1
|
Zhang H, Hui G, Gao G, Ali I, Tang M, Chen L, Zhong X, Jiang L, Liang T, Zhang X. Physiological and Proteomic Analysis of Various Priming on Rice Seed under Chilling Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2430. [PMID: 39273913 PMCID: PMC11396840 DOI: 10.3390/plants13172430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Rice (Oryza sativa L.) cultivation using direct seeding is susceptible to chilling stress, particularly during seed germination and early seedling growth in the early season of a double cropping system. Alternatively, seed priming with various plant growth-promoting hormones is an effective technique to promote rapid and uniform emergence under chilling stress. Therefore, we evaluated the impact of gibberellin A3 (GA3) and brassinolide (BR) priming on rice seed emergence, examining their proteomic responses under low-temperature conditions. Results indicated that GA3 and BR increased the seed germination rate by 22.67% and 7.33% at 72 h and 35% and 15% at 96 h compared to the control (CK), respectively. Furthermore, proteomic analysis identified 2551, 2614, and 2592 differentially expressed proteins (DEPs) in GA, BR, and CK, respectively. Among them, GA exhibited 84 upregulated and 260 downregulated DEPs, while BR showed 112 upregulated and 102 downregulated DEPs, and CK had 123 upregulated and 81 downregulated DEPs. Notably, under chilling stress, both GA3 and BR are involved in peroxide metabolism, phenylpropanoid biosynthesis, and inositol phosphate metabolism, enhancing antioxidant capacity and providing energy substances for germination. In addition, GA3 triggers the specific regulation of stress responsive protein activation, GTP activation, and ascorbic acid biosynthesis and promotes the stability and integrity of cell membranes, as well as the synthesis of cell walls, providing physical defense for seeds to resist low temperatures. At the same time, BR triggers specific involvement in ribosome synthesis and amino acid synthesis, promoting biosynthetic ability and metabolic regulation to maintain plant life activities under low-temperature stress. Furthermore, the various genes' expression (OsJ_16716, OsPAL1, RINO1) confirmed GA3 and BR involved in peroxide metabolism, phenylpropanoid biosynthesis, and inositol phosphate metabolism, enhancing antioxidant capacity and providing energy substances for germination. This study provides valuable insights into how rice seed embryo responds to and tolerates chilling stress with GA3 seed priming.
Collapse
Affiliation(s)
- Hua Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo Hui
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Guoqing Gao
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Izhar Ali
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Maoyan Tang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Lei Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaoyuan Zhong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, China
| | - Tianfeng Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaoli Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
2
|
QTL Mapping and a Transcriptome Integrative Analysis Uncover the Candidate Genes That Control the Cold Tolerance of Maize Introgression Lines at the Seedling Stage. Int J Mol Sci 2023; 24:ijms24032629. [PMID: 36768951 PMCID: PMC9917090 DOI: 10.3390/ijms24032629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Chilling injury owing to low temperatures severely affects the growth and development of maize (Zea mays.L) seedlings during the early and late spring seasons. The existing maize germplasm is deficient in the resources required to improve maize's ability to tolerate cold injury. Therefore, it is crucial to introduce and identify excellent gene/QTLs that confer cold tolerance to maize for sustainable crop production. Wild relatives of maize, such as Z. perennis and Tripsacum dactyloides, are strongly tolerant to cold and can be used to improve the cold tolerance of maize. In a previous study, a genetic bridge among maize that utilized Z. perennis and T. dactyloides was created and used to obtain a highly cold-tolerant maize introgression line (MIL)-IB030 by backcross breeding. In this study, two candidate genes that control relative electrical conductivity were located on MIL-IB030 by forward genetics combined with a weighted gene co-expression network analysis. The results of the phenotypic, genotypic, gene expression, and functional verification suggest that two candidate genes positively regulate cold tolerance in MIL-IB030 and could be used to improve the cold tolerance of cultivated maize. This study provides a workable route to introduce and mine excellent genes/QTLs to improve the cold tolerance of maize and also lays a theoretical and practical foundation to improve cultivated maize against low-temperature stress.
