1
|
Ren P, Niu D, Chang S, Yu L, Ren J, Ma Y, Lan K. RUNX3 inhibits KSHV lytic replication by binding to the viral genome and repressing transcription. J Virol 2024; 98:e0156723. [PMID: 38197631 PMCID: PMC10878072 DOI: 10.1128/jvi.01567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.
Collapse
Affiliation(s)
- Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junrui Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Tibenderana RM, Blumenthal MJ, Bukajumbe E, Schäfer G, Mohamed Z. Clinical Significance of Elevated KSHV Viral Load in HIV-Related Kaposi's Sarcoma Patients in South Africa. Viruses 2024; 16:189. [PMID: 38399965 PMCID: PMC10893554 DOI: 10.3390/v16020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Kaposi's sarcoma (KS) is an AIDS-defining illness caused by Kaposi's sarcoma-associated herpesvirus (KSHV) predominantly in the context of HIV-related immune suppression. We aimed to explore the usefulness of KSHV DNA viral load (VL) measurement in predicting the severity, response to treatment and outcome of KS. We retrospectively assessed a cohort of KS patients (n = 94) receiving treatment at Groote Schuur Hospital, Cape Town, South Africa. Demographic and clinical data, KS staging and response to treatment were extracted from patient files, while long-term survival was ascertained from hospital records. KSHV serology and VL and hIL-6 were determined empirically from patients' blood. All patients were HIV-positive adults, the majority of whom were on HAART at the time of recruitment. KSHV VL was detectable in 65 patients' blood (median: 280.5/106 cells (IQR: 69.7-1727.3)) and was highest in patients with S1 HIV-related systemic disease (median 1066.9/106 cells, IQR: 70.5-11,269.6). KSHV VL was associated with the S1 stage in a binomial regression controlling for confounders (adjusted odds ratio 5.55, 95% CI: 1.28-24.14, p = 0.022). A subset of six patients identified to have extremely high KSHV VLs was predominantly T1 stage with pulmonary KS, and most had died at follow-up. In our cohort, elevated KSHV VL is associated with systemic HIV-related illness in KS disease. Extremely high KSHV VLs warrant further investigation for patients potentially requiring intensive treatment and investigation for progression or diagnosis of concurrent KSHV lytic syndromes.
Collapse
Affiliation(s)
| | - Melissa Jayne Blumenthal
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Emmanuel Bukajumbe
- Aberdeen Surgery, Aberdeen, NSW 2336, Australia;
- Hatchile Consult Ltd., Kampala 759125, Uganda
| | - Georgia Schäfer
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa;
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Zainab Mohamed
- Department of Radiation Oncology, University of Cape Town, Cape Town 7925, South Africa;
| |
Collapse
|
3
|
Dauguet M, Lebbé C, Vignes S. Lymphedema and Kaposi sarcoma: A narrative review. JOURNAL DE MEDECINE VASCULAIRE 2023; 48:181-187. [PMID: 38035924 DOI: 10.1016/j.jdmv.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Kaposi sarcoma (KS), due to HHV-8 infection is classified in 4 subtypes: epidemic, endemic, HIV-related and iatrogenic essentially after organ transplant. Lymphedema is a complication of KS. We reviewed the interactions between HHV-8 infection and lymphedema according an analysis of the literature. MAIN BODY HHV-8 can infect different types of cells, among them a privileged tropism for lymphatic endothelial cells. It induces multi-centric endothelial proliferation leading to the occlusion of lymphatic vascular lumen. Lymphatic obstruction progressively lead to the blockage of lymphatic drainage, lymph stasis and lymphedema. Lymphedema mostly involved the lower limb affected by KS. It can then develop simultaneously or after the appearance of KS lesions but also be the first sign of KS, a long time before KS skin lesion onset. Lymphedema diagnosis is clinical and lymphoscintigraphy can confirm it if necessary. Lymphedema may be associated with active lesions of KS or non-evolutive, with only cicatricial lesions. KS should be treated according to the KS subtype, aggressive form, with local or systemic treatments associating with causal treatment, such as HIV infection or reducing immuno-suppressive drugs in transplant patients. In most of the cases, KS treatment may slightly reduce (or not) lymphedema volume which remains a chronic disease. Lymphedema management should be associated in order to reduce the volume and then stabilizing it. Low-stretch bandage, elastic garments and skin care are the cornerstone of treatment. CONCLUSION Lymphedema is a frequent complication of KS, and may reveal KS or occurs throughout its course. Association of KS and lymphedema must be known because lymphedema is a chronic disease affecting the quality of life. Beyond the treatment of KS, its management must be specific including a long follow-up to optimize the patient's observance required to maintain the best lymphedema control.
Collapse
Affiliation(s)
- M Dauguet
- Department of Lymphology, Referral Center for Primary Lymphedema, Cognacq-Jay Hospital, 15, rue Eugène-Millon, 75015 Paris, France
| | - C Lebbé
- Université Paris Cité, AP-HP Dermato-Oncology, Cancer Institute AP-HP Nord Paris Cité, INSERM U976, Saint-Louis Hospital, Paris, France
| | - S Vignes
- Department of Lymphology, Referral Center for Primary Lymphedema, Cognacq-Jay Hospital, 15, rue Eugène-Millon, 75015 Paris, France.
| |
Collapse
|
4
|
Madela F, Anderson F, Nhlonzi GB, Thomson SR. HIV associated malignancies presenting as acute pancreatitis: a case series. S AFR J SURG 2023; 61:234-236. [PMID: 38450696 DOI: 10.36303/sajs.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) may be the presenting symptom in a small percentage of patients harbouring pancreatic or extra pancreatic tumours. This case series aims to describe the pathological spectrum of tumours detected in two AP cohorts from a high HIV-endemic region. METHODS Prospectively collected databases of patients admitted with AP over two periods 2001 to 2010 and 2013 to 2015, were retrospectively evaluated to detect those with pancreatic and extra-pancreatic tumours. The diagnosis of AP was by standard criteria. HIV infection and CD4 counts were routinely tested for in the latter period and only tested on clinical grounds in the initial period. CT scan was performed when there was diagnostic doubt, predicted severe disease, and failure to improve clinically after one week. Demographic, clinical, investigative, and pathology details were collected and presented. RESULTS HIV-positive patients admitted with AP were 106 (17%) of 628 in the first period and 90 (38%) of 238 of the second period. No tumours were diagnosed in the HIV-negative patients. Seven of the HIV-positive patients had tumours diagnosed at endoscopy, CT scan, and endoscopic retrograde cholangiography. Of the seven HIV-positive patients with tumours, two patients had a CD4 count above 200. There were four patients with lymphoma involving the pancreatic head, three having associated cholestasis, and three patients with Kaposi's Sarcoma. One Kaposi's sarcoma patient died three months after presentation. One patient with lymphoma died on day 14 and another two months after initial presentation, and the remaining four patients were referred to oncology. CONCLUSION Despite their rarity (< 4%), when HIV-positive patients with low CD4 count and cholestasis present with AP,tumours should be suspected and evaluated by cross sectional imaging and endoscopic ultrasound.
Collapse
Affiliation(s)
- F Madela
- Department of Surgery, Surgical Gastroenterology, University of KwaZulu-Natal, South Africa
| | - F Anderson
- Department of Surgery, Surgical Gastroenterology, University of KwaZulu-Natal, South Africa
| | - G B Nhlonzi
- Department of Anatomical pathology, University of KwaZulu-Natal, South Africa
| | - S R Thomson
- Division of Gastroenterology, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
5
|
Xu W, Yang S, Lu L, Xu Q, Wu S, Zhou J, Lu J, Fan X, Meng N, Ding Y, Zheng X, Lu W. Influence of lung cancer model characteristics on tumor targeting behavior of nanodrugs. J Control Release 2023; 354:538-553. [PMID: 36641120 DOI: 10.1016/j.jconrel.2023.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Evidence is mounting that there is a significant gap between the antitumor efficacy of nanodrugs in preclinical mouse tumor models and in clinical human tumors, and that differences in tumor models are likely to be responsible for this gap. Herein, we investigated the enhanced permeability and retention (EPR) effect in mouse lung cancer models with different tumor growth rates, volumes and locations, and analyzed the nanodrug tumor targeting behaviors limited by tumor vascular pathophysiological characteristics in various tumor models. The results showed that the fast-growing tumors were characterized by lower vascular tight junctions, leading to higher vascular paracellular transport activity and nanodrug tumor accumulation. The paracellular transport activity increased with the growth of tumor, but the vascular density and transcellular transport activity decreased, and as a result, the average tumor accumulation of passive targeting nanodrugs decreased. Orthotopic tumors were rich in blood vessels, but had low vascular transcellular and paracellular transport activities, making it difficult for nanodrug accumulation in orthotopic tumors via passive targeting strategies. The antitumor efficacy of passive targeting nanodrugs in various lung cancer-bearing mice validated the aforementioned nanodrug accumulation behavior, and nanodrugs based on the angiogenesis-tumor sequential targeting strategy achieved obviously improved efficacy in orthotopic lung cancer-bearing mice. These results suggest that the EPR effect varies in different tumor models and should not be used as a universal targeting strategy for antitumor nanodrugs. Besides, attention should be paid to the animal tumor models in the evaluation of nanodrugs so as to avoid exaggerating the antitumor efficacy.
Collapse
Affiliation(s)
- Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Shengmin Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Linwei Lu
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jiashen Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Xingyan Fan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yuan Ding
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Xudong Zheng
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China; Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, China.
| |
Collapse
|
6
|
Lytic Reactivation of the Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) Is Accompanied by Major Nucleolar Alterations. Viruses 2022; 14:v14081720. [PMID: 36016343 PMCID: PMC9412354 DOI: 10.3390/v14081720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The nucleolus is a subnuclear compartment whose primary function is the biogenesis of ribosomal subunits. Certain viral infections affect the morphology and composition of the nucleolar compartment and influence ribosomal RNA (rRNA) transcription and maturation. However, no description of nucleolar morphology and function during infection with Kaposi’s sarcoma-associated herpesvirus (KSHV) is available to date. Using immunofluorescence microscopy, we documented extensive destruction of the nuclear and nucleolar architecture during the lytic reactivation of KSHV. This was manifested by the redistribution of key nucleolar proteins, including the rRNA transcription factor UBF. Distinct delocalization patterns were evident; certain nucleolar proteins remained together whereas others dissociated, implying that nucleolar proteins undergo nonrandom programmed dispersion. Significantly, the redistribution of UBF was dependent on viral DNA replication or late viral gene expression. No significant changes in pre-rRNA levels and no accumulation of pre-rRNA intermediates were found by RT-qPCR and Northern blot analysis. Furthermore, fluorescent in situ hybridization (FISH), combined with immunofluorescence, revealed an overlap between Fibrillarin and internal transcribed spacer 1 (ITS1), which represents the primary product of the pre-rRNA, suggesting that the processing of rRNA proceeds during lytic reactivation. Finally, small changes in the levels of pseudouridylation (Ψ) and 2′-O-methylation (Nm) were documented across the rRNA; however, none were localized to the functional domain. Taken together, our results suggest that despite dramatic changes in the nucleolar organization, rRNA transcription and processing persist during lytic reactivation of KSHV. Whether the observed nucleolar alterations favor productive infection or signify cellular anti-viral responses remains to be determined.
