantly increased FGF-21 levels, whereas, in studies with follow-up duration ≥ 1 year, FGF-21 levels decreased significantly. BS reduces circulating concentration of FGF-19, but might increase FGF-21 after RYGB or decrease FGF-21 after ≥ 1 year.
Collapse
|
17
|
So SSY, Yeung CHC, Schooling CM, El-Nezami H. Targeting bile acid metabolism in obesity reduction: A systematic review and meta-analysis. Obes Rev 2020; 21:e13017. [PMID: 32187830 DOI: 10.1111/obr.13017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
A systematic review and meta-analysis was conducted of studies that address the association of bile acid (BA) with obesity and of studies on the effects of treatment in patients with obesity on BA metabolism, assessed from systemic BA, fibroblast growth factor 19 (FGF19), 7α-hydroxy-4-cholesten-3-one (C4) level, and faecal BA. We searched PubMed, Embase, and the Cochrane Library from inception to 1 August 2019 using the keywords obesity, obese, body mass index, and overweight with bile acid, FGF19, FXR, and TGR5. Two reviewers independently searched, selected, and assessed the quality of studies. Data were analysed using either fixed or random effect models with inverse variance weighting. Of 3771 articles, 33 papers were relevant for the association of BA with obesity of which 22 were included in the meta-analysis, and 50 papers were relevant for the effect of obesity interventions on BA of which 20 were included in the meta-analysis. Circulating fasting total BA was not associated with obesity. FGF19 was inversely and faecal BA excretion was positively associated with obesity. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) modulated BA metabolism, ie, increased BA and FGF19. Our results indicate that BA metabolism is altered in obesity. Certain bariatric surgeries including RYGB and SG modulate BA, whether these underlie the beneficial effect of the treatment should be investigated.
Collapse
Affiliation(s)
- Stephanie Sik Yu So
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chris Ho Ching Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.,Graduate School of Public Health and Health Policy, City University of New York, New York, United States
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
18
|
Cӑtoi AF, Pârvu AE, Mironiuc A, Silaghi H, Pop ID, Andreicuț AD. Ultra-Early and Early Changes in Bile Acids and Insulin After Sleeve Gastrectomy Among Obese Patients. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E757. [PMID: 31766784 PMCID: PMC6955910 DOI: 10.3390/medicina55120757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE In obese patients, sleeve gastrectomy (SG) has shown mixed results on bile acid (BA) values. The aim of our study was to examine the potential ultra-early and early changes of the circulating total BA in relation with the changes of insulin resistance (IR) in obese patients submitted to laparoscopic SG. Materials and Methods: Twenty-four obese subjects were investigated for body mass index (BMI), total fasting BA, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and leptin before and at 7 and 30 d after SG. Results: After surgery, mean BMI decreased at the first (p < 0.001) and at the second time point (p < 0.001) relative to baseline. Total fasting BA values did not change significantly at 7 d (p = 0.938) and at 30 d (p = 0.289) after SG. No significant changes were found at 7 d (p = 0.194, p = 0.34) and 30 d (p = 0.329, p = 0.151) after surgery regarding fasting insulin and HOMA-IR, respectively. However, a trend of increased total fasting BA and decreased fasting insulin and HOMA- after laparoscopic SG has been found. Negative correlations between total fasting BA and insulin (r = -0.807, p = 0.009), HOMA-IR (r = -0.855, p = 0.014), and blood glucose (r = -0.761, p = 0.047), respectively, were observed at one month after SG. Conclusion: In conclusion, here, we found a lack of significant changes in total fasting BA, insulin, and HOMA-IR ultra-early and early after SG, which precluded us to consider a possible relation between the variations of BA and IR. However, the presence of the tendency for total fasting BA to increase and for insulin and HOMA-IR to decrease, as well as of the negative correlations one month after laparoscopic SG, suggest that this surgery brings about some changes that point towards the existence, and possibly towards the restoration, at least to some extent, of the link between BA and glucose metabolism.