Collapse
|
3
|
Long J, Xing W, Wang Y, Wu Z, Li W, Zou Y, Sun J, Zhang F, Pi Z. Comparative proteomic analysis on chloroplast proteins provides new insights into the effects of low temperature in sugar beet. BOTANICAL STUDIES 2022; 63:18. [PMID: 35670889 PMCID: PMC9174413 DOI: 10.1186/s40529-022-00349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Low temperature, which is one of the main environmental factors that limits geographical distribution and sucrose yield, is a common abiotic stress during the growth and development of sugar beet. As a regulatory hub of plant response to abiotic stress, activity in the chloroplasts is related to many molecular and physiological processes, particularly in response to low temperature stress. RESULTS The contents of chlorophyll (Chl) and malondialdehyde (MDA), relative electrical conductivity (REL), and superoxide dismutase (SOD) activity were measured. The results showed that sugar beet could manage low temperature stress by regulating the levels of Chl, REL and MDA, and the activity of SOD. The physiological responses indicated that sugar beets respond positively to low temperature treatments and are not significantly damaged. Moreover, to determine the precise time to response low temperature in sugar beet, well-known abiotic stresses-responsive transcript factor family, namely DEHYDRATION RESPONSIVE ELEMENT BINDING PROTEIN (DREB), was selected as the marker gene. The results of phylogenetic analyses showed that BvDREBA1 and BvDREBA4 were in the same branch as the cold- and drought-responsive AtDREB gene. In addition, the expression of BvDREBs reached its maximum level at 24 h after low temperature by RNA-Seq and qRT-PCR analysis. Furthermore, the changes in chloroplast proteome after low temperature at 24 h were detected using a label-free technique. A total of 416 differentially expressed proteins were identified. GO enrichment analysis showed that 16 GO terms were significantly enriched, particularly chloroplast stroma, chloroplast envelope, and chloroplast thylakoid membrane. It is notable that the transport of photosynthetic proteins (BvLTD and BvTOC100), the formation of starch granules (BvPU1, BvISA3, and BvGWD3) and the scavenging of reactive oxygen species (BvCu/Zn-SOD, BvCAT, BvPrx, and BvTrx) were the pathways used by sugar beets to respond to low temperatures at an early stage. CONCLUSIONS These results provide a preliminarily analysis of how chloroplasts of sugar beet respond to low temperature stress at the translational level and provide a theoretical basis for breeding low temperature resistant varieties of sugar beet.
Collapse
Affiliation(s)
- Jiali Long
- School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wang Xing
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yuguang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Zedong Wu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wenjing Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yi Zou
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Jiaping Sun
- School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Fushun Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| | - Zhi Pi
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| |
Collapse
|
4
|
Qing D, Deng G, Pan Y, Gao L, Liang H, Zhou W, Chen W, Li J, Huang J, Gao J, Lu C, Wu H, Liu K, Dai G. ITRAQ-based quantitative proteomic analysis of japonica rice seedling during cold stress. BREEDING SCIENCE 2022; 72:150-168. [PMID: 36275934 PMCID: PMC9522529 DOI: 10.1270/jsbbs.21081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 06/16/2023]
Abstract
Low temperature is one of the important environmental factors that affect rice growth and yield. To better understand the japonica rice responses to cold stress, isobaric tags for a relative and absolute quantification (iTRAQ) labeling-based quantitative proteomics approach was used to detected changes in protein levels. Two-week-old seedlings of the cold tolerant rice variety Kongyu131 were treated at 8°C for 24, 48 and 72 h, then the total proteins were extracted from tissues and used for quantitative proteomics analysis. A total of 5082 proteins were detected for quantitative analysis, of which 289 proteins were significantly regulated, consisting of 169 uniquely up-regulated proteins and 125 uniquely down-regulated proteins in cold stress groups relative to the control group. Functional analysis revealed that most of the regulated proteins are involved in photosynthesis, metabolic pathway, biosynthesis of secondary metabolites and carbon metabolism. Western blot analysis showed that protein regulation was consistent with the iTRAQ data. The corresponding genes of 25 regulated proteins were used for quantitative real time PCR analysis, and the results showed that the mRNA level was not always parallel to the corresponding protein level. The importance of our study is that it provides new insights into cold stress responses in rice with respect to proteomics and provides candidate genes for cold-tolerance rice breeding.
Collapse
Affiliation(s)
- Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chunju Lu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Kaiqiang Liu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
5
|
Phan H, Schläppi M. Low Temperature Antioxidant Activity QTL Associate with Genomic Regions Involved in Physiological Cold Stress Tolerance Responses in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:genes12111700. [PMID: 34828305 PMCID: PMC8618774 DOI: 10.3390/genes12111700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Boosting cold stress tolerance in crop plants can minimize stress-mediated yield losses. Asian rice (Oryza sativa L.), one of the most consumed cereal crops, originated from subtropical regions and is generally sensitive to low temperature environments. Within the two subspecies of rice, JAPONICA, and INDICA, the cold tolerance potential of its accessions is highly variable and depends on their genetic background. Yet, cold stress tolerance response mechanisms are complex and not well understood. This study utilized 370 accessions from the Rice Diversity Panel 1 (RDP1) to investigate and correlate four cold stress tolerance response phenotypes: membrane damage, seedling survivability, and catalase and anthocyanin antioxidative activity. Most JAPONICA accessions, and admixed accessions within JAPONICA, had lower membrane damage, higher antioxidative activity, and overall, higher seedling survivability compared to INDICA accessions. Genome-wide association study (GWAS) mapping was done using the four traits to find novel quantitative trait loci (QTL), and to validate and fine-map previously identified QTL. A total of 20 QTL associated to two or more traits were uncovered by our study. Gene Ontology (GO) term enrichment analyses satisfying four layers of filtering retrieved three potential pathways: signal transduction, maintenance of plasma membrane and cell wall integrity, and nucleic acids metabolism as general mechanisms of cold stress tolerance responses involving antioxidant activity.
