1
|
Purcell SA, LaMunion SR, Chen KY, Rynders CA, Thomas EA, Melanson EL. The use of accelerometers to improve estimation of the thermic effect of food in whole room calorimetry studies. J Appl Physiol (1985) 2024; 137:1-9. [PMID: 38695352 PMCID: PMC11389891 DOI: 10.1152/japplphysiol.00763.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/28/2024] Open
Abstract
We tested whether spontaneous physical activity (SPA) from accelerometers could be used in a whole room calorimeter to estimate thermic effect of food (TEF). Eleven healthy participants (n = 7 females; age: 27 ± 4 yr; body mass index: 22.8 ± 2.6 kg/m2) completed two 23-h visits in randomized order: one "fed" with meals provided and one "fasted" with no food. SPA was measured by ActivPAL and Actigraph accelerometers. Criterion TEF was calculated as the difference in total daily energy expenditure (TDEE) between fed and fasted visits and compared with three methods of estimating TEF: 1) SPA-adjusted TEF (adjTEF)-difference in TDEE without SPA between visits, 2) Wakeful TEF-difference in energy expenditure obtained from linear regression and basal metabolic rate during waking hours, 3) 24-h TEF-increase in TDEE above SPA and sleeping metabolic rate. Criterion TEF was 9.4 ± 4.5% of TDEE. AdjTEF (difference in estimated vs. criterion TEF: activPAL: -0.3 ± 3.3%; Actigraph: -1.8 ± 8.0%) and wakeful TEF (activPAL: -0.9 ± 6.1%; Actigraph: -2.8 ± 7.6%) derived from both accelerometers did not differ from criterion TEF (all P > 0.05). ActivPAL-derived 24-h TEF overestimated TEF (6.8 ± 5.4%, P = 0.002), whereas Actigraph-derived 24-h TEF was not significantly different (4.3 ± 9.4%, P = 0.156). TEF estimations using activPAL tended to show better individual-level agreement (i.e., smaller coefficients of variation). Both accelerometers can be used to estimate TEF in a whole room calorimeter; wakeful TEF using activPAL is the most viable option given strong group-level accuracy and reasonable individual agreement.NEW & NOTEWORTHY Two research-grade accelerometers can effectively estimate spontaneous physical activity and improve the estimation of thermic effect of food (TEF) in whole room calorimeters. The activPAL demonstrates strong group-level accuracy and reasonable individual-level agreement in estimating wakeful TEF, whereas a hip-worn Actigraph is an acceptable approach for estimating 24-h TEF. These results highlight the promising potential of accelerometers in advancing energy balance research by improving the assessment of TEF within whole room calorimeters.
Collapse
Affiliation(s)
- Sarah A Purcell
- Division of Endocrinology Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Samuel R LaMunion
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Corey A Rynders
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Elizabeth A Thomas
- Division of Endocrinology Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, United States
| | - Edward L Melanson
- Division of Endocrinology Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
2
|
Baugh ME, Ahrens ML, Hutelin Z, Stylianos C, Wohlers-Kariesch E, Oster ME, Dotson J, Moon J, Hanlon AL, DiFeliceantonio AG. Validity and reliability of a new whole room indirect calorimeter to assess metabolic response to small calorie loads. PLoS One 2024; 19:e0304030. [PMID: 38900814 PMCID: PMC11189231 DOI: 10.1371/journal.pone.0304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/05/2024] [Indexed: 06/22/2024] Open
Abstract
We overview of our whole room indirect calorimeter (WRIC), demonstrate validity and reliability of our WRIC, and explore a novel application of Bayesian hierarchical modeling to assess responses to small carbohydrate loads. To assess WRIC validity seven gas infusion studies were performed using a gas blender and profiles designed to mimic resting and postprandial metabolic events. Sixteen participants underwent fasting and postprandial measurements, during which they consumed a 75-kcal drink containing sucrose, dextrose, or fructose in a crossover design. Linear mixed effects models were used to compare resting and postprandial metabolic rate (MR) and carbohydrate oxidation. Postprandial carbohydrate oxidation trajectories for each participant and condition were modeled using Bayesian Hierarchical Modeling. Mean total error in infusions were 1.27 ± 0.67% and 0.42 ± 0.70% for VO2 and VCO2 respectively, indicating a high level of validity. Mean resting MR was similar across conditions ([Formula: see text] = 1.05 ± 0.03 kcal/min, p = 0.82, ICC: 0.91). While MR increased similarly among all conditions (~13%, p = 0.29), postprandial carbohydrate oxidation parameters were significantly lower for dextrose compared with sucrose or fructose. We provide evidence validating our WRIC and a novel application of statistical methods useful for research using WRIC.
