1
|
Areny-Balagueró A, Camprubí-Rimblas M, Campaña-Duel E, Solé-Porta A, Ceccato A, Roig A, Laffey JG, Closa D, Artigas A. Priming Mesenchymal Stem Cells with Lipopolysaccharide Boosts the Immunomodulatory and Regenerative Activity of Secreted Extracellular Vesicles. Pharmaceutics 2024; 16:1316. [PMID: 39458645 PMCID: PMC11510928 DOI: 10.3390/pharmaceutics16101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) have been proposed as an alternative to live-cell administration for Acute Respiratory Distress Syndrome (ARDS). MSC-EVs can be chiefly influenced by the environment to which the MSCs are exposed. Here, lipopolysaccharide (LPS) priming of MSCs was used as a strategy to boost the natural therapeutic potential of the EVs in acute lung injury (ALI). Methods: The regenerative and immunemodulatory effect of LPS-primed MSC-EVs (LPS-EVs) and non-primed MSC-EVs (C-EVs) were evaluated in vitro on alveolar epithelial cells and macrophage-like THP-1 cells. In vivo, ALI was induced in adult male rats by the intrapulmonary instillation of HCl and LPS. Rats (n = 8 to 22/group) were randomized to receive a single bolus (1 × 108 particles) of LPS-EVs, C-EVs, or saline. Lung injury severity was assessed at 72 h in lung tissue and bronchoalveolar lavage. Results: In vitro, LPS-EVs improved wound regeneration and attenuated the inflammatory response triggered by the P. aeruginosa infection, enhancing the M2 macrophage phenotype. In in vivo studies, LPS-EVs, but not C-EVs, significantly decreased the neutrophilic infiltration and myeloperoxidase (MPO) activity in lung tissue. Alveolar macrophages from LPS-EVs-treated animals exhibited a reduced expression of CXCL-1, a key neutrophil chemoattractant. However, both C-EVs and LPS-EVs reduced alveolar epithelial and endothelial permeability, mitigating lung damage. Conclusions: EVs from LPS-primed MSCs resulted in a better resolution of ALI, achieving a greater balance in neutrophil infiltration and activation, while avoiding the complete disruption of the alveolar barrier. This opens new avenues, paving the way for the clinical implementation of cell-based therapies.
Collapse
Affiliation(s)
- Aina Areny-Balagueró
- Critical Care Research Center, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (E.C.-D.); (A.C.); (A.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Camprubí-Rimblas
- Critical Care Research Center, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (E.C.-D.); (A.C.); (A.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Campaña-Duel
- Critical Care Research Center, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (E.C.-D.); (A.C.); (A.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Solé-Porta
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; (A.S.-P.); (A.R.)
| | - Adrián Ceccato
- Critical Care Research Center, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (E.C.-D.); (A.C.); (A.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Intensive Care Unit, Hospital Universitari Sagrat Cor, Grupo Quironsalud, 08029 Barcelona, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain; (A.S.-P.); (A.R.)
| | - John G. Laffey
- REMEDI, CÚRAM Centre for Medical Device Research, University of Galway, H91 TK33 Galway, Ireland;
| | - Daniel Closa
- Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain;
| | - Antonio Artigas
- Critical Care Research Center, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (E.C.-D.); (A.C.); (A.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias, CIBERES-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servei de Medicina Intensiva, Corporació Sanitària i Universitària Parc Taulí, 08208 Sabadell, Spain
| |
Collapse
|
2
|
Yamashita A, Ito Y, Osada M, Matsuda H, Hosono K, Tsujikawa K, Okamoto H, Amano H. RAMP1 Signaling Mitigates Acute Lung Injury by Distinctively Regulating Alveolar and Monocyte-Derived Macrophages. Int J Mol Sci 2024; 25:10107. [PMID: 39337592 PMCID: PMC11432488 DOI: 10.3390/ijms251810107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury that induces cytokine hypersecretion. Receptor activity-modifying protein (RAMP) 1, a subunit of the calcitonin gene-related peptide (CGRP) receptor, regulates the production of cytokines. This study examined the role of RAMP1 signaling during lipopolysaccharide (LPS)-induced acute lung injury (ALI). LPS administration to wild-type (WT) mice depleted alveolar macrophages (AMs) and recruited monocyte-derived macrophages (MDMs) and neutrophils. RAMP1-deficient (RAMP1-/-) mice exhibited higher lung injury scores, cytokine levels, and cytokine-producing neutrophil infiltration. RAMP1-deficient AMs produced more cytokines in response to LPS than WT AMs. Adoptive transfer of RAMP1-deficient AMs to RAMP1-/- mice increased cytokine levels and neutrophil accumulation compared to the transfer of WT AMs. RAMP1-/- mice had reduced MDM recruitment and lower pro-inflammatory and reparative macrophage profiles. Cultured bone marrow (BM)-derived RAMP1-deficient macrophages stimulated with LPS showed decreased expression of pro-inflammatory and pro-repairing genes. CGRP administration to WT mice reduced cytokine production and neutrophil accumulation. These findings indicate that RAMP1 signaling mitigates LPS-induced ALI by inactivating AMs and promoting inflammatory and repair activities of MDMs. Targeting RAMP1 signaling presents a potential therapeutic approach for the treatment of ARDS.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0373, Japan; (A.Y.); (Y.I.); (K.H.)
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan (H.O.)
| | - Yoshiya Ito
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0373, Japan; (A.Y.); (Y.I.); (K.H.)
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Mayuko Osada
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0373, Japan; (A.Y.); (Y.I.); (K.H.)
- Department of Emergency and Critical Care Medicine, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Hiromi Matsuda
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan (H.O.)
| | - Kanako Hosono
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0373, Japan; (A.Y.); (Y.I.); (K.H.)
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan;
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan (H.O.)
| | - Hideki Amano
- Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0373, Japan; (A.Y.); (Y.I.); (K.H.)
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| |
Collapse
|
3
|
Zhang W, Wang X, Ma C, Liang B, Ma L, Wang Y, Lin Y, Han S. Pyroptosis inhibition alleviates acute lung injury via E-twenty-six variant gene 5-mediated downregulation of gasdermin D. Respir Physiol Neurobiol 2024; 331:104346. [PMID: 39265817 DOI: 10.1016/j.resp.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a life-threatening condition characterized by excessive pulmonary inflammation, yet its precise pathophysiology remains elusive. Pyroptosis, a programmed cell death mechanism controlled by gasdermin D (GSDMD), has been linked to the etiology of ALI. This study investigated the regulatory functions of the transcription factor E-twenty-six variant gene 5 (ETV5) and GSDMD in ALI. METHODS Lipopolysaccharide (LPS) was used to treat BEAS-2B cells (50 mmol/mL) and establish an LPS-induced mouse model of ALI (by intratracheal administration, 3 mg/kg). Protein-protein docking, immunofluorescence analysis, western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter gene assay were used to examine ETV5-mediated negative feedback regulation of GSDMD and its effects on pyroptosis and ALI. RESULTS Our results showed that the physiological function of ETV5 was reduced by its downregulated expression, which impeded its nuclear translocation in ALI mice. Increased pyroptosis and enhanced production of inflammatory cytokines were associated with LPS-induced ALI. ETV5 overexpression in LPS-treated BEAS-2B cells decreased the expression of total and membrane-bound GSDMD, negatively regulated GSDMD, and prevented pyroptosis. The expression of inflammatory cytokines was subsequently reduced due to this inhibition, which, in turn, reduced ALI. Molecular docking analysis and dual-luciferase reporter gene assay results indicated a direct interaction between ETV5 and GSDMD, which inhibited GSDMD production. CONCLUSION Our results indicate that ETV5 inhibits pyroptosis, decreases the expression of inflammatory cytokines, and negatively regulates GSDMD expression to ameliorate ALI symptoms.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Xinhua Wang
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Chenhui Ma
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Bao Liang
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Lihong Ma
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Yuanjie Lin
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China
| | - Shuguang Han
- Department of Respiratory and Critical Care Medicine, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Wuxi City, Jiangsu Province 214000, China.
| |
Collapse
|
4
|
Zamora ME, Essien EO, Bhamidipati K, Murthy A, Liu J, Kim H, Patel MN, Nong J, Wang Z, Espy C, Chaudhry FN, Ferguson LT, Tiwari S, Hood ED, Marcos-Contreras OA, Omo-Lamai S, Shuvaeva T, Arguiri E, Wu J, Rauova L, Poncz M, Basil MC, Cantu E, Planer JD, Spiller K, Zepp J, Muzykantov VR, Myerson JW, Brenner JS. Marginated Neutrophils in the Lungs Effectively Compete for Nanoparticles Targeted to the Endothelium, Serving as a Part of the Reticuloendothelial System. ACS NANO 2024; 18:22275-22297. [PMID: 39105696 DOI: 10.1021/acsnano.4c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Nanomedicine has long pursued the goal of targeted delivery to specific organs and cell types but has yet to achieve this goal with the vast majority of targets. One rare example of success in this pursuit has been the 25+ years of studies targeting the lung endothelium using nanoparticles conjugated to antibodies against endothelial surface molecules. However, here we show that such "endothelial-targeted" nanocarriers also effectively target the lungs' numerous marginated neutrophils, which reside in the pulmonary capillaries and patrol for pathogens. We show that marginated neutrophils' uptake of many of these "endothelial-targeted" nanocarriers is on par with endothelial uptake. This generalizes across diverse nanomaterials and targeting moieties and was even found with physicochemical lung tropism (i.e., without targeting moieties). Further, we observed this in ex vivo human lungs and in vivo healthy mice, with an increase in marginated neutrophil uptake of nanoparticles caused by local or distant inflammation. These findings have implications for nanomedicine development for lung diseases. These data also suggest that marginated neutrophils, especially in the lungs, should be considered a major part of the reticuloendothelial system (RES), with a special role in clearing nanoparticles that adhere to the lumenal surfaces of blood vessels.
Collapse
Affiliation(s)
- Marco E Zamora
- Drexel University School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Eno-Obong Essien
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Kartik Bhamidipati
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Aditi Murthy
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Jing Liu
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Hyunjun Kim
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Manthan N Patel
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jia Nong
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Zhicheng Wang
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Carolann Espy
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Fatima N Chaudhry
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Laura T Ferguson
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Sachchidanand Tiwari
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth D Hood
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A Marcos-Contreras
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Tea Shuvaeva
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Evguenia Arguiri
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jichuan Wu
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Lubica Rauova
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Mortimer Poncz
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Maria C Basil
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Edward Cantu
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Joseph D Planer
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Kara Spiller
- Drexel University School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, United States
| | - Jarod Zepp
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R Muzykantov
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob W Myerson
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Brenner
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Moore S, Gopichandran K, Sevier E, Gamare S, Almuntashiri S, Ramírez G, Regino N, Jiménez-Alvarez L, Cruz-Lagunas A, Rodriguez-Reyna TS, Zuñiga J, Owen CA, Wang X, Zhang D. Club Cell Secretory Protein-16 (CC16) as a Prognostic Biomarker for COVID-19 and H1N1 Viral Infections. Diagnostics (Basel) 2024; 14:1720. [PMID: 39202207 PMCID: PMC11353392 DOI: 10.3390/diagnostics14161720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and H1N1 viruses are inflammatory lung pathogens that can lead to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). ALI/ARDS are still life-threatening diseases in critically ill patients with 30-40% mortality in the last decade. Currently, there are no laboratory tests for the early diagnosis or prognosis of ALI/ARDS. Club cell secretory protein (CC16) has been investigated as a potential biomarker of lung epithelial damage in various lung diseases. In this study, we evaluated whether plasma CC16 reflects the severity of COVID-19 and H1N1 infections. The plasma CC16 levels showed no significant differences between H1N1 and COVID-19 groups (p = 0.09). Among all subjects, CC16 levels were significantly higher in non-survivors than in survivors (p = 0.001). Upon the area under the receiver operating characteristic (AUROC) analysis, CC16 had an acceptable value to distinguish survivors and non-survivors (p = 0.002). In the COVID-19 group, plasma CC16 levels moderately correlated with the Acute Physiology and Chronic Health Evaluation II (APACHE II) score (r = 0.374, p = 0.003) and Sequential Organ Failure Assessment (SOFA) score (r = 0.474, p < 0.001). In the H1N1 group, a positive correlation was observed between the CC16 levels and hospital length of stay (r = 0.311, p = 0.022). Among all the patients, weak correlations between plasma CC16 levels with the SOFA score (r = 0.328, p < 0.001) and hospital length of stay (r = 0.310, p < 0.001) were observed. Thus, circulating CC16 might reflect the severity of COVID-19 and H1N1 infections.