Collapse
|
6
|
Zhou Y, Sommer ML, Hochholdinger F. Cold response and tolerance in cereal roots. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab334. [PMID: 34270744 DOI: 10.1093/jxb/erab334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 05/02/2023]
Abstract
Cold stress adversely affects plant growth and is a limiting factor in crop productivity. Temperature volatility as a consequence of climate change will increase the effects of cold stress on crop cultivation. Low temperatures frequently occur early after planting in temperate climates and severely affect root development in cereals. In this review we address the question how cereal root systems respond to cold on different scales. First, we summarize the morphological, physiological and cellular responses of cereal roots to cold stress and how these processes are regulated by phytohormones. Subsequently, we highlight the status of the genetic and molecular dissection of cold tolerance with emphasis on the role of cold-responsive genes in improving cold tolerance in cereal roots. Finally, we discuss the role of beneficial microorganisms and mineral nutrients in ameliorating the effects of cold stress in cereal roots. A comprehensive knowledge of the molecular mechanisms underlying cold tolerance will ensure yield stability by enabling the generation of cold-tolerant crop genotypes.
Collapse
Affiliation(s)
- Yaping Zhou
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Mauritz Leonard Sommer
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
7
|
Chen R, Xiong XP, Cheng WH. Root characteristics of spring wheat under drip irrigation and their relationship with aboveground biomass and yield. Sci Rep 2021; 11:4913. [PMID: 33649480 PMCID: PMC7921688 DOI: 10.1038/s41598-021-84208-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
The objectives of this two-year field experiment were (1) to study the effect of irrigation frequency and irrigation amount on the root characteristics of drip-irrigated spring wheat (Triticum aestivum L.) and (2) to determine the relationship between these root characteristics and aboveground biomass and yield. A split-plot design was used with two wheat cultivars (Xinchun 6 and Xinchun 22). The irrigation treatments consisted of three irrigation intervals (D1, 13 d; D2, 10 d; and D3, 7 d) and three water amounts (W1, 3750 m3/ha; W2, 6000 m3/ha; and W3, 8250 m3/ha). The results showed that root length density (RLD) and root weight density (RWD) were greater at 0–20 cm than at 20–40 cm at flowering. The RLD was greater in D1 and D2 than in D3 in the shallow soil layer and did not differ among the treatments with different irrigation frequencies in deep soil. The RLD at the 0–20 cm depth of W3 was 17.9% greater than that of W2 and 53.8% greater than that of W1, and the RLD trend was opposite at the 20–40 cm depth. The root–shoot ratio was significantly higher in D2 than in the other treatment, whereas the RLD, RWD, leaf Pn and LAI were significantly greater in D3. Leaf Pn and LAI both increased as the irrigation amount increased. Regression analysis showed a natural logarithmic relationship between RWD and aboveground biomass (R2 > 0.60, P < 0.05) and binomial relationships of the RWD at 0–20 cm depth (R2 = 0.43, P < 0.05) and the RLD at 20–40 cm depth (R2 = 0.34, P < 0.05) with grain yield. We found that with the optimum irrigation amount (W2), increasing drip irrigation frequency can increase wheat root length and root weight and aboveground biomass accumulation, thereby improving yield and water use efficiency.
Collapse
Affiliation(s)
- Rui Chen
- Jingchu University of Technology, Jingmen, 448000, Hubei, China
| | - Xing-Peng Xiong
- Jingchu University of Technology, Jingmen, 448000, Hubei, China
| | - Wen-Han Cheng
- Jingchu University of Technology, Jingmen, 448000, Hubei, China.
| |
Collapse
|
8
|
Wang J, Ma Z, Li C, Ren P, Yao L, Li B, Meng Y, Ma X, Si E, Yang K, Shang X, Wang H. Dynamic Responses of Barley Root Succinyl-Proteome to Short-Term Phosphate Starvation and Recovery. FRONTIERS IN PLANT SCIENCE 2021; 12:649147. [PMID: 33868348 PMCID: PMC8045032 DOI: 10.3389/fpls.2021.649147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
Barley (Hordeum vulgare L.)-a major cereal crop-has low Pi demand, which is a distinct advantage for studying the tolerance mechanisms of phosphorus deficiency. We surveyed dynamic protein succinylation events in barley roots in response to and recovery from Pi starvation by firstly evaluating the impact of Pi starvation in a Pi-tolerant (GN121) and Pi-sensitive (GN42) barley genotype exposed to long-term low Pi (40 d) followed by a high-Pi recovery for 10 d. An integrated proteomics approach involving label-free, immune-affinity enrichment, and high-resolution LC-MS/MS spectrometric analysis was then used to quantify succinylome and proteome in GN121 roots under short-term Pi starvation (6, 48 h) and Pi recovery (6, 48 h). We identified 2,840 succinylation sites (Ksuc) across 884 proteins; of which, 11 representative Ksuc motifs had the preferred amino acid residue (lysine). Furthermore, there were 81 differentially abundant succinylated proteins (DFASPs) from 119 succinylated sites, 83 DFASPs from 110 succinylated sites, 93 DFASPs from 139 succinylated sites, and 91 DFASPs from 123 succinylated sites during Pi starvation for 6 and 48 h and during Pi recovery for 6 and 48 h, respectively. Pi starvation enriched ribosome pathways, glycolysis, and RNA degradation. Pi recovery enriched the TCA cycle, glycolysis, and oxidative phosphorylation. Importantly, many of the DFASPs identified during Pi starvation were significantly overexpressed during Pi recovery. These results suggest that barley roots can regulate specific Ksuc site changes in response to Pi stress as well as specific metabolic processes. Resolving the metabolic pathways of succinylated protein regulation characteristics will improve phosphate acquisition and utilization efficiency in crops.
