1
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Wang H, Chen G, Gong Q, Wu J, Chen P. Primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome: a Mendelian randomization study. Front Immunol 2024; 15:1403429. [PMID: 39253091 PMCID: PMC11381235 DOI: 10.3389/fimmu.2024.1403429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background Currently, evidence regarding the causal relationship between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome is limited and inconsistent. Therefore, this study employs Mendelian randomization (MR) methodology to investigate the causal relationship between the two. Methods This study selected 110 single-nucleotide polymorphisms (SNPs) of primary immunodeficiency-related genes as instrumental variables (IVs). Genetic associations of primary immunodeficiency-related genes were derived from recent genome-wide association studies (GWAS) data on human plasma protein levels and circulating immune cells. Data on genes associated with varicella-zoster virus reactivation syndrome were obtained from the GWAS Catalog and FINNGEN database, primarily analyzed using inverse variance weighting (IVW) and sensitivity analysis. Results Through MR analysis, we identified 9 primary immunodeficiency-related genes causally associated with herpes zoster and its subsequent neuralgia; determined causal associations of 20 primary immunodeficiency-related genes with three vascular lesions (stroke, cerebral aneurysm, giant cell arteritis); revealed causal associations of 10 primary immunodeficiency-related genes with two ocular diseases (retinopathy, keratitis); additionally, three primary immunodeficiency-related genes each were associated with encephalitis, cranial nerve palsy, and gastrointestinal infections. Conclusions This study discovers a certain association between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome, yet further investigations are warranted to explore the specific mechanisms underlying these connections.
Collapse
Affiliation(s)
- Hao Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qian Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Peng Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Bisen S, Verma SK, Mukhopadhyay CS, Singh NK. A neutrophil elastase-generated mature form of IL-33 is a potent regulator of endothelial cell activation and proliferative retinopathy. Exp Mol Med 2024; 56:1703-1716. [PMID: 39085349 PMCID: PMC11372157 DOI: 10.1038/s12276-024-01279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 08/02/2024] Open
Abstract
Human interleukin-33 (IL-33) is a 270 amino acid protein that belongs to the IL-1 cytokine family and plays an important role in various inflammatory disorders. Neutrophil proteases (Cathepsin G and Elastase) and mast cell proteases (tryptase and chymase) regulate the activity of IL-33 by processing full-length IL-33 into its mature form. There is little evidence on the role of these mature forms of IL-33 in retinal endothelial cell signaling and pathological retinal angiogenesis. Here, we cloned, expressed, and purified the various mature forms of human IL-33 and then evaluated the effects of IL-3395-270, IL-3399-270, IL-33109-270, and IL-33112-270 on angiogenesis in human retinal microvascular endothelial cells (HRMVECs). We observed that IL-3395-270, IL-3399-270, IL-33109-270, and IL-33112-270 significantly induced HRMVEC migration, tube formation and sprouting angiogenesis. However, only IL-3399-270 could induce HRMVEC proliferation. We used a murine model of oxygen-induced retinopathy (OIR) to assess the role of these mature forms of IL-33 in pathological retinal neovascularization. Our 3'-mRNA sequencing and signaling studies indicated that IL-3399-270 and IL-33109-270 were more potent at inducing endothelial cell activation and angiogenesis than the other mature forms. We found that genetic deletion of IL-33 significantly reduced OIR-induced retinal neovascularization in the mouse retina and that intraperitoneal administration of mature forms of IL-33, mainly IL-3399-270 and IL-33109-270, significantly restored ischemia-induced angiogenic sprouting and tuft formation in the hypoxic retinas of IL-33-/- mice. Thus, our study results suggest that blockade or inhibition of IL-33 cleavage by neutrophil proteases could help mitigate pathological angiogenesis in proliferative retinopathies.
Collapse
Affiliation(s)
- Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Shailendra Kumar Verma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, San Diego, CA, 92037, USA
| | - Chandra Sekhar Mukhopadhyay
- Department of Bioinformatics, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
4
|
Guo H, Wang T, Yu J, Shi Z, Liang M, Chen S, He T, Yan H. Vitreous Olink proteomics reveals inflammatory biomarkers for diagnosis and prognosis of traumatic proliferative vitreoretinopathy. Front Immunol 2024; 15:1355314. [PMID: 38455059 PMCID: PMC10917961 DOI: 10.3389/fimmu.2024.1355314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Background The aim of this study was to identify inflammatory biomarkers in traumatic proliferative vitreoretinopathy (TPVR) patients and further validate the expression curve of particular biomarkers in the rabbit TPVR model. Methods The Olink Inflammation Panel was used to compare the differentially expressed proteins (DEPs) in the vitreous of TPVR patients 7-14 days after open globe injury (OGI) (N = 19) and macular hole patients (N = 22), followed by correlation analysis between DEPs and clinical signs, protein-protein interaction (PPI) analysis, area under the receiver operating characteristic curve (AUC) analysis, and function enrichment analysis. A TPVR rabbit model was established and expression levels of candidate interleukin family members (IL-6, IL-7, and IL-33) were measured by enzyme-linked immunosorbent assay (ELISA) at 0, 1, 3, 7, 10, 14, and 28 days after OGI. Results Forty-eight DEPs were detected between the two groups. Correlation analysis showed that CXCL5, EN-RAGE, IL-7, ADA, CD5, CCL25, CASP8, TWEAK, and IL-33 were significantly correlated with clinical signs including ocular wound characteristics, PVR scoring, PVR recurrence, and final visual acuity (R = 0.467-0.699, p < 0.05), and all with optimal AUC values (0.7344-1). Correlations between DEP analysis and PPI analysis further verified that IL-6, IL-7, IL-8, IL-33, HGF, and CXCL5 were highly interactive (combined score: 0.669-0.983). These DEPs were enriched in novel pathways such as cancer signaling pathway (N = 14, p < 0.000). Vitreous levels of IL-6, IL-7, and IL-33 in the rabbit TPVR model displayed consistency with the trend in Olink data, all exhibiting marked differential expression 1 day following the OGI. Conclusion IL-7, IL-33, EN-RAGE, TWEAK, CXCL5, and CD5 may be potential biomarkers for TPVR pathogenesis and prognosis, and early post-injury may be an ideal time for TPVR intervention targeting interleukin family biomarkers.
Collapse
Affiliation(s)
- Haixia Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian Wang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Developmental Biology, Tianjin Medical University, Tianjin, China
| | - Minghui Liang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Tiangeng He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Augustine J, Pavlou S, Harkin K, Stitt AW, Xu H, Chen M. IL-33 regulates Müller cell-mediated retinal inflammation and neurodegeneration in diabetic retinopathy. Dis Model Mech 2023; 16:dmm050174. [PMID: 37671525 PMCID: PMC10499035 DOI: 10.1242/dmm.050174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Diabetic retinopathy (DR) is characterised by dysfunction of the retinal neurovascular unit, leading to visual impairment and blindness. Müller cells are key components of the retinal neurovascular unit and diabetes has a detrimental impact on these glial cells, triggering progressive neurovascular pathology of DR. Amongst many factors expressed by Müller cells, interleukin-33 (IL-33) has an established immunomodulatory role, and we investigated the role of endogenous IL-33 in DR. The expression of IL-33 in Müller cells increased during diabetes. Wild-type and Il33-/- mice developed equivalent levels of hyperglycaemia and weight loss following streptozotocin-induced diabetes. Electroretinogram a- and b-wave amplitudes, neuroretina thickness, and the numbers of cone photoreceptors and ganglion cells were significantly reduced in Il33-/- diabetic mice compared with those in wild-type counterparts. The Il33-/- diabetic retina also exhibited microglial activation, sustained gliosis, and upregulation of pro-inflammatory cytokines and neurotrophins. Primary Müller cells from Il33-/- mice expressed significantly lower levels of neurotransmitter-related genes (Glul and Slc1a3) and neurotrophin genes (Cntf, Lif, Igf1 and Ngf) under high-glucose conditions. Our results suggest that deletion of IL-33 promotes inflammation and neurodegeneration in DR, and that this cytokine is critical for regulation of glutamate metabolism, neurotransmitter recycling and neurotrophin secretion by Müller cells.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
6
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
7
|