Collapse
Affiliation(s)
- Shane Moore
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Keerthana Gopichandran
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Elizabeth Sevier
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Siddhika Gamare
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Sultan Almuntashiri
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, Mexico City 14080, Mexico
| | - Nora Regino
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, Mexico City 14080, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City 14380, Mexico
| | - Luis Jiménez-Alvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, Mexico City 14080, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, Mexico City 14080, Mexico
| | - Tatiana S. Rodriguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan 4502, Mexico City 14080, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City 14380, Mexico
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyun Wang
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Duo Zhang
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Uppin V, Zarei M, Acharya P, Nair D, Kempaiah B, Talahalli R. Zerumbone exhibits anti-inflammatory effects by suppressing eicosanoid signaling: Evidence from LPS-induced peripheral blood leukocytes. Prostaglandins Other Lipid Mediat 2024; 173:106852. [PMID: 38761959 DOI: 10.1016/j.prostaglandins.2024.106852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Zerumbone, a sesquiterpene isolated from Zingiber zerumbet, has many bioactivities, exhibiting anti-inflammatory properties. However, the effect of zerumbone on the eicosanoid signaling pathway has yet to be examined. Here, we deciphered the anti-eicosanoid properties of zerumbone isolated from ginger. The molecular interaction between zerumbone and eicosanoid metabolizing enzymes (COX-2, 5-LOX, FLAP, and LTA4-hydrolase) and receptors (EP-4, BLT-1, and ICAM-1) along with NOS-2 were assessed using Auto-Dock 4.2 and visualized by chimera and Liggplot+ software. Further, the leukocytes were treated with zerumbone (1-20 μM) and activated using bacterial lipopolysaccharide (LPS-10 nM). The oxidative stress (OS) markers, antioxidant enzymes, and the eicosanoid pathway mediators such as COX-2, 5-LOX, BLT-1, and EP-4 were assessed. The molecular interaction of zerumbone with eicosanoids showed a higher binding affinity with mPGES-1, followed by NOS-2, FLAP, COX-2, LTA-4-hydrolase, and BLT-1. The concentration of 5 μM zerumbone effectively prevented the generation of reactive oxygen species (ROS) and nitric oxide (NO). Likewise, zerumbone significantly (p<0.05) inhibited COX-2, 5-LOX, NOS-2, EP-4, BLT-1, and ICAM-1 expression in LPS-induced peripheral blood leukocytes from rats. Further, the zerumbone treatment on the human PBMCs activated with LPS showed significant inhibition in the expression of ICAM1, COX-2, 5-LOX, and the generation of inflammatory cytokines compared to the control. Overall, the data presented infers that zerumbone positively modulates critical enzymes and receptors of eicosanoids in leukocytes activated with lipopolysaccharides. Thus, zerumbone can be a potential anti-eicosanoid drug in managing inflammation.
Collapse
Affiliation(s)
- Vinayak Uppin
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Mehrdad Zarei
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Pooja Acharya
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Devika Nair
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Bettadaiah Kempaiah
- Dept. of Spices and Flavor Sciences, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Ramaprasad Talahalli
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India.
| |
Collapse
|
7
|
Granja T, Köhler D, Tang L, Burkard P, Eggstein C, Hemmen K, Heinze KG, Heck-Swain KL, Koeppen M, Günther S, Blaha M, Magunia H, Bamberg M, Konrad F, Ngamsri KC, Fuhr A, Keller M, Bernard AM, Haeberle HA, Bakchoul T, Zarbock A, Nieswandt B, Rosenberger P. Semaphorin 7A coordinates neutrophil response during pulmonary inflammation and sepsis. Blood Adv 2024; 8:2660-2674. [PMID: 38489236 PMCID: PMC11157222 DOI: 10.1182/bloodadvances.2023011778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
ABSTRACT Pulmonary defense mechanisms are critical for host integrity during pneumonia and sepsis. This defense is fundamentally dependent on the activation of neutrophils during the innate immune response. Recent work has shown that semaphorin 7A (Sema7A) holds significant impact on platelet function, yet its role on neutrophil function within the lung is not well understood. This study aimed to identify the role of Sema7A during pulmonary inflammation and sepsis. In patients with acute respiratory distress syndrome (ARDS), we were able to show a correlation between Sema7A and oxygenation levels. During subsequent workup, we found that Sema7A binds to the neutrophil PlexinC1 receptor, increasing integrins, and L-selectin on neutrophils. Sema7A prompted neutrophil chemotaxis in vitro and the formation of platelet-neutrophil complexes in vivo. We also observed altered adhesion and transmigration of neutrophils in Sema7A-/-animals in the lung during pulmonary inflammation. This effect resulted in increased number of neutrophils in the interstitial space of Sema7A-/- animals but reduced numbers of neutrophils in the alveolar space during pulmonary sepsis. This finding was associated with significantly worse outcome of Sema7A-/- animals in a model of pulmonary sepsis. Sema7A has an immunomodulatory effect in the lung, affecting pulmonary sepsis and ARDS. This effect influences the response of neutrophils to external aggression and might influence patient outcome. This trial was registered at www.ClinicalTrials.gov as #NCT02692118.
Collapse
Affiliation(s)
- Tiago Granja
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
- Lusofona's Research Center for Biosciences & Health Technologies, CBIOS-Universidade, Lisboa, Portugal
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Linyan Tang
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
- Department of Intensive Care Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Philipp Burkard
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katrin G. Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ka-Lin Heck-Swain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Sven Günther
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Maximilian Blaha
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Harry Magunia
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Maximilian Bamberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Franziska Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | | | - Anika Fuhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Marius Keller
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Alice M. Bernard
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Helene A. Haeberle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Tamam Bakchoul
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Alexander Zarbock
- Department of Anesthesiology and Intensive Care Medicine and Pain Medicine, University Hospital, Münster, Germany
| | - Bernhard Nieswandt
- Department of Intensive Care Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| |
Collapse
|
8
|
Brannon ER, Piegols LD, Cady G, Kupor D, Chu X, Guevara MV, Lima MRN, Kanthi Y, Pinsky DJ, Uhrich KE, Eniola-Adefeso O. Polymerized Salicylic Acid Microparticles Reduce the Progression and Formation of Human Neutrophil Extracellular Traps (NET)s. Adv Healthc Mater 2024:e2400443. [PMID: 38898728 DOI: 10.1002/adhm.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Neutrophils can contribute to inflammatory disease propagation via innate mechanisms intended for inflammation resolution. For example, neutrophil extracellular traps (NETs) are necessary for trapping pathogens but can contribute to clot formation and blood flow restriction, that is, ischemia. Currently, no therapeutics in the clinic directly target NETs despite the known involvement of NETs contributing to mortality and increased disease severity. Vascular-deployed particle-based therapeutics are a novel and robust alternative to traditional small-molecule drugs by enhancing drug delivery to cells of interest. This work designs a high-throughput assay to investigate the immunomodulatory behavior and functionality of salicylic acid-based polymer-based particle therapeutics against NETosis in human neutrophils. Briefly, this work finds that polymeric composition plays a role, and particle size can also influence rates of NETosis. Salicylate-based polymeric (Poly-SA) particles are found to functionally inhibit NETosis depending on the particle size and concentration exposed to neutrophils. This work demonstrates the high throughput method can help fast-track particle-based therapeutic optimization and design, more efficiently preparing this innovative therapeutics for the clinic.
Collapse
Affiliation(s)
- Emma R Brannon
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - Logan D Piegols
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - Gillian Cady
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Kupor
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - Xueqi Chu
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - M Valentina Guevara
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
| | - Mariana R N Lima
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Section of Vascular Thrombosis & Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, USA
| | - David J Pinsky
- Division of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathryn E Uhrich
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, NCRC B28, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Sun M, Wei J, Su Y, He Y, Ge L, Shen Y, Xu B, Bi Y, Zheng C. Red Blood Cell-Hitchhiking Delivery of Simvastatin to Relieve Acute Respiratory Distress Syndrome. Int J Nanomedicine 2024; 19:5317-5333. [PMID: 38859953 PMCID: PMC11164090 DOI: 10.2147/ijn.s460890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects. Methods Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs). Results The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug's circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug's efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions. Conclusion RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM's poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.
Collapse
Affiliation(s)
- Mengjuan Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jun Wei
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yanhui Su
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yangjingwan He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Liang Ge
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, People’s Republic of China
| | - Yanlong Bi
- Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
Cao F, Zhang L, Zhao Z, Shen X, Xiong J, Yang Z, Gong B, Liu M, Chen H, Xiao H, Huang M, Liu Y, Qiu G, Wang K, Zhou F, Xiao J. TM9SF1 offers utility as an efficient predictor of clinical severity and mortality among acute respiratory distress syndrome patients. Front Immunol 2024; 15:1408406. [PMID: 38887291 PMCID: PMC11180774 DOI: 10.3389/fimmu.2024.1408406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a major cause of death among critically ill patients in intensive care settings, underscoring the need to identify biomarkers capable of predicting ARDS patient clinical status and prognosis at an early time point. This study specifically sought to explore the utility and clinical relevance of TM9SF1 as a biomarker for the early prediction of disease severity and prognostic outcomes in patients with ARDS. Methods This study enrolled 123 patients with severe ARDS and 116 patients with non-severe ARDS for whom follow-up information was available. The mRNA levels of TM9SF1 and cytokines in peripheral blood mononuclear cells from these patients were evaluated by qPCR. The predictive performance of TM9SF1 and other clinical indicators was evaluated using received operating characteristic (ROC) curves. A predictive nomogram was developed based on TM9SF1 expression and evaluated for its ability in the early prediction of severe disease and mortality in patients with ARDS. Results TM9SF1 mRNA expression was found to be significantly increased in patients with severe ARDS relative to those with non-severe disease or healthy controls. ARDS severity increased in correspondence with the level of TM9SF1 expression (odds ratio [OR] = 2.43, 95% confidence interval [CI] = 2.15-3.72, P = 0.005), and high TM9SF1 levels were associated with a greater risk of mortality (hazard ratio [HR] = 2.27, 95% CI = 2.20-4.39, P = 0.001). ROC curves demonstrated that relative to other clinical indicators, TM9SF1 offered superior performance in the prediction of ARDS severity and mortality. A novel nomogram incorporating TM9SF1 expression together with age, D-dimer levels, and C-reactive protein (CRP) levels was developed and was used to predict ARDS severity (AUC = 0.887, 95% CI = 0.715-0.943). A separate model incorporating TM9SF1 expression, age, neutrophil-lymphocyte ratio (NLR), and D-dimer levels (C-index = 0.890, 95% CI = 0.627-0.957) was also developed for predicting mortality. Conclusion Increases in ARDS severity and patient mortality were observed with rising levels of TM9SF1 expression. TM9SF1 may thus offer utility as a novel biomarker for the early prediction of ARDS patient disease status and clinical outcomes.
Collapse
Affiliation(s)
- Fengsheng Cao
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lu Zhang
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zhenwang Zhao
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaofang Shen
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jinsong Xiong
- Gucheng People’s Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zean Yang
- Gucheng People’s Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Baoxian Gong
- Gucheng People’s Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Mingming Liu
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Huabo Chen
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Hong Xiao
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Huang
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yang Liu
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Guangyu Qiu
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ke Wang
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Fengqiao Zhou
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Juan Xiao
- Department of Critical Care Medicine & Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
11
|
Peterson JM, Smith TA, Rock EP, Magnani JL. Selectins in Biology and Human Disease: Opportunity in E-selectin Antagonism. Cureus 2024; 16:e61996. [PMID: 38983984 PMCID: PMC11232095 DOI: 10.7759/cureus.61996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa (sLea). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology. They have been implicated in the pathology of diverse inflammatory disorders, and several selectin antagonists have been tested clinically. E-selectin plays a unique role in leukocyte activation, making it an attractive target for intervention, for example, in sickle cell disease (SCD). This review summarizes selectin biology and pathology, structure and ligand binding, and selectin antagonists that have reached clinical testing with an emphasis on E-selectin.