Collapse
Affiliation(s)
- Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zengke Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Huajun Wang
| |
Collapse
|
9
|
Fang JC, Tsai YC, Chou WL, Liu HY, Chang CC, Wu SJ, Lu CA. A CCR4-associated factor 1, OsCAF1B, confers tolerance of low-temperature stress to rice seedlings. PLANT MOLECULAR BIOLOGY 2021; 105:177-192. [PMID: 33025522 DOI: 10.1007/s11103-020-01079-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. Expression of OsCAF1B was tightly coupled with low-temperature exposure. In the present study, we investigated the function of OsCAF1B in rice by characterizing the molecular and physiological responses to cold stress in OsCAF1B overexpression lines and dominant-negative mutant lines. Our results demonstrate that OsCAF1B plays an important role in growth and development of rice seedlings at low temperatures. Rice is a tropical and subtropical crop that is sensitive to low temperature, and activates a complex gene regulatory network in response to cold stress. Poly(A) tail shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. CCR4-associated factor 1 (CAF1) proteins are important enzymes for catalysis of mRNA deadenylation in eukaryotes. In the present study, the role of a rice cold-induced CAF1, OsCAF1B, in adaptation of rice plants to low-temperature stress was investigated. Expression of OsCAF1B was closely linked with low-temperature exposure. The increased survival percentage and reduced electrolyte leakage exhibited by OsCAF1B overexpression transgenic lines subjected to cold stress indicate that OsCAF1B plays a positive role in rice growth under low ambient temperature. The enhancement of cold tolerance by OsCAF1B in transgenic rice seedlings involved OsCAF1B deadenylase gene expression, and was associated with elevated expression of late-response cold-related transcription factor genes. In addition, the expression level of OsCAF1B was higher in a cold-tolerant japonica rice cultivar than in a cold-sensitive indica rice cultivar. The results reveal a hitherto undiscovered function of OsCAF1B deadenylase gene expression, which is required for adaptation to cold stress in rice.
Collapse
Affiliation(s)
- Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Yin-Chuan Tsai
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Hsin-Yi Liu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Chun-Chen Chang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Shaw-Jye Wu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, 320, Taiwan, ROC.
| |
Collapse
|
10
|
Huang D, Bian B, Zhang M, Wang C, Li C, Liao W. The role and proteomic analysis of ethylene in hydrogen gas-induced adventitious rooting development in cucumber ( Cucumis sativus L.) explants. PeerJ 2020; 8:e8896. [PMID: 32292654 PMCID: PMC7147439 DOI: 10.7717/peerj.8896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/11/2020] [Indexed: 01/29/2023] Open
Abstract
Previous studies have shown that both hydrogen gas (H2) and ethylene (ETH) play positive roles in plant adventitious rooting. However, the relationship between H2and ETH during this process has not been explored and remains insufficiently understood. In this study, cucumber (Cucumis sativus L.) was used to explore the proteomic changes in ETH-H2-induced rooting. Our results show that hydrogen-rich water (HRW) and ethylene-releasing compound (ethephon) at proper concentrations promote adventitious rooting, with maximal biological responses occurring at 50% HRW or 0.5 µM ethephon. ETH inhibitors aminoethoxyvinylglycine (AVG) and AgNO3 cause partial inhibition of adventitious rooting induced by H2, suggesting that ETH might be involved in H2-induced adventitious rooting. According to two-dimensional electrophoresis (2-DE) and mass spectrometric analyses, compared with the control, 9 proteins were up-regulated while 15 proteins were down-regulated in HRW treatment; four proteins were up-regulated while 10 proteins were down-regulated in ethephon treatment; and one protein was up-regulated while nine proteins were down-regulated in HRW+AVG treatment. Six of these differentially accumulated proteins were further analyzed, including photosynthesis -related proteins (ribulose-1,5-bisphosphate carall boxylase smsubunit (Rubisco), sedoheptulose-1,7-bisphosphatase (SBPase), oxygen-evolving enhancer protein (OEE1)), amino and metabolism-related protein (threonine dehydratase (TDH)), stress response-related protein (cytosolic ascorbate peroxidase (CAPX)), and folding, modification and degradation-related protein (protein disulfide-isomerase (PDI)). Moreover, the results of real-time PCR about the mRNA levels of these genes in various treatments were consistent with the 2-DE results. Therefore, ETH may be the downstream signaling molecule during H2- induced adventitious rooting and proteins Rubisco, SBPase, OEE1, TDH, CAPX and PDI may play important roles during the process.