Kaur G, Sharma D, Bisen S, Mukhopadhyay CS, Gurdziel K, Singh NK. Vascular cell-adhesion molecule 1 (VCAM-1) regulates JunB-mediated IL-8/CXCL1 expression and pathological neovascularization. Commun Biol 2023; 6:516. [PMID: 37179352 PMCID: PMC10183029 DOI: 10.1038/s42003-023-04905-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Vascular adhesion molecules play an important role in various immunological disorders, particularly in cancers. However, little is known regarding the role of these adhesion molecules in proliferative retinopathies. We observed that IL-33 regulates VCAM-1 expression in human retinal endothelial cells and that genetic deletion of IL-33 reduces hypoxia-induced VCAM-1 expression and retinal neovascularization in C57BL/6 mice. We found that VCAM-1 via JunB regulates IL-8 promoter activity and expression in human retinal endothelial cells. In addition, our study outlines the regulatory role of VCAM-1-JunB-IL-8 signaling on retinal endothelial cell sprouting and angiogenesis. Our RNA sequencing results show an induced expression of CXCL1 (a murine functional homolog of IL-8) in the hypoxic retina, and intravitreal injection of VCAM-1 siRNA not only decreases hypoxia-induced VCAM-1-JunB-CXCL1 signaling but also reduces OIR-induced sprouting and retinal neovascularization. These findings suggest that VCAM-1-JunB-IL-8 signaling plays a crucial role in retinal neovascularization, and its antagonism might provide an advanced treatment option for proliferative retinopathies.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences and Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
8
|
Azzarito G, Henry M, Rotshteyn T, Leeners B, Dubey RK. Transcriptomic and Functional Evidence That miRNA193a-3p Inhibits Lymphatic Endothelial Cell (LEC) and LEC + MCF-7 Spheroid Growth Directly and by Altering MCF-7 Secretome. Cells 2023; 12:cells12030389. [PMID: 36766731 PMCID: PMC9913637 DOI: 10.3390/cells12030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
MicroRNA 193a-3p (miR193a-3p) is a short non-coding RNA with tumor suppressor properties. Breast cancer (BC) progression is governed by active interaction between breast cancer cells, vascular (V)/lymphatic (L) endothelial cells (ECs), and BC secretome. We have recently shown that miR193a-3p, a tumor suppressor miRNA, inhibits MCF-7 BC cell-driven growth of VECs via direct antimitogenic actions and alters MCF-7 secretome. Since LEC-BC cross-talk plays a key role in BC progression, we investigated the effects of miR193a-3p on MCF-7 secretome and estradiol-mediated growth effects in LECs and LEC + MCF-7 spheroids, and delineated the underlying mechanisms. Transfection of LECs with miR193a-3p, as well as secretome from MCF-7 transfected cells, inhibited LEC growth, and these effects were mimicked in LEC + MCF-7 spheroids. Moreover, miR193a-3p inhibited ERK1/2 and Akt phosphorylation in LECs and LEC + MCF-7 spheroids, which are importantly involved in promoting cancer development and metastasis. Treatment of LECs and LEC + MCF-7 spheroids with estradiol (E2)-induced growth, as well as ERK1/2 and Akt phosphorylation, and was abrogated by miR193a-3p and secretome from MCF-7 transfected cells. Gene expression analysis (GEA) in LEC + MCF-7 spheroids transfected with miR193a-3p showed significant upregulation of 54 genes and downregulation of 73 genes. Pathway enrichment analysis of regulated genes showed significant modulation of several pathways, including interferon, interleukin/cytokine-mediated signaling, innate immune system, ERK1/2 cascade, apoptosis, and estrogen receptor signaling. Transcriptomic analysis showed downregulation in interferon and anti-apoptotic and pro-growth molecules, such as IFI6, IFIT1, OSA1/2, IFITM1, HLA-A/B, PSMB8/9, and PARP9, which are known to regulate BC progression. The cytokine proteome array of miR193a-3p transfected MCF secretome and confirmed the upregulation of several growth inhibitory cytokines, including IFNγ, Il-1a, IL-1ra, IL-32, IL-33, IL-24, IL-27, cystatin, C-reactive protein, Fas ligand, MIG, and sTIM3. Moreover, miR193a-3p alters factors in MCF-7 secretome, which represses ERK1/2 and Akt phosphorylation, induces pro-apoptotic protein and apoptosis in LECs, and downregulates interferon-associated proteins known to promote cancer growth and metastasis. In conclusion, miR193a-3p can potentially modify the tumor microenvironment by altering pro-growth BC secretome and inhibiting LEC growth, and may represent a therapeutic molecule to target breast tumors/cancer.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Margit Henry
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
9
|
Cui G, Liu H, Laugsand JB. Endothelial cells-directed angiogenesis in colorectal cancer: Interleukin as the mediator and pharmacological target. Int Immunopharmacol 2023; 114:109525. [PMID: 36508917 DOI: 10.1016/j.intimp.2022.109525] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022]
Abstract
Enhanced angiogenesis is a cancer hallmark and critical for colorectal cancer (CRC) invasion and metastasis. Upon exposure to proangiogenic factors, therefore, targeting tumor-associated proangiogenic factors/receptors hold great promise as a therapeutic modality to treat CRC, particularly metastatic CRC. Accumulating evidence from numerous studies suggests that tumor endothelial cells (ECs) are not only the target of proangiogenic factors, but also function as the cellular source of proangiogenic factors. Studies showed that ECs can produce different proangiogenic factors to participate in the regulation of angiogenesis process, in which ECs-derived interleukins (ILs) show a potential stimulatory effect on angiogenesis via either an direct action on their receptors expressed on progenitor of ECs or an indirect way through enhanced production of other proangiogenic factors. Although a great deal of attention is given to the effects of tumor-derived and immune cell-derived ILs, few studies describe the potential effects of vascular ECs-derived ILs on the tumor angiogenesis process. This review provides an updated summary of available information on proangiogenic ILs, such as IL-1, IL-6, IL-8, IL-17, IL-22, IL-33, IL-34, and IL-37, released by microvascular ECs as potential drivers of the tumor angiogenesis process and discusses their potential as a novel candidate for antiangiogenic target for the treatment of CRC patients.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Faculty of Health Science, Nord University, Campus Levanger, Norway.
| | - Hanzhe Liu
- School of Stomatology, Wuhan University, Wuhan, China.
| | | |
Collapse
|
10
|
Jiang W, Chu H, Li Z, Ge J, Wang X, Jiang J, Xiao Q, Meng Q, Lou Y, Hao W, Wei X. Integrated proteomic analysis to explore the molecular regulation mechanism of IL-33 mRNA increased by black carbon in the human endothelial cell line EA.hy926. ENVIRONMENTAL TOXICOLOGY 2022; 37:2434-2444. [PMID: 35776887 DOI: 10.1002/tox.23608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) correlates with the occurrence and progression of atherosclerosis and other cardiovascular diseases. Increasing evidence has demonstrated that BC could impair vascular endothelial cells, but the underlying mechanisms remain obscure. It is known that IL-33 exerts a significant biological role in cardiovascular disease, but little is known about the molecular regulation of IL-33 expression at present. We first found that BC significantly increased IL-33 mRNA in EA.hy926 cells in a concentration and time-dependent manner, and we conducted this study to explore its underlying mechanism. We identified that BC induced mitochondrial damage and suppressed autophagy function in EA.hy926 cells, as evidenced by elevation of the aspartate aminotransferase (GOT2), reactive oxygen species (ROS) and p62, and the reduction of mitochondrial membrane potential (ΔΨm). However, ROS cannot induce IL-33 mRNA-production in BC-exposed EA.hy926 cells. Further, experiments revealed that BC could promote IL-33 mRNA production through the PI3K/Akt/AP-1 and p38/AP-1 signaling pathways. It is concluded that BC could induce oxidative stress and suppress autophagy function in endothelial cells. This study also provided evidence that the pro-cardiovascular-diseases properties of BC may be due to its ability to stimulate the PI3K/AKT/AP-1 and p38/AP-1 pathway, further activate IL-33 and ultimately result in a local vascular inflammation.
Collapse
Affiliation(s)
- Wanyu Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Zekang Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Xiaoyun Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Yaxin Lou
- Medical and Health Analytical Center of Peking University, Beijing, People's Republic of China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| |
Collapse
|
11
|
Chen Y, Xia Q, Zeng Y, Zhang Y, Zhang M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front Cell Dev Biol 2022; 10:898652. [PMID: 35573676 PMCID: PMC9091449 DOI: 10.3389/fcell.2022.898652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Zeng
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
12
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|
13
|
Clare AJ, Liu J, Copland DA, Theodoropoulou S, Dick AD. Unravelling the therapeutic potential of IL-33 for atrophic AMD. Eye (Lond) 2022; 36:266-272. [PMID: 34531552 PMCID: PMC8807696 DOI: 10.1038/s41433-021-01725-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease affecting the retinal pigment epithelium (RPE) and photoreceptors in the macula, is the leading cause of central blindness in the elderly. AMD progresses to advanced stages of the disease, atrophic AMD (aAMD), or in 15% of cases "wet" or neovascular AMD (nAMD), associated with substantial vision loss. Whilst there has been advancement in therapies treating nAMD, to date, there are no licenced effective treatments for the 85% affected by aAMD, with disease managed by changes to diet, vitamin supplements, and regular monitoring. AMD has a complex pathogenesis, involving highly integrated and common age-related disease pathways, including dysregulated complement/inflammation, impaired autophagy, and oxidative stress. The intricacy of AMD pathogenesis makes therapeutic development challenging and identifying a target that combats the converging disease pathways is essential to provide a globally effective treatment. Interleukin-33 is a cytokine, classically known for the proinflammatory role it plays in allergic disease. Recent evidence across degenerative and inflammatory disease conditions reveals a diverse immune-modulatory role for IL-33, with promising therapeutic potential. Here, we will review IL-33 function in disease and discuss the future potential for this homeostatic cytokine in treating AMD.