Collapse
Affiliation(s)
| | | | - Edwin P Rock
- Development, GlycoMimetics, Inc., Rockville, USA
| | - John L Magnani
- Research and Development, GlycoTech Corporation, Rockville, USA
| |
Collapse
|
12
|
Duan Y, Chen H, Liu D. Dose-dependent multi-organ injury following lipopolysaccharide gas inhalation. J Int Med Res 2024; 52:3000605241247707. [PMID: 38717029 PMCID: PMC11080761 DOI: 10.1177/03000605241247707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Lipopolysaccharide (LPS) is widely used to establish various animal models, including models of acute lung injury, cardiomyocyte damage, and acute kidney injury. Currently, there is no consensus on the diagnosis and treatment of LPS-induced disease. We herein present a case series of four patients who developed dose-dependent multi-organ injury, including acute lung injury and acute kidney injury, after inhaling LPS gas in a sealed room. These patients exhibited varying degrees of multi-organ injury characterized by inflammatory cell infiltration and secretion of proinflammatory cytokines. One patient showed progressive symptoms even with active treatment, leading to mild pulmonary fibrosis. This study emphasizes the importance of early diagnosis and treatment of significant LPS exposure and suggests personalized treatment approaches for managing LPS poisoning.
Collapse
Affiliation(s)
- Yang Duan
- The Seventh People’s Hospital of Chongqing, No. 1, Village 1, Lijiatuo Labor Union, Banan District, Chongqing, China
| | - Hengyi Chen
- The Seventh People’s Hospital of Chongqing, No. 1, Village 1, Lijiatuo Labor Union, Banan District, Chongqing, China
| | - Dan Liu
- The Seventh People’s Hospital of Chongqing, No. 1, Village 1, Lijiatuo Labor Union, Banan District, Chongqing, China
| |
Collapse
|
13
|
Li Q, Shi M, Ang Y, Yu P, Wan B, Lin B, Chen W, Yue Z, Shi Y, Liu F, Wang H, Duan M, Long Y, Bao H. Hydrogen ameliorates endotoxin-induced acute lung injury through AMPK-mediated bidirectional regulation of Caspase3. Mol Immunol 2024; 168:64-74. [PMID: 38428216 DOI: 10.1016/j.molimm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, China; Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Min Shi
- Department of Anesthesiology, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Yang Ang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Pan Yu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Bing Wan
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Bin Lin
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Wei Chen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Zichuan Yue
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Faqi Liu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Hao Wang
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China; Department of Anesthesiology, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Jiangsu 210019, China.
| | - Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China.
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, China.
| |
Collapse
|
14
|
Koc K, Ozek NS, Aysin F, Demir O, Yilmaz A, Yilmaz M, Geyikoglu F, Erol HS. Hispidulin exerts a protective effect against oleic acid induced-ARDS in the rat via inhibition of ACE activity and MAPK pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:755-766. [PMID: 36624973 DOI: 10.1080/09603123.2023.2166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates the protective role of Hispidulin on acute respiratory distress syndrome (ARDS) in rats. Rats were divided into three groups: control, ARDS, ARDS+ Hispidulin. The ARDS models were established by injecting rats with oleic acid. Hispidulin (100 mg/kg) was injected i.p. an hour before ARDS. Myeloperoxidase (MPO), Interleukin-8 (IL-8), Mitogen-activated protein kinases (MAPK), Lipid Peroxidation (LPO), Superoxide Dismutase (SOD), Glutathione (GSH), and Angiotensin-converting enzyme (ACE) were determined by ELISA. Tumor necrosis factor-alpha (TNF-α) expression was described by RT-qPCR. Caspase-3 immunostaining was performed to evaluate apoptosis. Compared with the model group, a significant decrease was observed in the MPO, IL-8, MAPK, ACE, LPO levels, and TNF-α expression in the ARDS+ Hispidulin group. Moreover, reduced caspase-3 immunoreactivity and activity of ACE were detected in the Hispidulin+ARDS group. The protective effect of Hispidulin treatment may act through inhibition of the ACE activity and then regulation of inflammatory cytokine level and alteration of apoptosis.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Asli Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Nanoscience and Nanoengineering, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Kastamonu University, Faculty of Veterinary Medicine, Kastamonu, TURKEY
| |
Collapse
|
15
|
Blin T, Parent C, Pichon G, Guillon A, Jouan Y, Allouchi H, Aubrey N, Boursin F, Domain R, Korkmaz B, Sécher T, Heuzé-Vourc'h N. The proteolytic airway environment associated with pneumonia acts as a barrier for treatment with anti-infective antibodies. Eur J Pharm Biopharm 2024; 195:114163. [PMID: 38086491 DOI: 10.1016/j.ejpb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/29/2024]
Abstract
Like pneumonia, coronavirus disease 2019 (COVID-19) is characterized by a massive infiltration of innate immune cells (such as polymorphonuclear leukocytes) into the airways and alveolar spaces. These cells release proteases that may degrade therapeutic antibodies and thus limit their effectiveness. Here, we investigated the in vitro and ex vivo impact on anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) IgG1s and other IgG subclasses (IgG2 and IgG4) of the neutrophil elastase, proteinase 3 and cathepsin G (the three main neutrophil serine proteases) found in endotracheal aspirates from patients with severe COVID-19. Although the IgGs were sensitive to neutrophil serine proteases, IgG2 was most resistant to proteolytic degradation. The two anti-SARS CoV2 antibodies (casirivimab and imdevimab) were sensitive to the lung's proteolytic environment, although neutrophil serine protease inhibitors only partly limited the degradation. Overall, our results show that the pneumonia-associated imbalance between proteases and their inhibitors in the airways contributes to degradation of antiviral antibodies.
Collapse
Affiliation(s)
- Timothée Blin
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Department of Pulmonary Medicine, Cystic Fibrosis Resource Center, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Gabrielle Pichon
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Antoine Guillon
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Critical Care Department, F-37032 Tours, France
| | - Youenn Jouan
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Cardiac Surgery Department, F-37032 Tours, France
| | - Hassan Allouchi
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France; Tours University Hospital (CHRU), Pharmacy Department, F-37032 Tours, France
| | - Nicolas Aubrey
- University of Tours, F-37032 Tours, France; UMR INRA ISP 1282, BioMap Team, F-37032 Tours, France
| | - Fanny Boursin
- University of Tours, F-37032 Tours, France; UMR INRA ISP 1282, BioMap Team, F-37032 Tours, France
| | - Roxane Domain
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Baris Korkmaz
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Thomas Sécher
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Respiratory Disease Research Centre, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France.
| |
Collapse
|
16
|
Radi MH, El-Shiekh RA, Hegab AM, Henry SR, Avula B, Katragunta K, Khan IA, El-Halawany AM, Abdel-Sattar E. LC-QToF chemical profiling of Euphorbia grantii Oliv. and its potential to inhibit LPS-induced lung inflammation in rats via the NF-κB, CY450P2E1, and P38 MAPK14 pathways. Inflammopharmacology 2024; 32:461-494. [PMID: 37572137 PMCID: PMC10907465 DOI: 10.1007/s10787-023-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. The aerial parts of Euphorbia grantii Oliv. were extracted with methanol to give a total methanolic extract (TME), which was further fractionated into dichloromethane (DCMF) and the remaining mother liquor (MLF) fractions. Biological guided anti-inflammatory assays in vitro revealed that the DCMF showed the highest activity (IC50 6.9 ± 0.2 μg/mL and 0.29 ± 0.01 μg/mL) compared to. celecoxib (IC50 of 88.0 ± 1 μg/mL and 0.30 ± 0.01 μg/mL) on COX-1 and COX-2, respectively. Additionally, anti-LOX activity was IC50 = 24.0 ± 2.5 μg/mL vs. zileuton with IC50 of 40.0 ± 0.5 μg/mL. LC-DAD-QToF analysis of TME and the active DCMF resulted in the tentative identification and characterization of 56 phytochemical compounds, where the diterpenes were the dominated metabolites. An LPS-induced inflammatory model of ALI (10 mg/kg i.p) was used to assess the anti-inflammatory potential of DCMF in vivo at dose of 200 mg/kg and 300 mg/kg compared to dexamethasone (5 mg/kg i.p). Our treatments significantly reduced the pro-inflammatory cytokines (TNF-α, IL-1, IL-6, and MPO), increased the activity of antioxidant enzymes (SOD, CAT, and GSH), decreased the activity of oxidative stress enzyme (MDA), and reduced the expression of inflammatory genes (p38.MAPK14 and CY450P2E1). The western blotting of NF-κB p65 in lung tissues was inhibited after orally administration of the DCMF. Histopathological study of the lung tissues, scoring, and immunohistochemistry of transforming growth factor-beta 1 (TGF-β1) were also assessed. In both dose regimens, DCMF of E. grantii prevented further lung damage and reduced the side effects of LPS on acute lung tissue injury.
Collapse
Affiliation(s)
- Mai Hussin Radi
- Herbal Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amany Mohammed Hegab
- Developmental Pharmacology Department, Egyptian Drug Authority (EDA), Giza, Egypt
| | | | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Kumar Katragunta
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, University of Mississippi, University, MS, 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Ali M El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
17
|
Liu C, Xu J, Fan J, Liu C, Xie W, Kong H. DPP-4 exacerbates LPS-induced endothelial cells inflammation via integrin-α5β1/FAK/AKT signaling. Exp Cell Res 2024; 435:113909. [PMID: 38184221 DOI: 10.1016/j.yexcr.2023.113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Endothelial dysfunction plays a pivotal role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Dipeptidyl peptidase IV (DPP-4), a cell surface glycoprotein, has been implicated in endothelial inflammation and barrier dysfunction. In this study, the role of DPP-4 on lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cells (HPMECs) dysfunction and the underlying mechanism were investigated by siRNA-mediated knockdown of DPP-4. Our results indicated that LPS (1 μg/ml) challenge resulted in either the production and releasing of DPP-4, as well as the secretion of IL-6 and IL-8 in HPMECs. DPP-4 knockdown inhibited chemokine releasing and monolayer hyper-permeability in LPS challenged HPMECs. When cocultured with human polymorphonuclear neutrophils (PMNs), DPP4 knockdown suppressed LPS-induced neutrophil-endothelial adhesion, PMN chemotaxis and trans-endothelial migration. Western blotting showed that DPP-4 knockdown attenuated LPS-induced activation of TLR4/NF-κB pathway. Immunoprecipitation and liquid chromatography-tandem mass spectrometry revealed that DPP-4 mediated LPS-induced endothelial inflammation by interacting with integrin-α5β1. Moreover, exogenous soluble DPP-4 treatment sufficiently activated integrin-α5β1 downstream FAK/AKT/NF-κB signaling, thereafter inducing ICAM-1 upregulation in HPMECs. Collectively, our results suggest that endothelia synthesis and release DPP-4 under the stress of endotoxin, which interact with integrin-α5β1 complex in an autocrine or paracrine manner to exacerbate endothelial inflammation and enhance endothelial cell permeability. Therefore, blocking DDP-4 could be a potential therapeutic strategy to prevent endothelial dysfunction in ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jian Xu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, 200433, China
| | - Jiahao Fan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
18
|
Li X, Qiao Q, Liu X, Hu Q, Yu Y, Qin X, Tian T, Tian Y, Ou X, Niu B, Yang C, Kong L, Zhang Z. Engineered Biomimetic Nanovesicles Based on Neutrophils for Hierarchical Targeting Therapy of Acute Respiratory Distress Syndrome. ACS NANO 2024; 18:1658-1677. [PMID: 38166370 DOI: 10.1021/acsnano.3c09848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a clinically severe respiratory disease that causes severe medical and economic burden. To improve therapeutic efficacy, effectively targeting delivery to the inflamed lungs and inflamed cells remains an ongoing challenge. Herein, we designed engineered biomimetic nanovesicles (DHA@ANeu-DDAB) by fusion of lung-targeting functional lipid, neutrophil membrane containing activated β2 integrins, and the therapeutic lipid, docosahexaenoic acid (DHA). By the advantage of lung targeting lipid and β2 integrin targeting adhesion, DHA@ANeu-DDAB can first target lung tissue and further target inflammatory vascular endothelial cells, to achieve "tissue first, cell second" hierarchical delivery. In addition, the β2 integrins in DHA@ANeu-DDAB could bind to the intercellular cell adhesion molecule-1/2 (ICAM-1/2) ligand on the endothelium in the inflamed blood vessels, thus inhibiting neutrophils' infiltration in the blood circulation. DHA administration to inflamed lungs could effectively regulate macrophage phenotype and promote its anti-inflammatory activity via enhanced biosynthesis of specialized pro-resolving mediators. In the lipopolysaccharide-induced ARDS mouse model, DHA@ANeu-DDAB afforded a comprehensive and efficient inhibition of lung inflammation and promoted acute lung damage repair. Through mimicking physiological processes, these engineered biomimetic vesicles as a delivery system possess good potential in targeting therapy for ARDS.