Collapse
Affiliation(s)
- Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China, Lanzhou, China
| | - Biting Bian
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China, Lanzhou, China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, Lanzhou, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China, Lanzhou, China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China, Lanzhou, China
| |
Collapse
|
11
|
Zhou J, Wang Z, Mao Y, Wang L, Xiao T, Hu Y, Zhang Y, Ma Y. Proteogenomic analysis of pitaya reveals cold stress-related molecular signature. PeerJ 2020; 8:e8540. [PMID: 32095361 PMCID: PMC7020823 DOI: 10.7717/peerj.8540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022] Open
Abstract
Pitayas (Hylocereus spp.) is an attractive, highly nutritious and commercially valuable tropical fruit. However, low-temperature damage limits crop production. Genome of pitaya has not been sequenced yet. In this study, we sequenced the transcriptome of pitaya as the reference and further investigated the proteome under low temperature. By RNAseq technique, approximately 25.3 million reads were obtained, and further trimmed and assembled into 81,252 unigene sequences. The unigenes were searched against UniProt, NR and COGs at NCBI, Pfam, InterPro and Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and 57,905 unigenes were retrieved annotations. Among them, 44,337 coding sequences were predicted by Trandecoder (v2.0.1), which served as the reference database for label-free proteomic analysis study of pitaya. Here, we identified 116 Differentially Abundant Proteins (DAPs) associated with the cold stress in pitaya, of which 18 proteins were up-regulated and 98 proteins were down-regulated. KEGG analysis and other results showed that these DAPs mainly related to chloroplasts and mitochondria metabolism. In summary, chloroplasts and mitochondria metabolism-related proteins may play an important role in response to cold stress in pitayas.
Collapse
Affiliation(s)
- Junliang Zhou
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Zhuang Wang
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yongya Mao
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Lijuan Wang
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Tujian Xiao
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yang Hu
- Zhejiang Academy of Forestry, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Biological and Chemical Utilization of Forest Resources, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Fudan University, Institutes of Biomedical Sciences, Shanghai, Shanghai, China
| | - Yuhua Ma
- Guizhou Institute of Pomological Sciences, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Ambroise V, Legay S, Guerriero G, Hausman JF, Cuypers A, Sergeant K. The Roots of Plant Frost Hardiness and Tolerance. PLANT & CELL PHYSIOLOGY 2020; 61:3-20. [PMID: 31626277 PMCID: PMC6977023 DOI: 10.1093/pcp/pcz196] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/06/2019] [Indexed: 05/02/2023]
Abstract
Frost stress severely affects agriculture and agroforestry worldwide. Although many studies about frost hardening and resistance have been published, most of them focused on the aboveground organs and only a minority specifically targets the roots. However, roots and aboveground tissues have different physiologies and stress response mechanisms. Climate models predict an increase in the magnitude and frequency of late-frost events, which, together with an observed loss of soil insulation, will greatly decrease plant primary production due to damage at the root level. Molecular and metabolic responses inducing root cold hardiness are complex. They involve a variety of processes related to modifications in cell wall composition, maintenance of the cellular homeostasis and the synthesis of primary and secondary metabolites. After a summary of the current climatic models, this review details the specificity of freezing stress at the root level and explores the strategies roots developed to cope with freezing stress. We then describe the level to which roots can be frost hardy, depending on their age, size category and species. After that, we compare the environmental signals inducing cold acclimation and frost hardening in the roots and aboveground organs. Subsequently, we discuss how roots sense cold at a cellular level and briefly describe the following signal transduction pathway, which leads to molecular and metabolic responses associated with frost hardening. Finally, the current options available to increase root frost tolerance are explored and promising lines of future research are discussed.
Collapse
Affiliation(s)
- Valentin Ambroise
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| |
Collapse
|
13
|
ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int J Mol Sci 2019; 20:E5321. [PMID: 31731530 PMCID: PMC6862505 DOI: 10.3390/ijms20215321] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.