Collapse
Affiliation(s)
- Adriana Florinela Cӑtoi
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| | - Aurel Mironiuc
- 2nd Surgical Clinic, Department of Surgery, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Horațiu Silaghi
- 5th Surgical Clinic, Department of Surgery, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Ioana Delia Pop
- Department of Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Andra Diana Andreicuț
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.P.); (A.D.A.)
| |
Collapse
|
19
|
Chen Y, Lu J, Nemati R, Plank LD, Murphy R. Acute Changes of Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass. Obes Surg 2019; 29:3605-3621. [PMID: 31273649 DOI: 10.1007/s11695-019-04040-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Gastric bypass (GBP) and sleeve gastrectomy (SG) are both effective bariatric treatments that cause sustained weight loss as well as improvement of type 2 diabetes mellitus (T2DM). The underlying mechanisms are under investigation, including the contribution of alterations in bile acids (BAs) in achieving or maintaining the beneficial metabolic effects after bariatric surgery. AIMS The aim of this study is to investigate the acute and short-term effects of GBP and SG on BA compositions and fibroblast growth factor 19 (FGF19) in obese individuals with T2DM and to evaluate any correlations between changes in these measures with glucose metabolic improvements. METHODS The levels of both fasting and postprandial plasma BA compositions after oral glucose tolerance test (OGTT), fasting FGF19 and various metabolic indices were measured 1 day before and at 3 days and 3 months after GBP and SG in 19 obese patients (GBP = 8, SG = 11) with T2DM. RESULTS Body weight loss was observed after both GBP and SG 3 months post-operatively, with no significant difference between the two intervention groups (15.0 ± 3.1% vs. 13.9 ± 5.2%, P = 0.761). At 3 days post-operation, FGF19 levels increased significantly in both surgery groups (GBP, 118.3 ± 57.3 vs. 363.6 ± 131.0 pg mL-1, post-operation P = 0.008; SG, 173.2 ± 127.8 vs. 422.0 ± 243.6 pg mL-1, post-operation P = 0.001). Fasting and postprandial increases from pre-operative values in secondary (r = 0.57, P = 0.02; r = 0.58, P = 0.01), conjugated (r = 0.50, P = 0.01; r = 0.48, P = 0.04), glycine-conjugated (r = 0.52, P = 0.05; r = 0.46, P = 0.05) and secondary-conjugated (r = 0.53, P = 0.02; r = 0.60, P = 0.01) BAs correlated with decreases in the postprandial states of glucose (defined by area under the curve (AUC) over 120 min (AUC0-120min)). Increases in postprandial primary-conjugated BAs were found to be associated with decreases in HOMA-IR (r = 0.45, P = 0.05). However, increases in fasting and postprandial taurine-conjugated BA correlated with decreases in both basal insulin secretion rate (r = 0.47, P = 0.04; r = 0.48, P = 0.04) and C-peptide level (r = 0.45, P = 0.05; r = 0.47, P = 0.04). After 3 months, fasting and postprandial increases in secondary (r = 0.51, P = 0.03; r = 0.48, P = 0.04), secondary-conjugated (r = 0.52, P = 0.02; r = 0.51, P = 0.03) and non-12α-OH (r = 0.51, P = 0.02; r = 0.58, P = 0.01) BAs were found to correlate with increases in Stumvoll Insulin Sensitivity Index. Increases in both fasting and postprandial 12α-OH BAs were correlated with the decreases in glucose AUC (r = 0.46, P = 0.05; r = 0.41, P = 0.04). CONCLUSIONS Both GBP and SG achieve increases in many BA species as early as 3 days post-operation, which are sustained at 3 months post-operation. Rises in secondary BA and conjugated forms are correlated with early improvements in glucose metabolism at 3 days post-operation. These along with 12α-OH BA correlated with improved glucose metabolism at 3 months post-operation, suggesting they may contribute to the observed T2DM remission after bariatric surgery.