Collapse
Affiliation(s)
- Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Ou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
19
|
Koc K. Hippophae rhamnoides Prevents Oleic Acid-Induced Acute Respiratory Distress Syndrome by Releasing Acetylcholinesterase Activity and Mitigation of Angiotensin-Converting Enzyme Level. J Med Food 2024; 27:72-78. [PMID: 37976106 DOI: 10.1089/jmf.2023.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Hippophae rhamnoides exhibit a wide variety of medicinal and pharmacological effects. The present study aims to determine the role of ethanol extract of H. rhamnoides on oleic acid (OA)-induced acute respiratory distress syndrome (ARDS) in rats. Male rats were randomly divided into the following groups: (I) Control, (II) OA, and (III) OA+H. rhamnoides. H. rhamnoides extract (500 mg/kg) was given orally for 2 weeks before OA in Group III. Levels of total antioxidant capacity, total oxidant status (TOS), myeloperoxidase (MPO), mitogen-activated protein kinase (MAPK), acetylcholinesterase (AChE), and angiotensin-converting enzyme (ACE) were quantified by enzyme-linked immunosorbent assay (ELISA). Real time quantitative polymerase chain reaction was utilized to evaluate the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and matrix metalloproteinase 2 (MMP2). Also, Caspase-3 immunostaining and expression were performed to evaluate apoptosis. Compared with the OA group, there was a significantly decrease in the levels of MPO, TOS, MAPK, and ACE and in the expression of NF-κB, TNF-α, IL-6, MMP2, and Caspase-3 in the H. rhamnoides administration group. Moreover, the activity of AChE and level of TAS were substantially higher in the H. rhamnoides administration compared with the OA group. The findings in the study suggest that the protective effect of H. rhamnoides pretreatment may act through inhibition of the ACE activity, releasing AChE, regulation of inflammatory cytokine levels, and suppression of apoptotic process in ARDS.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
20
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 2: downstream decoding. Biochem J 2023; 480:1909-1928. [PMID: 38038975 PMCID: PMC10754290 DOI: 10.1042/bcj20230277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Signaling by the extracellular signal-regulated kinase (ERK) pathway controls many cellular processes, including cell division, death, and differentiation. In this second installment of a two-part review, we address the question of how the ERK pathway exerts distinct and context-specific effects on multiple processes. We discuss how the dynamics of ERK activity induce selective changes in gene expression programs, with insights from both experiments and computational models. With a focus on single-cell biosensor-based studies, we summarize four major functional modes for ERK signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave propagation of morphological changes, and diversification of cellular gene expression states. These modes of operation are disrupted in cancer and other related diseases and represent potential targets for therapeutic intervention. By understanding the dynamic mechanisms involved in ERK signaling, there is potential for pharmacological strategies that not only simply inhibit ERK, but also restore functional activity patterns and improve disease outcomes.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| |
Collapse
|
21
|
Chen XY, Kao C, Peng SW, Chang JH, Lee YL, Laiman V, Chung KF, Bhavsar PK, Heriyanto DS, Chuang KJ, Chuang HC. Role of DCLK1/Hippo pathway in type II alveolar epithelial cells differentiation in acute respiratory distress syndrome. Mol Med 2023; 29:159. [PMID: 37996782 PMCID: PMC10668445 DOI: 10.1186/s10020-023-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin-like kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS-associated AECII differentiation remains unclear. Therefore, the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation in ARDS. MATERIALS AND METHODS AECII MLE-12 cells were exposed to 0, 0.1, or 1 μg/mL of lipopolysaccharide (LPS) for 6 and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS and were euthanized for lung collection on days 3 and 7. RESULTS We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) and p53 while increasing T1α (podoplanin) and E-cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation and increased TAZ levels were observed in LPS-exposed AECII within 12 h. Inhibition of YAP consistently decreased cell levels of SPC, claudin 4 (CLDN-4), galectin 3 (LGALS-3), and p53 while increasing transepithelial electrical resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consistent with the results in LPS-exposed AECII at 6 h and mouse SPC-positive (SPC+) cells after 3-day LPS exposure. We observed that downregulated DCLK1 increased p-YAP/YAP, while DCLK1 overexpression slightly reduced p-YAP/YAP, indicating an association between DCLK1 and Hippo-YAP pathway. CONCLUSIONS We conclude that DCLK1-mediated Hippo signaling components of YAP/TAZ regulated markers of AECII-to-AECI differentiation in an LPS-induced ARDS model.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ching Kao
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Syue-Wei Peng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| | - Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- National Heart and Lung Institute, Imperial College London, London, UK.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Inhalation Toxicology Research Lab (ITRL), School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
| |
Collapse
|
22
|
Islam MM, Takeyama N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int J Mol Sci 2023; 24:15805. [PMID: 37958788 PMCID: PMC10649138 DOI: 10.3390/ijms242115805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neutrophils are the principal trouper of the innate immune system. Activated neutrophils undergo a noble cell death termed NETosis and release a mesh-like structure called neutrophil extracellular traps (NETs) as a part of their defensive strategy against microbial pathogen attack. This web-like architecture includes a DNA backbone embedded with antimicrobial proteins like myeloperoxidase (MPO), neutrophil elastase (NE), histones and deploys in the entrapment and clearance of encountered pathogens. Thus NETs play an inevitable beneficial role in the host's protection. However, recent accumulated evidence shows that dysregulated and enhanced NET formation has various pathological aspects including the promotion of sepsis, pulmonary, cardiovascular, hepatic, nephrological, thrombotic, autoimmune, pregnancy, and cancer diseases, and the list is increasing gradually. In this review, we summarize the NET-mediated pathophysiology of different diseases and focus on some updated potential therapeutic approaches against NETs.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram 4202, Bangladesh
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
23
|
Mayer-Barber KD. Granulocytes subsets and their divergent functions in host resistance to Mycobacterium tuberculosis - a 'tipping-point' model of disease exacerbation. Curr Opin Immunol 2023; 84:102365. [PMID: 37437471 PMCID: PMC10543468 DOI: 10.1016/j.coi.2023.102365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Granulocytes are innate immune effector cells with essential functions in host resistance to bacterial infections. I will discuss emerging evidence that during Mycobacterium tuberculosis infection, counter-intuitively, eosinophils are host-protective while neutrophils are host detrimental. Additionally, I will propose a 'tipping-point' model in which neutrophils are an integral part of a feedforward loop driving tuberculosis disease exacerbation.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, 20892, USA.
| |
Collapse
|
24
|
Tang Y, Zheng F, Bao X, Zheng Y, Hu X, Lou S, Zhao H, Cui S. Discovery of Highly Selective and Orally Bioavailable PI3Kδ Inhibitors with Anti-Inflammatory Activity for Treatment of Acute Lung Injury. J Med Chem 2023; 66:11905-11926. [PMID: 37606563 DOI: 10.1021/acs.jmedchem.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PI3Kδ is a promising target for the treatment of inflammatory disease; however, the application of PI3Kδ inhibitors in acute respiratory inflammatory diseases is rarely investigated. In this study, through scaffold hopping design, we report a new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amine-tethered 3-methyl-1-aryl-1H-indazoles as highly selective and potent PI3Kδ inhibitors with significant anti-inflammatory activities for treatment of acute lung injury (ALI). There were 29 compounds designed, prepared, and subjected to PI3Kδ inhibitory activity evaluation and anti-inflammatory activity evaluation in macrophages. (S)-29 was identified as a candidate with high PI3Kδ inhibitory activity, isoform selectivity, and high oral bioavailability. The in vivo administration of (S)-29 at 10 mg/kg dosage could significantly ameliorate histopathological changes and attenuate lung inflammation in lung tissues of LPS-challenged mice. Molecular docking demonstrated the success of scaffold hopping design. Overall, (S)-29 is a potent PI3Kδ inhibitor which might be a promising candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fanli Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaodong Bao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Siyue Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Bhat TA, Kalathil SG, Goniewicz ML, Hutson A, Thanavala Y. Not all vaping is the same: differential pulmonary effects of vaping cannabidiol versus nicotine. Thorax 2023; 78:922-932. [PMID: 36823163 PMCID: PMC10447384 DOI: 10.1136/thorax-2022-218743] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
RATIONALE Vaping has become a popular method of inhaling various psychoactive substances. While evaluating respiratory effects of vaping have primarily focused on nicotine-containing products, cannabidiol (CBD)-vaping is increasingly becoming popular. It currently remains unknown whether the health effects of vaping nicotine and cannabinoids are similar. OBJECTIVES This study compares side by side the pulmonary effects of acute inhalation of vaporised CBD versus nicotine. METHODS In vivo inhalation study in mice and in vitro cytotoxicity experiments with human cells were performed to assess the pulmonary damage-inducing effects of CBD or nicotine aerosols emitted from vaping devices. MEASUREMENTS AND MAIN RESULTS Pulmonary inflammation in mice was scored by histology, flow cytometry, and quantifying levels of proinflammatory cytokines and chemokines. Lung damage was assessed by histology, measurement of myeloperoxidase activity and neutrophil elastase levels in the bronchoalveolar lavage fluid and lung tissue. Lung epithelial/endothelial integrity was assessed by quantifying BAL protein levels, albumin leak and pulmonary FITC-dextran leak. Oxidative stress was determined by measuring the antioxidant potential in the BAL and lungs. The cytotoxic effects of CBD and nicotine aerosols on human neutrophils and human small airway epithelial cells were evaluated using in vitro air-liquid interface system. Inhalation of CBD aerosol resulted in greater inflammatory changes, more severe lung damage and higher oxidative stress compared with nicotine. CBD aerosol also showed higher toxicity to human cells compared with nicotine. CONCLUSIONS Vaping of CBD induces a potent inflammatory response and leads to more pathological changes associated with lung injury than vaping of nicotine.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Suresh G Kalathil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Alan Hutson
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
26
|
Sakamoto N, Okuno D, Tokito T, Yura H, Kido T, Ishimoto H, Tanaka Y, Mukae H. HSP47: A Therapeutic Target in Pulmonary Fibrosis. Biomedicines 2023; 11:2387. [PMID: 37760828 PMCID: PMC10525413 DOI: 10.3390/biomedicines11092387] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by a progressive decline in lung function and poor prognosis. The deposition of the extracellular matrix (ECM) by myofibroblasts contributes to the stiffening of lung tissue and impaired oxygen exchange in IPF. Type I collagen is the major ECM component and predominant collagen protein deposited in chronic fibrosis, suggesting that type I collagen could be a target of drugs for fibrosis treatment. Heat shock protein 47 (HSP47), encoded by the serpin peptidase inhibitor clade H, member 1 gene, is a stress-inducible collagen-binding protein. It is an endoplasmic reticulum-resident molecular chaperone essential for the correct folding of procollagen. HSP47 expression is increased in cellular and animal models of pulmonary fibrosis and correlates with pathological manifestations in human interstitial lung diseases. Various factors affect HSP47 expression directly or indirectly in pulmonary fibrosis models. Overall, understanding the relationship between HSP47 expression and pulmonary fibrosis may contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Daisuke Okuno
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takatomo Tokito
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hirokazu Yura
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
27
|
Simard RD, Joyal M, Beaugrand T, Gauthier J, Hardine E, Desriac A, Buffet CH, Prévost M, Nemer M, Guindon Y. Synthesis of Sialyl Lewis X Mimetics with E- and P-Selectin Binding Properties and Immunosuppressive Activity. J Org Chem 2023; 88:10974-10985. [PMID: 37449872 DOI: 10.1021/acs.joc.3c00956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
E- and P-selectins are adhesion proteins implicated in immune cell recruitment at sites of infection, making them important drug targets for diseases involving excessive and uncontrolled inflammation. In this study, we developed an efficient strategy to synthesize bicyclic galactopyranosides through a key stereoselective equatorial C4-propiolate addition and TMSCN axial C-glycosidation. The nitrile group can then be converted to the carboxyl and different bioisosteres at a late stage in the synthesis, allowing for various derivatizations to potentially enhance biological activity. The sialyl LewisX glycomimetic featuring this rigidified bicyclic galactopyranoside moiety prevents neutrophil adhesion to endothelial cells in vitro by binding to both E- and P-selectins. We show here that the axial carboxyl analogue blocks immune cell recruitment in vivo, demonstrating its potential as an immunomodulator.