Collapse
|
7
|
Anorectal pathology in the HIV population: a guide for radiologists. Abdom Radiol (NY) 2022; 47:1762-1774. [PMID: 35284963 DOI: 10.1007/s00261-022-03470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/01/2022]
Abstract
Patients with human immunodeficiency virus (HIV) can present with a wide range of different acute and chronic pathologies. Anorectal conditions are particularly common in this unique patient population, including pathologies, such as proctitis, anorectal abscess, anorectal fistula, and anal squamous cell carcinoma. The radiologist plays a critical role in the assessment of these common forms of anorectal disease, as these conditions can present with various findings on imaging assessment. Pelvic CT, MRI, and FDG-PET/CT are among the most common modalities used for assessment of anorectal disease in the HIV patient population. Knowledge of the fundamental clinical and imaging findings associated with these pathologies in HIV patients is critical for radiologists.
Collapse
|
8
|
Trøstrup H, Bigdeli AK, Krogerus C, Kneser U, Schmidt G, Schmidt VJ. A Multidisciplinary Approach to Complex Dermal Sarcomas Ensures an Optimal Clinical Outcome. Cancers (Basel) 2022; 14:cancers14071693. [PMID: 35406465 PMCID: PMC8996894 DOI: 10.3390/cancers14071693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Primary dermal sarcomas (PDS) belong to a highly clinically, genetically and pathologically heterogeneous group of rare malignant mesenchymal tumours primarily involving the dermis or the subcutaneous tissue. The tumours are classified according to the mesenchymal tissue from which they originate: dermal connective tissue, smooth muscle or vessels. Clinically, PDS may mimic benign soft tissue lesions such as dermatofibromas, hypertrophic scarring, etc. This may cause substantial diagnostic delay. As a group, PDS most commonly comprises the following clinicopathological forms of dermal sarcomas: dermatofibrosarcoma protuberans (DFSP), atypical fibroxanthoma (AFX), dermal undifferentiated pleomorphic sarcoma (DUPS), leiomyosarcoma (LMS), and vascular sarcomas (Kaposi’s sarcoma, primary angiosarcoma, and radiation-induced angiosarcoma). This clinical entity has a broad spectrum regarding malignant potential; however, local aggressive behaviour in some forms causes surgical challenges. Preoperative, individualised surgical planning with complete free margins is pivotal along with a multidisciplinary approach and collaboration across highly specialised surgical and medical specialties. The present review gives a structured overview of the most common forms of dermal sarcomas including surgical recommendations and examples for advanced reconstructions as well as the current adjunctive medical treatment strategies. Optimal aesthetic and functional outcomes with low recurrence rates can be achieved by using a multidisciplinary approach to complex dermal sarcomas. In cases of extended local tumour invasion in dermal sarcomas, advanced reconstructive techniques can be applied, and the interdisciplinary microsurgeon should be an integral part of the sarcoma board.
Collapse
Affiliation(s)
- Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital (SUH) Roskilde, University of Copenhagen, 4000 Roskilde, Denmark; (C.K.); (V.J.S.)
- Department of Plastic Surgery and Burns Treatment, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: ; Tel.: +45-47323700
| | - Amir K. Bigdeli
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, D-67071 Ludwigshafen, Germany; (A.K.B.); (U.K.)
| | - Christina Krogerus
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital (SUH) Roskilde, University of Copenhagen, 4000 Roskilde, Denmark; (C.K.); (V.J.S.)
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, D-67071 Ludwigshafen, Germany; (A.K.B.); (U.K.)
| | - Grethe Schmidt
- Department of Plastic Surgery and Burns Treatment, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Volker J. Schmidt
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital (SUH) Roskilde, University of Copenhagen, 4000 Roskilde, Denmark; (C.K.); (V.J.S.)
| |
Collapse
|
9
|
Jary A, Veyri M, Gothland A, Leducq V, Calvez V, Marcelin AG. Kaposi's Sarcoma-Associated Herpesvirus, the Etiological Agent of All Epidemiological Forms of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13246208. [PMID: 34944828 PMCID: PMC8699694 DOI: 10.3390/cancers13246208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Kaposi’s sarcoma-associated herpesvirus (KSHV) is one of the seven oncogenic viruses currently recognized by the International Agency for Research on Cancer. Its presence for Kaposi’s sarcoma development is essential and knowledge on the oncogenic process has increased since its discovery in 1994. However, some uncertainties remain to be clarified, in particular on the exact routes of transmission and disparities in KSHV seroprevalence and the prevalence of Kaposi’s sarcoma worldwide. Here, we summarized the current data on the KSHV viral particle’s structure, its genome, the replication, its seroprevalence, the viral diversity and the lytic and latent oncogenesis proteins involved in Kaposi’s sarcoma. Lastly, we reported the environmental, immunological and viral factors possibly associated with KSHV transmission that could also play a role in the development of Kaposi’s sarcoma. Abstract Kaposi’s sarcoma-associated herpesvirus (KSHV), also called human herpesvirus 8 (HHV-8), is an oncogenic virus belonging to the Herpesviridae family. The viral particle is composed of a double-stranded DNA harboring 90 open reading frames, incorporated in an icosahedral capsid and enveloped. The viral cycle is divided in the following two states: a short lytic phase, and a latency phase that leads to a persistent infection in target cells and the expression of a small number of genes, including LANA-1, v-FLIP and v-cyclin. The seroprevalence and risk factors of infection differ around the world, and saliva seems to play a major role in viral transmission. KSHV is found in all epidemiological forms of Kaposi’s sarcoma including classic, endemic, iatrogenic, epidemic and non-epidemic forms. In a Kaposi’s sarcoma lesion, KSHV is mainly in a latent state; however, a small proportion of viral particles (<5%) are in a replicative state and are reported to be potentially involved in the proliferation of neighboring cells, suggesting they have crucial roles in the process of tumorigenesis. KSHV encodes oncogenic proteins (LANA-1, v-FLIP, v-cyclin, v-GPCR, v-IL6, v-CCL, v-MIP, v-IRF, etc.) that can modulate cellular pathways in order to induce the characteristics found in all cancer, including the inhibition of apoptosis, cells’ proliferation stimulation, angiogenesis, inflammation and immune escape, and, therefore, are involved in the development of Kaposi’s sarcoma.
Collapse
Affiliation(s)
- Aude Jary
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
- Correspondence: ; Tel.: +33-1-4217-7401
| | - Marianne Veyri
- Service d’Oncologie Médicale, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France;
| | - Adélie Gothland
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Valentin Leducq
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Vincent Calvez
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| | - Anne-Geneviève Marcelin
- Service de Virologie, Hôpital Pitié-Salpêtrière, AP-HP, Institut Pierre Louis d’Épidémiologie et de Santé Publique (iPLESP), INSERM, Sorbonne Université, 75013 Paris, France; (A.G.); (V.L.); (V.C.); (A.-G.M.)
| |
Collapse
|
10
|
Chimbola OM, Lungu EM, Szomolay B. Effect of innate and adaptive immune mechanisms on treatment regimens in an AIDS-related Kaposi's Sarcoma model. JOURNAL OF BIOLOGICAL DYNAMICS 2021; 15:213-249. [PMID: 33843468 DOI: 10.1080/17513758.2021.1912420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Kaposi Sarcoma (KS) is the most common AIDS-defining cancer, even as HIV-positive people live longer. Like other herpesviruses, human herpesvirus-8 (HHV-8) establishes a lifelong infection of the host that in association with HIV infection may develop at any time during the illness. With the increasing global incidence of KS, there is an urgent need of designing optimal therapeutic strategies for HHV-8-related infections. Here we formulate two models with innate and adaptive immune mechanisms, relevant for non-AIDS KS (NAKS) and AIDS-KS, where the initial condition of the second model is given by the equilibrium state of the first one. For the model with innate mechanism (MIM), we define an infectivity resistance threshold that will determine whether the primary HHV-8 infection of B-cells will progress to secondary infection of progenitor cells, a concept relevant for viral carriers in the asymptomatic phase. The optimal control strategy has been employed to obtain treatment efficacy in case of a combined antiretroviral therapy (cART). For the MIM we have shown that KS therapy alone is capable of reducing the HHV-8 load. In the model with adaptive mechanism (MAM), we show that if cART is administered at optimal levels, that is, 0.48 for protease inhibitors, 0.79 for reverse transcriptase inhibitors and 0.25 for KS therapy, both HIV-1 and HHV-8 can be reduced. The predictions of these mathematical models have the potential to offer more effective therapeutic interventions in the treatment of NAKS and AIDS-KS.
Collapse
Affiliation(s)
- Obias Mulenga Chimbola
- Department of Mathematics and Statistical Sciences, Faculty of Science, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Mathematics and Statistics, School of Science, Engineering and Technology (SSET), Mulungushi University, Kabwe, Zambia
| | - Edward M Lungu
- Department of Mathematics and Statistical Sciences, Faculty of Science, Botswana International University of Science and Technology, Palapye, Botswana
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
11
|
Lee SM, Kaye KM, Slack FJ. Cellular microRNA-127-3p suppresses oncogenic herpesvirus-induced transformation and tumorigenesis via down-regulation of SKP2. Proc Natl Acad Sci U S A 2021; 118:e2105428118. [PMID: 34725152 PMCID: PMC8609319 DOI: 10.1073/pnas.2105428118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes the endothelial tumor KS, a leading cause of morbidity and mortality in sub-Saharan Africa. KSHV-encoded microRNAs (miRNAs) are known to play an important role in viral oncogenesis; however, the role of host miRNAs in KS tumorigenesis remains largely unknown. Here, high-throughput small-RNA sequencing of the cellular transcriptome in a KS xenograft model revealed miR-127-3p as one of the most significantly down-regulated miRNAs, which we validated in KS patient tissues. We show that restoration of miR-127-3p suppresses KSHV-driven cellular transformation and proliferation and induces G1 cell cycle arrest by directly targeting the oncogene SKP2. This miR-127-3p-induced G1 arrest is rescued by disrupting the miR-127-3p target site in SKP2 messenger RNA (mRNA) using gene editing. Mechanistically, miR-127-3p-mediated SKP2 repression elevates cyclin-dependent kinase (CDK) inhibitor p21Cip1 and down-regulates cyclin E, cyclin A, and CDK2, leading to activation of the RB protein tumor suppressor pathway and suppression of the transcriptional activities of E2F and Myc, key oncoprotein transcription factors crucial for KSHV tumorigenesis. Consequently, metabolomics analysis during miR-127-3p-induced cell cycle arrest revealed significant depletion of dNTP pools, consistent with RB-mediated repression of key dNTP biosynthesis enzymes. Furthermore, miR-127-3p reconstitution in a KS xenograft mouse model suppresses KSHV-positive tumor growth by targeting SKP2 in vivo. These findings identify a previously unrecognized tumor suppressor function for miR-127-3p in KS and demonstrate that the miR-127-3p/SKP2 axis is a viable therapeutic strategy for KS.
