1
|
Yang L, Liu Y, Guo R, Du J, Liu L, Liu X, Zhao J, Shi F, Zhang X, Su J. CDK4 gene copy number increase and concurrent genetic changes in acral melanoma of a Chinese cohort. Pathology 2025; 57:34-39. [PMID: 39472269 DOI: 10.1016/j.pathol.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 01/11/2025]
Abstract
Acral melanoma (AM) is the most common subtype of melanoma in the Asian population. Abnormalities in the p16-cyclin D1-CDK4 signalling pathway play a crucial role in the development and progression of AM. However, the CDK4 copy number variations (CNVs) in AM are under-reported. In this study, we investigated CDK4 gene copy number and concurrent molecular changes in a Chinese cohort with AM, to explore CDK4 CNVs and their significance in AM. We examined CDK4 CNVs with fluorescence in situ hybridisation (FISH) in 31 patients with AM. Six patients with CDK4 high-level copy number increase were examined by next-generation sequencing to detect concurrent molecular changes. Using FISH, 12 (12/31, 38.7%) cases showed CDK4 copy number increase, with six (6/31, 19.4%) low-level copy number increase and six (6/31, 19.4%) high-level copy number increase. Five of six CDK4 low-level copy number increase cases were accompanied by polysomy of chromosome 12, while one case was not. Two of six CDK4 high-level copy number increase cases were accompanied by polysomy of chromosome 12, while four cases were not. CDK4 copy number increase was significantly correlated with younger patient age. In six CDK4 high-level copy number increase cases, one case was found to be accompanied by NRAS mutation, one case was accompanied by HER2 mutation, one case was accompanied by BCL2L11 mutation and one case was accompanied by BRAF, HER2 and BCL2L11 mutations. Our study confirmed the presence of CDK4 copy number increase in AM cases. Detecting CDK4 copy number increase by FISH can be reliable in the diagnosis of AM. Some CDK4 copy number increases are the results of polysomy of chromosome 12. CDK4 high-level copy number increase coexists with other pathogenic mutations in AM. CDK4 appears to be a promising target for AM treatment and is expected to be combined with other targeted therapies.
Collapse
Affiliation(s)
- Leyuan Yang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Yan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Ruiping Guo
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Juan Du
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Lingchao Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Xiaolong Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Jianfang Zhao
- Department of Pathology, Yan'an Branch of Peking University Third Hospital, Yan'an Traditional Chinese Medicine Hospital, Yan'an, China
| | - Fang Shi
- Department of Pathology, Yan'an Branch of Peking University Third Hospital, Yan'an Traditional Chinese Medicine Hospital, Yan'an, China
| | - Xin Zhang
- Department of Pathology, Yan'an Branch of Peking University Third Hospital, Yan'an Traditional Chinese Medicine Hospital, Yan'an, China
| | - Jing Su
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Kim SH, Tsao H. Acral Melanoma: A Review of Its Pathogenesis, Progression, and Management. Biomolecules 2025; 15:120. [PMID: 39858514 PMCID: PMC11763010 DOI: 10.3390/biom15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Acral melanoma is a distinct subtype of cutaneous malignant melanoma that uniquely occurs on ultraviolet (UV)-shielded, glabrous skin of the palms, soles, and nail beds. While acral melanoma only accounts for 2-3% of all melanomas, it represents the most common subtype among darker-skinned, non-Caucasian individuals. Unlike other cutaneous melanomas, acral melanoma does not arise from UV radiation exposure and is accordingly associated with a relatively low tumor mutational burden. Recent advances in genomic, transcriptomic, and epigenomic sequencing have revealed genetic alterations unique to acral melanoma, including novel driver genes, high copy number variations, and complex chromosomal rearrangements. This review synthesizes the current knowledge on the clinical features, epidemiology, and treatment approaches for acral melanoma, with a focus on the genetic pathogenesis that gives rise to its unique tumor landscape. These findings highlight a need to deepen our genetic and molecular understanding to better target this challenging subtype of melanoma.
Collapse
Affiliation(s)
| | - Hensin Tsao
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Lumiala T, Koljonen V, Ojala K. Clinicopathologic features and surgical management in vulvovaginal melanoma - A retrospective single-center study. J Plast Reconstr Aesthet Surg 2025; 100:8-15. [PMID: 39541709 DOI: 10.1016/j.bjps.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Vulvovaginal melanoma is a rare malignancy with a poor prognosis. This study aimed to review cases of vulvovaginal melanoma treated at Helsinki University Hospital. Objective was to evaluate the clinicopathologic features, treatment, and factors affecting outcome. METHODS A single-center retrospective review was conducted on patients treated between 2001 and 2021. Data were collected from medical records. Clinicopathologic features, treatment, survival, and prognostic factors were analyzed. RESULTS A total of 21 patients were included in the analysis. Localization was vulvar in 86% (n = 18) and vaginal in 14% (n = 3). The median age at diagnosis was 80 years. Initial treatment included surgery in 18 patients (86%), with wide local excision in 19%, radical excision in 62%, and pelvic exenteration in 4.8%. Negative margins were achieved in 83% (n = 15). Eleven (52%) patients underwent inguinal treatment: sentinel lymph node biopsy in 33%, direct lymphadenectomy in 14%, and both in 4.8%. Nine patients experienced melanoma recurrence. Recurrences were locoregional (n = 1), distant (n = 4), and both locoregional and distant (n = 4). Median disease-free survival was 18.9M and median overall survival (OS) was 36.5M. The 5-year relative OS was 20%. Melanoma was the cause of death in seven patients (33%). Vaginal localization tended to worsen prognosis. Nodal status was the only melanoma characteristic significantly associated with survival. Surgical radicality did not affect survival. CONCLUSIONS Vulvovaginal melanoma is associated with extremely poor survival rates and high recurrence rates, primarily involving distant metastasis. In local control, wide local excision seems to be a viable alternative to more radical surgery. Nodal status is a key prognostic factor emphasizing the importance of further research into the applicability of sentinel lymph node biopsy for vulvovaginal melanoma.
Collapse
Affiliation(s)
- Telma Lumiala
- Department of Plastic Surgery, Helsinki University, Helsinki University Hospital, Helsinki, Finland.
| | - Virve Koljonen
- Department of Plastic Surgery, Helsinki University, Helsinki University Hospital, Helsinki, Finland
| | - Kaisu Ojala
- Department of Plastic Surgery, Helsinki University, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Posada V, Toland AE. Role of albinism and pigment-related genes in amelanotic melanoma formation. Br J Dermatol 2024; 192:7-8. [PMID: 39245908 DOI: 10.1093/bjd/ljae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 09/10/2024]
Affiliation(s)
- Valentina Posada
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Smith EA, Belote RL, Cruz NM, Moustafa TE, Becker CA, Jiang A, Alizada S, Prokofyeva A, Chan TY, Seasor TA, Balatico M, Cortes-Sanchez E, Lum DH, Hyngstrom JR, Zeng H, Deacon DC, Grossmann AH, White RM, Zangle TA, Judson-Torres RL. Receptor tyrosine kinase inhibition leads to regression of acral melanoma by targeting the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:317. [PMID: 39627834 PMCID: PMC11613472 DOI: 10.1186/s13046-024-03234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. METHODS An independent analysis of published sequencing data was performed to evaluate the frequency of receptor tyrosine kinase (RTK) ligands and adapter protein gene variants and expression. To target these genetic variants, a zebrafish acral melanoma model and preclinical patient-derived xenograft (PDX) mouse models were treated with a panel of RTK inhibitors. Residual PDX tumors were evaluated for changes in proliferation, vasculature, necrosis, and ferroptosis by histology and immunohistochemistry. RESULTS RTK ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. Dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration in zebrafish, and the potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM PDX tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. CONCLUSION Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Rachel L Belote
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarek E Moustafa
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Carly A Becker
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Amanda Jiang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Shukran Alizada
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Tsz Yin Chan
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tori A Seasor
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Michael Balatico
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Emilio Cortes-Sanchez
- Immuno Oncology Network Core, The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John R Hyngstrom
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hanlin Zeng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekker C Deacon
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Nuffield Department of Medicine, Ludwig Cancer Research, University of Oxford, Oxford, UK
| | - Thomas A Zangle
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Guo QH, Jian LY, Hu Y, Wang S. A comprehensive and systematic review on Curcumin as a promising candidate for the inhibition of melanoma growth: From pre-clinical evidence to molecular mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156073. [PMID: 39515103 DOI: 10.1016/j.phymed.2024.156073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Melanoma, a highly malignant skin tumor, can develop systemic metastases during the early stage. Several studies of melanoma animal models indicate that curcumin, a natural plant extract, inhibits melanoma growth through various mechanisms. To evaluate the relationships among different experimental conditions, curcumin itself, its derivatives, and special formulations, it is necessary to conduct a systematic review and meta-analysis. PURPOSE This meta-analysis aims to evaluate the potential of Curcumin as a drug for inhibiting the growth of melanoma and to determine the optimal dosage range and treatment duration for Curcumin administration. METHODS A systematic search of studies published from inception to December 2023 was conducted across six databases (PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang Data, and VIP). Methodological quality was assessed using SYRCLE's RoB tool. Study heterogeneity was assessed using Cochran's Q test and I2 statistics. Publication bias risk was evaluated using a funnel plot. All analyses were performed using R (version 4.3.3). Additionally, three-dimensional effect analysis and machine learning techniques were utilized to determine the optimal dosage range and treatment duration for Curcumin administration. RESULTS Forty studies involving 989 animals were included. The results demonstrated that, relative to the control group, administration of Curcumin resulted in a significant reduction in tumor volume. [SMD=-3.44; 95 % CI (-4.25, -2.63); P<0.01; I2 = 79 %] and tumor weight [SMD=-1.93; 95 % CI (-2.41, -1.45); P<0.01; I2 = 75 %]. Additionally, Curcumin demonstrated a significant capacity to decrease the number of lung tumor nodules and microangiogenesis, as well as to extend survival time, in animal models. The results from three-dimensional effect analysis and machine learning emphasize that the optimal dosage range for Curcumin is 25-50 mg/kg, with an intervention duration of 10-20 days. CONCLUSION Curcumin can inhibit the growth of melanoma, and the dose-response relationship is not linear. However, further large-scale animal and clinical studies are required to confirm these conclusions.
Collapse
Affiliation(s)
- Qi-Hao Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Ling-Yan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yihan Hu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| | - Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
7
|
Fernandes M, Barcelos D, Carapeto FCL, Cardili L, Comodo AN, Mazloum SF, Marins MM, Mendes AR, Pesquero JB, Landman G. Evaluation of Heterogeneity in the Coding Region of BRAF, MAP2K1, and MAP2K2 Genes in Primary and Metastatic Melanomas. J Cutan Pathol 2024. [PMID: 39588764 DOI: 10.1111/cup.14738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION The incidence of melanoma has been increasing in recent decades. BRAF mutations appear in 50%-70% of melanomas. The BRAF-targeted therapy increased the disease-free survival of patients with metastatic melanoma, but this response may be short, due to several resistance mechanisms, such as the presence of other subclones with mutations. Evaluation of mutations and heterogeneity in the coding region of the BRAF, MAP2K1, and MAP2K2 genes in primary and metastatic melanomas. PATIENTS AND METHODS Twenty-seven samples of primary and metastatic superficial spreading melanoma (SSM) and acral lentiginous melanoma (ALM) were analyzed for BRAF, MAP2K1, and MAP2K2 mutations using the next-generation sequencing technique. RESULTS In ALM, the mutation rate found was 50% in the BRAF and MAP2K1 genes and 28.6% in MAP2K2. In the SSM, BRAF was mutated in 76.9%, MAP2K1 in 30.8%, and MAP2K2 in 23.2% of the cases. All samples were formed by distinct tumor subclones in the same lesion. Intertumoral heterogeneity was present between primary and metastatic lesions of ALM in BRAF, MAP2K1, and MAP2K2; the cases of SSM were heterogeneous for BRAF and MAP2K1. CONCLUSION We sought to evaluate the mutations in the BRAF, MAP2K1, and MAP2K2 genes, revealing a heterogeneous mutation profile in samples of ALM and SSM.