Collapse
Affiliation(s)
- Alison J. Clare
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Jian Liu
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A. Copland
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sofia Theodoropoulou
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Andrew D. Dick
- grid.5337.20000 0004 1936 7603Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK ,grid.439257.e0000 0000 8726 5837NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK ,grid.83440.3b0000000121901201UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
14
|
Lee YH, Choi D, Jang G, Park JY, Song ES, Lee H, Kuk MU, Joo J, Ahn SK, Byun Y, Park JT. Targeting regulation of ATP synthase 5 alpha/beta dimerization alleviates senescence. Aging (Albany NY) 2022; 14:678-707. [PMID: 35093936 PMCID: PMC8833107 DOI: 10.18632/aging.203858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Senescence is a distinct set of changes in the senescence-associated secretory phenotype (SASP) and leads to aging and age-related diseases. Here, we screened compounds that could ameliorate senescence and identified an oxazoloquinoline analog (KB1541) designed to inhibit IL-33 signaling pathway. To elucidate the mechanism of action of KB1541, the proteins binding to KB1541 were investigated, and an interaction between KB1541 and 14-3-3ζ protein was found. Specifically, KB1541 interacted with 14-3-3ζ protein and phosphorylated of 14-3-3ζ protein at serine 58 residue. This phosphorylation increased ATP synthase 5 alpha/beta dimerization, which in turn promoted ATP production through increased oxidative phosphorylation (OXPHOS) efficiency. Then, the increased OXPHOS efficiency induced the recovery of mitochondrial function, coupled with senescence alleviation. Taken together, our results demonstrate a mechanism by which senescence is regulated by ATP synthase 5 alpha/beta dimerization upon fine-tuning of KB1541-mediated 14-3-3ζ protein activity.
Collapse
Affiliation(s)
- Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Doyoung Choi
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Geonhee Jang
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Junghyun Joo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Soon Kil Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
15
|
Viana CTR, Orellano LAA, Machado CT, Almeida CP, de Lazari MGT, Campos PP, Andrade SP. ST2 deletion accelerates inflammatory-angiogenesis and remodeling in subcutaneous implants in mice. Microvasc Res 2022; 139:104277. [PMID: 34752815 DOI: 10.1016/j.mvr.2021.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Implantation of biomedical/synthetic devices to replace and/or repair biological tissues very often induces an adverse healing response (scarce angiogenesis, excessive collagen deposition) which is detrimental to implant functionality and integration to host tissue. Interleukin-33/ST2 axis (IL-33/ST2) has been shown to modulate angiogenic and remodeling processes in several types of injuries. However, its effects on these processes after implantation of synthetic matrix have not been reported. Using synthetic matrix of polyether-polyurethane implanted subcutaneously in mice lacking ST2 receptor (ST2/KO), we characterized neovascularization and matrix remodeling in the fibrovascular tissue induced by the implants. Tissue accumulation was increased inside and around the implants in KO implants relative to the wild type (WT). More intense proliferative activity, using CDC 47 marker, was observed in KO implants compared with that of WT implants. Angiogenesis, using two endothelial cell markers, Von Willebrand Factor (VWF) and vascular endothelial cell VE cadherin and hemoglobin content, increased in implants of KO mice relative to control WT. Remodeling of the newly formed fibrovascular tissue (soluble collagen and PicroSirius Red-stained histological sections) showed predominance of type 1 collagen in ST2-KO implants versus type 3 in control implants. The number of positive cells for caspase-3, apoptotic marker, decreased in ST2 group. Our findings evidenced a role of IL-33/ST2 axis in restraining blood vessel formation and regulating the pattern of matrix remodeling in the fibrovascular tissue induced by synthetic implants. Intervention in this cytokine complex holds potential to accelerate integration of biomaterial and host tissue by improving blood supply and matrix remodeling.
Collapse
Affiliation(s)
- Celso Tarso Rodrigues Viana
- Department of General Pathology, Federal University of Minas Gerais, Institute of Biological Sciences, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Federal University of Minas Gerais, Institute of Biological Sciences, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil; Department of Pathology, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA, United States
| | - Clara Tolentino Machado
- Department of General Pathology, Federal University of Minas Gerais, Institute of Biological Sciences, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Camila Pereira Almeida
- Department of General Pathology, Federal University of Minas Gerais, Institute of Biological Sciences, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Marcela Guimarães Takahashi de Lazari
- Department of General Pathology, Federal University of Minas Gerais, Institute of Biological Sciences, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Federal University of Minas Gerais, Institute of Biological Sciences, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Mai E, Chan J, Goon L, Ego BK, Bevers J, Wong T, Wong M, Corpuz R, Xi H, Wu J, Schneider K, Seshasayee D, Grimbaldeston M, Nakamura G, Indjeian VB, van Lookeren Campagne M, Loyet KM, Comps-Agrar L. Development of an ultra-sensitive human IL-33 biomarker assay for age-related macular degeneration and asthma drug development. J Transl Med 2021; 19:517. [PMID: 34930320 PMCID: PMC8686655 DOI: 10.1186/s12967-021-03189-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Background Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. Results We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. Conclusions Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03189-3.
Collapse
Affiliation(s)
- Elaine Mai
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Joyce Chan
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Levina Goon
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.,Department of Biology and Compound Repository, Exelixis, Alameda, CA, USA
| | - Braeden K Ego
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jack Bevers
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Tiffany Wong
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Manda Wong
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Racquel Corpuz
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Hongkang Xi
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA.,Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Jia Wu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Kellen Schneider
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Michele Grimbaldeston
- Department of OMNI-Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Vahan B Indjeian
- Department of OMNI-Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Menno van Lookeren Campagne
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA.,Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Laetitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
17
|
Wickramasinghe LC, van Wijngaarden P, Tsantikos E, Hibbs ML. The immunological link between neonatal lung and eye disease. Clin Transl Immunology 2021; 10:e1322. [PMID: 34466225 PMCID: PMC8387470 DOI: 10.1002/cti2.1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are two neonatal diseases of major clinical importance, arising in large part as a consequence of supplemental oxygen therapy used to promote the survival of preterm infants. The presence of coincident inflammation in the lungs and eyes of neonates receiving oxygen therapy indicates that a dysregulated immune response serves as a potential common pathogenic factor for both diseases. This review examines the current state of knowledge of immunological dysregulation in BPD and ROP, identifying similarities in the cellular subsets and inflammatory cytokines that are found in the alveoli and retina during the active phase of these diseases, indicating possible mechanistic overlap. In addition, we highlight gaps in the understanding of whether these responses emerge independently in the lung and retina as a consequence of oxygen exposure or arise because of inflammatory spill-over from the lung. As BPD and ROP are anatomically distinct, they are often considered discreet disease entities and are therefore treated separately. We propose that an improved understanding of the relationship between BPD and ROP is key to the identification of novel therapeutic targets to treat or prevent both conditions simultaneously.
Collapse
Affiliation(s)
- Lakshanie C Wickramasinghe
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Peter van Wijngaarden
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVICAustralia
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalEast MelbourneVICAustralia
| | - Evelyn Tsantikos
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Margaret L Hibbs
- Leukocyte Signalling LaboratoryDepartment of Immunology and PathologyCentral Clinical SchoolMonash UniversityMelbourneVICAustralia
| |
Collapse
|
18
|
Vilkeviciute A, Bastikaityte N, Mockute R, Cebatoriene D, Kriauciuniene L, Balciuniene J, Zemaitiene R, Liutkeviciene R. The Role of SNPs in IL1RL1 and IL1RAP Genes in Age-related Macular Degeneration Development and Treatment Efficacy. In Vivo 2021; 34:2443-2451. [PMID: 32871771 DOI: 10.21873/invivo.12059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) affects the central part of the retina and causes blindness. In developed countries, AMD occurs in people over 50 years old. Important factors for AMD pathogenesis are an immune response, inflammation, and genetic factors. This study aimed to determine the impact of IL1RL1 rs1041973 and IL1RAP rs4624606 single nucleotide polymorphisms (SNPs) on the occurrence of AMD and the outcome of treatment with aflibercept and bevacizumab. PATIENTS AND METHODS 563 patients with AMD and 281 healthy candidates were evaluated. Patients with exudative AMD were treated with intravitreal bevacizumab and aflibercept and, after 6 months based on the changes in best-corrected visual acuity and central macular thickness, were classified as 'responders' or 'poor-responders'. Genotyping of IL1RL1 rs1041973 and IL1RAP rs4624606 was accomplished using real-time PCR. Age was compared using the Mann-Whitney U-test. Categorical data (gender, genotype, and allele distributions) compared between groups using the χ2 test or the Fisher's exact test. Associations of gene polymorphisms were calculated using logistic regression analysis with adjustment for age in exudative and atrophic AMD analysis. An adjusted significance threshold for multiple comparisons α=0.025 was applied. RESULTS Statistically significant differences in the distribution of IL1RAP rs4624606 genotypes (TT, TA and AA) were found between males with atrophic AMD and controls: 50%, 42.9% and 7.1% vs. 69.7%, 30.3% and 0%, respectively, p=0.015. Moreover, we found that 'responders' had a significantly better best-corrected visual acuity than 'poor-responders' before treatment (p=0.032). The central macular thickness was significantly lower in exudative AMD patients with IL1RL1 rs1041973 AA genotype than in wild type and heterozygous (CC+CA) genotype carriers before treatment (p=0.017). CONCLUSION IL1RAP rs4624606 may be associated with atrophic AMD in males while IL1RL1 rs1041973 may play a protective role against macular thickening in exudative AMD patients.