Collapse
Affiliation(s)
- Soo Mi Lee
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138
| | - Kenneth M Kaye
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
12
|
Latently KSHV-Infected Cells Promote Further Establishment of Latency upon Superinfection with KSHV. Int J Mol Sci 2021; 22:ijms222111994. [PMID: 34769420 PMCID: PMC8584431 DOI: 10.3390/ijms222111994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a cancer-related virus which engages in two forms of infection: latent and lytic. Latent infection allows the virus to establish long-term persistent infection, whereas the lytic cycle is needed for the maintenance of the viral reservoir and for virus spread. By using recombinant KSHV viruses encoding mNeonGreen and mCherry fluorescent proteins, we show that various cell types that are latently-infected with KSHV can be superinfected, and that the new incoming viruses establish latent infection. Moreover, we show that latency establishment is enhanced in superinfected cells compared to primary infected ones. Further analysis revealed that cells that ectopically express the major latency protein of KSHV, LANA-1, prior to and during infection exhibit enhanced establishment of latency, but not cells expressing LANA-1 fragments. This observation supports the notion that the expression level of LANA-1 following infection determines the efficiency of latency establishment and avoids loss of viral genomes. These findings imply that a host can be infected with more than a single viral genome and that superinfection may support the maintenance of long-term latency.
Collapse
|
13
|
Dong L, Dong J, Xiang M, Lei P, Li Z, Zhang F, Sun X, Niu D, Bai L, Lan K. NDRG1 facilitates lytic replication of Kaposi's sarcoma-associated herpesvirus by maintaining the stability of the KSHV helicase. PLoS Pathog 2021; 17:e1009645. [PMID: 34077484 PMCID: PMC8202935 DOI: 10.1371/journal.ppat.1009645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023] Open
Abstract
The presumed DNA helicase encoded by ORF44 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays a crucial role in unwinding viral double-stranded DNA and initiating DNA replication during lytic reactivation. However, the regulatory mechanism of KSHV ORF44 has not been fully elucidated. In a previous study, we identified that N-Myc downstream regulated gene 1 (NDRG1), a host scaffold protein, facilitates viral genome replication by interacting with proliferating cell nuclear antigen (PCNA) and the latent viral protein latency-associated nuclear antigen (LANA) during viral latency. In the present study, we further demonstrated that NDRG1 can interact with KSHV ORF44 during viral lytic replication. We also found that the mRNA and protein levels of NDRG1 were significantly increased by KSHV ORF50-encoded replication and transcription activator (RTA). Remarkably, knockdown of NDRG1 greatly decreased the protein level of ORF44 and impaired viral lytic replication. Interestingly, NDRG1 enhanced the stability of ORF44 and inhibited its ubiquitin-proteasome-mediated degradation by reducing the polyubiquitination of the lysine residues at positions 79 and 368 in ORF44. In summary, NDRG1 is a novel binding partner of ORF44 and facilitates viral lytic replication by maintaining the stability of ORF44. This study provides new insight into the mechanisms underlying KSHV lytic replication.
Collapse
Affiliation(s)
- Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiazhen Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Min Xiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ping Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixian Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyi Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LB); (KL)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (LB); (KL)
| |
Collapse
|
14
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
15
|
The Portal Vertex of KSHV Promotes Docking of Capsids at the Nuclear Pores. Viruses 2021; 13:v13040597. [PMID: 33807444 PMCID: PMC8065994 DOI: 10.3390/v13040597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-related herpesvirus. Like other herpesviruses, the KSHV icosahedral capsid includes a portal vertex, composed of 12 protein subunits encoded by open reading frame (ORF) 43, which enables packaging and release of the viral genome into the nucleus through the nuclear pore complex (NPC). Capsid vertex-specific component (CVSC) tegument proteins, which directly mediate docking at the NPCs, are organized on the capsid vertices and are enriched on the portal vertex. Whether and how the portal vertex is selected for docking at the NPC is unknown. Here, we investigated the docking of incoming ORF43-null KSHV capsids at the NPCs, and describe a significantly lower fraction of capsids attached to the nuclear envelope compared to wild-type (WT) capsids. Like WT capsids, nuclear envelope-associated ORF43-null capsids co-localized with different nucleoporins (Nups) and did not detach upon salt treatment. Inhibition of nuclear export did not alter WT capsid docking. As ORF43-null capsids exhibit lower extent of association with the NPCs, we conclude that although not essential, the portal has a role in mediating the interaction of the CVSC proteins with Nups, and suggest a model whereby WT capsids can dock at the nuclear envelope through a non-portal penton vertex, resulting in an infection 'dead end'.
Collapse
|
16
|
Haddad CO, Kalt I, Shovman Y, Xia L, Schlesinger Y, Sarid R, Parnas O. Targeting the Kaposi's sarcoma-associated herpesvirus genome with the CRISPR-Cas9 platform in latently infected cells. Virol J 2021; 18:56. [PMID: 33731154 PMCID: PMC7966637 DOI: 10.1186/s12985-021-01527-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Kaposi's sarcoma-associated herpesvirus (KSHV) is a transforming gammaherpesvirus. Like other herpesviruses, KSHV infection is for life long and there is no treatment that can cure patients from the virus. In addition, there is an urgent need to target viral genes to study their role during the infection cycle. The CRISPR-Cas9 technology offers a means to target viral genomes and thus may offer a novel strategy for viral cure as well as for better understanding of the infection process. We evaluated the suitability of this platform for the targeting of KSHV. METHODS We have used the recombinat KSHV BAC16 genome, which contains an expression cassette encoding hygromycin-resistance and a GFP marker gene. Three genes were targeted: gfp, which serves as a marker for infection; orf45 encoding a lytic viral protein; and orf73, encoding LANA which is crucial for latent infection. The fraction of cells expressing GFP, viral DNA levels and LANA expression were monitored and viral genomes were sequenced. RESULTS We found that KSHV episomes can be targeted by CRISPR-Cas9. Interestingly, the quantity of KSHV DNA declined, even when target sites were not functionally important for latency. In addition, we show that antibiotic selection, used to maintain infection, interferes with the outcome of targeting. CONCLUSIONS Our study provides insights into the use of this fundamental approach for the study and manipulation of KSHV. It provides guidelines for the targeting CRISPR-Cas9 to the viral genome and for outcomes interpretation.
Collapse
Affiliation(s)
- Coral Orel Haddad
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Yehuda Shovman
- The Concern Foundation at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120, Jerusalem, Israel
| | - Lei Xia
- The Concern Foundation at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120, Jerusalem, Israel
| | - Yehuda Schlesinger
- The Concern Foundation at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120, Jerusalem, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| | - Oren Parnas
- The Concern Foundation at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University Faculty of Medicine, 91120, Jerusalem, Israel.
| |
Collapse
|
17
|
Host RAB11FIP5 protein inhibits the release of Kaposi's sarcoma-associated herpesvirus particles by promoting lysosomal degradation of ORF45. PLoS Pathog 2020; 16:e1009099. [PMID: 33315947 PMCID: PMC7735600 DOI: 10.1371/journal.ppat.1009099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
Open reading frame (ORF) 45 is an outer tegument protein of Kaposi's sarcoma-associated herpesvirus (KSHV). Genetic analysis of an ORF45-null mutant revealed that ORF45 plays a key role in the events leading to the release of KSHV particles. ORF45 associates with lipid rafts (LRs), which is responsible for the colocalization of viral particles with the trans-Golgi network and facilitates their release. In this study, we identified a host protein, RAB11 family interacting protein 5 (RAB11FIP5), that interacts with ORF45 in vitro and in vivo. RAB11FIP5 encodes a RAB11 effector protein that regulates endosomal trafficking. Overexpression of RAB11FIP5 in KSHV-infected cells decreased the expression level of ORF45 and inhibited the release of KSHV particles, as reflected by the significant reduction in the number of extracellular virions. In contrast, silencing endogenous RAB11FIP5 increased ORF45 expression and promoted the release of KSHV particles. We further showed that RAB11FIP5 mediates lysosomal degradation of ORF45, which impairs its ability to target LRs in the Golgi apparatus and inhibits ORF45-mediated colocalization of viral particles with the trans-Golgi network. Collectively, our results suggest that RAB11FIP5 enhances lysosome-dependent degradation of ORF45, which inhibits the release of KSHV particles, and have potential implications for virology and antiviral design.
Collapse
|
18
|
Gabaev I, Williamson JC, Crozier TW, Schulz TF, Lehner PJ. Quantitative Proteomics Analysis of Lytic KSHV Infection in Human Endothelial Cells Reveals Targets of Viral Immune Modulation. Cell Rep 2020; 33:108249. [PMID: 33053346 PMCID: PMC7567700 DOI: 10.1016/j.celrep.2020.108249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the leading cause of mortality in HIV infection. KSHV reactivation from latent- to lytic-stage infection initiates a cascade of viral gene expression. Here we show how these changes remodel the host cell proteome to enable viral replication. By undertaking a systematic and unbiased analysis of changes to the endothelial cell proteome following KSHV reactivation, we quantify >7,000 cellular proteins and 71 viral proteins and provide a temporal profile of protein changes during the course of lytic KSHV infection. Lytic KSHV induces >2-fold downregulation of 291 cellular proteins, including PKR, the key cellular sensor of double-stranded RNA. Despite the multiple episomes per cell, CRISPR-Cas9 efficiently targets KSHV genomes. A complementary KSHV genome-wide CRISPR genetic screen identifies K5 as the viral gene responsible for the downregulation of two KSHV targets, Nectin-2 and CD155, ligands of the NK cell DNAM-1 receptor.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - James C. Williamson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas W.M. Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany,German Center for Infection Research, Hannover-Braunschweig, Germany
| | - Paul J. Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK,Corresponding author
| |
Collapse
|
19
|
Vally F, Selvaraj WMP, Ngalamika O. Admitted AIDS-associated Kaposi sarcoma patients: Indications for admission and predictors of mortality. Medicine (Baltimore) 2020; 99:e22415. [PMID: 32991474 PMCID: PMC7523766 DOI: 10.1097/md.0000000000022415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Kaposi sarcoma (KS) is an AIDS-defining angioproliferative malignancy associated with high morbidity and mortality. Most KS patients in regions with high incidence such as sub-Saharan Africa present late with advanced stage disease. Admitted KS patients have high mortality rates. Factors associated with mortality of admitted KS patients are poorly defined.We conducted a retrospective file review to ascertain reasons for admission and identify factors associated with mortality of admitted HIV-associated (epidemic) KS patients in Zambia. Baseline study variables were collected, and patients were retrospectively followed from admission to time of discharge or death.Mortality rate for admitted epidemic KS patients was high at 20%. The most common reasons for admission included advanced KS disease, severe anemia, respiratory tract infections, and sepsis. The majority (48%) of admitted patients had advanced clinical stage with visceral involvement on admission. Clinical predictors of mortality on univariate analysis included visceral KS [odds ratio (OR) = 13.74; 95% confidence interval (95% CI) = 1.68-113; P = 0.02), fever (OR = 26; 95% CI = 4.85-139; P = .001), and sepsis (OR = 35.56; 95% CI = 6.05-209; P = .001). Baseline hemoglobin levels (5.6 vs 8.2 g/dL; P = .001) and baseline platelet counts (63 x 10^9/L vs 205 x 10^9/L; P = .01) were significantly lower in mortalities vs discharges. Baseline white cell counts were higher in mortalities vs discharges (13.78 x 10^9/L vs 5.58 x 10^9/L; P = .01), and HIV-1 viral loads at the time of admission were higher in mortalities vs discharges (47,607 vs 40 copies/μL; P = .02). However, only sepsis (or signs and symptoms of sepsis) were independently associated with mortality after controlling for confounders.In conclusion, common reasons for admission of epidemic KS patients include advanced disease, severe anemia, respiratory tract infections, and signs and symptoms of sepsis. Signs and symptoms of sepsis are independent predictors of mortality in these patients.