Collapse
Affiliation(s)
- Mariana Fernandes
- Departament of Pathology, Federal University of São Paulo, São Paulo, Brazil
| | - Denise Barcelos
- Departament of Pathology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Leonardo Cardili
- Departament of Pathology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Maryana Mara Marins
- Departament of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | - João Bosco Pesquero
- Departament of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Gilles Landman
- Departament of Pathology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Arast Y, Esfandiari H, Kamranfar F, Mousavi Z, Ameri Shah Reza M, Pourahmad J. Evaluating the concentration dependent dual effects of β-Glucan on cancerous skin cells and mitochondria isolated from melanoma-induced animal model. Cutan Ocul Toxicol 2024:1-9. [PMID: 39392009 DOI: 10.1080/15569527.2024.2410355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Melanoma is still one of the deadliest cancers whose prevalence has increased in recent decades. Today, many polysaccharides and their bioactive compounds have been of special importance in modern biotechnology. They have various biological and therapeutic properties. they can regulate and strengthen the immune system, lower blood pressure and cholesterol, and reduce bacterial and viral infections. According to studies, these compounds also have antitumor properties. we investigated the cytotoxic effects of β-Glucan obtained from solid-state fermentation (SSF) of edible medicinal mushroom Lentinus edodes on cancerous skin cells. MATERIALS AND METHODS The mitochondria were isolated from melanoma cells via differential centrifugation and treated with various concentrations (30, 45, 60, 90, 120, and 240 µg/ml) of β-Glucan extract. Then, they were subjected to MTT, ROS, MMP decline, mitochondrial swelling, cytochrome c release, and flow cytometry assays. RESULTS The results of the MTT assay showed that IC50 of β-Glucan extract was 60 μg/ml, and it induced a selectively significant (P < 0.05) concentration-dependent decrease in the SDH activity in cancerous skin mitochondria. At higher concentrations, no such effect was observed. The ROS results also showed that 30, 45, and 60 µg/ml concentrations of β-Glucan extract significantly increased ROS. However, no such effect was observed at higher concentrations. MMP decline and the release of cytochrome c in cancer groups mitochondria and swelling were significantly increased at 30, 45, and 60 µg/ml compared to the control group. At higher concentrations, no such effect was observed. β-Glucan extract at 60 µg/ml concentration increased apoptosis on melanoma cells, while it had no effect on control non-tumour cells. DISCUSSION AND CONCLUSION Based on these results, β-Glucan extract at 30, 45, and 60 µg/ml showed a cytotoxic effect, while no such effect was observed at higher concentrations. Overall, it seems that β-Glucan has antioxidant and free radical scavenging effects on cancer cells at higher concentrations.
Collapse
Affiliation(s)
- Yalda Arast
- Research center of Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Hanife Esfandiari
- Department of Pharmacology and Toxicology, School of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Farzane Kamranfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Jawdekar R, Mishra V, Hatgoankar K, Tiwade YR, Bankar NJ. Precision medicine in cancer treatment: Revolutionizing care through proteomics, genomics, and personalized therapies. J Cancer Res Ther 2024; 20:1687-1693. [DOI: 10.4103/jcrt.jcrt_108_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/20/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACT
Recent developments in biotechnology have allowed us to identify unique and complicated biological traits associated with cancer. Genomic profiling through next-generation sequencing (NGS) has revolutionized cancer therapy by evaluating hundreds of genes and biomarkers in a single assay. Proteomics offers blood-based biomarkers for cancer detection, categorization, and therapy monitoring. Immune oncology and chimeric antigen receptor (CAR-T cell) therapy use the immune system to combat cancer. Personalized cancer treatment is on the rise. Although precision medicine holds great promise, its widespread application faces obstacles such as lack of agreement on nomenclature, the difficulty of classifying patients into distinct groups, the difficulties of multimorbidity, magnitude, and the need for prompt intervention. This review studies advances in the era of precision medicine for cancer treatment; the application of genomic profiling techniques, NGS, proteomics, and targeted therapy; and the challenge in the application of precision medicine and the beneficial future it holds in cancer treatment.
Collapse
Affiliation(s)
- Riddhi Jawdekar
- Department of Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, Maharashtra, India
| | - Vaishnavi Mishra
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Kajal Hatgoankar
- Department of Pathology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, Maharashtra, India
| | - Yugeshwari R. Tiwade
- Department of Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Nandkishor J. Bankar
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
10
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
11
|
Basurto-Lozada P, Vázquez-Cruz ME, Molina-Aguilar C, Jiang A, Deacon DC, Cerrato-Izaguirre D, Simonin-Wilmer I, Arriaga-González FG, Contreras-Ramírez KL, Dawson ET, Wong-Ramirez JRC, Ramos-Galguera JI, Álvarez-Cano A, García-Ortega DY, García-Salinas OI, Hidalgo-Miranda A, Cisneros-Villanueva M, Martínez-Said H, Arends MJ, Ferreira I, Tullett M, Olvera-León R, van der Weyden L, del Castillo Velasco Herrera M, Roldán-Marín R, Vidaurri de la Cruz H, Tavares-de-la-Paz LA, Hinojosa-Ugarte D, Belote RL, Bishop DT, Díaz-Gay M, Alexandrov LB, Sánchez-Pérez Y, In GK, White RM, Possik PA, Judson-Torres RL, Adams DJ, Robles-Espinoza CD. Ancestry and somatic profile predict acral melanoma origin and prognosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.21.24313911. [PMID: 39399030 PMCID: PMC11469390 DOI: 10.1101/2024.09.21.24313911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Acral melanoma, which is not ultraviolet (UV)-associated, is the most common type of melanoma in several low- and middle-income countries including Mexico. Latin American samples are significantly underrepresented in global cancer genomics studies, which directly affects patients in these regions as it is known that cancer risk and incidence may be influenced by ancestry and environmental exposures. To address this, here we characterise the genome and transcriptome of 128 acral melanoma tumours from 96 Mexican patients, a population notable because of its genetic admixture. Compared with other studies of melanoma, we found fewer frequent mutations in classical driver genes such as BRAF, NRAS or NF1. While most patients had predominantly Amerindian genetic ancestry, those with higher European ancestry had increased frequency of BRAF mutations and a lower number of structural variants. These BRAF-mutated tumours have a transcriptional profile similar to cutaneous non-volar melanocytes, suggesting that acral melanomas in these patients may arise from a distinct cell of origin compared to other tumours arising in these locations. KIT mutations were found in a subset of these tumours, and transcriptional profiling defined three expression clusters; these characteristics were associated with overall survival. We highlight novel low-frequency drivers, such as SPHKAP, which correlate with a distinct genomic profile and clinical characteristics. Our study enhances knowledge of this understudied disease and underscores the importance of including samples from diverse ancestries in cancer genomics studies.
Collapse
Affiliation(s)
- Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Martha Estefania Vázquez-Cruz
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Christian Molina-Aguilar
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Amanda Jiang
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Dekker C. Deacon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Dennis Cerrato-Izaguirre
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Irving Simonin-Wilmer
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Fernanda G. Arriaga-González
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Kenya L. Contreras-Ramírez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | | | - J. Rene C. Wong-Ramirez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johana Itzel Ramos-Galguera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Alethia Álvarez-Cano
- Surgical Oncology, Christus Muguerza Alta Especialidad, Monterrey, Nuevo Leon, Mexico
| | - Dorian Y. García-Ortega
- Surgical Oncology, Skin, Soft Tissue & Bone Tumors Department, National Cancer Institute, Mexico City, Mexico
| | - Omar Isaac García-Salinas
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Héctor Martínez-Said
- Surgical Oncology, Skin, Soft Tissue & Bone Tumors Department, National Cancer Institute, Mexico City, Mexico
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ingrid Ferreira
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mark Tullett
- Department of histopathology, University Hospitals Sussex, St Richard hospital, Spitalfield lane, Chichester
| | - Rebeca Olvera-León
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | | | - Rodrigo Roldán-Marín
- Dermato-Oncology Clinic, Research Division, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Helena Vidaurri de la Cruz
- Pediatric Dermatology Service, General Hospital of Mexico Dr. Eduardo Liceaga, Ministry of Health. Mexico City, Mexico
| | | | | | - Rachel L. Belote
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, United States
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Gino K. In
- University of Southern California, Keck School of Medicine, Norris Comprehensive Cancer Center, Division of Oncology, Los Angeles, CA, USA
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Patrícia A. Possik
- Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - David J. Adams
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
12
|
Deacon DC, Stubben C, Marcacci E, Stone CJ, Birdsall M, Florell SR, Boucher K, Grossman D, Judson-Torres RL. Classification of Cutaneous Melanoma and Melanocytic Nevi with MicroRNA Ratios Is Preserved in the Acral Melanoma Subtype. J Invest Dermatol 2024:S0022-202X(24)02063-3. [PMID: 39182561 DOI: 10.1016/j.jid.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Dekker C Deacon
- Department of Dermatology, School of Medicine, University of Utah, Salt Lake City, Utah, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
| | - Chris Stubben
- Cancer Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Eleonora Marcacci
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Caroline J Stone
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Michael Birdsall
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Scott R Florell
- Department of Dermatology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Ken Boucher
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Douglas Grossman
- Department of Dermatology, School of Medicine, University of Utah, Salt Lake City, Utah, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Robert L Judson-Torres
- Department of Dermatology, School of Medicine, University of Utah, Salt Lake City, Utah, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
13
|
Colombino M, Casula M, Paliogiannis P, Manca A, Sini MC, Pisano M, Santeufemia DA, Cossu A, Palmieri G. Heterogeneous pathogenesis of melanoma: BRAF mutations and beyond. Crit Rev Oncol Hematol 2024; 201:104435. [PMID: 38977143 DOI: 10.1016/j.critrevonc.2024.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024] Open
Abstract
Melanoma pathogenesis, conventionally perceived as a linear accumulation of molecular changes, discloses substantial heterogeneity driven by non-linear biological processes, including the direct transformation of melanocyte stem cells. This heterogeneity manifests in diverse biological phenotypes and developmental states, influencing variable responses to treatments. Unveiling the aberrant mechanisms steering melanoma initiation, progression, and metastasis is imperative. Beyond mutations in oncogenic and tumor suppressor genes, the involvement of distinct molecular pathways assumes a pivotal role in melanoma pathogenesis. Ultraviolet (UV) radiations, a principal factor in melanoma etiology, categorizes melanomas based on cumulative sun damage (CSD). The genomic landscape of lesions correlates with UV exposure, impacting mutational load and spectrum of mutations. The World Health Organization's 2018 classification underscores the interplay between sun exposure and genomic characteristics, distinguishing melanomas associated with CSD from those unrelated to CSD. The classification elucidates molecular features such as tumor mutational burden and copy number alterations associated with different melanoma subtypes. The significance of the mutated BRAF gene and its pathway, notably BRAFV600 variants, in melanoma is paramount. BRAF mutations, prevalent across diverse cancer types, present therapeutic avenues, with clinical trials validating the efficacy of targeted therapies and immunotherapy. Additional driver mutations in oncogenes further characterize specific melanoma pathways, impacting tumor behavior. While histopathological examination remains pivotal, challenges persist in molecularly classifying melanocytic tumors. In this review, we went through all molecular characterization that aid in discriminating common and ambiguous lesions. Integration of highly sensitive molecular diagnostic tests into the diagnostic workflow becomes indispensable, particularly in instances where histology alone fails to achieve a conclusive diagnosis. A diagnostic algorithm based on different molecular features inferred by the various studies is here proposed.