Collapse
Affiliation(s)
- Ryan D Simard
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Mathieu Joyal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Thomas Beaugrand
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Julien Gauthier
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Elodie Hardine
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Axelle Desriac
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Charles-Henri Buffet
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Michel Prévost
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mona Nemer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Yvan Guindon
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
28
|
Matera MG, Rogliani P, Ora J, Calzetta L, Cazzola M. A comprehensive overview of investigational elastase inhibitors for the treatment of acute respiratory distress syndrome. Expert Opin Investig Drugs 2023; 32:793-802. [PMID: 37740909 DOI: 10.1080/13543784.2023.2263366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Excessive activity of neutrophil elastase (NE), the main enzyme present in azurophil granules in the neutrophil cytoplasm, may cause tissue injury and remodeling in various lung diseases, including acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), in which it is crucial to the immune response and inflammatory process. Consequently, NE is a possible target for therapeutic intervention in ALI/ARDS. AREAS COVERED The protective effects of several NE inhibitors in attenuating ALI/ARDS in several models of lung injury are described. Some of these NE inhibitors are currently in clinical development, but only sivelestat has been evaluated as a treatment for ALI/ARDS. EXPERT OPINION Preclinical research has produced encouraging information about using NE inhibitors. Nevertheless, only sivelestat has been approved for this clinical indication, and only in Japan and South Korea because of the conflicting results of clinical trials and likely also because of the potential adverse events. Identifying subsets of patients with ARDS most likely to benefit from NE inhibitor treatment, such as the hyperinflammatory phenotype, and using a more advanced generation of NE inhibitors than sivelestat could enable better clinical results than those obtained with elastase inhibitors.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
29
|
Yang L, Yan L, Tan W, Zhou X, Yang G, Yu J, Lu Z, Liu Y, Zou L, Li W, Yu L. Liang-Ge-San: a classic traditional Chinese medicine formula, attenuates acute inflammation via targeting GSK3β. Front Pharmacol 2023; 14:1181319. [PMID: 37456759 PMCID: PMC10338930 DOI: 10.3389/fphar.2023.1181319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis is a serious life-threatening health disorder with high morbidity and mortality rates that burden the world, but there is still a lack of more effective and reliable drug treatment. Liang-Ge-San (LGS) has been shown to have anti-inflammatory effects and is a promising candidate for the treatment of sepsis. However, the anti-sepsis mechanism of LGS has still not been elucidated. In this study, a set of genes related to inflammatory chemotaxis pathways was downloaded from Encyclopedia of Genes and Genomes (KEGG) and integrated with sepsis patient information from the Gene Expression Omnibus (GEO) database to perform differential gene expression analysis. Glycogen synthase kinase-3β (GSK-3β) was found to be the feature gene after these important genes were examined using the three algorithms Random Forest, support vector machine recursive feature elimination (SVM-REF), and least absolute shrinkage and selection operator (LASSO), and then intersected with possible treatment targets of LGS found through the search. Upon evaluation, the receiver operating characteristic (ROC) curve of GSK-3β indicated an important role in the pathogenesis of sepsis. Immune cell infiltration analysis suggested that GSK-3β expression was associated with a variety of immune cells, including neutrophils and monocytes. Next, lipopolysaccharide (LPS)-induced zebrafish inflammation model and macrophage inflammation model was used to validate the mechanism of LGS. We found that LGS could protect zebrafish against a lethal challenge with LPS by down-regulating GSK-3β mRNA expression in a dose-dependent manner, as indicated by a decreased neutrophils infiltration and reduction of inflammatory damage. The upregulated mRNA expression of GSK-3β in LPS-induced stimulated RAW 264.7 cells also showed the same tendency of depression by LGS. Critically, LGS could induce M1 macrophage polarization to M2 through promoting GSK-3β inactivation of phosphorylation. Taken together, we initially showed that anti-septic effects of LGS is related to the inhibition on GSK-3β, both in vitro and in vivo.
Collapse
Affiliation(s)
- Liling Yang
- Department of Pharmacy, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weifu Tan
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Xiangjun Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guangli Yang
- Department of Central Laboratory, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyi Zou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wei Li
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Cartwright JA, Simpson JP, Homer NZM, Rossi AG. Analysis of AT7519 as a pro-resolution compound in an acetaminophen-induced mouse model of acute inflammation by UPLC-MS/MS. J Inflamm (Lond) 2023; 20:20. [PMID: 37291548 PMCID: PMC10251596 DOI: 10.1186/s12950-023-00345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Uncontrolled inflammation contributes to the progression of organ damage in acute conditions, such as acetaminophen-induced acute liver injury (APAP-ALI) and there are limited treatments for this condition. AT7519, a cyclic-dependent kinase inhibitor (CDKI), has been used successfully in several conditions, to resolve inflammation and return tissue homeostatic functions. AT7519 has not been assessed in APAP-ALI and its effect on APAP metabolism is unknown. Targeted chromatography and mass spectrometry can be used to assess multiple compounds simultaneously and this approach has not been applied yet to measure APAP and AT7519 in a mouse model. RESULTS We show an optimised simple and sensitive LC-MS/MS method for determining concentrations of AT7519 and APAP in low volumes of mouse serum. Using positive ion mode electrospray ionisation, separation of AT7519 and APAP and their corresponding isotopically labelled internal standards [2H]8-AT16043M (d8-AT7519) and [2H]8-APAP (d4-APAP), was achieved on an Acquity UPLC BEH C18 column (100 × 2.1 mm; 1.7μm). A gradient mobile phase system of water and methanol was delivered at a flow rate of 0.5 mL/min with a run time of 9 min. Calibration curves were linear, intra-day and inter-day precision and accuracy were acceptable and the covariates of all standards and quality control replicates were less than 15%. The method was successfully applied to evaluate AT7519 and APAP levels 20 h post AT7519 (10 mg/mg) in C57Bl6J wild type mouse serum treated with either vehicle or APAP. Serum AT7519 was significantly higher in mice that had received APAP compared to control, but there was no correlation between APAP and AT7519 quantification. There was also no correlation of AT7519 and hepatic damage or proliferation markers. CONCLUSION We optimised an LC-MS/MS method to quantify both AT7519 and APAP in mouse serum (50 µL), using labelled internal standards. Application of this method to a mouse model of APAP toxicity proved effective in accurately measuring APAP and AT7519 concentrations after i.p. dosing. AT7519 was significantly higher in mice with APAP toxicity, indicating hepatic metabolism of this CDKI, but there was no correlation with markers of hepatic damage or proliferation, demonstrating that this dose of AT7519 (10 mg/kg) does not contribute to hepatic damage or repair. This optimised method can be used for future investigations of AT7519 in APAP in mice.
Collapse
Affiliation(s)
- Jennifer A Cartwright
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, Midlothian, EH16 4UU, United Kingdom.
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, Scotland, EH16 4UU, UK.
| | - Joanna P Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, Midlothian, EH16 4UU, United Kingdom
| |
Collapse
|
31
|
Liu C, Xi L, Liu Y, Mak JCW, Mao S, Wang Z, Zheng Y. An Inhalable Hybrid Biomimetic Nanoplatform for Sequential Drug Release and Remodeling Lung Immune Homeostasis in Acute Lung Injury Treatment. ACS NANO 2023. [PMID: 37285229 DOI: 10.1021/acsnano.3c02075] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interactions of lung macrophages and recruited neutrophils with the lung microenvironment continuously aggravate the dysregulation of lung inflammation in the pathogenesis of acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Either modulating macrophages or destroying neutrophil counts cannot guarantee a satisfactory outcome in ARDS treatment. Aimed at inhibiting the coordinated action of neutrophils and macrophages and modulating the hyper-inflammatory condition, an inhalable biomimetic sequential drug-releasing nanoplatform was developed for the combinatorial treatment of ALI. The nanoplatform (termed D-SEL) was made by conjugating DNase I, as outer cleavable arms, to a serum exosomal and liposomal hybrid nanocarrier (termed SEL) via a matrix metalloproteinase 9 (MMP-9)-cleavable peptide and then encapsulating methylprednisolone sodium succinate (MPS). In lipopolysaccharide (LPS) induced ALI in mice, the MPS/D-SEL moved through muco-obstructive airways and was retained in the alveoli for over 24 h postinhalation. DNase I was then released from the nanocarrier first after responding to MMP-9, resulting in inner SEL core exposure, which precisely delivered MPS into macrophages for promoting M2 macrophage polarization. Local and sustained DNase I release degraded dysregulated neutrophil extracellular traps (NETs) and suppressed neutrophil activation and the mucus plugging microenvironment, which in turn amplified M2 macrophage polarization efficiency. Such dual-stage drug release behavior facilitated down-regulation of pro-inflammatory cytokines in the lung but anti-inflammatory cytokine production through remodeling lung immune homeostasis, ultimately promoting lung tissue repair. This work presents a versatile hybrid biomimetic nanoplatform for the local pulmonary delivery of dual-drug therapeutics and displays potential in the treatment of acute inflammation.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yihan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Judith Choi Wo Mak
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, California 92093, USA
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
32
|
Gong Z, Li Q, Shi J, Li P, Hua L, Shultz LD, Ren G. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci Immunol 2023; 8:eadd5204. [PMID: 36800412 PMCID: PMC10067025 DOI: 10.1126/sciimmunol.add5204] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
Neutrophils, the most abundant innate immune cells, function as crucial regulators of the adaptive immune system in diverse pathological conditions, including metastatic cancer. However, it remains largely unknown whether their immunomodulatory functions are intrinsic or acquired within the pathological tissue environment. Here, using mouse models of metastatic breast cancer in the lungs, we show that, although neutrophils isolated from bone marrow (BM) or blood are minimally immunosuppressive, lung-infiltrating neutrophils are robustly suppressive of both T cells and natural killer (NK) cells. We found that this tissue-specific immunosuppressive capacity of neutrophils exists in the steady state and is reinforced by tumor-associated inflammation. Acquisition of potent immunosuppression activity by lung-infiltrating neutrophils was endowed by the lung-resident stroma, specifically CD140a+ mesenchymal cells (MCs) and largely via prostaglandin-endoperoxide synthase 2 (PTGS2), the rate-limiting enzyme for prostaglandin E2 (PGE2) biosynthesis. MC-specific deletion of Ptgs2 or pharmacological inhibition of PGE2 receptors reversed lung neutrophil-mediated immunosuppression and mitigated lung metastasis of breast cancer in vivo. These lung stroma-targeting strategies substantially improved the therapeutic efficacy of adoptive T cell-based immunotherapy in treating metastatic disease in mice. Collectively, our results reveal that the immunoregulatory effects of neutrophils are induced by tissue-resident stroma and that targeting tissue-specific stromal factors represents an effective approach to boost tissue-resident immunity against metastatic disease.