Collapse
|
20
|
Elbasani E, Falasco F, Gramolelli S, Nurminen V, Günther T, Weltner J, Balboa D, Grundhoff A, Otonkoski T, Ojala PM. Kaposi's Sarcoma-Associated Herpesvirus Reactivation by Targeting of a dCas9-Based Transcription Activator to the ORF50 Promoter. Viruses 2020; 12:v12090952. [PMID: 32867368 PMCID: PMC7552072 DOI: 10.3390/v12090952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
CRISPR activation (CRISPRa) has revealed great potential as a tool to modulate the expression of targeted cellular genes. Here, we successfully applied the CRISPRa system to trigger the Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation in latently infected cells by selectively activating ORF50 gene directly from the virus genome. We found that a nuclease-deficient Cas9 (dCas9) fused to a destabilization domain (DD) and 12 copies of the VP16 activation domain (VP192) triggered a more efficient KSHV lytic cycle and virus production when guided to two different sites on the ORF50 promoter, instead of only a single site. To our surprise, the virus reactivation induced by binding of the stable DD-dCas9-VP192 on the ORF50 promoter was even more efficient than reactivation induced by ectopic expression of ORF50. This suggests that recruitment of additional transcriptional activators to the ORF50 promoter, in addition to ORF50 itself, are needed for the efficient virus production. Further, we show that CRISPRa can be applied to selectively express the early lytic gene, ORF57, without disturbing the viral latency. Therefore, CRISPRa-based systems can be utilized to facilitate virus-host interaction studies by controlling the expression of not only cellular but also of specific KSHV genes.
Collapse
Affiliation(s)
- Endrit Elbasani
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (F.F.); (S.G.); (V.N.)
- Correspondence: (E.E.); (P.M.O.)
| | - Francesca Falasco
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (F.F.); (S.G.); (V.N.)
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (F.F.); (S.G.); (V.N.)
| | - Veijo Nurminen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (F.F.); (S.G.); (V.N.)
| | - Thomas Günther
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (T.G.); (A.G.)
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (J.W.); (D.B.); (T.O.)
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (J.W.); (D.B.); (T.O.)
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (T.G.); (A.G.)
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (J.W.); (D.B.); (T.O.)
| | - Päivi M. Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (F.F.); (S.G.); (V.N.)
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK
- Correspondence: (E.E.); (P.M.O.)
| |
Collapse
|
21
|
Gramolelli S, Elbasani E, Tuohinto K, Nurminen V, Günther T, Kallinen RE, Kaijalainen SP, Diaz R, Grundhoff A, Haglund C, Ziegelbauer JM, Pellinen T, Bower M, Francois M, Ojala PM. Oncogenic Herpesvirus Engages Endothelial Transcription Factors SOX18 and PROX1 to Increase Viral Genome Copies and Virus Production. Cancer Res 2020; 80:3116-3129. [PMID: 32518203 DOI: 10.1158/0008-5472.can-19-3103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/13/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
Kaposi sarcoma is a tumor caused by Kaposi sarcoma herpesvirus (KSHV) infection and is thought to originate from lymphatic endothelial cells (LEC). While KSHV establishes latency in virtually all susceptible cell types, LECs support spontaneous expression of oncogenic lytic genes, high viral genome copies, and release of infectious virus. It remains unknown the contribution of spontaneous virus production to the expansion of KSHV-infected tumor cells and the cellular factors that render the lymphatic environment unique to KSHV life cycle. We show here that expansion of the infected cell population, observed in LECs, but not in blood endothelial cells, is dependent on the spontaneous virus production from infected LECs. The drivers of lymphatic endothelium development, SOX18 and PROX1, regulated different steps of the KSHV life cycle. SOX18 enhanced the number of intracellular viral genome copies and bound to the viral origins of replication. Genetic depletion or chemical inhibition of SOX18 caused a decrease of KSHV genome copy numbers. PROX1 interacted with ORF50, the viral initiator of lytic replication, and bound to the KSHV genome in the promoter region of ORF50, increasing its transactivation activity and KSHV spontaneous lytic gene expression and infectious virus release. In Kaposi sarcoma tumors, SOX18 and PROX1 expression correlated with latent and lytic KSHV protein expression. These results demonstrate the importance of two key transcriptional drivers of LEC fate in the regulation of the tumorigenic KSHV life cycle. Moreover, they introduce molecular targeting of SOX18 as a potential novel therapeutic avenue in Kaposi sarcoma. SIGNIFICANCE: SOX18 and PROX1, central regulators of lymphatic development, are key factors for KSHV genome maintenance and lytic cycle in lymphatic endothelial cells, supporting Kaposi sarcoma tumorigenesis and representing attractive therapeutic targets.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Endrit Elbasani
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krista Tuohinto
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veijo Nurminen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Günther
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Riikka E Kallinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo P Kaijalainen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raquel Diaz
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, United Kingdom
| | - Mathias Francois
- The David Richmond Program for Cardio-Vascular Research: Gene Regulation and Editing, The Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Infectious Diseases, Imperial College London, Medical School Building, St. Mary's Campus, London, United Kingdom
| |
Collapse
|
22
|
Kusejko K, Bachmann N, Chaudron SE, Nguyen H, Braun DL, Hampel B, Battegay M, Bernasconi E, Calmy A, Cavassini M, Hoffmann M, Böni J, Yerly S, Klimkait T, Perreau M, Rauch A, Günthard HF, Kouyos RD. A Systematic Phylogenetic Approach to Study the Interaction of HIV-1 With Coinfections, Noncommunicable Diseases, and Opportunistic Diseases. J Infect Dis 2020; 220:244-253. [PMID: 30835292 DOI: 10.1093/infdis/jiz093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022] Open
Abstract
To systematically test whether coinfections spread along the HIV-1 transmission network and whether similarities in HIV-1 genomes predict AIDS-defining illnesses and comorbidities, we analyzed the distribution of these variables on the HIV phylogeny of the densely sampled Swiss HIV Cohort Study. By combining different statistical methods, we could detect, quantify, and explain the clustering of diseases. Infectious conditions such as hepatitis C, but also Kaposi sarcoma, clustered significantly, suggesting transmission of these infections along the HIV-1 transmission network. The clustering of patients with neurocognitive complaints could not be completely explained by the clustering of patients with similar demographic risk factors, which suggests a potential impact of viral genetics. In summary, the consistent and robust signal for coinfections and comorbidities highlights the strong interaction of HIV-1 and other infections and shows the potential of combining phylogenetic methods to identify disease traits that are likely to be related to virus genetic factors.
Collapse
Affiliation(s)
- Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Nadine Bachmann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Sandra E Chaudron
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Huyen Nguyen
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Benjamin Hampel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Switzerland
| | - Alexandra Calmy
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases, Cantonal Hospital St Gallen, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Sabine Yerly
- Laboratory of Virology and Division of Infectious Diseases, Geneva University Hospital, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine-Petersplatz, University of Basel, Switzerland
| | | | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Switzerland
| | | |
Collapse
|
23
|
Targeting Kaposi's Sarcoma-Associated Herpesvirus ORF21 Tyrosine Kinase and Viral Lytic Reactivation by Tyrosine Kinase Inhibitors Approved for Clinical Use. J Virol 2020; 94:JVI.01791-19. [PMID: 31826996 DOI: 10.1128/jvi.01791-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and the plasma cell variant of multicentric Castleman disease. Previous research has shown that several cellular tyrosine kinases play crucial roles during several steps in the virus replication cycle. Two KSHV proteins also have protein kinase function: open reading frame (ORF) 36 encodes a serine-threonine kinase, while ORF21 encodes a thymidine kinase (TK), which has recently been found to be an efficient tyrosine kinase. In this study, we explore the role of the ORF21 tyrosine kinase function in KSHV lytic replication. By generating a recombinant KSHV mutant with an enzymatically inactive ORF21 protein, we show that the tyrosine kinase function of ORF21/TK is not required for the progression of the lytic replication in tissue culture but that it is essential for the phosphorylation and activation to toxic moieties of the antiviral drugs zidovudine and brivudine. In addition, we identify several tyrosine kinase inhibitors, already in clinical use against human malignancies, which potently inhibit not only ORF21 TK kinase function but also viral lytic reactivation and the development of KSHV-infected endothelial tumors in mice. Since they target both cellular tyrosine kinases and a viral kinase, some of these compounds might find a use in the treatment of KSHV-associated malignancies.IMPORTANCE Our findings address the role of KSHV ORF21 as a tyrosine kinase during lytic replication and the activation of prodrugs in KSHV-infected cells. We also show the potential of selected clinically approved tyrosine kinase inhibitors to inhibit KSHV TK, KSHV lytic replication, infectious virion release, and the development of an endothelial tumor. Since they target both cellular tyrosine kinases supporting productive viral replication and a viral kinase, these drugs, which are already approved for clinical use, may be suitable for repurposing for the treatment of KSHV-related tumors in AIDS patients or transplant recipients.