Collapse
Affiliation(s)
- Maria Colombino
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy.
| | - Milena Casula
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | | | - Antonella Manca
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Marina Pisano
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | | | - Antonio Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy; Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari, Sassari, Italy
| |
Collapse
|
14
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
15
|
Gouveia E, de Sousa RT, Aguiar SI, Gírio A, Costa I, Dionísio MR, Moital I. Malignant melanoma in Portuguese adult population: a scoping review of the real-world evidence. Clin Transl Oncol 2024:10.1007/s12094-024-03579-1. [PMID: 39012454 DOI: 10.1007/s12094-024-03579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE Malignant melanoma is an aggressive cancer, and there is a notable dearth on epidemiology, clinical and treatment characterization within the Portuguese population. We performed a scoping review to identify real-world evidence studies focused in Portuguese adult patients with malignant melanoma. METHODS A comprehensive search was conducted. After screening, we described the studies by design, sample size, geographics, setting, population, and outcomes reported. RESULTS The search yielded 54 studies, mainly retrospective (79.6%). The population assessed was heterogeneous varying from patients with melanoma in general to specific types of melanoma, or even more restricted to patients with specific conditions. The evidence found was mostly concerning clinical outcomes (n=46), patients' clinical profile (n=44) and demographic characterization (n=48). Treatment information was described in 30 studies whereas only 18 reported epidemiological parameters. Studies were mainly performed by the major oncology centers in Lisbon, Oporto and Coimbra, and only two evaluated the entire Portuguese population. To allow comparability, only studies including patients with cutaneous malignant melanoma were considered (13 of the 54) for outcomes evaluation analysis. Median OS varied from 18 to 36 months, assessed after melanoma treatment. Incidence was the most reported epidemiological parameter, confirming the increasing number of cutaneous malignant melanoma patients over the years. Only one study reported prevalence and four reported mortality rates. CONCLUSIONS The evidence found confirms the lack of information about malignant melanoma in Portugal, highlighting the need of real-world studies to assess melanoma prevalence and incidence rates, current treatment approaches, and clinical characterization of these patients.
Collapse
Affiliation(s)
- Emanuel Gouveia
- Department of Medical Oncology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Rita Teixeira de Sousa
- Department of Medical Oncology, Centro Hospitalar Universitário Lisboa Norte-Hospital de Santa Maria, Lisbon, Portugal
| | - Sandra I Aguiar
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal
| | - Ana Gírio
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal.
| | - Inês Costa
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal
| | - Maria Rita Dionísio
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal
| | - Inês Moital
- Novartis Innovative Medicines International, Produtos Farmacêuticos S.A., Porto Salvo, Portugal
| |
Collapse
|
16
|
Ledesma DA, Marques-Piubelli ML, Li-Ning-Tapia E, Hudgens C, Gu J, Lazcano R, Casavilca-Zambrano S, Castillo M, Davies MA, Hwu WJ, Aung PP, Giubellino A, Curry JL, Torres-Cabala C. Apoptosis Pathway-Associated Proteins Are Frequently Expressed in Melanoma: A Study of 32 Cases With Focus on Acral Lentiginous Melanoma. Am J Dermatopathol 2024; 46:410-415. [PMID: 38718197 PMCID: PMC11178464 DOI: 10.1097/dad.0000000000002635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
ABSTRACT Acral lentiginous melanoma (ALM) is an aggressive type of cutaneous melanoma (CM) that arises on palms, soles, and nail units. ALM is rare in White population, but it is relatively more frequent in dark-skinned populations. There is an unmet need to develop new personalized and more effective treatments strategies for ALM. Increased expression of antiapoptotic proteins (ie, BCL2, MCL1) has been shown to contribute to tumorigenesis and therapeutic resistance in multiple tumor types and has been observed in a subset of ALM and mucosal melanoma cell lines in vivo and in vitro. However, little is known about their expression and clinical significance in patients with ALM. Thus, we assessed protein expression of BCL2, MCL1, BIM, and BRAF V600E by immunohistochemistry in 32 melanoma samples from White and Hispanic populations, including ALM and non-ALM (NALM). BCL2, MCL1, and BIM were expressed in both ALM and NALM tumors, and no significant differences in expression of any of these proteins were detected between the groups, in our relatively small cohort. There were no significant associations between protein expression and BRAF V600E status, overall survival, or ethnicity. In summary, ALM and NALM demonstrate frequent expressions of apoptosis-related proteins BCL2, MCL1, and BIM. Our findings suggest that patients with melanoma, including ALM, may be potential candidates for apoptosis-directed therapies.
Collapse
Affiliation(s)
- Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mario L. Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elsa Li-Ning-Tapia
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun Gu
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sandro Casavilca-Zambrano
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, and Facultad de Ciencias de la Salud, Universidad de Huánuco, Huánuco, Peru (SCZ)
| | - Miluska Castillo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, and Facultad de Ciencias de la Salud, Universidad de Huánuco, Huánuco, Peru (SCZ)
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wen-Jen Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P. Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jonathan L. Curry
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos Torres-Cabala
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Naimy S, Sølberg JBK, Kuczek DE, Løvendorf MB, Bzorek M, Litman T, Mund A, Rahbek Gjerdrum LM, Clark RA, Mann M, Dyring-Andersen B. Comparative Quantitative Proteomic Analysis of Melanoma Subtypes, Nevus-Associated Melanoma, and Corresponding Nevi. J Invest Dermatol 2024; 144:1608-1621.e4. [PMID: 38185415 DOI: 10.1016/j.jid.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
A substantial part of cutaneous malignant melanomas develops from benign nevi. However, the precise molecular events driving the transformation from benign to malignant melanoma are not well-understood. We used laser microdissection and mass spectrometry to analyze the proteomes of melanoma subtypes, including superficial spreading melanomas (n = 17), nodular melanomas (n = 17), and acral melanomas (n = 15). Furthermore, we compared the proteomes of nevi cells with those of melanoma cells within the same specimens (nevus-associated melanoma (n = 14)). In total, we quantified 7935 proteins. Despite the genomic and clinical differences of the melanoma subtypes, our analysis revealed relatively similar proteomes, except for the upregulation of proteins involved in immune activation in nodular melanomas versus acral melanomas. Examining nevus-associated melanoma versus nevi, we found 1725 differentially expressed proteins (false discovery rate < 0.05). Among these proteins were 140 that overlapped with cancer hallmarks, tumor suppressors, and regulators of metabolism and cell cycle. Pathway analysis indicated aberrant activation of the phosphoinositide 3-kinase-protein kinase B-mTOR pathways and the Hippo-YAP pathway. Using a classifier, we identified six proteins capable of distinguishing melanoma from nevi samples. Our study represents a comprehensive comparative analysis of the proteome in melanoma subtypes and associated nevi, offering insights into the biological behavior of these distinct entities.
Collapse
Affiliation(s)
- Soraya Naimy
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Julie B K Sølberg
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Dorota E Kuczek
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Bengtson Løvendorf
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark; Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mund
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Beatrice Dyring-Andersen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen University Hospitals, Copenhagen, Denmark; Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Bauso LV, La Fauci V, Munaò S, Bonfiglio D, Armeli A, Maimone N, Longo C, Calabrese G. Biological Activity of Natural and Synthetic Peptides as Anticancer Agents. Int J Mol Sci 2024; 25:7264. [PMID: 39000371 PMCID: PMC11242495 DOI: 10.3390/ijms25137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the leading causes of morbidity and death worldwide, making it a serious global health concern. Chemotherapy, radiotherapy, and surgical treatment are the most used conventional therapeutic approaches, although they show several side effects that limit their effectiveness. For these reasons, the discovery of new effective alternative therapies still represents an enormous challenge for the treatment of tumour diseases. Recently, anticancer peptides (ACPs) have gained attention for cancer diagnosis and treatment. ACPs are small bioactive molecules which selectively induce cancer cell death through a variety of mechanisms such as apoptosis, membrane disruption, DNA damage, immunomodulation, as well as inhibition of angiogenesis, cell survival, and proliferation pathways. ACPs can also be employed for the targeted delivery of drugs into cancer cells. With over 1000 clinical trials using ACPs, their potential for application in cancer therapy seems promising. Peptides can also be utilized in conjunction with imaging agents and molecular imaging methods, such as MRI, PET, CT, and NIR, improving the detection and the classification of cancer, and monitoring the treatment response. In this review we will provide an overview of the biological activity of some natural and synthetic peptides for the treatment of the most common and malignant tumours affecting people around the world.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Valeria La Fauci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Serena Munaò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Desirèe Bonfiglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Alessandra Armeli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Noemi Maimone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Clelia Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
19
|
Smith EA, Belote RL, Cruz NM, Moustafa TE, Becker CA, Jiang A, Alizada S, Chan TY, Seasor TA, Balatico M, Cortes-Sanchez E, Lum DH, Hyngstrom JR, Zeng H, Deacon DC, Grossmann AH, White RM, Zangle TA, Judson-Torres RL. Receptor tyrosine kinase inhibition leads to regression of acral melanoma by targeting the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599116. [PMID: 38948879 PMCID: PMC11212935 DOI: 10.1101/2024.06.15.599116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. Independent analysis of published genomic and transcriptomic sequencing identified that receptor tyrosine kinase (RTK) ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. To target these unique genetic changes, a zebrafish acral melanoma model was exposed to a panel of narrow and broad spectrum multi-RTK inhibitors, revealing that dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration. The potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM patient-derived xenograft (PDX) tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Rachel L Belote
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarek E Moustafa
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Carly A Becker
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Amanda Jiang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Shukran Alizada
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tsz Yin Chan
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tori A Seasor
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Michael Balatico
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Emilio Cortes-Sanchez
- Immuno Oncology Network Core, The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John R Hyngstrom
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hanlin Zeng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekker C Deacon
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford UK
| | - Thomas A Zangle
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Sousa LRD, Santos MLDC, Sampaio LS, Faustino CG, Guigueno MLL, Freitas KM, Lopes MTP, Mota GCF, dos Santos VMR, Seibert JB, Amparo TR, Vieira PMDA, dos Santos ODH, de Souza GHB. Nanoemulsified Essential Oil of Melaleuca leucadendron Leaves for Topical Application: In Vitro Photoprotective, Antioxidant and Anti-Melanoma Activities. Pharmaceuticals (Basel) 2024; 17:721. [PMID: 38931388 PMCID: PMC11206566 DOI: 10.3390/ph17060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, primarily caused by solar ultraviolet (UV) radiation, can be prevented by the use of sunscreens. However, the use of synthetic sunscreens raises environmental concerns. Natural compounds with antioxidant photoprotective properties and cytotoxic effects against cancer cells can be promising for the prevention and treatment of melanoma with less environmental effect. This study focuses on Melaleuca leucadendron essential oil (EO) for photoprotection and antitumor applications. EO was hydrodistilled from M. leucadendron leaves with a 0.59% yield. Gas chromatography-mass spectrometry detected monoterpenes and sesquiterpenes. Nanoemulsions were prepared with (NE-EO) and without EO (NE-B) using the phase inversion method, showing good stability, spherical or oval morphology, and a pseudoplastic profile. Photoprotective activity assessed spectrophotometrically showed that the NE-EO was more effective than NE-B and free EO. Antioxidant activity evaluated by DPPH and ABTS methods indicated that pure and nanoemulsified EO mainly inhibited the ABTS radical, showing IC50 40.72 and 5.30 µg/mL, respectively. Cytotoxicity tests on L-929 mouse fibroblasts, NGM human melanocyte, B16-F10 melanoma, and MeWo human melanoma revealed that EO and NE-EO were more cytotoxic to melanoma cells than to non-tumor cells. The stable NE-EO demonstrates potential for melanoma prevention and treatment. Further research is required to gain a better understanding of these activities.