Collapse
Affiliation(s)
- Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | | | - Ruta Mockute
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Dzastina Cebatoriene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania.,Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Jurate Balciuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Reda Zemaitiene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania.,Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| |
Collapse
|
19
|
Van Hove I, Van Bergen T, Etienne I, Holgado A, Afonina IS, Beyaert R, Feyen JH, Hu TT. IL-33trap-mediated IL-33 neutralization does not exacerbate choroidal neovascularization, but fails to protect against retinal degeneration in a dry age-related macular degeneration model. Exp Eye Res 2021; 207:108608. [PMID: 33930400 DOI: 10.1016/j.exer.2021.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 09/30/2022]
Abstract
The progressive and sight-threatening disease, age-related macular degeneration (AMD), is a growing public health concern due to ageing demographics, with the highest unmet medical need for the advanced stage of dry AMD, geographic atrophy. The pathogenesis underlying AMD is driven by a complex interplay of genetic and environmental factors. There is ample evidence that inflammation is strongly involved in AMD development. Interleukin-33 (IL-33) has been proposed to be critically involved in retinal degeneration, but a protective role in eye pathophysiology was also demonstrated. The current study investigated the therapeutic potential of IL-33trap, a novel IL-33-neutralizing biologic, in dry AMD/geographic atrophy and, based on controversial data regarding the protective versus detrimental functions of IL-33 in neovascularization, evaluated the risk of progression to wet AMD by IL-33 neutralization. Repeated intravitreal (IVT) injections of IL-33trap in the mouse laser-induced choroidal neovascularization model did not exacerbate neovascularization or leakage, while it significantly inhibited inflammatory cell infiltration in the retinal pigment epithelium and choroid. On the contrary, IVT treatment with IL-33trap significantly induced retinal inflammation and could not prevent retinopathy induction in the mouse sodium iodate (NaIO3) model. Overall, these data suggest a complex and dichotomous role of IL-33 in eye pathology and indicate that IL-33 neutralization is not able to prevent onset and progression of dry AMD pathogenesis.
Collapse
Affiliation(s)
- Inge Van Hove
- Oxurion NV, Gaston Geenslaan 1, 3001, Heverlee, Belgium.
| | | | | | - Aurora Holgado
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jean Hm Feyen
- Oxurion NV, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | | |
Collapse
|
20
|
Hernandez M, Recalde S, González-Zamora J, Bilbao-Malavé V, Sáenz de Viteri M, Bezunartea J, Moreno-Orduña M, Belza I, Barrio-Barrio J, Fernandez-Robredo P, García-Layana A. Anti-Inflammatory and Anti-Oxidative Synergistic Effect of Vitamin D and Nutritional Complex on Retinal Pigment Epithelial and Endothelial Cell Lines against Age-Related Macular Degeneration. Nutrients 2021; 13:nu13051423. [PMID: 33922669 PMCID: PMC8170899 DOI: 10.3390/nu13051423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease of the retina featured by dysfunction of retinal pigmented epithelial (RPE) and loss of photoreceptor cells under oxidative stress and inflammatory conditions. Vitamin D and antioxidants have beneficial effects against retinal degenerative diseases, such as AMD. We investigated the impact of associating vitamin D (ND) with a nutritional antioxidant complex (Nutrof Total®; N) on oxidative stress and inflammation-like induced conditions by H2O2 and LPS, respectively, in human retinal epithelial (ARPE-19) and human retinal endothelial (HREC) cells. Application of either N or ND treatments to H2O2-induced media in ARPE-19 cells counteracted late apoptosis, attenuated oxidative DNA damage, and increased cell proliferation. Significant reduction in the expression levels of MCP1, IL-8, and IL6 cytokines was observed following application of either N or ND treatments under LPS-induced conditions in ARPE-19 cells and in MCP-1 and IL12p70 cytokine levels in HREC cells. ND and not N revealed significant downregulation of IFNγ in ARPE-19 cells, and of IL-6 and IL-18 in HREC cells. In conclusion, adding vitamin D to Nutrof Total® protects in a synergistic way against oxidative and inflammatory stress-induced conditions in retinal epithelial and endothelial cells.
Collapse
Affiliation(s)
- Maria Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
- Correspondence:
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Jorge González-Zamora
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
| | - Valentina Bilbao-Malavé
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
| | - Manuel Sáenz de Viteri
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Jaione Bezunartea
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Maite Moreno-Orduña
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Idoia Belza
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
| | - Jesús Barrio-Barrio
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| | - Alfredo García-Layana
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (J.G.-Z.); (V.B.-M.); (M.S.d.V.); (J.B.); (M.M.-O.); (I.B.); (J.B.-B.); (P.F.-R.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares (Oftared), 31008 Pamplona, Spain
| |
Collapse
|
21
|
Scott LM, Vincent EE, Hudson N, Neal C, Jones N, Lavelle EC, Campbell M, Halestrap AP, Dick AD, Theodoropoulou S. Interleukin-33 regulates metabolic reprogramming of the retinal pigment epithelium in response to immune stressors. JCI Insight 2021; 6:129429. [PMID: 33884963 PMCID: PMC8119202 DOI: 10.1172/jci.insight.129429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
It remains unresolved how retinal pigment epithelial cell metabolism is regulated following immune activation to maintain retinal homeostasis and retinal function. We exposed retinal pigment epithelium (RPE) to several stress signals, particularly Toll-like receptor stimulation, and uncovered an ability of RPE to adapt their metabolic preference on aerobic glycolysis or oxidative glucose metabolism in response to different immune stimuli. We have identified interleukin-33 (IL-33) as a key metabolic checkpoint that antagonizes the Warburg effect to ensure the functional stability of the RPE. The identification of IL-33 as a key regulator of mitochondrial metabolism suggests roles for the cytokine that go beyond its extracellular “alarmin” activities. IL-33 exerts control over mitochondrial respiration in RPE by facilitating oxidative pyruvate catabolism. We have also revealed that in the absence of IL-33, mitochondrial function declined and resultant bioenergetic switching was aligned with altered mitochondrial morphology. Our data not only shed new light on the molecular pathway of activation of mitochondrial respiration in RPE in response to immune stressors but also uncover a potentially novel role of nuclear intrinsic IL-33 as a metabolic checkpoint regulator.
Collapse
Affiliation(s)
- Louis M Scott
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School
| | - Emma E Vincent
- School of Cellular and Molecular Medicine, and.,Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Natalie Hudson
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Chris Neal
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Andrew P Halestrap
- Department of Biochemistry, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School.,School of Cellular and Molecular Medicine, and.,UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School
| |
Collapse
|
22
|
Thomas CN, Sim DA, Lee WH, Alfahad N, Dick AD, Denniston AK, Hill LJ. Emerging therapies and their delivery for treating age-related macular degeneration. Br J Pharmacol 2021; 179:1908-1937. [PMID: 33769566 DOI: 10.1111/bph.15459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness in the Western world and is characterised in its latter stages by retinal cell death and neovascularisation and earlier stages with the loss of parainflammatory homeostasis. Patients with neovascular AMD (nAMD) are treated with frequent intraocular injections of anti-vascular endothelial growth factor (VEGF) therapies, which are not only unpopular with patients but carry risks of sight-threatening complications. A minority of patients are unresponsive with no alternative treatment available, and some patients who respond initially eventually develop a tolerance to treatment. New therapeutics with improved delivery methods and sustainability of clinical effects are required, in particular for non-neovascular AMD (90% of cases and no current approved treatments). There are age-related and disease-related changes that occur which can affect ocular drug delivery. Here, we review the latest emerging therapies for AMD, their delivery routes and implications for translating to clinical practice.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dawn A Sim
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Wen Hwa Lee
- Action Against AMD, London, UK.,Affordable Medicines Programme, Oxford Martin School, University of Oxford, Oxford, UK
| | - Nada Alfahad
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK.,Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alastair K Denniston
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK.,Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Centre for Patient Reported Outcome Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK.,Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK.,Health Data Research UK, London, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Lee KS, Lin S, Copland DA, Dick AD, Liu J. Cellular senescence in the aging retina and developments of senotherapies for age-related macular degeneration. J Neuroinflammation 2021; 18:32. [PMID: 33482879 PMCID: PMC7821689 DOI: 10.1186/s12974-021-02088-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease in the central macula area of the neuroretina and the supporting retinal pigment epithelium, is the most common cause of vision loss in the elderly. Although advances have been made, treatment to prevent the progressive degeneration is lacking. Besides the association of innate immune pathway genes with AMD susceptibility, environmental stress- and cellular senescence-induced alterations in pathways such as metabolic functions and inflammatory responses are also implicated in the pathophysiology of AMD. Cellular senescence is an adaptive cell process in response to noxious stimuli in both mitotic and postmitotic cells, activated by tumor suppressor proteins and prosecuted via an inflammatory secretome. In addition to physiological roles in embryogenesis and tissue regeneration, cellular senescence is augmented with age and contributes to a variety of age-related chronic conditions. Accumulation of senescent cells accompanied by an impairment in the immune-mediated elimination mechanisms results in increased frequency of senescent cells, termed “chronic” senescence. Age-associated senescent cells exhibit abnormal metabolism, increased generation of reactive oxygen species, and a heightened senescence-associated secretory phenotype that nurture a proinflammatory milieu detrimental to neighboring cells. Senescent changes in various retinal and choroidal tissue cells including the retinal pigment epithelium, microglia, neurons, and endothelial cells, contemporaneous with systemic immune aging in both innate and adaptive cells, have emerged as important contributors to the onset and development of AMD. The repertoire of senotherapeutic strategies such as senolytics, senomorphics, cell cycle regulation, and restoring cell homeostasis targeted both at tissue and systemic levels is expanding with the potential to treat a spectrum of age-related diseases, including AMD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Shuxiao Lin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - David A Copland
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Ophthalmology, University College London, London, EC1V 9EL, UK. .,National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, EC1V 2QH, UK.
| | - Jian Liu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
24
|
Clare AJ, Copland DA, Nicholson LB, Liu J, Neal CR, Moss S, Dick AD, Theodoropoulou S. Treatment with interleukin-33 is non-toxic and protects retinal pigment epithelium in an ageing model of outer retinal degeneration. J Cell Mol Med 2020; 24:13546-13550. [PMID: 33079455 PMCID: PMC7701527 DOI: 10.1111/jcmm.16000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
The leading cause of central vision loss, age‐related macular degeneration (AMD), is a degenerative disorder characterized by atrophy of retinal pigment epithelium (RPE) and photoreceptors. For 15% of cases, neovascularization occurs, leading to acute vision loss if left untreated. For the remaining patients, there are currently no treatment options and preventing progressive RPE atrophy remains the main therapeutic goal. Previously, we have shown treatment with interleukin‐33 can reduce choroidal neovascularization and attenuate tissue remodelling. Here, we investigate IL‐33 delivery in aged, high‐fat diet (HFD) fed mice on a wildtype and complement factor H heterozygous knockout background. We characterize the non‐toxic effect following intravitreal injection of IL‐33 and further demonstrate protective effects against RPE cell death with evidence of maintaining metabolic retinal homeostasis of Cfh+/−~HFD mice. Our results further support the potential utility of IL‐33 to prevent AMD progression.