Collapse
Affiliation(s)
- Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Qing Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jiayuan Shi
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Peishan Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Li Hua
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Guangwen Ren
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
33
|
Nesterova IV, Atazhakhova MG, Teterin YV, Matushkina VA, Chudilova GA, Mitropanova MN. THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS (NETS)
IN THE IMMUNOPATHOGENESIS OF SEVERE COVID-19: POTENTIAL IMMUNOTHERAPEUTIC STRATEGIES REGULATING NET FORMATION AND ACTIVITY. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-tro-2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the recruitment of NG into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a fairly large volume of scientific literature devoted to the peculiarities of the formation of NETs, their role in the pathogenesis of COVID-19, participation in the occurrence of immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, multi-organ lesions. Convincing data are presented that clearly indicate the significant involvement of NETs in the immunopathogenesis of COVID-19 and the associated severe complications resulting from the intensification of the inflammation process, which is key for the course of infection caused by the SARS-CoV-2 virus. The presented role of NG and NETs, along with the role of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding the development of an overactive immune response in severe COVID-19. The obtained scientific results, available today, allow identifying the possibilities of regulatory effects on hyperactivated NG, on the formation of NETs at various stages and on limiting the negative impact of already formed NETs on various tissues and organs. All of the above should help in the creation of new, specialized immunotherapy strategies designed to increase the chances of survival, reduce the severity of clinical manifestations in patients with COVID-19, as well as significantly reduce mortality rates. Currently, it is possible to use existing drugs and a number of new drugs are being developed, the action of which can regulate the amount of NG, positively affect the functions of NG and limit the intensity of NETs formation. Continuing research on the role of hyperactive NG and netosis, as well as understanding the mechanisms of regulation of the phenomenon of formation and restriction of NETs activity in severe COVID-19, apparently, are a priority, since in the future the new data obtained could become the basis for the development of targeted approaches not only to immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also to immunotherapy, which could be used in the complex treatment of other netopathies, first of all, autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.
Collapse
|
34
|
Tian M, Xia P, Yan L, Gou X, Yu H, Zhang X. Human functional genomics reveals toxicological mechanism underlying genotoxicants-induced inflammatory responses under low doses exposure. CHEMOSPHERE 2023; 314:137658. [PMID: 36584827 DOI: 10.1016/j.chemosphere.2022.137658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Understanding the toxicological mechanisms of chemicals is essential for accurate assessments of environmental health risks. Inflammation could play a critical role in the adverse health outcomes caused by genotoxicants; however, the toxicological mechanisms underlying genotoxicants-induced inflammatory response are still limited. Here, functional genomics CRISPR screens were performed to enhance the mechanistic understanding of the genotoxicants-induced inflammatory response at low doses exposure. Key genes and pathways associated with the activities of immune cells and the production of cytokines were identified by CRISPR screens of 6 model genotoxicants. Gene network analysis revealed that three genes (TLR10, HCAR2 and TRIM6) were involved in the regulation of neutrophil apoptosis and cytokine release, and TLR10 shared a similar functional pattern with HCAR2 and TRIM6. Furthermore, adverse outcome pathway (AOP) network analysis revealed that TLR10 was involved in the molecular initiating events (MIEs) or key events (KEs) in the inflammatory response AOPs of all the 6 genotoxicants, which provided mechanistic links between TLR10 and genotoxicants-induced inflammation and respiratory diseases. Finally, functional validation tests demonstrated that TLR10 exhibited inhibitory effects on genotoxicants-induced inflammatory responses in both epithelial and immune cells. This study highlights the powerful utility of the integration of CRISPR screen and AOP network analysis in illuminating the toxicological causal mechanisms of environmental chemicals.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
35
|
Pooladanda V, Thatikonda S, Priya Muvvala S, Godugu C. Acute respiratory distress syndrome enhances tumor metastasis into lungs: Role of BRD4 in the tumor microenvironment. Int Immunopharmacol 2023; 115:109701. [PMID: 36641892 PMCID: PMC9827001 DOI: 10.1016/j.intimp.2023.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with severe lung inflammation, edema, hypoxia, and high vascular permeability. The COVID-19-associated pandemic ARDS caused by SARS-CoV-2 has created dire global conditions and has been highly contagious. Chronic inflammatory disease enhances cancer cell proliferation, progression, and invasion. We investigated how acute lung inflammation activates the tumor microenvironment and enhances lung metastasis in LPS induced in vitro and in vivo models. Respiratory illness is mainly caused by cytokine storm, which further influences oxidative and nitrosative stress. The LPS-induced inflammatory cytokines made the conditions suitable for the tumor microenvironment in the lungs. In the present study, we observed that LPS induced the cytokine storm and promoted lung inflammation via BRD4, which further caused the nuclear translocation of p65 NF-κB and STAT3. The transcriptional activation additionally triggers the tumor microenvironment and lung metastasis. Thus, BRD4-regulated p65 and STAT3 transcriptional activity in ARDS enhances lung tumor metastasis. Moreover, LPS-induced ARDS might promote the tumor microenvironment and increase cancer metastasis into the lungs. Collectively, BRD4 plays a vital role in inflammation-mediated tumor metastasis and is found to be a diagnostic and molecular target in inflammation-associated cancers.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA,Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Department of Head and Neck‐Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sai Priya Muvvala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
36
|
Li N, Li Y, Wu B, Sun R, Zhao M, Hu Z. CIRCKLHL2 KNOCKDOWN ALLEVIATES SEPSIS-INDUCED ACUTE LUNG INJURY BY REGULATING MIR-29B-3P MEDIATED ROCK1 EXPRESSION DOWN-REGULATION. Shock 2023; 59:99-107. [PMID: 36476974 DOI: 10.1097/shk.0000000000002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT Background: Acute lung injury (ALI) induced by sepsis is distinguished by an inflammatory progression. Herein, we investigated the action of circular RNA kelch like family member 2 (circKlhl2) in sepsis-induced ALI. Methods: The animal or cell model of sepsis ALI was established by LPS stimulation. The contents of circKlhl2, microRNA-29b-3p (miR-29b-3p), rho-associated coiled-coil containing protein kinase 1 (ROCK1), CyclinD1, B-cell lymphoma-2 (Bcl-2), and cleaved-caspase 3 (C-caspase-3) were detected by quantitative real-time polymerase chain reaction and western blot, respectively. Cell viability was assessed by cell counting kit 8 assay. Cell cycle and apoptosis were evaluated by flow cytometry. The abundances of proinflammatory cytokines were detected by enzyme-linked immunosorbent assay. Besides, the targeted relationship between miR-29b-3p and circKlhl2 or ROCK1 was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Results: Loss of circKlhl2 mitigated lung injury and proinflammatory cytokine expression in sepsis-ALI mice model and alleviated LPS-induced apoptosis and inflammatory response in microvascular endothelial cell (MPVECs) in vitro . The abundances of circKlhl2 and ROCK1 were boosted, while the miR-29b-3p level was diminished in the animal or cell model of sepsis-ALI. MiR-29b-3p inhibition abrogated circKlhl2 knockdown-mediated effects on MPVECs injury. Moreover, miR-29b-3p overexpression promoted cell proliferation and inhibited apoptosis and inflammation in LPS-treated MPVECs, while ROCK1 enhancement reversed these effects. Conclusion: CircKlhl2 expedited the sepsis-induced ALI by adjusting miR-29b-3p/ROCK1 axis.
Collapse
Affiliation(s)
| | - Yuqiang Li
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Bin Wu
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Rongli Sun
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Mingzhou Zhao
- Clinical Biological Sample Center, The First Affiliated Hospital Of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | | |
Collapse
|
37
|
Zhao R, Lopez B, Schwingshackl A, Goldstein SA. Protection from acute lung injury by a peptide designed to inhibit the voltage-gated proton channel. iScience 2022; 26:105901. [PMID: 36660473 PMCID: PMC9843441 DOI: 10.1016/j.isci.2022.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
There are no targeted medical therapies for Acute Lung Injury (ALI) or its most severe form acute respiratory distress syndrome (ARDS). Infections are the most common cause of ALI/ARDS and these disorders present clinically with alveolar inflammation and barrier dysfunction due to the influx of neutrophils and inflammatory mediator secretion. We designed the C6 peptide to inhibit voltage-gated proton channels (Hv1) and demonstrated that it suppressed the release of reactive oxygen species (ROS) and proteases from neutrophils in vitro. We now show that intravenous C6 counteracts bacterial lipopolysaccharide (LPS)-induced ALI in mice, and suppresses the accumulation of neutrophils, ROS, and proinflammatory cytokines in bronchoalveolar lavage fluid. Confirming the salutary effects of C6 are via Hv1, genetic deletion of the channel similarly protects mice from LPS-induced ALI. This report reveals that Hv1 is a key regulator of ALI, that Hv1 is a druggable target, and that C6 is a viable agent to treat ALI/ARDS.
Collapse
Affiliation(s)
- Ruiming Zhao
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andreas Schwingshackl
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA,Corresponding author
| | - Steve A.N. Goldstein
- Departments of Pediatrics, Physiology & Biophysics, and Pharmaceutical Sciences, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA,Corresponding author
| |
Collapse
|
38
|
Tsai YF, Yang SC, Hsu YH, Chen CY, Chen PJ, Syu YT, Lin CH, Hwang TL. Carnosic acid inhibits reactive oxygen species-dependent neutrophil extracellular trap formation and ameliorates acute respiratory distress syndrome. Life Sci 2022; 321:121334. [PMID: 36587789 DOI: 10.1016/j.lfs.2022.121334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
AIMS Infiltration of activated neutrophils into the lungs is a hallmark of acute respiratory distress syndrome (ARDS). Neutrophilic inflammation, particularly neutrophil extracellular traps (NETs), is proposed as a useful target for treating ARDS. Carnosic acid (CA) is a food additive; however, its anti-neutrophilic activity in the treatment of ARDS has not been well established. The hypothesis of present study is to confirm that CA alleviates ARDS by suppressing neutrophilic inflammation and oxidative damage. MAIN METHODS Generation of superoxide anions and reactive oxygen species (ROS), induction of elastase degranulation, and formation of NETs by human neutrophils were assayed using spectrophotometry, flow cytometry, and immunofluorescent microscopy. Immunoblotting was performed to determine the cellular mechanisms involved. Cell-free radical systems were used to test antioxidant activities. The therapeutic effect of CA was evaluated in a lipopolysaccharide (LPS)-induced ARDS mouse model. KEY FINDINGS CA greatly reduced superoxide anion production, ROS production, elastase release, cluster of differentiation 11b expression, and cell adhesion in activated human neutrophils. Mechanistic studies have demonstrated that CA suppresses phosphorylation of extracellular regulated kinase and c-Jun N-terminal kinase in activated neutrophils. CA effectively scavenges reactive oxygen and nitrogen species, but not superoxide anions. This is consistent with the finding that CA is effective against ROS-dependent NET formation. CA treatment significantly improved pulmonary neutrophil infiltration, oxidative damage, NET formation, and alveolar damage in LPS-induced mice. SIGNIFICANCE Our data suggested the potential application of CA for neutrophil-associated ARDS therapy.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Yun-Hsuan Hsu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Po-Jen Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Recreation and Holistic Wellness, MingDao University, Changhua 523, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
39
|
Palmier M, Cornet E, Renet S, Dumesnil A, Perzo N, Cohen Q, Richard V, Plissonnier D. A Supraceliac Aortic Cross Clamping Model to Explore Remote Lung Injury and the Endothelial Glycocalyx. Ann Vasc Surg 2022:S0890-5096(22)00906-2. [PMID: 36572096 DOI: 10.1016/j.avsg.2022.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND We hypothesized that supraceliac aortic cross clamping could induce lung injury mediated by an inflammatory ischemia-reperfusion (IR) trigger. We aimed to characterize glycocalyx (GCX), a component of endothelial membrane, participating to remote lung injury. METHODS Rats underwent supraceliac aortic cross clamping for 40 min and were sacrificed at 0, 3, 6, and 24 hr of reperfusion (n = 10/group). Each group was compared to sham (n = 6/group). GCX products (syndecan-1 [Sdc-1] and heparan sulfate [HS]), tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β) were measured in plasma (enzyme-linked immunosorbent assay[ELISA]). Lungs were harvested for measurements of TNF-α, IL-1β (polymerase chain reaction) and Sdc-1 (western blotting [WB]). Histologic lung injury scoring and pulmonary gravimetry were analyzed in a blinded manner. RESULTS Plasmatic Sdc-1, HS, TNF-α, and IL-1β reached peak levels at 3 hr. Levels were significantly higher in clamping groups than sham at 6 hr for Sdc-1, at 0 and 3 hr for HS, at 3 and 6 hr for TNF-α, and at 3 hr for IL-1β. Lung TNF-α and Interleukin-1β reached peak levels at 6 hr. Levels were significantly higher than sham at 6 and 24 hr for TNF-α and at 6 hr for IL-1β. Lung Sdc-1 was lowest at 3 hr. Sdc-1 was not significantly different compared to sham at the different reperfusion times. At 3 hr, it was 0.27 ± 0.03 vs. 0.33 ± 0.02 (sham) (P = 0.09). Histopathologic scores at 6 and 24 hr were higher in clamping groups than sham. At 6 and 24 hr, it was higher for hemorrhage, polynuclear neutrophil (PNN) infiltration and intravascular leukocytes. Pulmonary edema was higher by gravimetry at 0 and 6 hr. CONCLUSIONS Supra celiac aortic clamping causes early lung injury in relation with a systemic inflammatory response associated with altered GCX structure.