Collapse
Affiliation(s)
- Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Abdul Mateen Khattak
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin 300192, China;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
14
|
Zhong Z, Liu S, Zhu W, Ou Y, Yamaguchi H, Hitachi K, Tsuchida K, Tian J, Komatsu S. Phosphoproteomics Reveals the Biosynthesis of Secondary Metabolites in Catharanthus roseus under Ultraviolet-B Radiation. J Proteome Res 2019; 18:3328-3341. [PMID: 31356092 DOI: 10.1021/acs.jproteome.9b00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultraviolet (UV)-B radiation acts as an elicitor to enhance the production of secondary metabolites in medicinal plants. To investigate the mechanisms, which lead to secondary metabolites in Catharanthus roseus under UVB radiation, a phosphoproteomic technique was used. ATP content increased in the leaves of C. roseus under UVB radiation. Phosphoproteins related to calcium such as calmodulin, calcium-dependent kinase, and heat shock proteins increased. Phosphoproteins related to protein synthesis/modification/degradation and signaling intensively changed. Metabolomic analysis indicated that the metabolites classified with pentoses, aromatic amino acids, and phenylpropanoids accumulated under UVB radiation. Phosphoproteomic and immunoblot analyses indicated that proteins related to glycolysis and the reactive-oxygen species scavenging system were changed under UVB radiation. These results suggest that UVB radiation activates the calcium-related pathway and reactive-oxygen species scavenging system in C. roseus. These changes lead to the upregulation of proteins, which are responsible for the redox reactions in secondary metabolism and are important for the accumulation of secondary metabolites in C. roseus under UVB radiation.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China.,Faculty of Life and Environmental and Information Sciences , Fukui University of Technology , Fukui 910-8505 , Japan
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Yuting Ou
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Hisateru Yamaguchi
- Institute for Comprehensive Medical Science , Fujita Health University , Toyoake 470-1192 , Japan
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science , Fujita Health University , Toyoake 470-1192 , Japan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science , Fujita Health University , Toyoake 470-1192 , Japan
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Setsuko Komatsu
- Faculty of Life and Environmental and Information Sciences , Fukui University of Technology , Fukui 910-8505 , Japan
| |
Collapse
|
15
|
Shi H, He S, He X, Lu S, Guo Z. An eukaryotic elongation factor 2 from Medicago falcata (MfEF2) confers cold tolerance. BMC PLANT BIOLOGY 2019; 19:218. [PMID: 31133003 PMCID: PMC6537394 DOI: 10.1186/s12870-019-1826-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/09/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND An eukaryotic translation elongation factor-2 (eEF-2) plays an important role in protein synthesis, however, investigation on its role in abiotic stress responses is limited. A cold responsive eEF2 named as MfEF2 was isolated from yellow-flowered alfalfa [Medicago sativa subsp. falcata (L.) Arcang, thereafter M. falcata], a forage legume with great cold tolerance, and transgenic tobacco (Nicotiana tabacum L.) plants overexpressing MfEF2 were analyzed in cold tolerance and proteomic profiling was conducted under low temperature in this study. RESULTS MfEF2 transcript was induced and peaked at 24 h and remained at the high level during cold treatment up to 96 h. Overexpression of MfEF2 in trasngenic tobacco plants resulted in enhanced cold tolerance. Compared to the wild type, transgenic plants showed higher survival rate after freezing treatment, higher levels of net photosynthetic rate (A), maximum photochemical efciency of photosystem (PS) II (Fv/Fm) and nonphotochemical quenching (NPQ) and lower levels of ion leakage and reactive oxygen species (ROS) production after chilling treatment. iTRAQ-based quantitative proteomic analysis identified 336 differentially expressed proteins (DEPs) from leaves of one transgenic line versus the wild type after chilling treatment for 48 h. GO and KEGG enrichment were conducted for analysis of the major biological process, cellular component, molecular function, and pathways of the DEPs involving in. It is interesting that many down-regulated DEPs were grouped into "photosynthesis" and "photosynthesis-antenna", such as subunits of PSI and PSII as well as light harvesting chlorophyll protein complex (LHC), while many up-regulated DEPs were grouped into "spliceosome". CONCLUSIONS The results suggest that MfEF2 confers cold tolerance through regulating hundreds of proteins synthesis under low temperature conditions. The elevated cold tolerance in MfEF2 transgenic plants was associated with downregulation of the subunits of PSI and PSII as well as LHC, which leads to reduced capacity for capturing sunlight and ROS production for protection of plants, and upregulation of proteins involving in splicesome, which promotes alternative splicing of pre-mRNA under low temperature.