Collapse
Affiliation(s)
- Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jian Liu
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Chris R Neal
- Wolfson Bioimaging Facility, University of Bristol, Bristol, UK
| | | | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | | |
Collapse
|
25
|
Jabbehdari S, Handa JT. Oxidative stress as a therapeutic target for the prevention and treatment of early age-related macular degeneration. Surv Ophthalmol 2020; 66:423-440. [PMID: 32961209 DOI: 10.1016/j.survophthal.2020.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration, the leading cause of irreversible visual loss among older adults in developed countries, is a chronic, multifactorial, and progressive disease with the development of painless, central vision loss. Retinal pigment epithelial cell dysfunction is a core change in age-related macular degeneration that results from aging and the accumulated effects of genetic and environmental factors that, in part, is both caused by and leads to oxidative stress. In this review, we describe the role of oxidative stress, the cytoprotective oxidative stress pathways, and the impact of oxidative stress on critical cellular processes involved in age-related macular degeneration pathobiology. We also offer targeted therapy that may define how antioxidant therapy can either prevent or improve specific stages of age-related macular degeneration.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
26
|
Activation of ocular surface mast cells promotes corneal neovascularization. Ocul Surf 2020; 18:857-864. [PMID: 32916251 DOI: 10.1016/j.jtos.2020.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Mast cells, historically known for their effector function in the induction of allergic diseases, reside in all vascularized tissues of the body in particular proximity to blood and lymphatic vessels. As neighboring sentinel cells to blood vessels, mast cells have been associated with angiogenesis. Here we assess the direct contribution of mast cells to neovascularization at the ocular surface. METHODS Corneal neovascularization was induced by placing a single figure-of-eight intrastromal suture 1 mm from the limbus in mast cell-deficient (cKitW-sh), C57BL/6, and Balb/c mice. Corneas were harvested at 6 h post-suture to quantify cKit+FcεR1+ mast cells using flow cytometry and tear wash was collected within 6 h to measure β-hexosaminidase and tryptase. Neovascularization was assessed using slit-lamp biomicroscope and immunohistochemistry analysis of corneas harvested on day 4 post-suture. To investigate the effects of mast cells on blood vessel growth, mast cells were co-cultured with vascular endothelial cells (VECs), and tube formation and proliferation of VECs were measured. 2% cromolyn was administered locally to inhibit mast cell activation in vivo. RESULTS Placement of corneal suture activates ocular surface mast cells, which infiltrate into the cornea adjacent to new vessels. Mast cell-deficient mice develop significantly fewer new vessels following suture placement. Mast cells directly promote VEC proliferation and tube formation, partly through secreting high levels of VEGF-A. Pharmacological inhibition of mast cell activation results in significantly less corneal neovascularization. CONCLUSION Our data demonstrate that ocular surface mast cells are critical to corneal neovascularization, suggesting mast cells as a potential therapeutic target in the treatment of corneal neovascularization.
Collapse
|
27
|
The Functional Roles of IL-33/ST2 Axis in Ocular Diseases. Mediators Inflamm 2020; 2020:5230716. [PMID: 32908451 PMCID: PMC7450335 DOI: 10.1155/2020/5230716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 01/10/2023] Open
Abstract
Interleukin-33 (IL-33), an important member of the IL-1 family, plays a pivotal role in regulating immune responses via combining with its receptor suppression of tumorigenicity 2 (ST2). We have already known IL-33/ST2 axis participates in the pathogenesis of various diseases, including liver diseases, renal diseases, and neurological diseases. Recently, emerging studies are indicating that IL-33/ST2 is also involved in a wide range of ocular diseases, such as allergic eye disease, keratitis and corneal regeneration, dry eye disease, uveitis, vitreoretinal diseases, and neuromyelitis optica spectrum disorder. In this review, we will summarize and discuss the current understanding about the functional roles of IL-33/ST2 in eyes, with an attempt to explore the possible study perspectives and therapeutic alternatives in the future.
Collapse
|
28
|
Jariyal H, Gupta C, Bhat VS, Wagh JR, Srivastava A. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev Rep 2020; 15:755-773. [PMID: 31863337 DOI: 10.1007/s12015-019-09912-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occurrence of stem cells (CSCs) in cancer is well established in last two decades. These rare cells share several properties including presence of common surface markers, stem cell markers, chemo- and radio- resistance and are highly metastatic in nature; thus, considered as valuable prognostic and therapeutic targets in cancer. However, the studies related to CSCs pave number of issues due to rare cell population and difficulties in their isolation ascribed to common stem cell marker. Various techniques including flow cytometry, laser micro-dissection, fluorescent nanodiamonds and microfluidics are used for the isolation of these rare cells. In this review, we have included the advance strategies adopted for the isolation of CSCs using above mentioned techniques. Furthermore, CSCs are primarily found in the core of the solid tumors and their microenvironment plays an important role in maintenance, self-renewal, division and tumor development. Therefore, in vivo tracking and model development become obligatory for functional studies of CSCs. Fluorescence and bioluminescence tagging has been widely used for transplantation assay and lineage tracking experiments to improve our understanding towards CSCs behaviour in their niche. Techniques such as Magnetic resonance imaging (MRI) and Positron emission tomography (PET) have proved useful for tracking of endogenous CSCs which could be helpful in their identification in clinical settings.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Chanchal Gupta
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vedika Sandeep Bhat
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Jayant Ramakant Wagh
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
29
|
Stonys V, Lindžiūtė M, Vilkevičiūtė A, Gedvilaitė G, Kriaučiūnienė L, Banevičius M, Žemaitienė R, Liutkevičienė R. Associations between IL1RAP rs4624606, IL1RL1 rs1041973, IL-6 rs1800795, and HTRA1 rs11200638 gene polymorphisms and development of optic neuritis with or without multiple sclerosis. Ophthalmic Genet 2020; 41:325-330. [PMID: 32449403 DOI: 10.1080/13816810.2020.1768555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Optic neuritis (ON) and multiple sclerosis (MS) are complex diseases with multifactorial pathogenesis. The role of genetic factors in the development of these diseases is hypothesized, and specific biochemical components involved in the pathogenesis of ON and MS are yet to be determined. The aim of our study was to determine the associations between IL1RAP rs4624606, IL1RL1 rs1041973, IL-6 rs1800795, and HTRA1 rs11200638 gene polymorphisms and development of ON with or without MS. MATERIALS AND METHODS The study subjects included 80 ON patients and 146 healthy controls (HCs). Genotyping of IL1RAP rs4624606, IL1RL1 rs1041973, IL-6 rs1800795, and HTRA1 rs11200638 was performed using real-time polymerase chain reaction. RESULTS A/C genotype of IL1RL1 rs1041973 was more frequent in ON patients than in HC subjects (p = 0.026). The IL1RL1 rs1041973 A/C genotype was associated with increased odds of ON development under the overdominant (p = 0.041) model. CONCLUSIONS Our study showed that IL1RAP rs4624606, IL-6 rs1800795, and HTRA1 rs11200638 are not associated with an increased risk of developing ON. However, the IL1RL1 rs1041973 A/C genotype might be associated with an increased risk of developing ON.