Collapse
Affiliation(s)
- Yutao Chen
- College of Life and Marine Sciences, Shenzhen University, Shenzhen, Guangdong Province, China.,School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jun Lu
- College of Life and Marine Sciences, Shenzhen University, Shenzhen, Guangdong Province, China. .,School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand. .,Institute of Biomedical Technology, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand. .,College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Reza Nemati
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Lindsay D Plank
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Auckland Diabetes Centre, Auckland District Health Board, Auckland, New Zealand. .,Whitiora Diabetes Department, Counties Manukau District Health Board, Auckland, New Zealand. .,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. .,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
20
|
Chen X, Zhang J, Zhou Z. Targeting Islets: Metabolic Surgery Is More than a Bariatric Surgery. Obes Surg 2019; 29:3001-3009. [DOI: 10.1007/s11695-019-03979-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Liu Q, Wang S, Wei M, Huang X, Cheng Y, Shao Y, Xia P, Zhong M, Liu S, Zhang G, Hu S. Improved FGF21 Sensitivity and Restored FGF21 Signaling Pathway in High-Fat Diet/Streptozotocin-Induced Diabetic Rats After Duodenal-Jejunal Bypass and Sleeve Gastrectomy. Front Endocrinol (Lausanne) 2019; 10:566. [PMID: 31543863 PMCID: PMC6728857 DOI: 10.3389/fendo.2019.00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
Objective: Bariatric surgery can profoundly improve glucose and lipid metabolism in diabetic rats. Fibroblast growth factor 21 (FGF21) is an important hormone with multiple metabolic beneficial effects. Alteration in serum FGF21 level after bariatric surgery has been reported with conflicting results. Here, we investigated the effect of bariatric surgeries on FGF21 expression and sensitivity. Methods: We performed duodenal-jejunal bypass (DJB), sleeve gastrectomy (SG) and sham surgery in diabetic rats induced by high fat diet and streptozotocin. Metabolic parameters, including body weight, food intake, glucose tolerance, and lipid profiles, were monitored. FGF21 levels in both serum and liver were measured after surgery. FGF21 signaling pathway including FGF receptor 1 (FGFR1), β-klotho (KLB), and phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) was detected in the liver and white adipose tissue (WAT). We also determined FGF21 sensitivity post-operatively by acute recombinant human FGF21 injection. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted immediately after FGF21 injection. Serum triglyceride (TG) and non-esterified fatty acid (NEFA) were measured and the mRNA levels of early growth response 1 (Egr1) and c-Fos in the liver and WAT were detected after FGF21 injection. Results: Improvements in glucose tolerance, insulin sensitivity, and lipid profiles were observed after bariatric surgeries along with ameliorated lipid metabolism in the liver and WAT. Serum and hepatic FGF21 levels decreased in both DJB and SG groups. FGFR1 and phosphorylated ERK1/2 levels increased in both DJB and SG groups 8 weeks after surgery. The expression of KLB was downregulated only in the WAT after DJB and SG. Significant alteration of OGTT and ITT were observed after acute FGF21 administration in DJB and SG groups. Serum TG and NEFA in DJB and SG groups also decreased after FGF21 administration. And increased mRNA levels of Egr1 and c-Fos were detected in the liver and WAT after DJB and SG surgeries. Conclusions: DJB and SG surgeries can downregulate hepatic expression of FGF21, restore FGF21 signaling pathway and improve FGF21 sensitivity in high-fat diet/streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Qiaoran Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shuo Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Huang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Shao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Pingtian Xia
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Shaozhuang Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Guangyong Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- *Correspondence: Sanyuan Hu
| |
Collapse
|
22
|