Collapse
Affiliation(s)
- Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Monica L. Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Zach Hutelin
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Charlie Stylianos
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| | | | - Mary E. Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
| | - Jon Dotson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jon Moon
- MEI Research, Ltd, Edina, Minnesota, United States of America
| | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Alexandra G. DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, United States of America
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
3
|
Dörner R, Hägele FA, Müller MJ, Seidel U, Rimbach G, Bosy-Westphal A. Effect of exogenous and endogenous ketones on respiratory exchange ratio and glucose metabolism in healthy subjects. Am J Physiol Cell Physiol 2024; 326:C1027-C1033. [PMID: 38314726 PMCID: PMC11193512 DOI: 10.1152/ajpcell.00429.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
This study examined the effect of exogenous ketone bodies (KB) on oxygen consumption (V̇o2), carbon dioxide production (V̇co2), and glucose metabolism. The data were compared with the effects of endogenous ketonemia during both, a ketogenic diet or fasting. Eight healthy individuals [24.1 ± 2.5 yr, body mass index (BMI) 24.3 ± 3.1 kg/m2] participated in a crossover intervention study and were studied in a whole-room indirect calorimeter (WRIC) to assess macronutrient oxidation following four 24-h interventions: isocaloric controlled mixed diet (ISO), ISO supplemented with ketone salts (38.7 g of β-hydroxybutyrate/day, EXO), isocaloric ketogenic diet (KETO), and total fasting (FAST). A physical activity level of 1.65 was obtained. In addition to plasma KB, 24-h C-peptide and KB excretion rates in the urine and postprandial glucose and insulin levels were measured. Although 24-h KB excretion increased in response to KETO and FAST, there was a modest increase in response to EXO only (P < 0.05). When compared with ISO, V̇o2 significantly increased in KETO (P < 0.01) and EXO (P < 0.001), whereas there was no difference in FAST. V̇co2 increased in EXO but decreased in KETO (both P < 0.01) and FAST (P < 0.001), resulting in 24-h respiratory exchange ratios (RER) of 0.828 ± 0.024 (ISO) and 0.811 ± 0.024 (EXO) (P < 0.05). In response to EXO there were no differences in basal and postprandial glucose and insulin levels, as well as in insulin sensitivity. When compared with ISO, EXO, and KETO, FAST increased homeostatic model assessment β-cell function (HOMA-B) (all P < 0.05). In conclusion, at energy balance exogenous ketone salts decreased respiratory exchange ratio without affecting glucose tolerance.NEW & NOTEWORTHY Our findings revealed that during isocaloric nutrition, additional exogenous ketone salts increased V̇o2 and V̇co2 while lowering the respiratory exchange ratio (RER). Ketone salts had no effect on postprandial glucose metabolism.
Collapse
Affiliation(s)
- Rebecca Dörner
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Franziska A Hägele
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Manfred J Müller
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Ulrike Seidel
- Department of Food Sciences, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Gerald Rimbach
- Department of Food Sciences, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| | - Anja Bosy-Westphal
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Baugh ME, Ahrens ML, Hutelin Z, Stylianos C, Wohlers-Kariesch E, Oster ME, Dotson J, Moon J, Hanlon AL, DiFeliceantonio AG. Validity and reliability of a new whole room indirect calorimeter to assess metabolic response to small-calorie loads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558672. [PMID: 37790401 PMCID: PMC10542547 DOI: 10.1101/2023.09.21.558672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Objective To provide an overview of our whole room indirect calorimeter (WRIC), demonstrate validity and reliability of our WRIC, and explore a novel application of Bayesian hierarchical modeling to assess responses to small carbohydrate loads. Methods Seven gas infusion studies were performed using a gas blender and profiles designed to mimic resting and postprandial metabolic events to assess WRIC validity. In a crossover design, 16 participants underwent fasting and postprandial measurements, during which they consumed a 75-kcal drink containing sucrose, dextrose, or fructose. Linear mixed effects models were used to compare resting and postprandial metabolic rate (MR) and CO (CO). Bayesian Hierarchical Modeling was also used to model postprandial CO trajectories for each participant and condition. Results Mean total error in infusions were 1.27 ± 1.16% and 0.42 ± 1.21% for VO2 and VCO2 respectively, indicating a high level of validity. Mean resting MR was similar across conditions (x ¯ = 1.05 ± 0.03 kcal / min , p=0.82, ICC: 0.91). While MR increased similarly among all conditions (~13%, p=0.29), postprandial CO parameters were significantly lower for dextrose compared with sucrose or fructose. Conclusions Our WRIC validation and novel application of statistical methods presented here provide important foundations for new research directions using WRIC.