Collapse
Affiliation(s)
- Valdas Stonys
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Miglė Lindžiūtė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Alvita Vilkevičiūtė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Greta Gedvilaitė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Loresa Kriaučiūnienė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Mantas Banevičius
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Reda Žemaitienė
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Rasa Liutkevičienė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences , Kaunas, Lithuania
| |
Collapse
|
30
|
Paladino RA, Miller SN, Kleiber KF, Byers DM. Resveratrol reverses the effect of TNF-α on inflammatory markers in a model of autoimmune uveitis. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Shen Y, Li M, Liu K, Xu X, Zhu S, Wang N, Guo W, Zhao Q, Lu P, Yu F, Xu X. Integrated bioinformatics analysis of aberrantly-methylated differentially-expressed genes and pathways in age-related macular degeneration. BMC Ophthalmol 2020; 20:119. [PMID: 32209064 PMCID: PMC7092446 DOI: 10.1186/s12886-020-01392-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/13/2020] [Indexed: 11/11/2022] Open
Abstract
Background Age-related macular degeneration (AMD) represents the leading cause of visual impairment in the aging population. The goal of this study was to identify aberrantly-methylated, differentially-expressed genes (MDEGs) in AMD and explore the involved pathways via integrated bioinformatics analysis. Methods Data from expression profile GSE29801 and methylation profile GSE102952 were obtained from the Gene Expression Omnibus database. We analyzed differentially-methylated genes and differentially-expressed genes using R software. Functional enrichment and protein–protein interaction (PPI) network analysis were performed using the R package and Search Tool for the Retrieval of Interacting Genes online database. Hub genes were identified using Cytoscape. Results In total, 827 and 592 genes showed high and low expression, respectively, in GSE29801; 4117 hyper-methylated genes and 511 hypo-methylated genes were detected in GSE102952. Based on overlap, we categorized 153 genes as hyper-methylated, low-expression genes (Hyper-LGs) and 24 genes as hypo-methylated, high-expression genes (Hypo-HGs). Four Hyper-LGs (CKB, PPP3CA, TGFB2, SOCS2) overlapped with AMD risk genes in the Public Health Genomics and Precision Health Knowledge Base. KEGG pathway enrichment analysis indicated that Hypo-HGs were enriched in the calcium signaling pathway, whereas Hyper-LGs were enriched in sphingolipid metabolism. In GO analysis, Hypo-HGs were enriched in fibroblast migration, membrane raft, and coenzyme binding, among others. Hyper-LGs were enriched in mRNA transport, nuclear speck, and DNA binding, among others. In PPI network analysis, 23 nodes and two edges were established from Hypo-HGs, and 151 nodes and 73 edges were established from Hyper-LGs. Hub genes (DHX9, MAPT, PAX6) showed the greatest overlap. Conclusion This study revealed potentially aberrantly MDEGs and pathways in AMD, which might improve the understanding of this disease.
Collapse
Affiliation(s)
- Yinchen Shen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, People's Republic of China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, People's Republic of China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaoyin Xu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, People's Republic of China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, People's Republic of China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, People's Republic of China.,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Wenke Guo
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Qianqian Zhao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Ping Lu
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Fudong Yu
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, People's Republic of China. .,National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
32
|
Zhang L, Zeng H, Wang JH, Zhao H, Zhang B, Zou J, Yoshida S, Zhou Y. Altered Long Non-coding RNAs Involved in Immunological Regulation and Associated with Choroidal Neovascularization in Mice. Int J Med Sci 2020; 17:292-301. [PMID: 32132863 PMCID: PMC7053346 DOI: 10.7150/ijms.37804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Choroidal neovascularization (CNV) is a severe complication of the wet form of age-related macular degeneration (AMD). Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of different ocular neovascular diseases. To identify the function and therapeutic potential of lncRNAs in CNV, we assessed lncRNAs and mRNA expression profile in a mouse model of laser-induced CNV by microarray analysis. The results of altered lncRNAs were validated by qRT-PCR. Bioinformatics analyses, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed to clarify the potential biological functions and signaling pathways with which altered genes are most closely related. Moreover, to identify the interaction of lncRNAs and mRNAs, we constructed a coding-non-coding gene co-expression (CNC) network. By microarray analysis, we identified 716 altered lncRNAs and 821 altered mRNAs in CNV mice compared to controls. A CNC network profile based on 7 validated altered lncRNAs (uc009ewo.1, AK148935, uc029sdr.1, ENSMUST00000132340, AK030988, uc007mds.1, ENSMUST00000180519) as well as 282 interacted and altered mRNAs, and were connected by 713 edges. GO and KEGG analyses suggested that altered mRNAs, as well as those lncRNA-interacted mRNAs were enriched in immune system process and chemokine signaling pathway. Thus, lncRNAs are significantly altered in this mouse model of CNV and are involved in immunological regulation, suggesting that lncRNAs may play a critical role in the pathogenesis of CNV. Thus, dysregulated lncRNAs and their target genes might be promising therapeutic targets to suppress CNV in AMD.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huilan Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Boxiang Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
33
|
Augustine J, Pavlou S, Ali I, Harkin K, Ozaki E, Campbell M, Stitt AW, Xu H, Chen M. IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. J Neuroinflammation 2019; 16:251. [PMID: 31796062 PMCID: PMC6889479 DOI: 10.1186/s12974-019-1625-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and resides in the nuclei of various cell types. In the neural retina, IL-33 is predominately expressed in Müller cells although its role in health and disease is ill-defined. Müller cell gliosis is a critical response during the acute phase of retinal detachment (RD), and in this study, we investigated if IL-33 was modulatory in the inflammatory and neurodegenerative pathology which is characteristic of this important clinical condition. Methods RD was induced by subretinal injection of sodium hyaluronate into C57BL/6 J (WT) and IL-33−/− mice and confirmed by fundus imaging and optical coherence tomography (OCT). The expression of inflammatory cytokines, complement components and growth factors was examined by RT-PCR. Retinal neurodegeneration, Müller cell activation and immune cell infiltration were assessed using immunohistochemistry. The expression of inflammatory cytokines in primary Müller cells and bone marrow-derived macrophages (BM-DMs) was assessed by RT-PCR and Cytometric Bead Array. Results RD persisted for at least 28 days after the injection of sodium hyaluronate, accompanied by significant cone photoreceptor degeneration. The mRNA levels of CCL2, C1ra, C1s, IL-18, IL-1β, TNFα, IL-33 and glial fibrillary acidic protein (GFAP) were significantly increased at day 1 post-RD, reduced gradually and, with the exception of GFAP and C1ra, returned to the basal levels by day 28 in WT mice. In IL-33−/− mice, RD induced an exacerbated inflammatory response with significantly higher levels of CCL2, IL-1β and GFAP when compared to WT. Sustained GFAP activation and immune cell infiltration was detected at day 28 post-RD in IL-33−/− mice. Electroretinography revealed a lower A-wave amplitude at day 28 post-RD in IL-33−/− mice compared to that in WT RD mice. IL-33−/− mice subjected to RD also had significantly more severe cone photoreceptor degeneration compared to WT counterparts. Surprisingly, Müller cells from IL-33−/− mice expressed significantly lower levels of CCL2 and IL-6 compared with those from WT mice, particularly under hypoxic conditions, whereas IL-33−/− bone marrow-derived macrophages expressed higher levels of inducible nitric oxide synthase, TNFα, IL-1β and CCL2 after LPS + IFNγ stimulation compared to WT macrophages. Conclusion IL-33 deficiency enhanced retinal degeneration and gliosis following RD which was related to sustained subretinal inflammation from infiltrating macrophages. IL-33 may provide a previously unrecognised protective response by negatively regulating macrophage activation following retinal detachment.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Imran Ali
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ema Ozaki
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
34
|
Cakir U, Tayman C, Yucel C, Ozdemir O. Can IL-33 and Endocan be New Markers for Retinopathy of Prematurity? Comb Chem High Throughput Screen 2019; 22:41-48. [PMID: 30914019 DOI: 10.2174/1386207322666190325120244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Retinopathy of Prematurity (ROP) is a pathophysiologic condition of the retina due to abnormal proliferation of retinal vessels. OBJECTIVE The study aimed too ascertain the importance of vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), interleukin-33 (IL-33) and endocan in the diagnosis and follow-up of ROP. METHODS This prospective cohort study was conducted in the neonatal intensive care unit (NICU) of Health Science University, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey, between February 2017 and August 2018. Preterm infants (gestational age (GA) of ≤32 weeks and birth weight of ≤1500 gr), diagnosed ROP were included in the study. VEGF, IGF-1, IL-33 and endocan levels were evaluated in the cord blood and in the serum before and after treatment of infants in the ROP and control groups. RESULTS A final number of 146 infants were included in the study. During the study period, 73 infants were identified as the ROP group, and 73 infants were allocated as the control group. In the ROP group, the cord blood VEGF value was higher than the control group (p <0.05). However, IGF-1 levels in the cord blood were lower in the ROP group than control (P<0.05). IL-33 and endocan values in the cord blood were similar in both control and ROP groups (p>0.05). Although serum levels of IL-33, VEGF and endocan were higher before laser treatment, these biomarkers decreased significantly after laser treatment (p <0.05). CONCLUSION We determined that serum IL-33 and endocan levels might be suggested as sensitive novel markers for the prediction of severe ROP.