Collapse
Affiliation(s)
- Lucas Resende Dutra Sousa
- Laboratório de Fitotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (M.L.d.C.S.); (L.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, CiPharma, Universidade Federal de Ouro Preto, Ouro Preto 354000-000, MG, Brazil;
| | - Maria Luiza da Costa Santos
- Laboratório de Fitotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (M.L.d.C.S.); (L.S.S.)
| | - Larissa Silva Sampaio
- Laboratório de Fitotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (M.L.d.C.S.); (L.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, CiPharma, Universidade Federal de Ouro Preto, Ouro Preto 354000-000, MG, Brazil;
| | - Clarisse Gaëlle Faustino
- École de Biologie Industrielle, 49 Avenue des Genottes, 95800 Cergy, France; (C.G.F.); (M.L.L.G.)
| | | | - Kátia Michelle Freitas
- Departamentos de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil; (K.M.F.); (M.T.P.L.)
| | - Miriam Teresa Paz Lopes
- Departamentos de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil; (K.M.F.); (M.T.P.L.)
| | - Gabriela Cristina Ferreira Mota
- Laboratório de Produtos Naturais e de Síntese Orgânica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (G.C.F.M.); (V.M.R.d.S.)
| | - Viviane Martins Rebello dos Santos
- Laboratório de Produtos Naturais e de Síntese Orgânica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (G.C.F.M.); (V.M.R.d.S.)
| | - Janaína Brandão Seibert
- Laboratório de Patologia e Controle Microbiano, Universidade de São Paulo (USP-ESALQ), Piracicaba 13418-900, SP, Brazil;
| | - Tatiane Roquete Amparo
- Programa de Pós-Graduação em Ciências Farmacêuticas, CiPharma, Universidade Federal de Ouro Preto, Ouro Preto 354000-000, MG, Brazil;
- Laboratório de Química Medicinal e Bioensaios, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratório de Morfopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil;
| | - Orlando David Henrique dos Santos
- Laboratório de Fitotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (M.L.d.C.S.); (L.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, CiPharma, Universidade Federal de Ouro Preto, Ouro Preto 354000-000, MG, Brazil;
| | - Gustavo Henrique Bianco de Souza
- Laboratório de Fitotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil; (L.R.D.S.); (M.L.d.C.S.); (L.S.S.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, CiPharma, Universidade Federal de Ouro Preto, Ouro Preto 354000-000, MG, Brazil;
| |
Collapse
|
21
|
Hosseini F, Ahmadi A, Hassanzade H, Gharedaghi S, Rassouli FB, Jamialahmadi K. Inhibition of melanoma cell migration and invasion by natural coumarin auraptene through regulating EMT markers and reducing MMP-2 and MMP-9 activity. Eur J Pharmacol 2024; 971:176517. [PMID: 38537805 DOI: 10.1016/j.ejphar.2024.176517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Melanoma, the most invasive form of skin cancer, shows a rising incidence trend in industrial countries. Since the main reason for the failure of current therapeutic approaches against melanoma is metastasis, there is a great interest in introducing effective natural agents to combat melanoma cell migration and invasion. Auraptene (AUR) is the most abundant coumarin derivative in nature with valuable pharmaceutical effects. In this study, we aimed to investigate whether AUR could induce inhibitory effects on the migration and invasion of melanoma cells. B16F10 melanoma cells were treated with different concentrations of AUR and the viability of cells was evaluated by alamarBlue assay. Then, cells were treated with 20 μM AUR, and wound healing, invasion, and adhesion assays were carried out. In addition, the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 was assessed by gelatin zymography and the expression of genes related to epithelial-mesenchymal transition (EMT) was investigated by qPCR. Finally, the interactions between AUR and MMPs were stimulated by molecular docking. Findings revealed that AUR significantly reduced the migration and invasion of B16F10 cells while improved their adhesion. Furthermore, results of gelatin zymography indicated that AUR suppressed the activity of MMP-2 and MMP-9, and qPCR revealed negative regulatory effect of AUR on the expression of mesenchymal markers including fibronectin and N-cadherin. In addition, molecular docking verified the interactions between AUR and the active sites of wild-type and mutant MMP-2 and MMP-9. Accordingly, AUR could be considered as a potential natural agent with inhibitory effects on the migration and invasion of melanoma cells for future preclinical studies.
Collapse
Affiliation(s)
- Fatemehsadat Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Halimeh Hassanzade
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shahin Gharedaghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Conway JR, Gillani R, Crowdis J, Reardon B, Park J, Han S, Titchen B, Benamar M, Haq R, Van Allen EM. Somatic structural variants drive distinct modes of oncogenesis in melanoma. J Clin Invest 2024; 134:e177270. [PMID: 38758740 PMCID: PMC11213511 DOI: 10.1172/jci177270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
The diversity of structural variants (SVs) in melanoma and how they impact oncogenesis are incompletely known. We performed harmonized analysis of SVs across melanoma histologic and genomic subtypes, and we identified distinct global properties between subtypes. These included the frequency and size of SVs and SV classes, their relation to chromothripsis events, and the impact on cancer-related genes of SVs that alter topologically associated domain (TAD) boundaries. Following our prior identification of double-stranded break repair deficiency in a subset of triple-wild-type cutaneous melanoma, we identified MRE11 and NBN loss-of-function SVs in melanomas with this mutational signature. Experimental knockouts of MRE11 and NBN, followed by olaparib cell viability assays in melanoma cells, indicated that dysregulation of each of these genes may cause sensitivity to PARP inhibitors in cutaneous melanomas. Broadly, harmonized analysis of melanoma SVs revealed distinct global genomic properties and molecular drivers, which may have biological and therapeutic impact.
Collapse
Affiliation(s)
- Jake R. Conway
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Riaz Gillani
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jett Crowdis
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Brendan Reardon
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jihye Park
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Seunghun Han
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Breanna Titchen
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Rizwan Haq
- Center for Cancer Precision Medicine and
| | - Eliezer M. Van Allen
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Cancer Precision Medicine and
- Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Kött J, Zimmermann N, Zell T, Rünger A, Heidrich I, Geidel G, Smit DJ, Hansen I, Abeck F, Schadendorf D, Eggermont A, Puig S, Hauschild A, Gebhardt C. Sentinel lymph node risk prognostication in primary cutaneous melanoma through tissue-based profiling, potentially redefining the need for sentinel lymph node biopsy. Eur J Cancer 2024; 202:113989. [PMID: 38518535 DOI: 10.1016/j.ejca.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE OF REVIEW The role of Sentinel Lymph Node Biopsy (SLNB) is pivotal in the contemporary staging of cutaneous melanoma. In this review, we examine advanced molecular testing platforms like gene expression profiling (GEP) and immunohistochemistry (IHC) as tools for predicting the prognosis of sentinel lymph nodes. We compare these innovative approaches with traditional staging assessments. Additionally, we delve into the shared genetic and protein markers between GEP and IHC tests and their relevance to melanoma biology, exploring their prognostic and predictive characteristics. Finally, we assess alternative methods to potentially obviate the need for SLNB altogether. RECENT FINDINGS Progress in adjuvant melanoma therapy has diminished the necessity of Sentinel Lymph Node Biopsy (SLNB) while underscoring the importance of accurately identifying high-risk stage I and II melanoma patients who may benefit from additional anti-tumor interventions. The clinical application of testing through gene expression profiling (GEP) or immunohistochemistry (IHC) is gaining traction, with platforms such as DecisionDx, Merlin Assay (CP-GEP), MelaGenix GEP, and Immunoprint coming into play. Currently, extensive validation studies are in progress to incorporate routine molecular testing into clinical practice. However, due to significant methodological limitations, widespread clinical adoption of tissue-based molecular testing remains elusive at present. SUMMARY While various tissue-based molecular testing platforms have the potential to stratify the risk of sentinel lymph node positivity (SLNP), most suffer from significant methodological deficiencies, including limited sample size, lack of prospective validation, and limited correlation with established clinicopathological variables. Furthermore, the genes and proteins identified by individual gene expression profiling (GEP) or immunohistochemistry (IHC) tests exhibit minimal overlap, even when considering the most well-established melanoma mutations. However, there is hope that the ongoing prospective trial for the Merlin Assay may safely reduce the necessity for SLNB procedures if successful. Additionally, the MelaGenix GEP and Immunoprint tests could prove valuable in identifying high-risk stage I-II melanoma patients and potentially guiding their selection for adjuvant therapy, thus potentially reducing the need for SLNB. Due to the diverse study designs employed, effective comparisons between GEP or IHC tests are challenging, and to date, there is no study directly comparing the clinical utility of these respective GEP or IHC tests.
Collapse
Affiliation(s)
- Julian Kött
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Noah Zimmermann
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Tim Zell
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alessandra Rünger
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Isabel Heidrich
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Glenn Geidel
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Daniel J Smit
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Inga Hansen
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Finn Abeck
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology & Westdeutsches Tumorzentrum Essen (WTZ), University Hospital Essen, Essen, Germany; German Cancer Consortium, Partner Site Essen, Essen, Germany; National Center for Tumor Diseases (NCT-West), Campus Essen, Germany; Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Alexander Eggermont
- Princess Máxima Center and University Medical Center Utrecht, 3584 CS Utrecht, the Netherlands; Comprehensive Cancer Center Munich, Technical University Munich & Ludwig Maximilian University, Munich, Germany
| | - Susana Puig
- Department of Dermatology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Christoffer Gebhardt
- University Skin Cancer Center Hamburg, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
24
|
Haugh A, Daud AI. Therapeutic Strategies in BRAF V600 Wild-Type Cutaneous Melanoma. Am J Clin Dermatol 2024; 25:407-419. [PMID: 38329690 DOI: 10.1007/s40257-023-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
There have been many recent advances in melanoma therapy. While 50% of melanomas have a BRAF mutation and are a target for BRAF inhibitors, the remaining 50% are BRAF wild-type. Immune checkpoint inhibitors targeting PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and lymphocyte activated gene-3 (Lag-3) are all approved for the treatment of patients with advanced BRAF wild-type melanoma; however, treatment of this patient population following initial immune checkpoint blockade is a current therapeutic challenge given the lack of other efficacious options. Here, we briefly review available US FDA-approved therapies for BRAF wild-type melanoma and focus on developing treatment avenues for this heterogeneous group of patients. We review the basics of genomic features of both BRAF mutant and BRAF wild-type melanoma as well as efforts underway to develop new targeted therapies involving the mitogen-activated protein kinase (MAPK) pathway for patients with BRAF wild-type tumors. We then focus on novel immunotherapies, including developing checkpoint inhibitors and agonists, cytokine therapies, oncolytic viruses and tumor-infiltrating lymphocytes, all of which represent potential therapeutic avenues for patients with BRAF wild-type melanoma who progress on currently approved immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexandra Haugh
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adil I Daud
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA.
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Coccimiglio M, Chiodo F, van Kooyk Y. The sialic acid-Siglec immune checkpoint: an opportunity to enhance immune responses and therapy effectiveness in melanoma. Br J Dermatol 2024; 190:627-635. [PMID: 38197441 DOI: 10.1093/bjd/ljad517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Modulation of immune responses through immune checkpoint blockade has revolutionized cutaneous melanoma treatment. However, it is still the case that not all patients respond successfully to these therapies, indicating the presence of as yet unknown resistance mechanisms. Hence, it is crucial to find novel targets to improve therapy efficacy. One of the described resistance mechanisms is regulated by immune inhibitory Siglec receptors, which are engaged by the carbohydrates sialic acids expressed on tumour cells, contributing to programmed cell death protein-1 (PD1)-like immune suppression mechanisms. In this review, we provide an overview on the regulation of sialic acid synthesis, its expression in melanoma, and the contribution of the sialic acid-Siglec axis to tumour development and immune suppressive mechanisms in the tumour microenvironment. Finally, we highlight potential sialic acid-Siglec axis-related therapeutics to improve the treatment of melanoma.