Collapse
Affiliation(s)
- Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sijian He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Xueying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
16
|
Aslam MM, Rehman S, Khatoon A, Jamil M, Yamaguchi H, Hitachi K, Tsuchida K, Li X, Sunohara Y, Matsumoto H, Komatsu S. Molecular Responses of Maize Shoot to a Plant Derived Smoke Solution. Int J Mol Sci 2019; 20:E1319. [PMID: 30875914 PMCID: PMC6471572 DOI: 10.3390/ijms20061319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/14/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Plant-derived smoke has effects on plant growth. To find the molecular mechanism of plant-derived smoke on maize, a gel-free/label-free proteomic technique was used. The length of root and shoot were increased in maize by plant-derived smoke. Proteomic analysis revealed that 2000 ppm plant-derived smoke changed the abundance of 69 proteins in 4-days old maize shoot. Proteins in cytoplasm, chloroplast, and cell membrane were altered by plant-derived smoke. Catalytic, signaling, and nucleotide binding proteins were changed. Proteins related to sucrose synthase, nucleotides, signaling, and glutathione were significantly increased; however, cell wall, lipids, photosynthetic, and amino acid degradations related proteins were decreased. Based on proteomic and immunoblot analyses, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was decreased; however, RuBisCO activase was not changed by plant-derived smoke in maize shoot. Ascorbate peroxidase was not affected; however, peroxiredoxin was decreased by plant-derived smoke. Furthermore, the results from enzyme-activity and mRNA-expression analyses confirmed regulation of ascorbate peroxidase and the peroxiredoxinin reactive oxygen scavenging system. These results suggest that increases in sucrose synthase, nucleotides, signaling, and glutathione related proteins combined with regulation of reactive oxygen species and their scavenging system in response to plant-derived smoke may improve maize growth.
Collapse
Affiliation(s)
- Muhammad Mudasar Aslam
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan.
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Shafiq Rehman
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Amana Khatoon
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Hisateru Yamaguchi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.
| | - Xinyue Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Yukari Sunohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Hiroshi Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
17
|
iTRAQ-based quantitative proteomics analysis of cold stress-induced mechanisms in grafted watermelon seedlings. J Proteomics 2019; 192:311-320. [DOI: 10.1016/j.jprot.2018.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
|
18
|
Margas M, Piotrowicz-Cieślak AI, Michalczyk DJ, Głowacka K. A Strong Impact of Soil Tetracycline on Physiology and Biochemistry of Pea Seedlings. SCIENTIFICA 2019; 2019:3164706. [PMID: 30733888 PMCID: PMC6348853 DOI: 10.1155/2019/3164706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/12/2018] [Indexed: 06/01/2023]
Abstract
Antibiotics are a new type of contaminants found in the environment. They are increasingly used in farm animal production systems and may accumulate in crops, limiting the plant growth rate and nutritive value. The aim of this study was to determine the effects of tetracycline (TC) on physiological and biochemical properties of pea seedlings. The presence of TC in the soil during 24 hours did not result in any distinct changes of the seedlings. However, after five days (120 h) of soil TC action, the seedling appearance and metabolic activities were significantly affected. Leaves lost their green coloration as a result of a 38% degradation of their chlorophyll. Total protein was isolated from shoots of pea grown for 120 h in TC-supplemented perlite (250 mg × L-1) or perlite with no TC (control plants). The 2D electrophoretic maps of proteins from non-TC shoots contained 326 spots, whereas maps of shoot proteins from TC-treated seedlings contained only 316 spots. The identity of 26 proteins was determined. The intensity of most proteins (62%) increased. This was particularly visible with diphosphate kinase, superoxide dismutase [Cu-Zn], peroxiredoxin, and glutathione S-transferase. A distinctly increased quantity of a protein involved in photosynthesis (photosystem II stability/assembly factor HCF136) was also noted. One protein was detected only in shoots of TC-treated plants (as opposed to controls); however, it could not be identified. Moreover, at the highest concentration of TC (250 mg × L-1 of perlite), a sharp increase in free-radical content was observed along with the amount of callose deposited in vascular bundles of leaves and roots and the occurrence of masses of dead cells in roots. It was found, therefore, that tetracycline which has been known for inhibiting predominantly the attachment of aminoacyl-tRNA to the ribosomal acceptor in bacteria can disturb diverse metabolic pathways in plants.
Collapse
Affiliation(s)
- Małgorzata Margas
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Agnieszka I. Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Dariusz J. Michalczyk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
| |
Collapse
|
19
|
Filiz E, Ozyigit II, Saracoglu IA, Uras ME, Sen U, Yalcin B. Abiotic stress-induced regulation of antioxidant genes in different Arabidopsis ecotypes: microarray data evaluation. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1556120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Ibrahim Adnan Saracoglu
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Mehmet Emin Uras
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Ugur Sen
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| | - Bahattin Yalcin
- Department of Chemistry, Faculty of Science and Arts, Marmara University, Goztepe, Istanbul, Turkey
| |
Collapse
|
20
|
Sun P, Tang X, Bi G, Xu K, Kong F, Mao Y. Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses. Mar Genomics 2018; 43:43-49. [PMID: 30279127 DOI: 10.1016/j.margen.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Pyropia yezoensis is an economically important marine macroalgae, naturally distributed in the upper intertidal zone. Owing to the nature of its habitat, the thallus will periodically be exposed to seawater or atmosphere, and can lose up to 95% of its cellular water content. This makes the alga an ideal research model to investigate the mechanisms of desiccation tolerance. In this study, we investigated the response mechanisms to dehydration and rehydration stresses at the transcription level in Pyropia yezoensis. The differently expressed genes were analyzed based on the different functions of encoding proteins: effector proteins (chloroplast proteins, macromolecular protective substances, and toxicity degradation enzymes) and regulatory proteins (protein kinases and phosphatases). Under osmotic stress, the unigenes related to photosynthesis were down-regulated significantly while those encoding glutathione transferase, superoxide dismutase and heat shock proteins were up-regulated significantly. We inferred that the photosynthetic activity was reduced to prevent damage caused by photosynthetic by-products and that the expression of antioxidant enzyme was increased to prevent the damage associated with reactive oxygen species. Additionally, unigenes encoding serine/threonine kinases and phospholipases were up-regulated in response to osmotic stress, indicating that these kinases play an important role in osmotolerance. Our work will serve as an essential foundation for the understanding of desiccation tolerance mechanisms in Pyropia yezoensis in the upper intertidal zones of rocky coasts.