Collapse
|
24
|
Ng J, Cleary A, Tsukada H, Goldberg H. A case of recipient-derived pulmonary Kaposi sarcoma after bilateral lung transplantation. J Heart Lung Transplant 2019; 37:798-799. [PMID: 29793656 DOI: 10.1016/j.healun.2018.01.1310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Julie Ng
- Department of Pulmonary Critical Care, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Allison Cleary
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hisashi Tsukada
- Department of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hilary Goldberg
- Department of Pulmonary Critical Care, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Wei X, Bai L, Dong L, Liu H, Xing P, Zhou Z, Wu S, Lan K. NCOA2 promotes lytic reactivation of Kaposi's sarcoma-associated herpesvirus by enhancing the expression of the master switch protein RTA. PLoS Pathog 2019; 15:e1008160. [PMID: 31751430 PMCID: PMC6894885 DOI: 10.1371/journal.ppat.1008160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/05/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
Reactivation of Kaposi’s sarcoma-associated herpesvirus (KSHV) is important for persistent infection in the host as well as viral oncogenesis. The replication and transcription activator (RTA) encoded by KSHV ORF50 plays a central role in the switch from viral latency to lytic replication. Given that RTA is a transcriptional activator and RTA expression is sufficient to activate complete lytic replication, RTA must possess an elaborate mechanism for regulating its protein abundance. Previous studies have demonstrated that RTA could be degraded through the ubiquitin-proteasome pathway. A protein abundance regulatory signal (PARS), which consists of PARS I and PARS II, at the C-terminal region of RTA modulates its protein abundance. In the present study, we identified a host protein named Nuclear receptor coactivator 2 (NCOA2), which can interact with RTA in vitro and in vivo. We further showed that NCOA2 binds to the PARS II domain of RTA. We demonstrated that NCOA2 enhances RTA stability and prevents the proteasome-mediated degradation of RTA by competing with MDM2, an E3 ubiquitin ligase of RTA that interacts with the PARS II domain. Moreover, overexpression of NCOA2 in KSHV-infected cells significantly enhanced the expression level of RTA, which promotes the expression of RTA downstream viral lytic genes and lytic replication. In contrast, silencing of endogenous NCOA2 downregulated the expression of viral lytic genes and impaired viral lytic replication. Interestingly, we also found that RTA upregulates the expression of NCOA2 during lytic reactivation. Taken together, our data support the conclusion that NCOA2 is a novel RTA-binding protein that promotes RTA-driven lytic reactivation by increasing the stability of RTA, and the RTA-NCOA2 positive feedback regulatory loop plays an important role in KSHV reactivation. Reactivation of KSHV from latency to lytic replication plays an important role in viral spread, establishment of lifelong latent infection and disease progression. RTA, the lytic switch protein, is essential and sufficient for triggering the full viral lytic program. Here, we report a host protein named NCOA2 as a novel RTA-binding protein. Direct interaction of NCOA2 with RTA increased the expression level of RTA. Further study revealed that NCOA2 competes with the E3 ubiquitin ligase of RTA, MDM2, to interact with the PARS II domain of RTA, which inhibits RTA degradation and enhances the stability of RTA. In the context of KSHV-infected cells, we showed that NCOA2 plays an important role in promoting RTA-driven lytic reactivation.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lianghui Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huimei Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peidong Xing
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiyao Zhou
- University College London, Gower Street, London, United Kingdom
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
26
|
Abounouh K, Aitraise I, Benabou A, Boussakri I, Doumir MA, El Boussairi C, El Idrissi S, El Mahdaoui C, Qouar DE, Ennahal A, Fathi S, Hafidi M, Lachker L, Ratib C, Tanouti IA, Maaroufi A, Benjelloun S, Guessous F, Pineau P, Ezzikouri S. Virus-associated human cancers in Moroccan population: From epidemiology to prospective research. INFECTION GENETICS AND EVOLUTION 2019; 75:103990. [PMID: 31386915 DOI: 10.1016/j.meegid.2019.103990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
Eight human viruses have been classified by the International Agency for Research on Cancer as carcinogenic or probably carcinogenic for humans. Infection with high risk human papillomaviruses, hepatitis B and C viruses, Epstein-Barr virus (EBV), human T-Cell Lymphotropic Virus Type 1 (HTLV-1), Human herpesvirus 8 (HHV-8), Merkel cell polyomavirus and human immunodeficiency virus-1 (HIV1) alone or in combination with other agents are the main etiologic factors of many cancers. This review highlights some aspects of virus-associated human cancers, potentially responsible for >14,000 malignancies per year in Morocco. Given that not all individuals infected with these viruses develop cancer, somatic alterations, genetic predisposition, and lifestyle or environmental factors obviously play potentializing roles modulating viral activity. These viral, host genetic signatures and lifestyle interactions may represent a reservoir of biomarkers for early detection, prevention of cancer and rationale-based therapy.
Collapse
Affiliation(s)
- Karima Abounouh
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Imane Aitraise
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Anas Benabou
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | | | | | | | | | | | - Dalal El Qouar
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Afaf Ennahal
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Sofia Fathi
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Maria Hafidi
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Lamyae Lachker
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Chorouk Ratib
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | | | - Abderrahmane Maaroufi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Fadila Guessous
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Pascal Pineau
- Unité Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, Paris, France
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
27
|
Gonzalez-Lopez O, DeCotiis J, Goyeneche C, Mello H, Vicente-Ortiz BA, Shin HJ, Driscoll KE, Du P, Palmeri D, Lukac DM. A herpesvirus transactivator and cellular POU proteins extensively regulate DNA binding of the host Notch signaling protein RBP-Jκ to the virus genome. J Biol Chem 2019; 294:13073-13092. [PMID: 31308175 DOI: 10.1074/jbc.ra118.007331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency requires the viral transactivator Rta to contact the host protein Jκ recombination signal-binding protein (RBP-Jκ or CSL). RBP-Jκ normally binds DNA sequence-specifically to determine the transcriptional targets of the Notch-signaling pathway, yet Notch alone cannot reactivate KSHV. We previously showed that Rta stimulates RBP-Jκ DNA binding to the viral genome. On a model viral promoter, this function requires Rta to bind to multiple copies of an Rta DNA motif (called "CANT" or Rta-c) proximal to an RBP-Jκ motif. Here, high-resolution ChIP/deep sequencing from infected primary effusion lymphoma cells revealed that RBP-Jκ binds nearly exclusively to different sets of viral genome sites during latency and reactivation. RBP-Jκ bound DNA frequently, but not exclusively, proximal to Rta bound to single, but not multiple, Rta-c motifs. To discover additional regulators of RBP-Jκ DNA binding, we used bioinformatics to identify cellular DNA-binding protein motifs adjacent to either latent or reactivation-specific RBP-Jκ-binding sites. Many of these cellular factors, including POU class homeobox (POU) proteins, have known Notch or herpesvirus phenotypes. Among a set of Rta- and RBP-Jκ-bound promoters, Rta transactivated only those that also contained POU motifs in conserved positions. On some promoters, POU factors appeared to inhibit RBP-Jκ DNA binding unless Rta bound to a proximal Rta-c motif. Moreover, POU2F1/Oct-1 expression was induced during KSHV reactivation, and POU2F1 knockdown diminished infectious virus production. Our results suggest that Rta and POU proteins broadly regulate DNA binding of RBP-Jκ during KSHV reactivation.
Collapse
Affiliation(s)
- Olga Gonzalez-Lopez
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Jennifer DeCotiis
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Corey Goyeneche
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Helena Mello
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Bryan Alexis Vicente-Ortiz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Hye Jin Shin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Kyla E Driscoll
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Peicheng Du
- High Performance and Research Computing, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Diana Palmeri
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - David M Lukac
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103; Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103.
| |
Collapse
|
28
|
Lee KB, Lee KS, Lee HS. Tumor-Associated Protein Profiles in Kaposi Sarcoma and Mimicking Vascular Tumors, and Their Pathological Implications. Int J Mol Sci 2019; 20:ijms20133142. [PMID: 31252633 PMCID: PMC6651042 DOI: 10.3390/ijms20133142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
We investigated protein profiles specific to vascular lesions mimicking Kaposi sarcoma (KS), based on stepwise morphogenesis progression of KS. We surveyed 26 tumor-associated proteins in 130 cases, comprising 39 benign vascular lesions (BG), 14 hemangioendotheliomas (HE), 37 KS, and 40 angiosarcomas (AS), by immunohistochemistry. The dominant proteins in KS were HHV8, lymphatic markers, Rb, phosphorylated Rb, VEGF, and galectin-3. Aberrant expression of p53, inactivation of cell cycle inhibitors, loss of beta-catenin, and increased VEGFR1 were more frequent in AS. HE had the lowest Ki-67 index, and the inactivation rates of cell cycle inhibitors in HE were between those of AS and BG/KS. Protein expression patterns in BG and KS were similar. Clustering analysis showed that the 130 cases were divided into three clusters: AS-rich, BG-rich, and KS-rich clusters. The AS-rich cluster was characterized by high caveolin-1 positivity, abnormal p53, high Ki-67 index, and inactivated p27. The KS-rich cluster shared the features of KS, and the BG-rich group had high positive expression rates of galectin-3 and low bcl2 expression. In conclusion, although the rate was different, AS and HE tended to have less cell cycle marker expression than KS, and features of BG and activated KS cell signaling were similar.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Child
- Child, Preschool
- Diagnosis, Differential
- Female
- Galectin 3/blood
- Galectin 3/genetics
- Galectin 3/metabolism
- Gene Expression Regulation, Neoplastic
- Hemangioma/blood
- Hemangioma/genetics
- Hemangioma/pathology
- Humans
- Male
- Middle Aged
- Proto-Oncogene Proteins c-bcl-2/blood
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sarcoma, Kaposi/blood
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/pathology
Collapse
Affiliation(s)
- Kyoung Bun Lee
- Department of Pathology, Seoul National University Hospital, Seoul 110-799, Korea
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| |
Collapse
|
29
|
Curras-Martin D, Campbell N, Copca-Alvarez A, Casey K, Lerner WA, Hossain MA. Protein-Losing Enteropathy as the Initial Presentation of Gastrointestinal Kaposi's Sarcoma in Previously Undiagnosed HIV Disease. ACG Case Rep J 2019; 6:e00073. [PMID: 31616748 PMCID: PMC6658073 DOI: 10.14309/crj.0000000000000073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/28/2019] [Indexed: 11/17/2022] Open
Abstract
Occult Kaposi's sarcoma (KS) presenting as a protein-losing gastroenteropathy is a rare occurrence. We report the case of a 23-year-old male presenting with leg bilateral swelling and epigastric discomfort. A workup revealed human immunodeficiency virus seropositivity, hypoalbuminemia, and small bowel wall thickening on computed tomography scan. Initially there were no mucosal or cutaneous lesions visible. An upper endoscopy demonstrated subepithelial lesions with a reddish appearance involving the palate, cardia, duodenum, and jejunum, consistent with KS. Gastrointestinal involvement is the most common extracutaneous site of KS and is found in about half of the acquired immune deficiency syndrome (AIDS)-related cases. However, only one out of 5 patients are symptomatic in the absence of skin lesions. Antiretroviral therapy along with anthracycline chemotherapy must be promptly initiated to improve chances of survival.
Collapse
Affiliation(s)
- Diana Curras-Martin
- Department of Medicine, Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune, NJ
| | - Natasha Campbell
- Department of Medicine, Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune, NJ
| | - Albino Copca-Alvarez
- Department of Medicine, Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune, NJ
| | - Kathleen Casey
- Department of Medicine, Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune, NJ
| | - William A Lerner
- Department of Medicine, Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune, NJ
| | - Mohammad A Hossain
- Department of Medicine, Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune, NJ
| |
Collapse
|
30
|
|
31
|
Dünn-Kittenplon DD, Kalt I, Lellouche JPM, Sarid R. The KSHV portal protein ORF43 is essential for the production of infectious viral particles. Virology 2019; 529:205-215. [PMID: 30735904 DOI: 10.1016/j.virol.2019.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 02/09/2023]
Abstract
Herpesvirus capsid assembly involves cleavage and packaging of the viral genome. The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 43 (orf43) encodes a putative portal protein. The portal complex functions as a gate through which DNA is packaged into the preformed procapsids, and is injected into the cell nucleus upon infection. The amino acid sequence of the portal proteins is conserved among herpesviruses. Here, we generated an antiserum to ORF43 and determined late expression kinetics of ORF43 along with its nuclear localization. We generated a recombinant KSHV mutant, which fails to express ORF43 (BAC16-ORF43-null). Assembled capsids were observed upon lytic induction of this virus; however, the released virions lacked viral DNA and thus could not establish infection. Ectopic expression of ORF43 rescued the ability to produce infectious particles. ORF43 antiserum and the recombinant ORF43-null virus can provide an experimental system for further studies of the portal functions and its interactions.