Collapse
Affiliation(s)
- Mary Elizabeth Baugh
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Monica L. Ahrens
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA
| | - Zach Hutelin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Translational Biology, Medicine, and Health, Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Charlie Stylianos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | - Mary E. Oster
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
| | - Jon Dotson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | - Alexandra L. Hanlon
- Center for Biostatistics and Health Data Science, Department of Statistics, Blacksburg, VA
| | - Alexandra G. DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Center for Health Behaviors Research at Fralin Biomedical Research Institute at VTC, Roanoke, VA
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| |
Collapse
|
5
|
Hollstein T, Piaggi P. How can we assess "thrifty" and "spendthrift" phenotypes? Curr Opin Clin Nutr Metab Care 2023; 26:409-416. [PMID: 37294042 PMCID: PMC10531526 DOI: 10.1097/mco.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW There is a large inter-individual variability in the magnitude of body weight change that cannot be fully explained by differences in daily energy intake and physical activity levels and that can be attributed to differences in energy metabolism. Measuring the short-term metabolic response to acute changes in energy intake can better uncover this inter-individual variability and quantify the degree of metabolic thriftiness that characterizes an individual's susceptibility to weight gain and resistance to weight loss. This review summarizes the methods used to identify the individual-specific metabolic phenotype (thrifty vs. spendthrift) in research and clinical settings. RECENT FINDINGS The metabolic responses to short-term fasting, protein-imbalanced overfeeding, and mild cold exposure constitute quantitative factors that characterize metabolic thriftiness. SUMMARY The energy expenditure response to prolonged fasting is considered the most accurate and reproducible measure of metabolic thriftiness, likely because the largest energy deficit best captures interindividual differences in the extent of metabolic slowing. However, all the other dietary/environmental challenges can be used to quantify the degree of thriftiness using whole-room indirect calorimetry. Efforts are underway to identify alternative methods to assess metabolic phenotypes in clinical and outpatient settings such as the hormonal response to low-protein meals.
Collapse
Affiliation(s)
- Tim Hollstein
- Institute of Diabetes and Clinical Metabolic Research. Düsternbrooker Weg 17, 24195 Kiel, Germany
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16 Street, Phoenix Arizona 85016, USA
- Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| |
Collapse
|
6
|
Hägele FA, Dörner R, Koop J, Lübken M, Seidel U, Rimbach G, Müller MJ, Bosy-Westphal A. Impact of one-day fasting, ketogenic diet or exogenous ketones on control of energy balance in healthy participants. Clin Nutr ESPEN 2023; 55:292-299. [PMID: 37202059 DOI: 10.1016/j.clnesp.2023.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND & AIMS Oral ketone supplements may mimic the beneficial effects of endogenous ketones on energy metabolism as β-hydroxybutyrate has been proposed to increase energy expenditure and improve body weight regulation. Therefore, our objective was to compare the effects of a one-day isocaloric ketogenic diet, fasting and supplementation with ketone salts on energy expenditure and appetite perception. METHODS Eight healthy young adults (4 women, 4 men, age 24 ± 3 years, BMI 24.3 ± 3.1 kg/m2) participated in a randomized cross-over trial with four 24 h-interventions in a whole room indirect calorimeter at a physical activity level of 1.65: (i) total fasting (FAST), (ii) isocaloric ketogenic diet (3.1% energy from carbohydrates (CHO), KETO), (iii) isocaloric control diet (47.4% energy from CHO, ISO), and (iv) ISO supplemented with 38.7 g/d ketone salts (exogenous ketones, EXO). Effects on serum ketone levels (15 h-iAUC), energy metabolism (total energy expenditure, TEE; sleeping energy expenditure, SEE; macronutrient oxidation) and subjective appetite were measured. RESULTS Compared to ISO, ketone levels were considerably higher with FAST and KETO and little higher with EXO (all p > 0.05). Total and sleeping energy expenditure did not differ between ISO, FAST and EXO whereas KETO increased TEE (+110 ± 54 kcal/d vs. ISO, p < 0.05) and SEE (+201 ± 90 kcal/d vs. ISO, p < 0.05). CHO oxidation was slightly decreased with EXO compared to ISO (-48 ± 27 g/d, p < 0.05) resulting in a positive CHO balance (p < 0.05). No differences between the interventions were found for subjective appetite ratings (all p > 0.05). CONCLUSION A 24 h-ketogenic diet may contribute to maintain a neutral energy balance by increasing energy expenditure. Exogenous ketones in addition to an isocaloric diet did not improve regulation of energy balance. CLINICAL TRIAL REGISTRATION NCT04490226 https://clinicaltrials.gov/.
Collapse
Affiliation(s)
- Franziska A Hägele
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Düsternbrooker Weg 17, 24105 Kiel, Germany
| | - Rebecca Dörner
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Düsternbrooker Weg 17, 24105 Kiel, Germany
| | - Jana Koop
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Düsternbrooker Weg 17, 24105 Kiel, Germany
| | - Marie Lübken
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Düsternbrooker Weg 17, 24105 Kiel, Germany
| | - Ulrike Seidel
- Department of Food Sciences, Institute of Human Nutrition and Food Sciences, Kiel University, Hermann-Rodewald-Strasse 6, 24098 Kiel, Germany
| | - Gerald Rimbach
- Department of Food Sciences, Institute of Human Nutrition and Food Sciences, Kiel University, Hermann-Rodewald-Strasse 6, 24098 Kiel, Germany
| | - Manfred J Müller
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Düsternbrooker Weg 17, 24105 Kiel, Germany
| | - Anja Bosy-Westphal
- Department of Human Nutrition, Institute of Human Nutrition and Food Sciences, Kiel University, Düsternbrooker Weg 17, 24105 Kiel, Germany.
| |
Collapse
|