Somm E, Jornayvaz FR. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 2018; 39:960-989. [PMID: 30124818 DOI: 10.1210/er.2018-00134] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Discovered 20 years ago, fibroblast growth factor (FGF)19, and its mouse ortholog FGF15, were the first members of a new subfamily of FGFs able to act as hormones. During fetal life, FGF15/19 is involved in organogenesis, affecting the development of the ear, eye, heart, and brain. At adulthood, FGF15/19 is mainly produced by the ileum, acting on the liver to repress hepatic bile acid synthesis and promote postprandial nutrient partitioning. In rodents, pharmacologic doses of FGF19 induce the same antiobesity and antidiabetic actions as FGF21, with these metabolic effects being partly mediated by the brain. However, activation of hepatocyte proliferation by FGF19 has long been a challenge to its therapeutic use. Recently, genetic reengineering of the molecule has resolved this issue. Despite a global overlap in expression pattern and function, murine FGF15 and human FGF19 exhibit several differences in terms of regulation, molecular structure, signaling, and biological properties. As most of the knowledge originates from the use of FGF19 in murine models, differences between mice and humans in the biology of FGF15/19 have to be considered for a successful translation from bench to bedside. This review summarizes the basic knowledge concerning FGF15/19 in mice and humans, with a special focus on regulation of production, morphogenic properties, hepatocyte growth, bile acid homeostasis, as well as actions on glucose, lipid, and energy homeostasis. Moreover, implications and therapeutic perspectives concerning FGF19 in human diseases (including obesity, type 2 diabetes, hepatic steatosis, biliary disorders, and cancer) are also discussed.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| | - François R Jornayvaz
- Service of Endocrinology, Diabetes, Hypertension, and Nutrition, Geneva University Hospitals, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
23
|
KOHLI ROHIT, BHATTACHARJEE JASHDEEP, INGE THOMASH. Postprandial Uridine Physiology Is Altered by Obesity. Gastroenterology 2018; 155:1645-1646. [PMID: 30142337 PMCID: PMC6428419 DOI: 10.1053/j.gastro.2018.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- ROHIT KOHLI
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California
| | - JASHDEEP BHATTACHARJEE
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California
| | - THOMAS H. INGE
- Department of Surgery, University of Colorado, Denver and Children’s Hospital of Colorado, Aurora, Colorado
| |
Collapse
|
24
|
Nemati R, Lu J, Dokpuang D, Booth M, Plank LD, Murphy R. Increased Bile Acids and FGF19 After Sleeve Gastrectomy and Roux-en-Y Gastric Bypass Correlate with Improvement in Type 2 Diabetes in a Randomized Trial. Obes Surg 2018; 28:2672-2686. [PMID: 29987678 DOI: 10.1007/s11695-018-3216-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) are both effective bariatric procedures to treat type 2 diabetes (T2DM) and obesity. The contribution of changes in bile acids (BAs) and fibroblast growth factor19 (FGF19) to such metabolic improvements is unclear. METHODS We examined associations between changes in BAs, FGF19 (fasting and prandial), with changes in body weight, glycemia, and other metabolic variables in 61 obese patients with T2DM before and 1 year after randomization to SG or RYGB. RESULTS Weight loss and diabetes remission (defined by HbA1c < 39 mmol/mol [< 5.7%] in the absence of glucose-lowering therapy) after RYGB and SG was similar (mean weight loss - 29 vs - 31 kg, p = 0.50; diabetes remission proportion 37.5 vs 34%, p = 1.0). Greater increments in fasting and prandial levels of total, secondary, and unconjugated BAs were seen after RYGB than SG. Fasting and prandial increases in total (r = - 0.3, p = 0.01; r = - 0.2, p = 0.04), secondary (r = - 0.3, p = 0.01; r = - 0.4, p = 0.01) and unconjugated BA (r = - 0.3, p = 0.01; r = 0.4, p < 0.01) correlated with decreases in HbA1c, but not weight. Changes in 12α-OH/non 12α-OH were positively associated with prandial glucose increments (r = 0.2, p = 0.03), HbA1c (r = 0.3, p = 0.01), and negatively associated with changes in insulinogenc index (r = - 0.3, p = 0.01). Only changes in prandial FGF19 were negatively associated with HbA1c (r = - 0.4, p < 0.01) and visceral fat (r = - 0.3, p = 0.04). CONCLUSIONS/INTERPRETATION The association between increases in secondary, unconjugated BAs and improvements in HBA1c (but not weight) achieved after both RYGB and SG suggest manipulation of BA as a potential strategy for controlling T2DM through weight-independent means.