Collapse
Affiliation(s)
- Daniela Dana Dünn-Kittenplon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Department of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Jean-Paul Moshe Lellouche
- Department of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
32
|
Zheng D, Williams C, Vold JA, Nguyen JH, Harnois DM, Bagaria SP, McLaughlin SA, Li Z. Regulation of sex hormone receptors in sexual dimorphism of human cancers. Cancer Lett 2018; 438:24-31. [PMID: 30223066 PMCID: PMC6287770 DOI: 10.1016/j.canlet.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Gender differences in the incidences of cancers have been found in almost all human cancers. However, the mechanisms that underlie gender disparities in most human cancer types have been under-investigated. Here, we provide a comprehensive overview of potential mechanisms underlying sexual dimorphism of each cancer regarding sex hormone signaling. Fully addressing the mechanisms of sexual dimorphism in human cancers will greatly benefit current development of precision medicine. Our discussions of potential mechanisms underlying sexual dimorphism in each cancer will be instructive for future cancer research on gender disparities.
Collapse
Affiliation(s)
- Daoshan Zheng
- Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Cecilia Williams
- Department of Biosciences and Nutrition, KTH Royal Institute of Technology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Jeremy A Vold
- Mayo Cancer Registry, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Justin H Nguyen
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Denise M Harnois
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sanjay P Bagaria
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Sarah A McLaughlin
- Department of Surgery, and Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zhaoyu Li
- Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
33
|
Pathological Features of Kaposi's Sarcoma-Associated Herpesvirus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:357-376. [PMID: 29896675 DOI: 10.1007/978-981-10-7230-7_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8, or HHV-8) was firstly discovered in Kaposi's sarcoma tissue derived from patients with acquired immune deficiency syndrome. KSHV infection is associated with malignancies and certain inflammatory conditions. In addition to Kaposi's sarcoma, KSHV has been detected in primary effusion lymphoma, KSHV-associated lymphoma, and some cases of multicentric Castleman disease (MCD). Recently, KSHV inflammatory cytokine syndrome (KICS) was also defined as a KSHV-associated disease. In KSHV-associated malignancies, such as Kaposi's sarcoma and lymphoma, KSHV latently infects almost all tumor cells, and lytic proteins are rarely expressed. A high titer of KSHV is detected in the sera of patients with MCD and KICS, and the expression of lytic proteins such as ORF50, vIL-6, and vMIP-I and vMIP-II is frequently observed in the lesions of patients with these diseases. Immunohistochemistry of LANA-1 is an important diagnostic tool for KSHV infection. However, much of the pathogenesis of KSHV remains to be elucidated, especially regarding oncogenesis. Some viral proteins have been shown to have transforming activity in mammalian cells; however, these proteins are not expressed in latently KSHV-infected cells. KSHV encodes homologs of cellular proteins in its genome such as cyclin D, G-protein coupled protein, interleukin-6, and macrophage inflammatory protein-1 and -2. Molecular mimicry by these viral proteins may contribute to the establishment of microenvironments suitable for tumor growth. In this review, the virus pathogenesis is discussed based on pathological and experimental findings and clinical aspects.
Collapse
|
34
|
Blumenthal MJ, Schutz C, Meintjes G, Mohamed Z, Mendelson M, Ambler JM, Whitby D, Mackelprang RD, Carse S, Katz AA, Schäfer G. EPHA2 sequence variants are associated with susceptibility to Kaposi's sarcoma-associated herpesvirus infection and Kaposi's sarcoma prevalence in HIV-infected patients. Cancer Epidemiol 2018; 56:133-139. [PMID: 30176543 PMCID: PMC6206435 DOI: 10.1016/j.canep.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND To determine if variations exist in the KSHV host receptor EPHA2's coding region that affect KSHV infectivity and/or KS prevalence among South African HIV-infected patients. METHODS A retrospective candidate gene association study was performed on 150 patients which were randomly selected from a total of 756 HIV-infected patients and grouped according to their KS status and KSHV serodiagnosis; namely group 1: KS+/KSHV+; group 2: KS-/KSHV+; group 3: KS-/KSHV-. Peripheral blood DNA was used to extract DNA and PCR amplify and sequence the entire EPHA2 coding region, which was compared to the NCBI reference through multiple alignment. RESULTS 100% (95% CI 92.9-100%) of the KS positive patients, and 31.6% (95% CI 28.3-35.1%) of the KS negative patients were found to be KSHV seropositive. Aggregate variation across the entire EPHA2 coding region identified an association with KS (OR = 6.6 (95% CI 2.8, 15.9), p = 2.2 × 10-5). This was primarily driven by variation in the functionally important protein tyrosine kinase domain (Pkinase-Tyr; OR = 4.9 (95% CI 1.9, 12.4), p = 0.001) and the sterile-α-motif (SAM; OR = 13.8 (95% CI 1.7, 111.6), p = 0.014). Mutation analysis revealed two novel, non-synonymous heterozygous variants (c.2254 T > C: OR undefined, adj. p = 0.02; and c.2990 G > T: OR undefined, adj. p = 0.04) in Pkinase-Tyr and SAM, respectively, to be statistically associated with KS; and a novel heterozygous transition (c.2727C > T: OR = 6.4 (95% CI 1.4, 28.4), adj. p = 0.03) in Pkinase-Tyr to be statistically associated with KSHV. CONCLUSIONS Variations in the KSHV entry receptor gene EPHA2 affected susceptibility to KSHV infection and KS development in a South African HIV-infected patient cohort.
Collapse
Affiliation(s)
- Melissa J Blumenthal
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Charlotte Schutz
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, South Africa
| | - Graeme Meintjes
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, South Africa
| | - Zainab Mohamed
- Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town, South Africa
| | - Marc Mendelson
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, University of Cape Town, South Africa
| | - Jon M Ambler
- Computational Biology Group, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, NIH, USA
| | | | - Sinead Carse
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Arieh A Katz
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Georgia Schäfer
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
35
|
Bagdonaite I, Vakhrushev SY, Joshi HJ, Wandall HH. Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Lett 2018; 592:3898-3920. [PMID: 29961944 DOI: 10.1002/1873-3468.13177] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 12/27/2022]
Abstract
It has long been known that surface proteins of most enveloped viruses are covered with glycans. It has furthermore been demonstrated that glycosylation is essential for propagation and immune evasion for many viruses. The recent development of high-resolution mass spectrometry techniques has enabled identification not only of the precise structures but also the positions of such post-translational modifications on viruses, revealing substantial differences in extent of glycosylation and glycan maturation for different classes of viruses. In-depth characterization of glycosylation and other post-translational modifications of viral envelope glycoproteins is essential for rational design of vaccines and antivirals. In this Review, we provide an overview of techniques used to address viral glycosylation and summarize information on glycosylation of enveloped viruses representing ongoing public health challenges. Furthermore, we discuss how knowledge on glycosylation can be translated to means to prevent and combat viral infections.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Denmark
| |
Collapse
|
36
|
Hussein HAM, Okafor IB, Walker LR, Abdel-Raouf UM, Akula SM. Cellular and viral oncogenes: the key to unlocking unknowns of Kaposi's sarcoma-associated herpesvirus pathogenesis. Arch Virol 2018; 163:2633-2643. [PMID: 29936609 DOI: 10.1007/s00705-018-3918-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
Oncogenic viruses carry an extensive arsenal of oncogenes for hijacking cellular pathways. Notably, variations in oncogenes among tumor-producing viruses give rise to different mechanisms for cellular transformation. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus able to infect and transform a variety of cell types. The oncogenicity of KSHV disseminates from the virus' ability to induce and encode a wide variety of both cellular and viral oncogenes. Such an array of cellular and viral oncogenes enables KSHV to induce the malignant phenotype of a KSHV-associated cancer. Evolutionarily, KSHV has acquired many oncogenic homologues capable of inducing cell proliferation, cell differentiation, cell survival, and immune evasion. Integration between inducing and encoding oncogenes plays a vital role in KSHV pathogenicity. KSHV is alleged to harbor the highest number of potential oncogenes by which a virus promotes cellular transformation and malignancy. Many KSHV inducing/encoding oncogenes are mainly expressed during the latent phase of KSHV infection, a period required for virus establishment of malignant cellular transformation. Elucidation of the exact mechanism(s) by which oncogenes promote KSHV pathogenicity would not only give rise to potential novel therapeutic targets/drugs but would also add to our understanding of cancer biology. The scope of this review is to examine the roles of the most important cellular and viral oncogenes involved in KSHV pathogenicity.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Ikenna B Okafor
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
37
|
Marcoval J, Bonfill-Ortí M, Martínez-Molina L, Valentí-Medina F, Penín RM, Servitje O. Evolution of Kaposi sarcoma in the past 30 years in a tertiary hospital of the European Mediterranean basin. Clin Exp Dermatol 2018; 44:32-39. [PMID: 29934954 DOI: 10.1111/ced.13605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND The incidence of Kaposi sarcoma (KS) has reduced as a result of the introduction of antiretroviral therapy. It is currently considered a rare disease in developed countries, and there has been a paucity of clinical papers on the subject in recent years in Europe. AIM To analyse the clinical features and evolution of the different clinical forms of KS in the past 30 years. METHODS Patients with cutaneous lesions of KS diagnosed during the period 1987-2016 at Bellvitge Hospital (an 800-bed university referral centre in Barcelona, Spain) were enrolled. Data recorded included age, sex, ethnicity, involved site, number of lesions, extracutaneous involvement, leg oedema, treatment, blood haemoglobin level, and blood cell (leucocyte, lymphocyte and CD4) counts. RESULTS Cutaneous lesions of KS were diagnosed in 191 patients (167 men, 24 women, mean ± SD age 51.95 ± 20.16 years). Clinical forms identified were classic KS (n = 53), acquired immunodeficiency syndrome (AIDS)-associated KS (n = 118), immunosuppression-associated KS (n = 18), and African endemic KS (n = 2). The number of patients diagnosed annually reached a maximum in the 1990s because of the AIDS epidemic, and has decreased since 2000. However, both classic KS and immunosuppression-associated KS doubled from the first to the second half of the analysed period. Cutaneous lesions involved the legs in 137 cases, and extracutaneous lesions were detected in 32 patients. In 46 of 118 patients with AIDS, the diagnosis of KS was simultaneous to the detection of human immunodeficiency virus infection. CONCLUSION After a decrease in incidence since the middle of the 1990s, AIDS-associated KS continues to occur in Europe, and the number of annual cases of classic KS and immunosuppression-associated KS is increasing.