Collapse
Affiliation(s)
- Magali Coccimiglio
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Fabrizio Chiodo
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Italian National Research Council, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Yvette van Kooyk
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Zhang C, Tan H, Xu H, Ding J, Chen H, Liu X, Sun F. Pan-cancer identified ARPC1B as a promising target for tumor immunotherapy and prognostic biomarker, particularly in READ. Heliyon 2024; 10:e28005. [PMID: 38689995 PMCID: PMC11059418 DOI: 10.1016/j.heliyon.2024.e28005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
ARPC1B encodes the protein known as actin-related protein 2/3 complex subunit 1 B (ARPC1B), which controls actin polymerization in the human body. Although ARPC1B has been linked to several human malignancies, its function in these cancers remains unclear. TCGA, GTEx, CCLE, Xena, CellMiner, TISIDB, and molecular signature databases were used to analyze ARPC1B expression in cancers. Visualization of data was primarily achieved using R language, version 4.0. Nineteen tumors exhibited high levels of ARPC1B expression, which were associated with different tumor stages and significantly affected the prognosis of various cancers. The level of ARPC1B expression substantially connected the narrative of ARPC1B expression with several TMB cancers and showed significant changes in MSI. Additionally, tolerance to numerous anticancer medications has been linked to high ARPC1B gene expression. Using Gene Set Variation Analysis/Gene Set Enrichment Analysisanalysis and concentrating on Rectum adenocarcinoma (READ), we thoroughly examined the molecular processes of the ARPC1B gene in pan-cancer. Using WGCNA, we examined the co-expression network of READ and ARPC1B. Meanwhile, ten specimens were selected for immunohistochemical examination, which showed high expression of ARPC1B in READ. Human pan-cancer samples show higher ARPC1B expression than healthy tissues. In many malignancies, particularly READ, ARPC1B overexpression is associated with immune cell infiltration and a poor prognosis. These results imply that the molecular biomarker ARPC1B may be used to assess the prognosis and immune infiltration of patients with READ.
Collapse
Affiliation(s)
- Chenxiong Zhang
- Department of Proctology, Yubei Hospital of Traditional Chinese Medicine, Chongqing Yubei District, Chongqing, 401120, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510403, China
| | - Hao Tan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510403, China
| | - Han Xu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510403, China
| | - Jiaming Ding
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, 528400, China
| | - Huijuan Chen
- Department of Proctology, Yubei Hospital of Traditional Chinese Medicine, Chongqing Yubei District, Chongqing, 401120, China
| | - Xiaohong Liu
- Department of Proctology, Yubei Hospital of Traditional Chinese Medicine, Chongqing Yubei District, Chongqing, 401120, China
| | - Feng Sun
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510403, China
| |
Collapse
|
27
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
28
|
Tu SM, Trikannad AK, Vellanki S, Hussain M, Malik N, Singh SR, Jillella A, Obulareddy S, Malapati S, Bhatti SA, Arnaoutakis K, Atiq OT. Stem Cell Origin of Cancer: Clinical Implications beyond Immunotherapy for Drug versus Therapy Development in Cancer Care. Cancers (Basel) 2024; 16:1151. [PMID: 38539487 PMCID: PMC10969562 DOI: 10.3390/cancers16061151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Although immunotherapy has revolutionized cancer care, there is still an urgent need to enhance its efficacy and ensure its safety. A correct cancer theory and proper scientific method empower pertinent cancer research and enable effective and efficient drug versus therapy development for patient care. In this perspective, we revisit the concept of immune privilege in a cancer cell versus normal cell, as well as in a cancer stem cell versus normal stem cell. We re-examine whether effective immunotherapies are efficacious due to their anti-cancer and/or immune modulatory mechanisms. We reassess why checkpoint inhibitors (CPIs) are not equal. We reconsider whether one can attribute the utility of immunotherapy to specific cancer subtypes and its futility to certain tumor/immune compartments, components, and microenvironments. We propose ways and means to advance immunotherapy beyond CPIs by combining anti-PD1/L1 with various other treatment modalities according to an appropriate scientific theory, e.g., stem cell origin of cancer, and based on available clinical evidence, e.g., randomized clinical trials. We predict that a stem cell theory of cancer will facilitate the design of better and safer immunotherapy with improved selection of its use for the right patient with the right cancer type at the right time to optimize clinical benefits and minimize potential toxic effects and complications.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (M.H.); (N.M.); (S.R.S.); (A.J.); (S.O.); (S.M.); (S.A.B.); (K.A.); (O.T.A.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huo M, Rai SK, Nakatsu K, Deng Y, Jijiwa M. Subverting the Canon: Novel Cancer-Promoting Functions and Mechanisms for snoRNAs. Int J Mol Sci 2024; 25:2923. [PMID: 38474168 PMCID: PMC10932220 DOI: 10.3390/ijms25052923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.
Collapse
Affiliation(s)
- Matthew Huo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Sudhir Kumar Rai
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Ken Nakatsu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| |
Collapse
|
30
|
Wang X, Pan H, Cui J, Chen X, Yoon WH, Carlino MS, Li X, Li H, Zhang J, Sun J, Guo J, Cui C. SAFFRON-103: a phase Ib study of sitravatinib plus tislelizumab in anti-PD-(L)1 refractory/resistant advanced melanoma. Immunotherapy 2024; 16:243-256. [PMID: 38197138 DOI: 10.2217/imt-2023-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aim: Investigate TKI sitravatinib plus anti-PD-1 antibody tislelizumab in patients with unresectable/advanced/metastatic melanoma with disease progression on/after prior first-line anti-PD-(L)1 monotherapy. Methods: Open-label, multicenter, multicohort study (NCT03666143). Patients in the melanoma cohort (N = 25) received sitravatinib once daily plus tislelizumab every 3 weeks. The primary end point was safety and tolerability. Results: Treatment-emergent adverse events (TEAEs) occurred in all patients, with ≥grade 3 TEAEs in 52.0%. Most TEAEs were mild-or-moderate in severity, none were fatal, and few patients discontinued treatment owing to TEAEs (12.0%). Objective response rate was 36.0% (95% CI: 18.0-57.5). Median progression-free survival was 6.7 months (95% CI: 4.1-not estimable). Conclusion: Sitravatinib plus tislelizumab had manageable safety/tolerability in patients with anti-PD-(L)1 refractory/resistant unresectable/advanced/metastatic melanoma, with promising antitumor activity. Clinical Trial Registration: NCT03666143 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Xuan Wang
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hongming Pan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| | - Xiao Chen
- The First Hospital of Jilin University, Changchun, China
| | - Won-Hee Yoon
- Blacktown Cancer and Haematology Centre, Blacktown, NSW, Australia
| | - Matteo S Carlino
- Blacktown Cancer and Haematology Centre, Blacktown, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Xin Li
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Hui Li
- BeiGene (Shanghai) Co., Ltd., Shanghai, China
| | - Juan Zhang
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | - Jun Guo
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanliang Cui
- Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
31
|
Fortuna A, Amaral T. Multidisciplinary approach and treatment of acral and mucosal melanoma. Front Oncol 2024; 14:1340408. [PMID: 38469235 PMCID: PMC10926023 DOI: 10.3389/fonc.2024.1340408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Acral and mucosal melanoma are uncommon variants of melanoma. Acral melanoma has an age-adjusted incidence of approximately 1.8 cases per million individuals per year, accounting for about 2% to 3% of all melanoma cases. On the other hand, mucosal melanoma, with an incidence of 2.2 cases per million per year, makes up around 1.3% of all melanoma cases. These melanomas, in addition to being biologically and clinically distinct from cutaneous melanoma, share certain clinical and pathologic characteristics. These include a more aggressive nature and a less favorable prognosis. Furthermore, they exhibit a different mutational pattern, with KIT mutations being more prevalent in acral and mucosal melanomas. This divergence in mutational patterns may partially account for the relatively poorer prognosis, particularly to immune checkpoint inhibitors. This review explores various aspects of acral and mucosal melanoma, including their clinical presentation, pathologic features, mutational profiles, current therapeutic approaches, outcomes associated with systemic therapy, and potential strategies to address resistance to existing treatments.
Collapse
Affiliation(s)
- Ana Fortuna
- Oncology Department, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence Image-Guided and Functionally Instructed Tumor Therapies (iFIT) (EXC 2180), Tübingen, Germany
| |
Collapse
|
32
|
Gervasi F, Pojero F. Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines 2024; 12:502. [PMID: 38540115 PMCID: PMC10968586 DOI: 10.3390/biomedicines12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The fact that the Mediterranean diet could represent a source of natural compounds with cancer-preventive and therapeutic activity has been the object of great interest, especially with regard to the mechanisms of action of polyphenols found in olive oil and olive leaves. Secoiridoid oleuropein (OLE) and its derivative hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) have demonstrated anti-proliferative properties against a variety of tumors and hematological malignancies both in vivo and in vitro, with measurable effects on cellular redox status, metabolism, and transcriptional activity. With this review, we aim to summarize the most up-to-date information on the potential use of OLE and HT for cancer treatment, making important considerations about OLE and HT bioavailability, OLE- and HT-mediated effects on drug metabolism, and OLE and HT dual activity as both pro- and antioxidants, likely hampering their use in clinical routine. Also, we focus on the details available on the effects of nutritionally relevant concentrations of OLE and HT on cell viability, redox homeostasis, and inflammation in order to evaluate if both compounds could be considered cancer-preventive agents or new potential chemotherapy drugs whenever their only source is represented by diet.
Collapse
Affiliation(s)
- Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
33
|
Indacochea A, Guitart T, Boada A, Peg V, Quer A, Laayouni H, Condal L, Espinosa P, Manzano JL, Gebauer F. CSDE1 Intracellular Distribution as a Biomarker of Melanoma Prognosis. Int J Mol Sci 2024; 25:2319. [PMID: 38396995 PMCID: PMC10889260 DOI: 10.3390/ijms25042319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
RNA-binding proteins are emerging as critical modulators of oncogenic cell transformation, malignancy and therapy resistance. We have previously found that the RNA-binding protein Cold Shock Domain containing protein E1 (CSDE1) promotes invasion and metastasis of melanoma, the deadliest form of skin cancer and also a highly heterogeneous disease in need of predictive biomarkers and druggable targets. Here, we design a monoclonal antibody useful for IHC in the clinical setting and use it to evaluate the prognosis potential of CSDE1 in an exploratory cohort of 149 whole tissue sections including benign nevi and primary tumors and metastasis from melanoma patients. Contrary to expectations for an oncoprotein, we observed a global decrease in CSDE1 levels with increasing malignancy. However, the CSDE1 cytoplasmic/nuclear ratio exhibited a positive correlation with adverse clinical features of primary tumors and emerged as a robust indicator of progression free survival in cutaneous melanoma, highlighting the potential of CSDE1 as a biomarker of prognosis. Our findings provide a novel feature for prognosis assessment and highlight the intricacies of RNA-binding protein dynamics in cancer progression.