Collapse
Affiliation(s)
- Mickael Palmier
- Department of Vascular Surgery, Rouen University Hospital, Rouen, France; Rouen University Hospital, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Emlyn Cornet
- Department of Anatomopathology, Rouen University Hospital, Rouen, France
| | - Sylvanie Renet
- Rouen University Hospital, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Anais Dumesnil
- Rouen University Hospital, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Nicolas Perzo
- Rouen University Hospital, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Quentin Cohen
- Department of Vascular Surgery, Rouen University Hospital, Rouen, France; Rouen University Hospital, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Vincent Richard
- Rouen University Hospital, INSERM U1096, FHU REMOD-VHF, Rouen, France
| | - Didier Plissonnier
- Department of Vascular Surgery, Rouen University Hospital, Rouen, France; Rouen University Hospital, INSERM U1096, FHU REMOD-VHF, Rouen, France.
| |
Collapse
|
40
|
Locally organised and activated Fth1 hi neutrophils aggravate inflammation of acute lung injury in an IL-10-dependent manner. Nat Commun 2022; 13:7703. [PMID: 36513690 PMCID: PMC9745290 DOI: 10.1038/s41467-022-35492-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome with no effective therapeutic intervention. Neutrophils function in the overwhelming inflammatory process of acute lung injury (ALI) caused by ARDS; however, the phenotypic heterogeneity of pulmonary neutrophils in ALI/ARDS remains largely unknown. Here, using single-cell RNA sequencing, we identify two transcriptionally and functionally heterogeneous neutrophil populations (Fth1hi Neu and Prok2hi Neu) with distinct locations in LPS-induced ALI mouse lungs. Exposure to LPS promotes the Fth1hi Neu subtype, with more inflammatory factors, stronger antioxidant, and decreased apoptosis under the regulation of interleukin-10. Furthermore, prolonged retention of Fth1hi Neu within lung tissue aggravates inflammatory injury throughout the development of ALI/ARDS. Notably, ARDS patients have high ratios of Fth1 to Prok2 expression in pulmonary neutrophils, suggesting that the Fth1hi Neu population may promote the pathological development and provide a marker of poor outcome.
Collapse
|
41
|
Zebardast A, Latifi T, Shabani M, Hasanzadeh A, Danesh M, Babazadeh S, Sadeghi F. Thrombotic storm in coronavirus disease 2019: from underlying mechanisms to its management. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction. Coronavirus disease 2019 (COVID-19) identified in December 2019 in Wuhan, China, is associated with high mortality rates worldwide.
Hypothesis/Gap Statement. Thrombotic problems, such as coagulopathy, are common in COVID-19 patients. Despite anticoagulation, thrombosis is more common in patients in the intensive care unit and patients with more severe disease. Although the exact mechanisms of coagulopathy in COVID-19 patients are still unclear, studies showed that overactivation of the renin-angiotensin system (RAS), cytokine storm, endothelial damage, formation of neutrophil extracellular traps (NETs), and also extracellular vesicles (EVs) in response to COVID-19 induced inflammation can lead to systemic coagulation and thrombosis.
Aim. The management of COVID-19 patients requires the use of basic and readily available laboratory markers, both on admission and during hospitalization. Because it is critical to understand the pathophysiology of COVID-19 induced coagulopathy and treatment strategies, in this review we attempt to explain the underlying mechanism of COVID-19 coagulopathy, its diagnosis, and the associated successful treatment strategies.
Conclusion. The exact mechanisms behind COVID-19-related coagulopathy are still unclear, but several studies revealed some mechanisms. More research is needed to determine the best anticoagulant regimen and to study other therapeutic options.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shabani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hasanzadeh
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Manizheh Danesh
- Assistant Professor, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Babazadeh
- Department of Pathology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
42
|
Latha K, Rao S, Sakamoto K, Watford WT. Tumor Progression Locus 2 Protects against Acute Respiratory Distress Syndrome in Influenza A Virus-Infected Mice. Microbiol Spectr 2022; 10:e0113622. [PMID: 35980186 PMCID: PMC9604045 DOI: 10.1128/spectrum.01136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Excessive inflammation in patients with severe influenza disease may lead to acute lung injury that results in acute respiratory distress syndrome (ARDS). ARDS is associated with alveolar damage and pulmonary edema that severely impair gas exchange, leading to hypoxia. With no existing FDA-approved treatment for ARDS, it is important to understand the factors that lead to virus-induced ARDS development to improve prevention, diagnosis, and treatment. We have previously shown that mice deficient in the serine-threonine mitogen-activated protein kinase, Tpl2 (MAP3K8 or COT), succumb to infection with a typically low-pathogenicity strain of influenza A virus (IAV; HKX31, H3N2 [x31]). The goal of the current study was to evaluate influenza A virus-infected Tpl2-/- mice clinically and histopathologically to gain insight into the disease mechanism. We hypothesized that Tpl2-/- mice succumb to IAV infection due to development of ARDS-like disease and pulmonary dysfunction. We observed prominent signs of alveolar septal necrosis, hyaline membranes, pleuritis, edema, and higher lactate dehydrogenase (LDH) levels in the lungs of IAV-infected Tpl2-/- mice compared to wild-type (WT) mice from 7 to 9 days postinfection (dpi). Notably, WT mice showed signs of regenerating epithelium, indicative of repair and recovery, that were reduced in Tpl2-/- mice. Furthermore, biomarkers associated with human ARDS cases were upregulated in Tpl2-/- mice at 7 dpi, demonstrating an ARDS-like phenotype in Tpl2-/- mice in response to IAV infection. IMPORTANCE This study demonstrates the protective role of the serine-threonine mitogen-activated protein kinase, Tpl2, in influenza virus pathogenesis and reveals that host Tpl2 deficiency is sufficient to convert a low-pathogenicity influenza A virus infection into severe influenza disease that resembles ARDS, both histopathologically and transcriptionally. The IAV-infected Tpl2-/- mouse thereby represents a novel murine model for studying ARDS-like disease that could improve our understanding of this aggressive disease and assist in the design of better diagnostics and treatments.
Collapse
Affiliation(s)
- Krishna Latha
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Sanjana Rao
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
43
|
Carstensen S, Müller M, Tan GLA, Pasion KA, Hohlfeld JM, Herrera VLM, Ruiz-Opazo N. “Rogue” neutrophil-subset [DEspR+CD11b+/CD66b+] immunotype is an actionable therapeutic target for neutrophilic inflammation-mediated tissue injury – studies in human, macaque and rat LPS-inflammation models. Front Immunol 2022; 13:1008390. [PMID: 36275710 PMCID: PMC9581391 DOI: 10.3389/fimmu.2022.1008390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objective The correlation (Rs > 0.7) of neutrophils expressing the dual endothelin1/signal peptide receptor (DEspR+CD11b+/CD66b+) with severity of hypoxemia (SF-ratio) and multi-organ failure (SOFA-score) in patients with acute respiratory distress syndrome (ARDS) suggest the hypothesis that the DEspR+ neutrophil-subset is an actionable therapeutic target in ARDS. To test this hypothesis, we conducted in vivo studies to validate DEspR+ neutrophil-subset as therapeutic target and test efficacy of DEspR-inhibition in acute neutrophilic hyperinflammation models. Methods We performed tests in lipopolysaccharide (LPS)-induced acute neutrophilic inflammation in three species – human, rhesus macaque, rat – with increasing dose-dependent severity. We measured DEspR+CD66b+ neutrophils in bronchoalveolar lavage fluid (BALF) in healthy volunteers (HVs) 24-hours after segmental LPS-challenge by ChipCytometry, and DEspR+CD11b+ neutrophils in whole blood and BALF in an LPS-induced transient acute lung injury (ALI) model in macaques. We determined anti-DEspR antibody efficacy in vivo in LPS-ALI macaque model and in high-mortality LPS-induced encephalopathy in hypertensive rats. Results ChipCytometry detected increased BALF total neutrophil and DEspR+CD66b+ neutrophil counts after segmental LPS-challenge compared to baseline (P =0.034), as well as increased peripheral neutrophil counts and neutrophil-lymphocyte ratio (NLR) compared to pre-LPS level (P <0.05). In the LPS-ALI macaque model, flow cytometry detected increased DEspR+ and DEspR[-] neutrophils in BALF, which was associated with moderate-severe hypoxemia. After determining pharmacokinetics of single-dose anti-DEspR[hu6g8] antibody, one-time pre-LPS anti-DEspR treatment reduced hypoxemia (P =0.03) and neutrophil influx into BALF (P =0.0001) in LPS-ALI vs vehicle mock-treated LPS-ALI macaques. Ex vivo live cell imaging of macaque neutrophils detected greater “intrinsic adhesion to hard-surface” in DEspR+ vs DEspR[-] neutrophils (P <0.001). Anti-DEspR[hu6g8] antibody abrogated intrinsic high adhesion in DEspR+ neutrophils, but not in DEspR[-] neutrophils (P <0.001). In the LPS-encephalopathy rat model, anti-DEspR[10a3] antibody treatment increased median survival (P =0.0007) and exhibited brain target engagement and bioeffects. Conclusion Detection of increased DEspR+ neutrophil-subset in human BALF after segmental LPS-challenge supports the correlation of circulating DEspR+ neutrophil counts with severity measure (SOFA-score) in ARDS. Efficacy and safety of targeted inhibition of DEspR+CD11b+ neutrophil-subset in LPS-induced transient-ALI and high-mortality encephalopathy models identify a potential therapeutic target for neutrophil-mediated secondary tissue injury.
Collapse
Affiliation(s)
- Saskia Carstensen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
| | - Glaiza L. A. Tan
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Khristine Amber Pasion
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Jens M. Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Victoria L. M. Herrera
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
- *Correspondence: Nelson Ruiz-Opazo,
| |
Collapse
|
44
|
Qiao Q, Liu X, Cui K, Li X, Tian T, Yu Y, Niu B, Kong L, Yang C, Zhang Z. Hybrid Biomimetic Nanovesicles to Drive High Lung Biodistribution and Prevent Cytokine Storm for ARDS Treatment. ACS NANO 2022; 16:15124-15140. [PMID: 36037505 DOI: 10.1021/acsnano.2c06357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has been a life threat for patients in ICUs. Vast efforts have been devoted, while no medication has proved viable, which may be ascribed to inadequate drug delivery to damaged tissues and insufficient control of lung inflammation. Given the anti-inflammatory role of M2-type macrophages, M2 macrophage-derived nanovesicles and lung-targeting liposomes are cofused to fabricate hybrid liposomes-nanovesicles (LNVs). Benefiting from the incorporated lung-homing moiety, LNVs demonstrate high pulmonary accumulation with a lung/liver ratio of 14.9, which is approximately 53.3-fold of free nanovesicles. Thus, M2 macrophage-derived nanovesicles can be delivered to lung tissues for executing immunoregulatory functions. LNVs display phagocytosis by the infiltrated neutrophils and macrophages, exhibiting sustained release of preloaded IKK-2 inhibitor (TPCA-1). The integrated nanosystems demonstrate multidimensional suppression of the overwhelming inflammation, such as decreasing infiltration of inflammatory cells, achieving restraint on cytokine storms and alleviating oxidative stress. Therefore, the improved therapeutic outcome in ARDS mice is obtained. Altogether, the hybrid nanoplatform provides a versatile drug delivery paradigm for integrating biological nanovesicles and therapeutic molecules by cofusion of nanovesicles with liposomes, improving lung biodistribution and accomplishing a boosted anti-inflammatory response for ARDS therapy.