Collapse
Affiliation(s)
- J Marcoval
- Department of Dermatology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | - M Bonfill-Ortí
- Department of Dermatology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | - L Martínez-Molina
- Department of Dermatology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | - F Valentí-Medina
- Department of Dermatology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | - R M Penín
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| | - O Servitje
- Department of Dermatology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Zheng L, Chen Y, Elhanan G, Perl Y, Geller J, Ochs C. Complex overlapping concepts: An effective auditing methodology for families of similarly structured BioPortal ontologies. J Biomed Inform 2018; 83:135-149. [PMID: 29852316 DOI: 10.1016/j.jbi.2018.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 11/30/2022]
Abstract
In previous research, we have demonstrated for a number of ontologies that structurally complex concepts (for different definitions of "complex") in an ontology are more likely to exhibit errors than other concepts. Thus, such complex concepts often become fertile ground for quality assurance (QA) in ontologies. They should be audited first. One example of complex concepts is given by "overlapping concepts" (to be defined below.) Historically, a different auditing methodology had to be developed for every single ontology. For better scalability and efficiency, it is desirable to identify family-wide QA methodologies. Each such methodology would be applicable to a whole family of similar ontologies. In past research, we had divided the 685 ontologies of BioPortal into families of structurally similar ontologies. We showed for four ontologies of the same large family in BioPortal that "overlapping concepts" are indeed statistically significantly more likely to exhibit errors. In order to make an authoritative statement concerning the success of "overlapping concepts" as a methodology for a whole family of similar ontologies (or of large subhierarchies of ontologies), it is necessary to show that "overlapping concepts" have a higher likelihood of errors for six out of six ontologies of the family. In this paper, we are demonstrating for two more ontologies that "overlapping concepts" can successfully predict groups of concepts with a higher error rate than concepts from a control group. The fifth ontology is the Neoplasm subhierarchy of the National Cancer Institute thesaurus (NCIt). The sixth ontology is the Infectious Disease subhierarchy of SNOMED CT. We demonstrate quality assurance results for both of them. Furthermore, in this paper we observe two novel, important, and useful phenomena during quality assurance of "overlapping concepts." First, an erroneous "overlapping concept" can help with discovering other erroneous "non-overlapping concepts" in its vicinity. Secondly, correcting erroneous "overlapping concepts" may turn them into "non-overlapping concepts." We demonstrate that this may reduce the complexity of parts of the ontology, which in turn makes the ontology more comprehensible, simplifying maintenance and use of the ontology.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| | - Yan Chen
- CIS Department, Borough of Manhattan Community College, CUNY, NY 10007, United States
| | - Gai Elhanan
- Applied Innovation Center, Desert Research Institute, Reno, NV 89512, United States
| | - Yehoshua Perl
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - James Geller
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | | |
Collapse
|
39
|
K15 Protein of Kaposi's Sarcoma Herpesviruses Increases Endothelial Cell Proliferation and Migration through Store-Operated Calcium Entry. Viruses 2018; 10:v10060282. [PMID: 29795033 PMCID: PMC6024707 DOI: 10.3390/v10060282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 01/11/2023] Open
Abstract
Kaposi's sarcoma (KS) is a tumor of the vascular endothelium that is caused by Kaposi's sarcoma-associated herpesvirus (KSHV). K15 of KSHV is a specific gene encoding a transmembrane protein. Two highly different forms of K15, the predominant (K15P) and minor (K15M) have been identified in different KSHV strains. In genomic locations and protein topology, two K15 alleles resemble the latent membrane protein (LMP) 1 and LMP2A of Epstein⁻Barr virus. Both K15 proteins have motifs similar to those found in LMP1 and LMP2A. K15 therefore seems to be a hybrid of a distant evolutionary relative of LMP1 and LMP2A. Ca2+ is a second messenger and participates in numerous activities in cells, like proliferation, migration and metastasis. It has been found previously that LMP1 increased Ca2+ influx through store-operated calcium channels and blockade of LMP1 reduced store-operated Ca2+ entry (SOCE). LMP2A has similar activity. So we sought to determine whether K15 had similar activity. We showed that K15P induced Ca2+ influx and enhanced expression of Orail1, which is a vital protein in SOCE, and overexpression of K15P improved cell motility. Mutant K15P did not show these activities in HEK-293T and EA.hy 926 cells. Our results showed that K15P increased cell proliferation and migration though SOCE and established a novel mechanism for the development of KS and KSHV-associated diseases.
Collapse
|
40
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
41
|
Gelgor A, Gam Ze Letova C, Yegorov Y, Kalt I, Sarid R. Nucleolar stress enhances lytic reactivation of the Kaposi's sarcoma-associated herpesvirus. Oncotarget 2018; 9:13822-13833. [PMID: 29568397 PMCID: PMC5862618 DOI: 10.18632/oncotarget.24497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus exhibiting two forms of infection, latent and lytic. Latent infection is abortive and allows the virus to establish lifelong infection, while lytic infection is productive, and is needed for virus dissemination within the host and between hosts. Latent infection may reactivate and switch towards the lytic cycle. This switch is a critical step in the maintenance of long-term infection and for the development of KSHV-related neoplasms. In this study, we examined the effect of nucleolar stress, manifested by failure in ribosome biogenesis or function and often coupled with p53 activation, on lytic reactivation of KSHV. To this end, we induced nucleolar stress by treatment with Actinomycin D, CX-5461 or BMH-21. Treatment with these compounds alone did not induce the lytic cycle. However, enhancement of the lytic cycle by these compounds was evident when combined with expression of the viral protein K-Rta. Further experiments employing combined treatments with Nutlin-3, knock-down of p53 and isogenic p53+/+ and p53-/- cells indicated that the enhancement of lytic reactivation by nucleolar stress does not depend on p53. Thus, our study identifies nucleolar stress as a novel regulator of KSHV infection, which synergizes with K-Rta expression to increase lytic reactivation. This suggests that certain therapeutic interventions, which induce nucleolar stress, may affect the outcome of KSHV infection.
Collapse
Affiliation(s)
- Anastasia Gelgor
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Chen Gam Ze Letova
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Yana Yegorov
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
42
|
Abdel Hadi L, Calcaterra F, Brambilla L, Carenza C, Marfia G, Della Bella S, Riboni L. Enhanced phosphorylation of sphingosine and ceramide sustains the exuberant proliferation of endothelial progenitors in Kaposi sarcoma. J Leukoc Biol 2017; 103:525-533. [PMID: 29345349 DOI: 10.1002/jlb.2ma0817-312r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs), a unique endothelial stem cell population, are highly increased in the blood of Kaposi sarcoma (KS) patients. KS-derived ECFCs (KS-ECFCs) are also endowed with increased proliferative and vasculogenic potential, thus suggesting that they may be precursors of KS spindle cells. However, the mechanisms underlying the increased proliferative activity of KS-ECFCs remain poorly understood. Sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) are metabolically interconnected sphingoid mediators crucial to cell proliferation. Here, we investigated the metabolism, release, and proliferative effects of S1P and C1P in KS-ECFCs compared with control ECFCs (Ct-ECFCs). Metabolic studies by cell labeling, chromatographic analyses, and digital autoradiography revealed that S1P and C1P biosynthesis and S1P secretion are all efficient processes in KS-ECFCs, more efficient in KS-ECFCs than Ct-ECFCs. Quantitative PCR analyses demonstrated a significantly higher ceramide kinase and sphingosine kinase-2 expression in KS-ECFCs. Notably, also the expression of S1P1 and S1P3 receptors was augmented in KS-ECFCs. Accordingly, treatment with exogenous C1P or S1P induced a significant, concentration-dependent stimulation of KS-ECFC proliferation, but was almost completely ineffective in Ct-ECFCs. Hence, we identified C1P and S1P as autocrine/paracrine proliferative signals in KS-ECFCs. A better understanding of the mechanisms that enhance S1P/C1P formation in KS-ECFCs may yield effective therapeutic modalities.
Collapse
Affiliation(s)
- Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy.,Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Lucia Brambilla
- Unit of Dermatology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Carenza
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy.,Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giovanni Marfia
- Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico Milan, Laboratory of Experimental Neurosurgery and Cell Therapy, University of Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy.,Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| |
Collapse
|
43
|
Gramolelli S, Ojala PM. Kaposi's sarcoma herpesvirus-induced endothelial cell reprogramming supports viral persistence and contributes to Kaposi's sarcoma tumorigenesis. Curr Opin Virol 2017; 26:156-162. [PMID: 29031103 DOI: 10.1016/j.coviro.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/23/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Kaposi's sarcoma (KS) is an endothelial tumor causally linked to Kaposi's sarcoma herpesvirus (KSHV) infection. At early stages of KS, inflammation and aberrant neoangiogenesis are predominant, while at late stages the disease is characterized by the proliferation of KSHV-infected spindle cells (SC). Since KSHV infection modifies the endothelial cell (EC) identity, the origin of SCs remains elusive. Yet, pieces of evidence indicate the lymphatic origin. KSHV-infected ECs display increased proliferative, angiogenic and migratory capacities which account for KS oncogenesis. Here we propose a model in which KSHV reprograms the EC identity, induces DNA damage and establishes a dysregulated gene expression program involving interplay of latent and lytic genes allowing continuous reinfection of ECs attracted to the tumor by the secretion of virus-induced cellular factors.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Biomedicum Helsinki, P.O. Box 63 (Haartmaninkatu 8), University of Helsinki FIN-00014, Finland
| | - Päivi M Ojala
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Biomedicum Helsinki, P.O. Box 63 (Haartmaninkatu 8), University of Helsinki FIN-00014, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland; Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
44
|
Increased Frequency and Vasculogenic Potential of Endothelial Colony-Forming Cells in Patients with Kaposi’s Sarcoma. J Invest Dermatol 2017; 137:1533-1540. [DOI: 10.1016/j.jid.2017.02.979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/23/2022]
|
45
|
Tembo R, Kaile T, Kafita D, Chisanga C, Kalonda A, Zulu E, Samutela M, Polepole P, Kwenda G. Detection of Human Herpes Virus 8 in Kaposi's sarcoma tissues at the University Teaching Hospital, Lusaka, Zambia. Pan Afr Med J 2017; 27:137. [PMID: 28904666 PMCID: PMC5567952 DOI: 10.11604/pamj.2017.27.137.11845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/15/2017] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Human herpes virus-8, a γ2-herpes virus, is the aetiological agent of Kaposi sarcoma. Recently, Kaposi's sarcoma cases have increased in Zambia. However, the diagnosis of this disease is based on morphological appearance of affected tissues using histological techniques, and the association with its causative agent, Human Herpes virus 8 is not sought. This means poor prognosis for affected patients since the causative agent is not targeted during diagnosis and KS lesions may be mistaken for other reactive and neoplastic vascular proliferations when only histological techniques are used. Therefore, this study was aimed at providing evidence of Human Herpes virus 8 infection in Kaposi's sarcoma tissues at the University Teaching Hospital in Lusaka, Zambia. METHODS One hundred and twenty suspected Kaposi's sarcoma archival formalin-fixed paraffin-wax embedded tissues stored from January 2013 to December 2014 in the Histopathology Laboratory at the University Teaching Hospital, Lusaka, Zambia were analysed using histology and Polymerase Chain Reaction targeting the ORF26 gene of Human Herpes virus 8. RESULTS The predominant histological type of Kaposi's sarcoma detected was the Nodular type (60.7%) followed by the plaque type (22.6%) and patch type (16.7%). The nodular lesion was identified mostly in males (40.5%, 34/84) than females (20.2%, 17/84) (p=0.041). Human Herpes virus 8 DNA was detected in 53.6% (45/84) and mostly in the nodular KS lesions (60%, 27/84) (p=0.035). CONCLUSION The findings in this study show that the Human Herpes virus-8 is detectable in Kaposi's sarcoma tissues, and, as previously reported in other settings, is closely associated with Kaposi's sarcoma. The study has provided important baseline data for use in the diagnosis of this disease and the identification of the virus in the tissues will aid in targeted therapy.