Collapse
Affiliation(s)
- Alberto Indacochea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Aram Boada
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, Institut d’investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (L.C.)
| | - Vicente Peg
- Pathology Department, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Ariadna Quer
- Pathology Department, Hospital Universitari Germans Trias I Pujol, Institut d’Investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain;
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, C/Wellington 30, 08006 Barcelona, Spain
| | - Laura Condal
- Dermatology Department, Hospital Universitari Germans Trias i Pujol, Institut d’investigació Germans Trias I Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (A.B.); (L.C.)
| | - Pablo Espinosa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
| | - Jose Luis Manzano
- Medical Oncology Department, Catalonian Institute of Oncology, (ICO), Hospital Germans Trias I Pujol, 08916 Badalona, Spain;
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; (A.I.); (T.G.); (P.E.)
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
34
|
Hsieh MY, Hsu SK, Liu TY, Wu CY, Chiu CC. Melanoma biology and treatment: a review of novel regulated cell death-based approaches. Cancer Cell Int 2024; 24:63. [PMID: 38336727 PMCID: PMC10858604 DOI: 10.1186/s12935-024-03220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
The incidence of melanoma, the most lethal form of skin cancer, has increased due to ultraviolet exposure. The treatment of advanced melanoma, particularly metastatic cases, remains challenging with poor outcomes. Targeted therapies involving BRAF/MEK inhibitors and immunotherapy based on anti-PD1/anti-CTLA4 antibodies have achieved long-term survival rates of approximately 50% for patients with advanced melanoma. However, therapy resistance and inadequate treatment response continue to hinder further breakthroughs in treatments that increase survival rates. This review provides an introduction to the molecular-level pathogenesis of melanoma and offers an overview of current treatment options and their limitations. Cells can die by either accidental or regulated cell death (RCD). RCD is an orderly cell death controlled by a variety of macromolecules to maintain the stability of the internal environment. Since the uncontrolled proliferation of tumor cells requires evasion of RCD programs, inducing the RCD of melanoma cells may be a treatment strategy. This review summarizes studies on various types of nonapoptotic RCDs, such as autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and the recently discovered cuproptosis, in the context of melanoma. The relationships between these RCDs and melanoma are examined, and the interplay between these RCDs and immunotherapy or targeted therapy in patients with melanoma is discussed. Given the findings demonstrating melanoma cell death in response to different stimuli associated with these RCDs, the induction of RCD shows promise as an integral component of treatment strategies for melanoma.
Collapse
Affiliation(s)
- Ming-Yun Hsieh
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tzu-Yu Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
35
|
Maphutha J, Twilley D, Lall N. The Role of the PTEN Tumor Suppressor Gene and Its Anti-Angiogenic Activity in Melanoma and Other Cancers. Molecules 2024; 29:721. [PMID: 38338464 PMCID: PMC10856229 DOI: 10.3390/molecules29030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Human malignant melanoma and other solid cancers are largely driven by the inactivation of tumor suppressor genes and angiogenesis. Conventional treatments for cancer (surgery, radiation therapy, and chemotherapy) are employed as first-line treatments for solid cancers but are often ineffective as monotherapies due to resistance and toxicity. Thus, targeted therapies, such as bevacizumab, which targets vascular endothelial growth factor, have been approved by the US Food and Drug Administration (FDA) as angiogenesis inhibitors. The downregulation of the tumor suppressor, phosphatase tensin homolog (PTEN), occurs in 30-40% of human malignant melanomas, thereby elucidating the importance of the upregulation of PTEN activity. Phosphatase tensin homolog (PTEN) is modulated at the transcriptional, translational, and post-translational levels and regulates key signaling pathways such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways, which also drive angiogenesis. This review discusses the inhibition of angiogenesis through the upregulation of PTEN and the inhibition of hypoxia-inducible factor 1 alpha (HIF-1-α) in human malignant melanoma, as no targeted therapies have been approved by the FDA for the inhibition of angiogenesis in human malignant melanoma. The emergence of nanocarrier formulations to enhance the pharmacokinetic profile of phytochemicals that upregulate PTEN activity and improve the upregulation of PTEN has also been discussed.
Collapse
Affiliation(s)
- Jacqueline Maphutha
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| |
Collapse
|
36
|
Zhang J, Tian H, Mao L, Si L. Treatment of acral and mucosal melanoma: Current and emerging targeted therapies. Crit Rev Oncol Hematol 2024; 193:104221. [PMID: 38036156 DOI: 10.1016/j.critrevonc.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/14/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Targeted therapies revolutionized the management of patients with advanced and metastatic cutaneous melanoma. However, despite recent advances in the understanding of the molecular drivers of melanoma and its treatment with targeted therapies, patients with rare and aggressive melanoma subtypes, including acral melanoma (AM) and mucosal melanomas (MM), show limited long-term clinical benefit from current targeted therapies. While patients with AM or MM and BRAF or KIT mutations may benefit from targeted therapies, the frequency of these mutations is relatively low, and there are no genotype-specific treatments for most patients with AM or MM who lack common driver mutations. The poor prognosis of AM and MM can also be attributed to the lack of understanding of their unique molecular landscapes and clinical characteristics, due to being under-represented in preclinical and clinical studies. We review current knowledge of the molecular landscapes of AM and MM, focusing on actionable therapeutic targets and pathways for molecular targeted therapies, to guide the development of more effective targeted therapies for these cancers. Current and emerging strategies for the treatment of these melanoma subtypes using targeted therapies are also summarized.
Collapse
Affiliation(s)
- Jiaran Zhang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Huichun Tian
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lili Mao
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
37
|
Wei C, Sun W, Shen K, Zhong J, Liu W, Gao Z, Xu Y, Wang L, Hu T, Ren M, Li Y, Zhu Y, Zheng S, Zhu M, Luo R, Yang Y, Hou Y, Qi F, Zhou Y, Chen Y, Gu J. Delineating the early dissemination mechanisms of acral melanoma by integrating single-cell and spatial transcriptomic analyses. Nat Commun 2023; 14:8119. [PMID: 38065972 PMCID: PMC10709603 DOI: 10.1038/s41467-023-43980-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Acral melanoma (AM) is a rare subtype of melanoma characterized by a high incidence of lymph node (LN) metastasis, a critical factor in tumor dissemination and therapeutic decision-making. Here, we employ single-cell and spatial transcriptomic analyses to investigate the dynamic evolution of early AM dissemination. Our findings reveal substantial inter- and intra-tumor heterogeneity in AM, alongside a highly immunosuppressive tumor microenvironment and complex intercellular communication networks, particularly in patients with LN metastasis. Notably, we identify a strong association between MYC+ Melanoma (MYC+MEL) and FGFBP2+NKT cells with LN metastasis. Furthermore, we demonstrate that LN metastasis requires a metabolic shift towards fatty acid oxidation (FAO) induced by MITF in MYC+MEL cells. Etomoxir, a clinically approved FAO inhibitor, can effectively suppress MITF-mediated LN metastasis. This comprehensive dataset enhances our understanding of LN metastasis in AM, and provides insights into the potential therapeutic targeting for the management of early AM dissemination.
Collapse
Affiliation(s)
- Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Wei Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jingqin Zhong
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Wanlin Liu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Tu Hu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Ming Ren
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yinlam Li
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yu Zhu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Xiamen Branch of Zhongshan Hospital, Fudan University, Xiamen, 361015, P. R. China
| | - Ming Zhu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yanwen Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
- Cancer center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
- Department of Plastic and Reconstructive Surgery, Xiamen Branch of Zhongshan Hospital, Fudan University, Xiamen, 361015, P. R. China.
| |
Collapse
|
38
|
Li K, Sun L, Wang Y, Cen Y, Zhao J, Liao Q, Wu W, Sun J, Zhou M. Single-cell characterization of macrophages in uveal melanoma uncovers transcriptionally heterogeneous subsets conferring poor prognosis and aggressive behavior. Exp Mol Med 2023; 55:2433-2444. [PMID: 37907747 PMCID: PMC10689813 DOI: 10.1038/s12276-023-01115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
Uveal melanoma (UM) is the most frequent primary intraocular malignancy with high metastatic potential and poor prognosis. Macrophages represent one of the most abundant infiltrating immune cells with diverse functions in cancers. However, the cellular heterogeneity and functional diversity of macrophages in UM remain largely unexplored. In this study, we analyzed 63,264 single-cell transcriptomes from 11 UM patients and identified four transcriptionally distinct macrophage subsets (termed MΦ-C1 to MΦ-C4). Among them, we found that MΦ-C4 exhibited relatively low expression of both M1 and M2 signature genes, loss of inflammatory pathways and antigen presentation, instead demonstrating enhanced signaling for proliferation, mitochondrial functions and metabolism. We quantified the infiltration abundance of MΦ-C4 from single-cell and bulk transcriptomes across five cohorts and found that increased MΦ-C4 infiltration was relevant to aggressive behaviors and may serve as an independent prognostic indicator for poor outcomes. We propose a novel subtyping scheme based on macrophages by integrating the transcriptional signatures of MΦ-C4 and machine learning to stratify patients into MΦ-C4-enriched or MΦ-C4-depleted subtypes. These two subtypes showed significantly different clinical outcomes and were validated through bulk RNA sequencing and immunofluorescence assays in both public multicenter cohorts and our in-house cohort. Following further translational investigation, our findings highlight a potential therapeutic strategy of targeting macrophage subsets to control metastatic disease and consistently improve the outcome of patients with UM.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Lanfang Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Yanan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Yixin Cen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Jingting Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Qianling Liao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
| | - Jie Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
| | - Meng Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
39
|
Sergi MC, Filoni E, Triggiano G, Cazzato G, Internò V, Porta C, Tucci M. Mucosal Melanoma: Epidemiology, Clinical Features, and Treatment. Curr Oncol Rep 2023; 25:1247-1258. [PMID: 37773078 PMCID: PMC10640506 DOI: 10.1007/s11912-023-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE OF REVIEW Summarize the writings published in the last years on the management and novel therapies of mucosal melanoma (MM). RECENT FINDINGS New research has demonstrated a difference between MM and cutaneous melanoma (CM) in their genomic and molecular landscapes, explaining the response's heterogeneity. Immunotherapy and targeted therapy have limited benefit, but novel therapies are rapidly expanding. MM is aggressive cancer occurring in gastrointestinal, respiratory, or urogenital mucosa; whose incidence is greater in the Asian population. The etiology and pathogenesis remain unclear since UV exposure is not a proven risk factor as in cutaneous melanoma. In contrast to CM, lesions on the mucosal surface are less likely to be recognized early; therefore, the disease is diagnosed in an advanced stage. Clinical manifestations, such as bleeding or pain, can help to detect this tumor, although the prognosis remains unfavorable with an overall 5-year survival rate of less than 20%. The mutational landscape of MM includes mutations of BRAF and NRAS, as well as mutations in the c-KIT/CD117 gene (in 50% of patients), thus limiting therapeutic interventions to immunotherapy. However, clinical studies show less responsiveness to immunotherapy compared to CM, therefore novel therapeutic strategies targeting new molecules are needed to improve the survival of patients with MM.