Collapse
Affiliation(s)
- Ufuk Cakir
- Division of Neonatology, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| | - Cuneyt Tayman
- Division of Neonatology, Zekai Tahir Burak Maternity Teaching Hospital, Ankara, Turkey
| | - Cigdem Yucel
- Department of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Ozdemir Ozdemir
- Department of Ophthalmology, Zekai Tahir Burak Women's Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
35
|
Ozler S, Oztas E, Guler BG, Caglar AT. Increased levels of serum IL-33 is associated with adverse maternal outcomes in placenta previa accreta. J Matern Fetal Neonatal Med 2019; 34:3192-3199. [PMID: 31608786 DOI: 10.1080/14767058.2019.1679766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE IL-33 is associated with invasion, proliferation, and metastasis of various cancers. The trophoblastic cells of placenta previa accreta (PPA) invade into the myometrium in a similar way to the invasion of cancers. We studied the role of IL-33 in PPA and also aimed to investigate its relation with adverse maternal outcome in this placental disorder. METHODS A total of 87 pregnant patients were enrolled in this prospective case-control study [27 with PPA, 30 with placenta previa totalis (PPT; nonadherent placenta previa), and 30 controls]. IL-33 and IL-6 levels were studied in maternal serum at late preterm gestation weeks. Multiple logistic regression analyses analyzed the risk factors which are associated with PPA and adverse maternal outcomes. Adjusted odds ratios and 95% confidence intervals were also calculated. Enzyme-linked immunosorbent assay (ELISA) method was used to determine maternal serum IL-33 and IL-6 levels. RESULTS Serum IL-33 levels were significantly higher in PPA patients when compared with both nonadherent PPT and the control groups (p = .011, p = .010). Serum IL-6 and neutrophil/lymphocyte ratio levels were significantly higher than the control group's (p = .045, p = .028). IL-33 levels and history of previous cesarean section were found to be significantly associated with PPA (OR: 1.039, 95% CI: 1.004-1.075; p = .030 and OR: 0.067, 95% CI: 0.014-0.309, p = .001, respectively). Serum IL-33 levels were positively correlated with previous cesarean section history in PPA. Increased maternal serum IL-33 levels were found to be independently associated with a cesarean hysterectomy and massive transfusion in PPA patients (OR: 1.098, 95% CI: 0.998-1.207; p = .049 and OR: 1.162 95% CI: 1.010-1.337; p = .036). CONCLUSION Increased levels of maternal serum IL-33 and history of previous cesarean section were found to be significantly associated with PPA, and also increased maternal serum IL-33 levels were related to cesarean hysterectomy and massive blood transfusion in PPA. We suggest that IL-33 may have a role in abnormal placental invasion.
Collapse
Affiliation(s)
- Sibel Ozler
- Department of Perinatology, Selcuk University Medical School, Konya, Turkey
| | - Efser Oztas
- Department of Perinatology, Eskisehir City Hospital, Eskisehir, Turkey
| | | | - Ali Turhan Caglar
- Department of Pathology, University of Health Sciences Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
36
|
Abstract
Autoimmune uveitis is a sight-threatening, rare disease, potentially leading to blindness. Uveitis is a synonym for intraocular inflammation, presenting as various clinical phenotypes with different underlying immune responses in patients, whereas different animal models usually represent one certain clinical and immunological type of uveitis due to genetic uniformity and the method of disease induction. T cells recognizing intraocular antigens initiate the disease, recruiting inflammatory cells (granulocytes, monocytes/macrophages) to the eyes, which cause the damage of the tissue. The treatment of uveitis so far aims at downregulation of inflammation to protect the ocular tissues from damage, and at immunosuppression to stop fueling T cell reactivity. Uveitis is usually prevented by specific mechanisms of the ocular immune privilege and the blood-eye-barriers, but once the disease is induced, mechanisms of the immune privilege as well as a variety of novel regulatory features including new Treg cell populations and suppressive cytokines are induced to downregulate the ocular inflammation and T cell responses and to avoid relapses and chronicity. Here we describe mechanisms of regulation observed in experimental animal models as well as detected in studies with peripheral lymphocytes from patients.
Collapse
|
37
|
Tohari AM, Alhasani RH, Biswas L, Patnaik SR, Reilly J, Zeng Z, Shu X. Vitamin D Attenuates Oxidative Damage and Inflammation in Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2019; 8:antiox8090341. [PMID: 31450606 PMCID: PMC6770403 DOI: 10.3390/antiox8090341] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD), the most common visual disorder in elderly people, is characterized by the formation of deposits beneath the retinal pigment epithelium (RPE) and by dysfunction of RPE and photoreceptor cells. The biologically active form of vitamin D, 1,25-(OH)2D3 (VITD), is categorized as a multifunctional steroid hormone that modulates many transcriptional processes of different genes and is involved in a broad range of cellular functions. Epidemiological and genetic association studies demonstrate that VITD may have a protective role in AMD, while single nucleotide polymorphisms in the vitamin D metabolism gene (CYP24A1) increase the risk of AMD. However, the functional mechanisms of VITD in AMD are not fully understood. In the current study, we investigated the impact of VITD on H2O2-induced oxidative stress and inflammation in human RPE cells. We demonstrate that exposure to H2O2 caused significantly reduced cell viability, increased production of reactive oxygen species (ROS), lowered expression of antioxidant enzymes and enhanced inflammation. VITD exposure notably counteracted the above H2O2-induced effects. Our data suggest that VITD protects the RPE from oxidative damage and elucidate molecular mechanisms of VITD deficiency in the development of AMD.
Collapse
Affiliation(s)
- Ali Mohammad Tohari
- Department of Clinical Biochemistry, King Fahad Hospital, PO Box 204, Jazan 91991, Saudi Arabia
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Sarita Rani Patnaik
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Zhihong Zeng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410022, China.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
38
|
Handa JT, Bowes Rickman C, Dick AD, Gorin MB, Miller JW, Toth CA, Ueffing M, Zarbin M, Farrer LA. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun 2019; 10:3347. [PMID: 31350409 PMCID: PMC6659646 DOI: 10.1038/s41467-019-11262-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly in the developed world. While treatment is effective for the neovascular or “wet” form of AMD, no therapy is successful for the non-neovascular or “dry” form. Here we discuss the current knowledge on dry AMD pathobiology and propose future research directions that would expedite the development of new treatments. In our view, these should emphasize system biology approaches that integrate omic, pharmacological, and clinical data into mathematical models that can predict disease onset and progression, identify biomarkers, establish disease causing mechanisms, and monitor response to therapy. No effective therapies exist for dry age-related macular degeneration. In this perspective, the authors propose that research should emphasize system biology approaches that integrate various ‘omics’ data into mathematical models to establish pathogenic mechanisms on which to design novel treatments, and identify biomarkers that predict disease progression and therapeutic response.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, 21287, MD, USA.
| | - Cathy Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Andrew D Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, BS8 1TH, UK.,University College London, Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, London, WC1E 6BT, UK
| | - Michael B Gorin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, 90095, CA, USA.,Brain Research Institute, UCLA, Los Angeles, 90095, CA, USA
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, USA
| | - Cynthia A Toth
- Department of Ophthalmology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Marius Ueffing
- Department of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, D-72076, Germany
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, Rutgers University, Newark, 07103, NJ, USA
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, 02118, MA, USA.
| |
Collapse
|
39
|
Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front Immunol 2019; 10:1618. [PMID: 31379825 PMCID: PMC6646526 DOI: 10.3389/fimmu.2019.01618] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Inflammation underpins and contributes to the pathogenesis of many retinal degenerative diseases. The recruitment and activation of both resident microglia and recruited macrophages, as well as the production of cytokines, are key contributing factors for progressive cell death in these diseases. In particular, the interleukin 1 (IL-1) family consisting of both pro- and anti-inflammatory cytokines has been shown to be pivotal in the mediation of innate immunity and contribute directly to a number of retinal degenerations, including Age-Related Macular Degeneration (AMD), diabetic retinopathy, retinitis pigmentosa, glaucoma, and retinopathy of prematurity (ROP). In this review, we will discuss the role of IL-1 family members and inflammasome signaling in retinal degenerative diseases, piecing together their contribution to retinal disease pathology, and identifying areas of research expansion required to further elucidate their function in the retina.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
40
|
Fahey E, Doyle SL. IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front Immunol 2019; 10:1426. [PMID: 31293586 PMCID: PMC6603210 DOI: 10.3389/fimmu.2019.01426] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
The IL-1 family of cytokines are well-known for their primary role in initiating inflammatory responses both in response to and acting as danger signals. It has long been established that IL-1 is capable of simultaneously regulating inflammation and angiogenesis, indeed one of IL-1's earliest names was haemopoeitn-1 due to its pro-angiogenic effects. Other IL-1 family cytokines are also known to have roles in mediating angiogenesis, either directly or indirectly via induction of proangiogenic factors such as VEGF. Of note, some of these family members appear to have directly opposing effects in different tissues and pathologies. Here we will review what is known about how the various IL-1 family members regulate vascular permeability and angiogenic function in a range of different tissues, and describe some of the mechanisms employed to achieve these effects.
Collapse
Affiliation(s)
- Erin Fahey
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Our Lady's Children's Hospital Crumlin, National Children's Research Centre, Dublin, Ireland
| |
Collapse
|
41
|
Campbell M, Doyle SL. Current perspectives on established and novel therapies for pathological neovascularization in retinal disease. Biochem Pharmacol 2019; 164:321-325. [PMID: 31039332 DOI: 10.1016/j.bcp.2019.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Neovascularization is a hallmark pathology of numerous retinal diseases from diabetic retinopathy (DR) to age-related related macular degeneration (AMD). Over the past 2 decades, the rise of anti-VEGF based medications for neovascular eye conditions has revolutionized the treatment paradigm for patients and preserved the vision of millions. With any form of therapy however, there remain pitfalls and areas for improved interventions. Here, we succinctly present some current views on treatment options for patients with retinal and choroidal neovascularization. We also highlight some of the most promising therapeutic strategies currently being developed and where these therapies may fit with the current clinical standard of care.