Collapse
Affiliation(s)
- Rabecca Tembo
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Trevor Kaile
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Doris Kafita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Chrispin Chisanga
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Annie Kalonda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Ephraim Zulu
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Mulemba Samutela
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Pascal Polepole
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
46
|
Lo AKF, Dawson CW, Young LS, Lo KW. The role of metabolic reprogramming in γ-herpesvirus-associated oncogenesis. Int J Cancer 2017; 141:1512-1521. [PMID: 28542909 DOI: 10.1002/ijc.30795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/26/2022]
Abstract
The γ-herpesviruses, EBV and KSHV, are closely associated with a number of human cancers. While the signal transduction pathways exploited by γ-herpesviruses to promote cell growth, survival and transformation have been reported, recent studies have uncovered the impact of γ-herpesvirus infection on host cell metabolism. Here, we review the mechanisms used by γ-herpesviruses to induce metabolic reprogramming in host cells, focusing on their ability to modulate the activity of metabolic regulators and manipulate metabolic pathways. While γ-herpesviruses alter metabolic phenotypes as a means to support viral infection and long-term persistence, this modulation can inadvertently contribute to cancer development. Strategies that target deregulated metabolic phenotypes induced by γ-herpesviruses provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Angela Kwok-Fung Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Christopher W Dawson
- Institutite of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, United Kingdom
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
47
|
Lazzarini R, Lopes ASDA, Lellis RF, Brasil F. Iatrogenic Kaposi's sarcoma caused by corticosteroids. An Bras Dermatol 2017; 91:867-869. [PMID: 28099627 PMCID: PMC5193216 DOI: 10.1590/abd1806-4841.20165772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/13/2016] [Indexed: 03/15/2023] Open
Affiliation(s)
- Rosana Lazzarini
- Irmandade da Santa Casa de Misericórdia de São Paulo - São Paulo (SP), Brazil
| | | | | | - Fabiana Brasil
- Irmandade da Santa Casa de Misericórdia de São Paulo - São Paulo (SP), Brazil
| |
Collapse
|
48
|
The Viral Bcl-2 Homologs of Kaposi's Sarcoma-Associated Herpesvirus and Rhesus Rhadinovirus Share an Essential Role for Viral Replication. J Virol 2017; 91:JVI.01875-16. [PMID: 28053098 PMCID: PMC5331788 DOI: 10.1128/jvi.01875-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/23/2016] [Indexed: 01/07/2023] Open
Abstract
KS-Bcl-2 is a Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral Bcl-2 (vBcl-2) homolog which has apoptosis- and autophagy-inhibiting activity when expressed in transfected cells. However, little is known about its function during viral infection. As KS-Bcl-2 is expressed during the lytic replication cycle, we used constitutively lytic and inducibly lytic KSHV mutants to investigate the role of KS-Bcl-2 during the lytic cycle. We show that KSHV cannot complete the lytic replication cycle and produce infectious progeny in the absence of KS-Bcl-2, indicating that the protein is essential for KSHV replication. Replacement of the KS-Bcl-2 coding sequence, ORF16, by sequences encoding a potent cellular apoptosis and autophagy inhibitor, Bcl-XL, or the cytomegalovirus mitochondrial inhibitor of apoptosis, vMIA, did not rescue KSHV replication, suggesting that KS-Bcl-2 has a function that goes beyond apoptosis and autophagy inhibition. Strikingly, the vBcl-2 proteins of the related γ2-herpesviruses murine herpesvirus 68 and herpesvirus saimiri did not rescue the replication of a KS-Bcl-2 deletion mutant, but rhesus rhadinovirus (RRV) vBcl-2 did. Deletion of ORF16 from the RRV genome abrogated viral replication, but its replacement by KSHV ORF16 rescued RRV replication, indicating that the essential vBcl-2 function is conserved between these two primate rhadinoviruses. We further show that the KSHV and RRV Bcl-2 homologs localize to the mitochondria and nuclei of infected cells. Deletion of 17 amino acids from the N terminus of KS-Bcl-2 abrogates nuclear localization and KSHV replication, suggesting that KS-Bcl-2 might execute its essential function in the nuclei of infected cells.IMPORTANCE Several viruses express proteins homologous to cellular Bcl-2. Viral Bcl-2 proteins have functions similar to those of cellular Bcl-2: they can inhibit apoptosis, a form of programmed cell death, and autophagy, a self-degradative process for the disposal of dysfunctional or unwanted components. This study shows that the vBcl-2 proteins of KSHV and RRV differ from other vBcl-2 proteins in that they are essential for viral replication. The essential function is separate from the apoptosis- and autophagy-inhibiting activity but correlates with an unusual localization within the cell nucleus, suggesting that these proteins exert a novel function in the nucleus.
Collapse
|
49
|
Sun R, Tan X, Wang X, Wang X, Yang L, Robertson ES, Lan K. Epigenetic Landscape of Kaposi's Sarcoma-Associated Herpesvirus Genome in Classic Kaposi's Sarcoma Tissues. PLoS Pathog 2017; 13:e1006167. [PMID: 28118409 PMCID: PMC5291540 DOI: 10.1371/journal.ppat.1006167] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/03/2017] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically related to Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). It typically displays two different phases in its life cycle, the default latency and occasional lytic replication. The epigenetic modifications are thought to determine the fate of KSHV infection. Previous studies elegantly depicted epigenetic landscape of latent viral genome in in vitro cell culture systems. However, the physiologically relevant scenario in clinical KS tissue samples is unclear. In the present study, we established a protocol of ChIP-Seq for clinical KS tissue samples and mapped out the epigenetic landscape of KSHV genome in classic KS tissues. We examined AcH3 and H3K27me3 histone modifications on KSHV genome, as well as the genome-wide binding sites of latency associated nuclear antigen (LANA). Our results demonstrated that the enriched AcH3 was mainly restricted at latent locus while H3K27me3 was widespread on KSHV genome in classic KS tissues. The epigenetic landscape at the region of vIRF3 gene confirmed its silenced state in KS tissues. Meanwhile, the abundant enrichment of LANA at the terminal repeat (TR) region was also validated in the classic KS tissues, however, different LANA binding sites were observed on the host genome. Furthermore, we verified the histone modifications by ChIP-qPCR and found the dominant repressive H3K27me3 at the promoter region of replication and transcription activator (RTA) in classic KS tissues. Intriguingly, we found that the TR region in classic KS tissues was lacking in AcH3 histone modifications. These data now established the epigenetic landscape of KSHV genome in classic KS tissues, which provides new insights for understanding KSHV epigenetics and pathogenesis. Epigenetic modifications are thought to determine the fate of KSHV infection. The epigenetic landscape of KSHV genome in in vitro cell culture systems was well studied previously. However, the physiologically relevant scenario in clinical KS tissues is unclear. In this study, we performed ChIP-Seq experiments in classic KS tissues and mapped out the AcH3 and H3K27me3 histone modifications on KSHV genome, as well as the genome-wide LANA binding sites. The results revealed a similar H3K27me3 landscape but distinct AcH3 patterns on the KSHV genome compared to the results from in vitro cultured PEL and KSHV infected SLK cells. Intriguingly, there were different LANA binding sites seen on the host genome and a reduced number of AcH3 histone modifications at the TR region of KSHV genome were found. The established epigenetic landscape of KSHV genome in classic KS tissues provides new insights towards our understanding of KSHV epigenetics, which is important for future studies on the mechanism of KSHV infection and pathogenesis.
Collapse
Affiliation(s)
- Rui Sun
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xing Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaodong Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- * E-mail: (KL); (ESR); (LY)
| | - Erle S. Robertson
- Department of Otorhinolaryngology and Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KL); (ESR); (LY)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, Hubei, China
- * E-mail: (KL); (ESR); (LY)
| |
Collapse
|
50
|
Kaye S, Wang W, Miller C, McLuckie A, Beatty JA, Grant CK, VandeWoude S, Bielefeldt-Ohmann H. Role of Feline Immunodeficiency Virus in Lymphomagenesis--Going Alone or Colluding? ILAR J 2017; 57:24-33. [PMID: 27034392 DOI: 10.1093/ilar/ilv047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic and nondomestic feline species. Infection in domestic cats leads to immune dysfunction via mechanisms similar to those caused by human immunodeficiency virus (HIV) and, as such, is a valuable natural animal model for acquired immunodeficiency syndrome (AIDS) in humans. An association between FIV and an increased incidence of neoplasia has long been recognized, with frequencies of up to 20% in FIV-positive cats recorded in some studies. This is similar to the rate of neoplasia seen in HIV-positive individuals, and in both species neoplasia typically requires several years to arise. The most frequently reported type of neoplasia associated with FIV infection is lymphoma. Here we review the possible mechanisms involved in FIV lymphomagenesis, including the possible involvement of coinfections, notably those with gamma-herpesviruses.
Collapse
Affiliation(s)
- Sarah Kaye
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Wenqi Wang
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Craig Miller
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Alicia McLuckie
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Julia A Beatty
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Chris K Grant
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Sue VandeWoude
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| | - Helle Bielefeldt-Ohmann
- Sarah Kaye, BVSc, is a small animal clinician with the Animal Welfare League Qld Inc. in The Gold Coast, Queensland, Australia. Wenqi Wang, BVSc, PhD, is a postdoctoral fellow affiliated with the School of Veterinary Science at University of Queensland at Gatton in Australia. Craig Miller, DVM, is a postdoctoral fellow in the Department of Microbiology, Immunology & Pathology at Colorado State University in FortCollins, Colorado. Alicia McLuckie, BVSc, is a PhD candidate in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia, Julia A. Beatty, BSc, BVetMed, PhD, FANZCVs (feline med), is a professor in the Faculty of Veterinary Science at the University of Sydney in NSW, Australia. Chris K. Grant, PhD, DSc, is founder and CEO of Custom Monoclonals International Corp. in West Sacramento, California. Sue VandeWoude, DVM, MS, DACLAM, is a professor in the Department of Microbiology, Immunology & Pathology at Colorado State University and Associate Dean for Research in the College of Veterinary & Biomedical Sciences at Colorado State University in Fort Collins, Colorado. Helle Bielefeldt-Ohmann, DVM, PhD, is a senior lecturer in the School of Veterinary Science at the University of Queensland at Gatton, an affiliate senior lecturer in the School of Chemistry & Molecular Biosciences at the University of Queensland at St. Lucia, and an investigator at the Australian Infectious Diseases Research Centre at the University of Queensland in St. Lucia, Australia
| |
Collapse
|