Collapse
Affiliation(s)
- Maria Chiara Sergi
- Department of Interdisciplinary Medicine, Oncology Unit, University of Bari "Aldo Moro", P.za Giulio Cesare, 11, 70124, Bari, Italy.
| | - Elisabetta Filoni
- Department of Interdisciplinary Medicine, Oncology Unit, University of Bari "Aldo Moro", P.za Giulio Cesare, 11, 70124, Bari, Italy
| | - Giacomo Triggiano
- Department of Interdisciplinary Medicine, Oncology Unit, University of Bari "Aldo Moro", P.za Giulio Cesare, 11, 70124, Bari, Italy
| | - Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Camillo Porta
- Department of Interdisciplinary Medicine, Oncology Unit, University of Bari "Aldo Moro", P.za Giulio Cesare, 11, 70124, Bari, Italy
| | - Marco Tucci
- Department of Interdisciplinary Medicine, Oncology Unit, University of Bari "Aldo Moro", P.za Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
40
|
Jia P, Tian T, Li Z, Wang Y, Lin Y, Zeng W, Ye Y, He M, Ni X, Pan J, Dong X, Huang J, Li C, Guo D, Hou P. CCDC50 promotes tumor growth through regulation of lysosome homeostasis. EMBO Rep 2023; 24:e56948. [PMID: 37672005 PMCID: PMC10561174 DOI: 10.15252/embr.202356948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
The maintenance of lysosome homeostasis is crucial for cell growth. Lysosome-dependent degradation and metabolism sustain tumor cell survival. Here, we demonstrate that CCDC50 serves as a lysophagy receptor, promoting tumor progression and invasion by controlling lysosomal integrity and renewal. CCDC50 monitors lysosomal damage, recognizes galectin-3 and K63-linked polyubiquitination on damaged lysosomes, and specifically targets them for autophagy-dependent degradation. CCDC50 deficiency causes the accumulation of ruptured lysosomes, impaired autophagic flux, and superfluous reactive oxygen species, consequently leading to cell death and tumor suppression. CCDC50 expression is associated with malignancy, progression to metastasis, and poor overall survival in human melanoma. Targeting CCDC50 suppresses tumor growth and lung metastasis, and enhances the effect of BRAFV600E inhibition. Thus, we demonstrate critical roles of CCDC50-mediated clearance of damaged lysosomes in supporting tumor growth, hereby identifying a potential therapeutic target of melanoma.
Collapse
Affiliation(s)
- Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Tian Tian
- The Center for Applied Genomics, Abramson Research CenterThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yicheng Wang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Weijie Zeng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Yu Ye
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Miao He
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Xiangrong Ni
- Department of Neurosurgery/Neuro‐oncology, Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Ji'an Pan
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Xiaonan Dong
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Jian Huang
- Coriell Institute for Medical ResearchCamdenNJUSA
| | - Chun‐mei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Deyin Guo
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of MedicineSun Yat‐sen UniversityShenzhenChina
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
41
|
Sun W, Xu Y, Qu X, Jin Y, Wang C, Yan W, Chen Y. Surgical resection margin for T3-T4 primary acral melanoma: a multicenter retrospective cohort study. Arch Dermatol Res 2023; 315:2305-2312. [PMID: 36988664 PMCID: PMC10462526 DOI: 10.1007/s00403-023-02609-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Although the National Comprehensive Cancer Network (NCCN) guidelines include clear recommendations for the appropriate resection margins in non-acral cutaneous melanoma, the required margin for acral melanoma is controversial. In this retrospective study, we aimed to investigate whether narrow-margin excision is warranted for thick acral melanoma. Records from 277 melanoma patients with stage T3-T4 disease who underwent radical surgery in three centers in China from September 2010 to October 2018 were reviewed. Clinicopathologic data, including age, gender, excision margin (1-2 cm versus ≥ 2 cm), Clark level, Breslow thickness, ulceration, N stage and adjuvant therapy, were included for survival analysis. The patients were followed up until death or March 31, 2021. Log-rank and Cox regression analyses were used to identify prognostic factors for overall survival (OS), disease-free survival (DFS) and local and in-transit recurrence-free survival (LITRFS). Among all enrolled patients, 207 (74.7%) had acral melanoma, and 70 (25.3%) had non-acral cutaneous melanoma. No significant difference in baseline characteristics was identified between non-acral and acral melanoma, except for age (p = 0.004), gender (p = 0.009) and ulceration (p = 0.048). In non-acral melanoma, a resection margin of 1-2 cm was a poor independent prognostic factor for OS [p = 0.015; hazard ratio (HR) (95% CI), 0.26 (0.009-0.77)] and LITRFS [p = 0.013; HR (95% CI), 0.19 (0.05-0.71)] but not for DFS [p = 0.143; HR (95% CI), 0.51 (0.21-1.25)]. Forty-three (20.8%) patients in the acral melanoma group had a 1-2-cm resection margin. The resection margin was not correlated with patients' OS (p = 0.196 by log-rank analysis, p = 0.865 by multivariate survival analysis), DFS (p = 0.080 by log-rank analysis, p = 0.758 by multivariate survival analysis) or LITRFS (p = 0.354 by log-rank analysis) in acral melanoma. As recommended in the NCCN guidelines, a resection margin ≥ 2 cm is required for non-acral cutaneous melanoma. Meanwhile, a narrow resection margin (1-2 cm) may be safe for patients with acral melanoma.
Collapse
Affiliation(s)
- Wei Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yu Xu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - XingLong Qu
- Department of Oncological Surgery, Minhang Branch, Shanghai Cancer Center, Fudan University, Shanghai, 200240, People's Republic of China
| | - YongJia Jin
- Shanghai Electric Power Hospital, Shanghai, 200050, People's Republic of China
| | - ChunMeng Wang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - WangJun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
42
|
Lam GT, Martini C, Brooks T, Prabhakaran S, Hopkins AM, Ung BSY, Tang J, Caruso MC, Brooks RD, Johnson IRD, Sorvina A, Hickey SM, Karageorgos L, Klebe S, O’Leary JJ, Brooks DA, Logan JM. Insights into Melanoma Clinical Practice: A Perspective for Future Research. Cancers (Basel) 2023; 15:4631. [PMID: 37760601 PMCID: PMC10526186 DOI: 10.3390/cancers15184631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Early diagnosis is the key to improving outcomes for patients with melanoma, and this requires a standardized histological assessment approach. The objective of this survey was to understand the challenges faced by clinicians when assessing melanoma cases, and to provide a perspective for future studies. METHODS Between April 2022 and February 2023, national and international dermatologists, pathologists, general practitioners, and laboratory managers were invited to participate in a six-question online survey. The data from the survey were assessed using descriptive statistics and qualitative responses. RESULTS A total of 54 responses were received, with a 51.4% (n = 28) full completion rate. Of the respondents, 96.4% reported ambiguity in their monthly melanoma diagnosis, and 82.1% routinely requested immunohistochemistry (IHC) testing to confirm diagnosis. SOX10 was the most frequently requested marker, and most respondents preferred multiple markers over a single marker. Diagnostic and prognostic tests, as well as therapeutic options and patient management, were all identified as important areas for future research. CONCLUSIONS The respondents indicated that the use of multiple IHC markers is essential to facilitate diagnostic accuracy in melanoma assessment. Survey responses indicate there is an urgent need to develop new biomarkers for clinical decision making at multiple critical intervention points.
Collapse
Affiliation(s)
- Giang T. Lam
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Tiffany Brooks
- Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
- Aware Women’s Health Private Clinic, Adelaide, SA 5006, Australia
| | - Sarita Prabhakaran
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Ashley M. Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Ben S.-Y. Ung
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Jingying Tang
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Maria C. Caruso
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | - Sonja Klebe
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, SA 5042, Australia
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Douglas A. Brooks
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
- Department of Histopathology, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Jessica M. Logan
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
43
|
Younis MK, Khalil IA, Younis NS, Fakhr Eldeen RR, Abdelnaby RM, Aldeeb RA, Taha AA, Hassan DH. Aceclofenac/Citronellol Oil Nanoemulsion Repurposing Study: Formulation, In Vitro Characterization, and In Silico Evaluation of Their Antiproliferative and Pro-Apoptotic Activity against Melanoma Cell Line. Biomedicines 2023; 11:2531. [PMID: 37760972 PMCID: PMC10525854 DOI: 10.3390/biomedicines11092531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aceclofenac (ACF) is a widely used non-steroidal anti-inflammatory drug (NSAID) known for its effectiveness in treating pain and inflammation. Recent studies have demonstrated that ACF possesses antiproliferative properties, inhibiting the growth of cancer cells in various cancer cell lines. Citronellol, a monoterpenoid alcohol found in essential oils, exhibits antioxidant properties and activities such as inhibiting cell growth and acetylcholinesterase inhibition. In this study, the objective was to formulate and evaluate an aceclofenac/citronellol oil nanoemulsion for its antiproliferative effects on melanoma. The optimal concentrations of citronellol oil, Tween 80, and Transcutol HP were determined using a pseudoternary phase diagram. The formulated nanoemulsions were characterized for droplet size, zeta potential, thermophysical stability, and in vitro release. The selected formula (F1) consisted of citronellol oil (1 gm%), Tween 80 (4 gm%), and Transcutol HP (1 gm%). F1 exhibited a spherical appearance with high drug content, small droplet size, and acceptable negative zeta potential. The amorphous state of the drug in the nanoemulsion was confirmed by Differential Scanning Calorimetry, while FTIR analysis indicated its homogenous solubility. The nanoemulsion showed significant antiproliferative activity, with a lower IC50 value compared to aceclofenac or citronellol alone. Flow cytometric analysis revealed cell cycle arrest and increased apoptosis induced by the nanoemulsion. In silico studies provided insights into the molecular mechanism underlying the observed antitumor activity. In conclusion, the developed aceclofenac/citronellol oil nanoemulsion exhibited potent cytotoxicity and pro-apoptotic effects, suggesting its potential as a repurposed antiproliferative agent for melanoma treatment. In a future plan, further animal model research for validation is suggested.
Collapse
Affiliation(s)
- Mona K. Younis
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Islam A. Khalil
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Zagazig University Hospitals, Zagazig 44519, Egypt
| | - Rasha R. Fakhr Eldeen
- Department of Biochemistry, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt;
| | - Rana M. Abdelnaby
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem A. Aldeeb
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Amal A. Taha
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| | - Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12566, Egypt; (I.A.K.); (R.A.A.); (A.A.T.); (D.H.H.)
| |
Collapse
|
44
|
Placzke J, Rosińska M, Sobczuk P, Ziętek M, Kempa-Kamińska N, Cybulska-Stopa B, Kamińska-Winciorek G, Bal W, Mackiewicz J, Galus Ł, Las-Jankowska M, Jankowski M, Dziura R, Drucis K, Borkowska A, Świtaj T, Rogala P, Kozak K, Klimczak A, Jagodzińska-Mucha P, Szumera-Ciećkiewicz A, Koseła-Paterczyk H, Rutkowski P. Modern Approach to Melanoma Adjuvant Treatment with Anti-PD1 Immune Check Point Inhibitors or BRAF/MEK Targeted Therapy: Multicenter Real-World Report. Cancers (Basel) 2023; 15:4384. [PMID: 37686659 PMCID: PMC10486524 DOI: 10.3390/cancers15174384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The landscape of melanoma management changed as randomized trials have launched adjuvant treatment. MATERIALS AND METHODS An analysis of data on 248 consecutive melanoma stage III and IV patients given adjuvant therapy in eight centers (February 2019 to January 2021) was conducted. RESULTS The analyzed cohort comprised 147 melanoma patients given anti-PD1 (33% nivolumab, 26% pembrolizumab), and 101 (41%) were given dabrafenib plus trametinib (DT). The 2-year overall survival (OS), relapse-free survival (RFS), and distant-metastases-free survival (DMFS) rates were 86.7%, 61.4%, and 70.2%, respectively. The disease stage affected only the RFS rate; for stage IV, it was 52.2% (95% CI: 33.4-81.5%) vs. 62.5% (95% CI: 52.3-74.8%) for IIIA-D, p = 0.0033. The type of lymph node surgery before adjuvant therapy did not influence the outcomes. Completion of lymph node dissection cessation after positive SLNB did not affect the results in terms of RFS or OS. Treatment-related adverse events (TRAE) were associated with longer 24-month RFS, with a rate of 68.7% (55.5-84.9%) for TRAE vs. 56.6% (45.8-70%) without TRAE, p = 0.0031. For TRAE of grade ≥ 3, a significant decline in OS to 60.6% (26.9-100%; p = 0.004) was observed. CONCLUSIONS Melanoma adjuvant therapy with anti-PD1 or DT outside clinical trials appears to be effective and comparable with the results of registration studies. Our data support a de-escalating surgery approach in melanoma treatment.