Collapse
Affiliation(s)
- Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Sarah L Doyle
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Dept. Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland; National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin 12, Ireland.
| |
Collapse
|
42
|
Ha EH, Choi JP, Kwon HS, Park HJ, Lah SJ, Moon KA, Lee SH, Kim I, Cho YS. Endothelial Sox17 promotes allergic airway inflammation. J Allergy Clin Immunol 2019; 144:561-573.e6. [PMID: 30928652 DOI: 10.1016/j.jaci.2019.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND IL-33, levels of which are known to be increased in patients with eosinophilic asthma and which is suggested as a therapeutic target for it, activates endothelial cells in which Sry-related high-mobility-group box (Sox) 17, an endothelium-specific transcription factor, was upregulated. OBJECTIVE We investigated the relationship between Sox17 and IL-33 and the possible role of Sox17 in the pathogenesis of asthma using a mouse model of airway inflammation. METHODS We used ovalbumin (OVA) to induce airway inflammation in endothelium-specific Sox17 null mutant mice and used IL-33 neutralizing antibody to evaluate the interplay between IL-33 and Sox17. We evaluated airway inflammation and measured levels of various cytokines, chemokines, and adhesion molecules. We also carried out loss- or gain-of-function experiments for Sox17 in human endothelial cells. RESULTS Levels of IL-33 and Sox17 were significantly increased in the lungs of OVA-challenged mice. Anti-IL-33 neutralizing antibody treatment attenuated not only OVA-induced airway inflammation but also Sox17 expression in pulmonary endothelial cells. Importantly, endothelium-specific deletion of Sox17 resulted in significant alleviation of various clinical features of asthma, including airway inflammation, immune cell infiltration, cytokine/chemokine production, and airway hyperresponsiveness. Sox17 deletion also resulted in decreased densities of Ly6chigh monocytes and inflammatory dendritic cells in the lungs. In IL-33-stimulated human endothelial cells, Sox17 showed positive correlation with CCL2 and intercellular adhesion molecule 1 levels. Lastly, Sox17 promoted monocyte adhesion to endothelial cells and upregulated the extracellular signal-regulated kinase-signal transducer and activator of transcription 3 pathway. CONCLUSION Sox17 was regulated by IL-33, and its genetic ablation in endothelial cells resulted in alleviation of asthma-related pathophysiologic features. Sox17 might be a potential target for asthma management.
Collapse
Affiliation(s)
- Eun Hee Ha
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeung Ju Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sang Joon Lah
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | | | - Seung-Hyo Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Injune Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
43
|
Bucher F, Lee J, Shin S, Kim MS, Oh YS, Ha S, Zhang H, Yea K. Interleukin-5 suppresses Vascular Endothelial Growth Factor-induced angiogenesis through STAT5 signaling. Cytokine 2018; 110:397-403. [DOI: 10.1016/j.cyto.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
|
44
|
Yerramothu P. New Therapies of Neovascular AMD-Beyond Anti-VEGFs. Vision (Basel) 2018; 2:vision2030031. [PMID: 31735894 PMCID: PMC6835305 DOI: 10.3390/vision2030031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is one of the leading causes of blindness among the aging population. The current treatment options for nAMD include intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF). However, standardized frequent administration of anti-VEGF injections only improves vision in approximately 30–40% of nAMD patients. Current therapies targeting nAMD pose a significant risk of retinal fibrosis and geographic atrophy (GA) development in nAMD patients. A need exists to develop new therapies to treat nAMD with effective and long-term anti-angiogenic effects. Recent research on nAMD has identified novel therapeutic targets and angiogenic signaling mechanisms involved in its pathogenesis. For example, tissue factor, human intravenous immune globulin, interferon-β signaling, cyclooxygenase-2 (COX-2) and cytochrome P450 monooxygenase lipid metabolites have been identified as key players in the development of angiogenesis in AMD disease models. Furthermore, novel therapies such as NACHT, LRR and PYD domains containing protein 3 (NLRP3) inflammasome inhibition, inhibitors of integrins and tissue factor are currently being tested at the level of clinical trials to treat nAMD. The aim of this review is to discuss the scope for alternative therapies proposed as anti-VEGFs for the treatment of nAMD.
Collapse
Affiliation(s)
- Praveen Yerramothu
- School of Optometry and Vision Science, University of New South Wales, Sydney 00098, Australia
| |
Collapse
|
45
|
Copland DA, Theodoropoulou S, Liu J, Dick AD. A Perspective of AMD Through the Eyes of Immunology. ACTA ACUST UNITED AC 2018; 59:AMD83-AMD92. [DOI: 10.1167/iovs.18-23893] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David A. Copland
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
| | - Sofia Theodoropoulou
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
| | - Jian Liu
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
- University College London–Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
46
|
Epps SJ, Boldison J, Stimpson ML, Khera TK, Lait PJP, Copland DA, Dick AD, Nicholson LB. Re-programming immunosurveillance in persistent non-infectious ocular inflammation. Prog Retin Eye Res 2018. [PMID: 29530739 PMCID: PMC6563519 DOI: 10.1016/j.preteyeres.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ocular function depends on a high level of anatomical integrity. This is threatened by inflammation, which alters the local tissue over short and long time-scales. Uveitis due to autoimmune disease, especially when it involves the retina, leads to persistent changes in how the eye interacts with the immune system. The normal pattern of immune surveillance, which for immune privileged tissues is limited, is re-programmed. Many cell types, that are not usually present in the eye, become detectable. There are changes in the tissue homeostasis and integrity. In both human disease and mouse models, in the most extreme cases, immunopathological findings consistent with development of ectopic lymphoid-like structures and disrupted angiogenesis accompany severely impaired eye function. Understanding how the ocular environment is shaped by persistent inflammation is crucial to developing novel approaches to treatment.
Collapse
Affiliation(s)
- Simon J Epps
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Madeleine L Stimpson
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Tarnjit K Khera
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK
| | - Philippa J P Lait
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK; UCL-Institute of Ophthalmology and National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, EC1V 2PD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
47
|
Han L, Zhang M, Liang X, Jia X, Jia J, Zhao M, Fan Y. Interleukin-33 promotes inflammation-induced lymphangiogenesis via ST2/TRAF6-mediated Akt/eNOS/NO signalling pathway. Sci Rep 2017; 7:10602. [PMID: 28878285 PMCID: PMC5587532 DOI: 10.1038/s41598-017-10894-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
The interplay between inflammation and lymphangiogenesis is mediated by various cytokines. However, most of these molecules and their associated mechanism are yet to be defined. Here, we explored the role of IL-33 in modulating inflammation-induced lymphangiogenesis (ILA) and its underlying mechanisms using an ILA mouse model and a lymphatic endothelial cell (LEC) line. Our results show that IL-33 promoted the proliferation, migration and tube formation of LECs and ILA in vivo. The pro-lymphangiogenic activity of IL-33 was abolished by ST2 blockage. In mechanisms, IL-33 induced the phosphorylation of Akt/eNOS to produce NO in LECs. The IL-33-induced Akt/eNOS activation was suppressed by the PI3K-specific-inhibitor wortmannin, and NO-production was inhibited by both wortmannin and the NO synthase-inhibitor NMA. Knock-down of ST2 or TRAF6 suppressed Akt/eNOS phosphorylation and NO production. The reduction of NO treated with wortmannin or NMA abolished the promoting effects of IL-33 on the chemotactic motility and tube formation of HDLECs. In vivo, IL-33-induced ILA was also impaired in eNOS−/− mice. In conclusion, our study is the first to show that IL-33 promotes inflammation-induced lymphangiogenesis via a ST2/TRAF6-mediated Akt/eNOS/NO signalling pathway. This findings may provide us more opportunities to treat inflammation and lymphangiogenesis associated diseases.
Collapse
Affiliation(s)
- Longhui Han
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China. .,Tianjin Medical University Eye Hospital/Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China.
| | - Minglian Zhang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China.
| | - Xu Liang
- Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xin Jia
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Jinchen Jia
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Miying Zhao
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Yiming Fan
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| |
Collapse
|
48
|
Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous 2017; 3:31. [PMID: 28835854 PMCID: PMC5563895 DOI: 10.1186/s40942-017-0084-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/01/2017] [Indexed: 11/10/2022] Open
Abstract
Retinal and choroidal neovascularization are a major cause of significant visual impairment, worldwide. Understanding the various factors involved in the accompanying physiopathology is vital for development of novel treatments, and most important, for preserving patient vision. The intraocular use of anti-vascular endothelial growth factor therapeutics has improved management of the retinal and choroidal neovascularization but some patients do not respond, suggesting other vascular mediators may also contribute to ocular angiogenesis. Several recent studies examined possible new targets for future anti-angiogenic therapies. Potential targets of retinal and choroidal neovascularization therapy include members of the platelet-derived growth factor family, vascular endothelial growth factor sub-family, epidermal growth factor family, fibroblast growth factor family, transforming growth factor-β superfamily (TGF-β1, activins, follistatin and bone morphogenetic proteins), angiopoietin-like family, galectins family, integrin superfamily, as well as pigment epithelium derived factor, hepatocyte growth factor, angiopoietins, endothelins, hypoxia-inducible factors, insulin-like growth factors, cytokines, matrix metalloproteinases and their inhibitors and glycosylation proteins. This review highlights current antiangiogenic therapies under development, and discusses future retinal and choroidal pro- and anti-angiogenic targets as wells as the importance of developing of new drugs.
Collapse
|
49
|
Abstract
Major advances in mononuclear phagocyte biology have been made but key questions pertinent to their roles in health and disease remain, including in the visual system. One problem concerns how dendritic cells can trigger immune responses from certain tightly regulated immune- privileged sites of the eye. Another, albeit separate, problem involves whether there are functional specializations for microglia versus monocytes in retinal neurodegeneration. In this Review, we examine novel insights in eye immune privilege and, separately, we discuss recent inroads concerning retinal degeneration. Both themes have been extensively studied in the visual system and show parallels with recent findings concerning mononuclear phagocytes in the central nervous system and in the periphery.
Collapse
|