Collapse
Affiliation(s)
- Reza Nemati
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand. .,College of Life and Marine Sciences, Shenzhen University, Shenzhen, Guangdong Province, China. .,School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand. .,Institute of Biomedical Technology, Auckland University of Technology, Auckland, New Zealand.
| | - Dech Dokpuang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.,Division of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Michael Booth
- Department of Surgery, North Shore Hospital, Waitemata District Health Board, Auckland, New Zealand
| | - Lindsay D Plank
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Auckland Diabetes Centre, Auckland District Health Board, Auckland, New Zealand. .,Whitiora Diabetes Department, Counties Manukau District Health Board, Auckland, New Zealand. .,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. .,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
25
|
Pratt JSA, Browne A, Browne NT, Bruzoni M, Cohen M, Desai A, Inge T, Linden BC, Mattar SG, Michalsky M, Podkameni D, Reichard KW, Stanford FC, Zeller MH, Zitsman J. ASMBS pediatric metabolic and bariatric surgery guidelines, 2018. Surg Obes Relat Dis 2018; 14:882-901. [PMID: 30077361 PMCID: PMC6097871 DOI: 10.1016/j.soard.2018.03.019] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
The American Society for Metabolic and Bariatric Surgery Pediatric Committee updated their evidence-based guidelines published in 2012, performing a comprehensive literature search (2009-2017) with 1387 articles and other supporting evidence through February 2018. The significant increase in data supporting the use of metabolic and bariatric surgery (MBS) in adolescents since 2012 strengthens these guidelines from prior reports. Obesity is recognized as a disease; treatment of severe obesity requires a life-long multidisciplinary approach with combinations of lifestyle changes, nutrition, medications, and MBS. We recommend using modern definitions of severe obesity in children with the Centers for Disease Control and Prevention age- and sex-matched growth charts defining class II obesity as 120% of the 95th percentile and class III obesity as 140% of the 95th percentile. Adolescents with class II obesity and a co-morbidity (listed in the guidelines), or with class III obesity should be considered for MBS. Adolescents with cognitive disabilities, a history of mental illness or eating disorders that are treated, immature bone growth, or low Tanner stage should not be denied treatment. MBS is safe and effective in adolescents; given the higher risk of adult obesity that develops in childhood, MBS should not be withheld from adolescents when severe co-morbidities, such as depressed health-related quality of life score, type 2 diabetes, obstructive sleep apnea, and nonalcoholic steatohepatitis exist. Early intervention can reduce the risk of persistent obesity as well as end organ damage from long standing co-morbidities.
Collapse
Affiliation(s)
- Janey S A Pratt
- Lucille Packard Children's Hospital and Stanford University School of Medicine Stanford, California.
| | - Allen Browne
- Diplomate American Board of Obesity Medicine Falmouth, Maine
| | - Nancy T Browne
- WOW Pediatric Weight Management Clinic, EMMC, Orono, Maine
| | - Matias Bruzoni
- Lucille Packard Children's Hospital and Stanford University School of Medicine Stanford, California
| | - Megan Cohen
- Nemours/Alfred I. DuPont Hospital for Children Wilmington, Delaware
| | | | - Thomas Inge
- University of Colorado, Denver and Children's Hospital of Colorado Aurora, Colorado
| | - Bradley C Linden
- Pediatric Surgical Associates and Allina Health Minneapolis, Minnesota
| | - Samer G Mattar
- Swedish Weight Loss Services Swedish Medical Center Seattle, Washington
| | - Marc Michalsky
- Nationwide Children's Hospital and The Ohio State University Columbus, Ohio
| | - David Podkameni
- Banner Gateway Medical Center and University of Arizona Phoenix, Arizona
| | - Kirk W Reichard
- Nemours/Alfred I. DuPont Hospital for Children Wilmington, Delaware
| | - Fatima Cody Stanford
- Diplomate American Board of Obesity Medicine Massachusetts General Hospital and Harvard Medical School Boston, Massachusetts
| | - Meg H Zeller
- Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
| | - Jeffrey Zitsman
- Morgan Stanley Children's Hospital of NY Presbyterian and Columbia University Medical Center New York, New York
| |
Collapse
|
26
|
Lin CH, Kohli R. Bile acid metabolism and signaling: potential therapeutic target for nonalcoholic fatty liver disease. Clin Transl Gastroenterol 2018; 9:164. [PMID: 29955036 PMCID: PMC6023895 DOI: 10.1038/s41424-018-0034-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Chuan-Hao Lin