Collapse
Affiliation(s)
- Joanna Placzke
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Rosińska
- Department of Computational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Marcin Ziętek
- Division of Surgical Oncology, Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Natasza Kempa-Kamińska
- Department of Clinical Oncology, Wroclaw Comprehensive Cancer Center, 53-413 Wroclaw, Poland
| | - Bożena Cybulska-Stopa
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 31-115 Kraków, Poland
| | - Grażyna Kamińska-Winciorek
- Skin Cancer and Melanoma Team, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Wiesław Bal
- Skin Cancer and Melanoma Team, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, University of Medical Sciences, 61-701 Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, University of Medical Sciences, 61-701 Poznan, Poland
| | - Manuela Las-Jankowska
- Department of Clinical Oncology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University and Oncology Centre, 85-094 Bydgoszcz, Poland
| | - Michał Jankowski
- Department of Oncological Surgery, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University and Oncology Centre, 85-094 Bydgoszcz, Poland
| | - Robert Dziura
- Department of Clinical Oncology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Kamil Drucis
- Department of Surgical Oncology, Medical University of Gdansk, 80-308 Gdańsk, Poland
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Tomasz Świtaj
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paweł Rogala
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Klimczak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paulina Jagodzińska-Mucha
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
45
|
Brunsgaard EK, Jensen J, Grossman D. Melanoma in skin of color: Part II. Racial disparities, role of UV, and interventions for earlier detection. J Am Acad Dermatol 2023; 89:459-468. [PMID: 35533770 DOI: 10.1016/j.jaad.2022.04.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Despite a higher incidence of melanoma among White individuals, melanoma-specific survival is worse among individuals with skin of color. Racial disparities in survival are multifactorial. Decreased skin cancer education focused on people with skin of color, lower rates of screening, increased socioeconomic barriers, higher proportions of more aggressive subtypes, and underrepresentation in research and professional education contribute to delays in diagnosis and treatment. Although high, intermittent UV exposure during childhood has been established as a significant modifiable risk factor for melanoma in individuals with lighter skin phototypes, there are limited data on UV exposure and melanoma risk in people with darker skin phototypes. The second article of this continuing medical education series will examine factors contributing to racial disparities in melanoma-specific survival, discuss the role of UV radiation, and address the need for further research and targeted educational interventions for melanoma in individuals with skin of color.
Collapse
Affiliation(s)
- Elise K Brunsgaard
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Jakob Jensen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Communication, University of Utah, Salt Lake City, Utah
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah.
| |
Collapse
|
46
|
Kasago IS, Chatila WK, Lezcano CM, Febres-Aldana CA, Schultz N, Vanderbilt C, Dogan S, Bartlett EK, D'Angelo SP, Tap WD, Singer S, Ladanyi M, Shoushtari AN, Busam KJ, Hameed M. Undifferentiated and Dedifferentiated Metastatic Melanomas Masquerading as Soft Tissue Sarcomas: Mutational Signature Analysis and Immunotherapy Response. Mod Pathol 2023; 36:100165. [PMID: 36990277 PMCID: PMC10698871 DOI: 10.1016/j.modpat.2023.100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The distinction between undifferentiated melanoma (UM) or dedifferentiated melanoma (DM) from undifferentiated or unclassifiable sarcoma can be difficult and requires the careful correlation of clinical, pathologic, and genomic findings. In this study, we examined the utility of mutational signatures to identify patients with UM/DM with particular attention as to whether this distinction matters for treatment because the survival of patients with metastatic melanoma has dramatically improved with immunologic therapy, whereas durable responses are less frequent in sarcomas. We identified 19 cases of UM/DM that were initially reported as unclassified or undifferentiated malignant neoplasm or sarcoma and submitted for targeted next-generation sequencing analysis. These cases were confirmed as UM/DM by harboring melanoma driver mutations, UV signature, and high tumor mutation burden. One case of DM showed melanoma in situ. Meanwhile, 18 cases represented metastatic UM/DM. Eleven patients had a prior history of melanoma. Thirteen of 19 (68%) of the tumors were immunohistochemically completely negative for 4 melanocytic markers (S100, SOX10, HMB45, and MELAN-A). All cases harbored a dominant UV signature. Frequent driver mutations involved BRAF (26%), NRAS (32%), and NF1 (42%). In contrast, the control cohort of undifferentiated pleomorphic sarcomas (UPS) of deep soft tissue exhibited a dominant aging signature in 46.6% (7/15) without evidence of UV signature. The median tumor mutation burden for DM/UM vs UPS was 31.5 vs 7.0 mutations/Mb (P < .001). A favorable response to immune checkpoint inhibitor therapy was observed in 66.6% (12/18) of patients with UM/DM. Eight patients exhibited a complete response and were alive with no evidence of disease at the last follow-up (median 45.5 months). Our findings support the usefulness of the UV signature in discriminating DM/UM vs UPS. Furthermore, we present evidence suggesting that patients with DM/UM and UV signatures can benefit from immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Israel S Kasago
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cecilia M Lezcano
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edmund K Bartlett
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
47
|
Han A, Mukha D, Chua V, Purwin TJ, Tiago M, Modasia B, Baqai U, Aumiller JL, Bechtel N, Hunter E, Danielson M, Terai M, Wedegaertner PB, Sato T, Landreville S, Davies MA, Kurtenbach S, Harbour JW, Schug ZT, Aplin AE. Co-Targeting FASN and mTOR Suppresses Uveal Melanoma Growth. Cancers (Basel) 2023; 15:3451. [PMID: 37444561 PMCID: PMC10341317 DOI: 10.3390/cancers15133451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.
Collapse
Affiliation(s)
- Anna Han
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Dzmitry Mukha
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Manoela Tiago
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Bhavik Modasia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Usman Baqai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Jenna L. Aumiller
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Nelisa Bechtel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Emily Hunter
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Meggie Danielson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Philip B. Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervical-Facial Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - J. William Harbour
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary T. Schug
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
48
|
Haroon S, Vithanage I, Rashid K, Aslam M, Elmahdy H, Zia S, Malik UA, Irfan M, Hashmi AA. Clinicopathological Profile of a Cohort of Patients With Malignant Melanoma in the United Kingdom. Cureus 2023; 15:e39874. [PMID: 37404434 PMCID: PMC10315104 DOI: 10.7759/cureus.39874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Malignant melanoma (MM) is potentially a fatal type of skin cancer and a major health concern for the Caucasian population. It is a heterogeneous disease with a wide spectrum of manifestations. Therefore, in this study, we evaluated the clinicopathological characteristics of MM. Methods We retrospectively studied the clinicopathological characteristics of MM in 167 biopsy-proven cases of MM reported between January 2020 and December 2021 at Kings Mill Hospital, Sutton-in-Ashfield, United Kingdom. Clinical data such as the age, sex, and anatomical site of the lesion were obtained from the clinical referral forms. Biopsies of the lesions were performed, and the specimens collected were sent to the laboratory for histopathological study and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation evaluation. Formalin-fixed paraffin-embedded blocks (FFPE) were prepared, sectioned, and stained with hematoxylin and eosin for histological examination. Results A total of 167 cases of MM were included in the study. The age range was 23-96 years, with the median age at diagnosis found to be 66 years; males were more commonly affected (52.1%). The median Breslow thickness was 1.20 mm. The median mitotic activity was 1.0/mm2. The lower limb was the most common site of involvement (27.5%), followed by the thorax (25.1%). The most common histological subtype was superficial spreading melanoma (SSM) (77.8%), followed by nodular melanoma (14.4%). The in situ component was present in 95.8% of cases; a majority (92.2%) of the cases showed vertical growth phase, 71.9% of cases were at Clark's level IV of invasion, regression was noted in 70.7% of cases, ulceration was present in 21.6% of cases, and microsatellites were present in 3% of cases. Perineural invasion was present in 3% of cases, and lymphovascular invasion (LVI) was present in 4.2% of cases. BRAF mutation testing was performed on 36 cases, out of which 20 cases (55.6%) showed BRAF mutation. Acral lentiginous melanoma and nodular melanoma were most likely to show ulceration (66.7% and 37.5%, respectively). SSM and lentigo maligna melanoma were more likely to be associated with regression. Conclusion The study demonstrated that MM is prevalent among the elderly population with male predominance; SSM was found to be the most common subtype. The study further demonstrated various clinicopathological features of MM and its association with histological subtypes.
Collapse
Affiliation(s)
- Saroona Haroon
- Pathology, King's Mill Hospital, Sutton-in-Ashfield, GBR
| | | | - Khushbakht Rashid
- Internal Medicine, Liaquat National Hospital and Medical College, Karachi, PAK
| | - Mahnoor Aslam
- Internal Medicine, Baqai Medical University, Karachi, PAK
- Public Health Sciences, University of Alberta, Edmonton, CAN
| | - Heba Elmahdy
- Dermatology, King's Mill Hospital, Sutton-in-Ashfield, GBR
| | - Shamail Zia
- Pathology, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Muhammad Irfan
- Statistics, Liaquat National Hospital and Medical College, Karachi, PAK
| | - Atif A Hashmi
- Pathology, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
49
|
Yang TT, Yu S, Ke CLK, Cheng ST. The Genomic Landscape of Melanoma and Its Therapeutic Implications. Genes (Basel) 2023; 14:genes14051021. [PMID: 37239381 DOI: 10.3390/genes14051021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Melanoma is one of the most aggressive malignancies of the skin. The genetic composition of melanoma is complex and varies among different subtypes. With the aid of recent technologies such as next generation sequencing and single-cell sequencing, our understanding of the genomic landscape of melanoma and its tumor microenvironment has become increasingly clear. These advances may provide explanation to the heterogenic treatment outcomes of melanoma patients under current therapeutic guidelines and provide further insights to the development of potential new therapeutic targets. Here, we provide a comprehensive review on the genetics related to melanoma tumorigenesis, metastasis, and prognosis. We also review the genetics affecting the melanoma tumor microenvironment and its relation to tumor progression and treatment.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung 900, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chiao-Li Khale Ke
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Psychiatry, Kaohsiung Municipal SiaoGang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Shih-Tsung Cheng
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
50
|
Vand-Rajabpour F, Savage M, Belote RL, Judson-Torres RL. Critical Considerations for Investigating MicroRNAs during Tumorigenesis: A Case Study in Conceptual and Contextual Nuances of miR-211-5p in Melanoma. EPIGENOMES 2023; 7:9. [PMID: 37218870 PMCID: PMC10204420 DOI: 10.3390/epigenomes7020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs are non-coding RNAs fundamental to metazoan development and disease. Although the aberrant regulation of microRNAs during mammalian tumorigenesis is well established, investigations into the contributions of individual microRNAs are wrought with conflicting observations. The underlying cause of these inconsistencies is often attributed to context-specific functions of microRNAs. We propose that consideration of both context-specific factors, as well as underappreciated fundamental concepts of microRNA biology, will permit a more harmonious interpretation of ostensibly diverging data. We discuss the theory that the biological function of microRNAs is to confer robustness to specific cell states. Through this lens, we then consider the role of miR-211-5p in melanoma progression. Using literature review and meta-analyses, we demonstrate how a deep understating of domain-specific contexts is critical for moving toward a concordant understanding of miR-211-5p and other microRNAs in cancer biology.
Collapse
Affiliation(s)
- Fatemeh Vand-Rajabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran 14176-13151, Iran
| | - Meghan Savage
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Rachel L. Belote
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert L. Judson-Torres
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|