Collapse
Affiliation(s)
- Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
45
|
Huang J, Wang B, Tao S, Hu Y, Wang N, Zhang Q, Wang C, Chen C, Gao B, Cheng X, Li Y. D-tagatose protects against oleic acid-induced acute respiratory distress syndrome in rats by activating PTEN/PI3K/AKT pathway. Front Immunol 2022; 13:928312. [PMID: 36189316 PMCID: PMC9520915 DOI: 10.3389/fimmu.2022.928312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by disruption of the alveolar–capillary barrier, resulting in severe alveolar edema and inflammation. D-tagatose (TAG) is a low-calorie fructose isomer with diverse biological activities whose role in ARDS has never been explored. We found that TAG protects lung tissues from injury in the oleic acid-induced rat model of ARDS. Seventeen male Sprague–Dawley rats were randomly assigned to 3 groups: Sham (n = 5), ARDS (n = 6), and TAG + ARDS (n = 6). The treatment groups were injected with oleic acid to induce ARDS, and the TAG + ARDS group was given TAG 3 days before the induction. After the treatments, the effect of TAG was evaluated by blood gas analysis and observing the gross and histological structure of the lung. The results showed that TAG significantly improved the oxygenation function, reduced the respiratory acidosis and the inflammatory response. TAG also improved the vascular permeability in ARDS rats and promoted the differentiation of alveolar type II cells, maintaining the stability of the alveolar structure. This protective effect of TAG on the lung may be achieved by activating the PTEN/PI3K/AKT pathway. Thus, TAG protects against oleic acid-induced ARDS in rats, suggesting a new clinical strategy for treating the condition.
Collapse
Affiliation(s)
- Jian Huang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Bingjie Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaoyi Tao
- Department of Plastic Repair Burn Surgery Dermatology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yuexia Hu
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qiaoyun Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Chunhui Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Chen
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| | - Xingdong Cheng
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| |
Collapse
|
46
|
CircEXOC5 facilitates cell pyroptosis via epigenetic suppression of Nrf2 in septic acute lung injury. Mol Cell Biochem 2022; 478:743-754. [PMID: 36074295 DOI: 10.1007/s11010-022-04521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/05/2022] [Indexed: 10/14/2022]
Abstract
Acute lung injury (ALI) caused by sepsis is characterized by a destructive high inflammatory response in lungs, which is the ultimate cause of high mortality to patients diagnosed with sepsis. The objective of the present study is to explore the effect and related mechanisms of circEXOC5 on pyroptosis in septic ALI. Sepsis ALI mouse model was induced and established by CLP induction and sepsis MPVEC cell model by LPS. HE staining was used to detect lung tissue pathological changes. ELISA, flow cytometry, and Western blot were utilized to evaluate the release of inflammatory cytokines and cell pyroptosis, and RIP was applied to verify the binding relationship between EZH2 and circEXOC5 or Nrf2. Finally, the interaction between CircEXOC5 and EZH2, H3k27me3, and Nrf2 promoter regions was clarified using ChIP. CircEXOC5 levels were notably ascended in the lung tissues of septic ALI mice. And silencing circEXOC5 inhibited cell pyroptosis and the release of inflammatory cytokines in MPVEC stimulated by LPS. In addition, RIP and ChIP indicated that Nrf2 expression in MPVECs cells could be inhibited by circEXOC5 via recruiting EZH2. In addition, ML385 (a specific inhibitor of Nrf2) reversed the efficacy of Knockdown of circEXOC5 on the Inhibition of pyroptosis and inflammation of MPVEC cells stimulated by LPS. These results indicated that CircEXOC5 could promote cell pyroptosis through epigenetic inhibition of Nrf2 in septic ALI.
Collapse
|
47
|
Sun C, Han Y, Zhang R, Liu S, Wang J, Zhang Y, Chen X, Jiang C, Wang J, Fan X, Wang J. Regulated necrosis in COVID-19: A double-edged sword. Front Immunol 2022; 13:917141. [PMID: 36090995 PMCID: PMC9452688 DOI: 10.3389/fimmu.2022.917141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 can cause various systemic diseases such as acute pneumonia with cytokine storm. Constituted of necroptosis, pyroptosis, and ferroptosis, regulated necrosis constitutes the cell death patterns under the low apoptosis condition commonly observed in COVID-19. Regulated necrosis is involved in the release of cytokines like TNF-α, IL-1 β, and IL-6 and cell contents such as alarmins, PAMPs, and DAMPs, leading to more severe inflammation. Uncontrolled regulated necrosis may explain the poor prognosis and cytokine storm observed in COVID-19. In this review, the pathophysiology and mechanism of regulated necrosis with the double-edged sword effect in COVID-19 are thoroughly discussed in detail. Furthermore, this review also focuses on the biomarkers and potential therapeutic targets of the regulated necrosis pathway in COVID-19, providing practical guidance to judge the severity, prognosis, and clinical treatment of COVID-19 and guiding the development of clinical anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Chen Sun
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunze Han
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruoyu Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, United States
| | - Jing Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao Jiang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jian Wang, ; Junmin Wang, ; Xiaochong Fan,
| |
Collapse
|
48
|
Wang S, Liu J, Dong J, Fan Z, Wang F, Wu P, Li X, Kou R, Chen F. Allyl methyl trisulfide protected against LPS-induced acute lung injury in mice via inhibition of the NF-κB and MAPK pathways. Front Pharmacol 2022; 13:919898. [PMID: 36003507 PMCID: PMC9394683 DOI: 10.3389/fphar.2022.919898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Allyl methyl trisulfide (AMTS) is one major lipid-soluble organosulfur compound of garlic. Previous studies have reported the potential therapeutic effect of garlic on acute lung injury (ALI) or its severe condition acute respiratory distress syndrome (ARDS), but the specific substances that exert the regulatory effects are still unclear. In this study, we investigate the protective effects of AMTS on lipopolysaccharide (LPS)-induced ALI mice and explored the underlying mechanisms. In vivo experiments, ICR mice were pretreated with 25–100 mg/kg AMTS for 7 days and followed by intratracheal instillation of LPS (1.5 mg/kg). The results showed that AMTS significantly attenuated LPS-induced deterioration of lung pathology, demonstrated by ameliorative edema and protein leakage, and improved pulmonary histopathological morphology. Meanwhile, the expression of inflammatory mediators and the infiltration of inflammation-regulation cells induced by LPS were also inhibited. In vitro experiments also revealed that AMTS could alleviate inflammation response and inhibit the exaggeration of macrophage M1 polarization in LPS-induced RAW264.7 cells. Mechanistically, we identified that AMTS treatment could attenuate the LPS-induced elevation of protein expression of p-IκBα, nuclear NF-κB-p65, COX2, iNOS, p-P38, p-ERK1/2, and p-JNK. Collectively, these data suggest that AMTS could attenuate LPS-induced ALI and the molecular mechanisms should be related to the suppression of the NF-κB and MAPKs pathways.
Collapse
Affiliation(s)
- Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Jinqian Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Jing Dong
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Zongqiang Fan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Fugui Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Ping Wu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Xiaojing Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
| | - Ruirui Kou
- School of Public Health, Shandong University, Jinan, Shandong, China
- *Correspondence: Ruirui Kou, ; Fang Chen,
| | - Fang Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, China
- *Correspondence: Ruirui Kou, ; Fang Chen,
| |
Collapse
|
49
|
Interferon-β regulates proresolving lipids to promote the resolution of acute airway inflammation. Proc Natl Acad Sci U S A 2022; 119:e2201146119. [PMID: 35878041 PMCID: PMC9351544 DOI: 10.1073/pnas.2201146119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acute respiratory distress syndrome is characterized by aberrant inflammatory responses, including polymorphonuclear neutrophil granulocyte dysfunction and hyperactive Toll-like receptor signaling. Timely resolution of bacterial infections depends on efficient removal of neutrophils from the inflamed tissue. Here we show that the antiviral cytokine interferon-β is essential for the resolution of neutrophil-driven airway inflammation by countering Toll-like receptor 9–mediated suppression of phagocytosis, neutrophil apoptosis, and uptake by macrophages. We also report that the beneficial effects of interferon-β are, in part, mediated by production of proresolving lipid mediators, such as 15-epi-lipoxin A4 and resolvin D1, which act through the lipoxin receptor ALX/FPR2. These findings uncover an interferon-β–initiated ALX/FPR2-centered resolution program as a potential target for facilitating the resolution of airway inflammation. Aberrant immune responses, including hyperresponsiveness to Toll-like receptor (TLR) ligands, underlie acute respiratory distress syndrome (ARDS). Type I interferons confer antiviral activities and could also regulate the inflammatory response, whereas little is known about their actions to resolve aberrant inflammation. Here we report that interferon-β (IFN-β) exerts partially overlapping, but also cooperative actions with aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 to counter TLR9-generated cues to regulate neutrophil apoptosis and phagocytosis in human neutrophils. In mice, TLR9 activation impairs bacterial clearance, prolongs Escherichia coli–evoked lung injury, and suppresses production of IFN-β and the proresolving lipid mediators 15-epi-LXA4 and resolvin D1 (RvD1) in the lung. Neutralization of endogenous IFN-β delays pulmonary clearance of E. coli and aggravates mucosal injury. Conversely, treatment of mice with IFN-β accelerates clearance of bacteria, restores neutrophil phagocytosis, promotes neutrophil apoptosis and efferocytosis, and accelerates resolution of airway inflammation with concomitant increases in 15-epi-LXA4 and RvD1 production in the lungs. Pharmacological blockade of the lipoxin receptor ALX/FPR2 partially prevents IFN-β–mediated resolution. These findings point to a pivotal role of IFN-β in orchestrating timely resolution of neutrophil and TLR9 activation–driven airway inflammation and uncover an IFN-β–initiated resolution program, activation of an ALX/FPR2-centered, proresolving lipids-mediated circuit, for ARDS.
Collapse
|
50
|
Sun C, Zhao H, Han Y, Wang Y, Sun X. The Role of Inflammasomes in COVID-19: Potential Therapeutic Targets. J Interferon Cytokine Res 2022; 42:406-420. [PMID: 35984324 DOI: 10.1089/jir.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 disease (COVID-19) pandemic has caused massive morbidity and mortality worldwide. In severe cases, it is mainly associated with acute pneumonia, cytokine storm, and multi-organ dysfunction. Inflammasomes play a primary role in various pathological processes such as infection, injury, and cancer. However, their role in COVID-19-related complications has not been explored. In addition, the role of underlying medical conditions on COVID-19 disease severity remains unclear. Therefore, this review expounds on the mechanisms of inflammasomes following COVID-19 infection and provides recent evidence on the potential double-edged sword effect of inflammasomes during COVID-19 pathogenesis. The assembly and activation of inflammasomes are critical for inducing effective antiviral immune responses and disease resolution. However, uncontrolled activation of inflammasomes causes excessive production of proinflammatory cytokines (cytokine storm), increased risk of acute respiratory distress syndrome, and death. Therefore, discoveries in the role of the inflammasome in mediating organ injury are key to identifying therapeutic targets and treatment modifications to prevent or reduce COVID-19-related complications.
Collapse
Affiliation(s)
- Chen Sun
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hangyuan Zhao
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunze Han
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiqing Wang
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Sun
- Department of Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|