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, and the Department of Pediatrics Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, and the Department of Pediatrics Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Braun LR, Feldpausch MN, Czerwonka N, Torriani M, Grinspoon SK, Stanley TL. Fibroblast growth factor 21 decreases after liver fat reduction via growth hormone augmentation. Growth Horm IGF Res 2017; 37:1-6. [PMID: 29031905 PMCID: PMC5705434 DOI: 10.1016/j.ghir.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/31/2017] [Accepted: 10/06/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21) ameliorates steatohepatitis but is increased in humans with fatty liver, potentially due to compensatory mechanisms and/or FGF21 resistance. Further, animal models suggest that GH increases serum FGF21. Tesamorelin, a growth hormone releasing hormone agonist, reduces liver fat in HIV-infected individuals. The objectives of this study were to investigate changes in FGF21 during tesamorelin treatment, to elucide the interplay between FGF21, GH augmentation, and liver fat reduction in humans. METHODS 50 HIV-infected men and women with increased abdominal adiposity participated in this randomized, placebo-controlled trial of tesamorelin, 2mg vs. identical placebo daily for six months. Fasting laboratory measures, liver fat by 1H-magnetic resonance spectroscopy, and visceral adipose tissue (VAT) by computed tomography were obtained. Euglycemic hyperinsulinemic clamp was performed in a randomly selected subset. RESULTS At baseline, serum log10 FGF21 was significantly associated with log10 liver fat (r=0.32, p=0.03). Log10 FGF21 tended to decrease in the tesamorelin group compared to placebo (p=0.06). Among the entire cohort, reductions in FGF21 were significantly associated with reductions in liver fat (ρ=0.41, p=0.01), log10 gamma glutamyl tran speptidase (GGT, r=0.40, p=0.009), and FIB4 index (r=0.37, p=0.02). CONCLUSIONS In HIV-infected individuals, FGF21 is significantly positively associated with liver fat. FGF21 decreases in association with reductions in liver fat, GGT, and FIB4, suggesting that FGF21 is upregulated in the context of steatosis and steatohepatitis and is reduced when these conditions improve. Moreover, these data suggest that tesamorelin improves liver fat via pathways other than increasing serum FGF21. TRIAL REGISTRATION clinicaltrials.govNCT01263717.
Collapse
Affiliation(s)
- Laurie R Braun
- Program in Nutritional Metabolism and Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Meghan N Feldpausch
- Program in Nutritional Metabolism and Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Natalia Czerwonka
- Program in Nutritional Metabolism and Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Martin Torriani
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Program in Nutritional Metabolism and Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Takara L Stanley
- Program in Nutritional Metabolism and Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
28
|
Garruti G, Di Ciaula A, Wang HH, Wang DQH, Portincasa P. Cross-Talk Between Bile Acids and Gastro-Intestinal and Thermogenic Hormones: Clues from Bariatric Surgery. Ann Hepatol 2017; 16:s68-s82. [PMID: 29080342 DOI: 10.5604/01.3001.0010.5499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Obesity is rapidly increasing and has reached epidemic features worldwide. It´s linked to insulin resistance, systemic low-grade inflammation and common pathogenic pathways with a number of comorbidities (including cancer), leading to high mortality rates. Besides change of lifestyles (diet and physical exercise) and pharmacological therapy, bariatric surgery is able to rapidly improve several metabolic and morphologic features associated with excessive fat storage, and currently represents an in vivo model to study the pathogenic mechanisms underlying obesity and obesity-related complications. Studies on obese subjects undergoing bariatric surgery find that the effects of surgery are not simply secondary to gastric mechanical restriction and malabsorption which induce body weight loss. In fact, some surgical procedures positively modify key pathways involving the intestine, bile acids, receptor signaling, gut microbiota, hormones and thermogenesis, leading to systemic metabolic changes. Furthermore, bariatric surgery represents a suitable model to evaluate the gene-environment interaction and some epigenetic mechanisms linking obesity and insulin resistance to metabolic diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | | | - Helen H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| |
Collapse
|
29
|
Kindel TL, Krause C, Helm MC, McBride CL, Oleynikov D, Thakare R, Alamoudi J, Kothari V, Alnouti Y, Kohli R. Increased glycine-amidated hyocholic acid correlates to improved early weight loss after sleeve gastrectomy. Surg Endosc 2017; 32:805-812. [PMID: 28779240 DOI: 10.1007/s00464-017-5747-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bile acids (BAs) are post-prandial hormones that play an important role in glucose and lipid homeostasis as well as energy expenditure. Total and glycine-amidated BAs increase after sleeve gastrectomy (SG) and correlate to improved metabolic disease. No specific bile acid subtype has been shown conclusively to mediate the weight loss effect. Therefore, the objective of this study was to prospectively evaluate the comprehensive changes in meal-stimulated BAs after SG and determine if a specific change in the BA profile correlates to the early weight loss response. METHODS Patients were prospectively enrolled at the University of Nebraska Medical Center who were undergoing a SG for treatment of morbid obesity. Primary and secondary plasma bile acids and their amidated (glycine, G-, or taurine, T-) subtypes were measured at fasting, 30 and 60 min after a liquid meal performed pre-op, and at 6 and 12 weeks post-op. Area under the curve (AUC) was calculated for the hour meal test for each bile acid subtype. BAs that were significantly increased post-op were correlated to body mass index (BMI) loss. RESULTS Total BA AUC was significantly increased at 6 (p < 0.01) and 12 weeks post-op (p < 0.01) compared to pre-operative values. The increase in total BA AUC was due to a statistically significant increase in G-BAs. Nine different BA AUC subtypes were significantly increased at both 6 and 12 weeks post-op. Increased total and G-chenodeoxycholic acid AUC was significantly correlated to the 6 week BMI loss (p = 0.03). Increased G-hyocholic acid was significantly correlated to increased weight loss at both 6 (p = 0.05) and 12 weeks (p = 0.006). CONCLUSIONS SG induced an early and persistent post-prandial surge in multiple bile acid subtypes. Increased G-hyocholic consistently correlated with greater early BMI loss. This study provides evidence for a role of BAs in the surgical weight loss response after SG.
Collapse
Affiliation(s)
- Tammy L Kindel
- Department of Surgery, Medical College of Wisconsin, 9200 W. Wisconsin Ave., Milwaukee, WI, 53226, USA.
| | - Crystal Krause
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa C Helm
- Department of Surgery, Medical College of Wisconsin, 9200 W. Wisconsin Ave., Milwaukee, WI, 53226, USA
| | - Corrigan L McBride
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dmitry Oleynikov
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rhishikesh Thakare
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jawaher Alamoudi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vishal Kothari
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rohit Kohli
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med 2017; 56:75-89. [PMID: 28390813 PMCID: PMC5603298 DOI: 10.1016/j.mam.2017.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
Bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective and durable treatments for morbid obesity and potentially a viable treatment for type 2 diabetes (T2D). The resolution rate of T2D following these procedures is between 40 and 80% and far surpasses that achieved by medical management alone. The molecular basis for this improvement is not entirely understood, but has been attributed in part to the altered enterohepatic circulation of bile acids. In this review we highlight how bile acids potentially contribute to improved lipid and glucose homeostasis, insulin sensitivity and energy expenditure after these procedures. The impact of altered bile acid levels in enterohepatic circulation is also associated with changes in gut microflora, which may further contribute to some of these beneficial effects. We highlight the beneficial effects of experimental surgical procedures in rodents that alter bile secretory flow without gastric restriction or altering nutrient flow. This information suggests a role for bile acids beyond dietary fat emulsification in altering whole body glucose and lipid metabolism strongly, and also suggests emerging roles for the activation of the bile acid receptors farnesoid x receptor (FXR) and G-protein coupled bile acid receptor (TGR5) in these improvements. The limitations of rodent studies and the current state of our understanding is reviewed and the potential effects of bile acids mediating the short- and long-term metabolic improvements after bariatric surgery is critically examined.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/surgery
- Enterohepatic Circulation
- Gastrectomy
- Gastric Bypass
- Gastrointestinal Microbiome/physiology
- Gene Expression Regulation
- Glucose/metabolism
- Homeostasis/physiology
- Humans
- Insulin Resistance
- Obesity, Morbid/metabolism
- Obesity, Morbid/microbiology
- Obesity, Morbid/pathology
- Obesity, Morbid/surgery
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rodentia
- Signal Transduction
Collapse
Affiliation(s)
- Vance L Albaugh
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hana Ajouz
- American University of Beirut, Beirut, Lebanon
| | - Naji N Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|