Collapse
Affiliation(s)
- Peipei Sun
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Guiqi Bi
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kuipeng Xu
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fanna Kong
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (MOE), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
21
|
Ye Z, Liu J, Jin Y, Cui H, An X, Fu X, Yu X. Physiological and proteomic changes in Zizania latifolia under chilling stress. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Huang W, Ma HY, Huang Y, Li Y, Wang GL, Jiang Q, Wang F, Xiong AS. Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. PHYSIOLOGIA PLANTARUM 2017; 161:468-485. [PMID: 28767140 DOI: 10.1111/ppl.12609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
Chlorophyll (Chl) is essential for light harvesting and energy transduction in photosynthesis. A proper amount of Chl within plant cells is important to celery (Apium graveolens) yield and quality. Temperature stress is an influential abiotic stress affecting Chl biosynthesis and plant growth. There are limited proteomic studies regarding Chl accumulation under temperature stress in celery leaves. Here, the proteins from celery leaves under different temperature treatments (4, 25 and 38°C) were analyzed using a proteomic approach. There were 71 proteins identified through MALDI-TOF-TOF analysis. The relative abundance of proteins involved in carbohydrate and energy metabolism, protein metabolism, amino acid metabolism, antioxidant and polyamine biosynthesis were enhanced under cold stress. These temperature stress-responsive proteins may establish a new homeostasis to enhance temperature tolerance. Magnesium chelatase (Mg-chelatase) and glutamate-1-semialdehyde aminotransferase (GSAT), related to Chl biosynthesis, showed increased abundances under cold stress. Meanwhile, the Chl contents were decreased in heat- and cold-stressed celery leaves. The inhibition of Chl biosynthesis may be due to the downregulated mRNA levels of 15 genes involved in Chl biosynthesis. The study will expand our knowledge on Chl biosynthesis and the temperature tolerance mechanisms in celery leaves.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Wu J, Wang Y, Kim SG, Jung KH, Gupta R, Kim J, Park Y, Kang KY, Kim ST. A secreted chitinase-like protein (OsCLP) supports root growth through calcium signaling in Oryza sativa. PHYSIOLOGIA PLANTARUM 2017; 161:273-284. [PMID: 28401568 DOI: 10.1111/ppl.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 05/27/2023]
Abstract
Chitinases belong to a conserved protein family and play multiple roles in defense, development and growth regulation in plants. Here, we identified a secreted chitinase-like protein, OsCLP, which functions in rice growth. A T-DNA insertion mutant of OsCLP (osclp) showed significant retardation of root and shoot growth. A comparative proteomic analysis was carried out using root tissue of wild-type and the osclp mutant to understand the OsCLP-mediated rice growth retardation. Results obtained revealed that proteins related to glycolysis (phosphoglycerate kinase), stress adaption (chaperonin) and calcium signaling (calreticulin and CDPK1) were differentially regulated in osclp roots. Fura-2 molecular probe staining, which is an intracellular calcium indicator, and inductively coupled plasma-mass spectrometry (ICP-MS) analysis suggested that the intracellular calcium content was significantly lower in roots of osclp as compared with the wild-type. Exogenous application of Ca2+ resulted in successful recovery of both primary and lateral root growth in osclp. Moreover, overexpression of OsCLP resulted in improved growth with modified seed shape and starch structure; however, the overall yield remained unaffected. Taken together, our results highlight the involvement of OsCLP in rice growth by regulating the intracellular calcium concentrations.
Collapse
Affiliation(s)
- Jingni Wu
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Sang Gon Kim
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Joonyup Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
| | - Younghoon Park
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627-706, South Korea
- Department of Horticultural Bioscience, Pusan National University, Miryang, 627-706, South Korea
| | - Kyu Young Kang
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
- National Institute of Crop Science, Rural Development Administration, Suwon, 16429, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
| |
Collapse
|
24
|
Abstract
Low temperature can greatly restrict the growth and development of rice. The rice seedlings show growth retardation, lamina wrap, and part of blade even died under the condition of low temperature. In order to get more information about cold stress responses in rice, two dimensional electrophoresis and bioinformatics analysis of mass spectrometry were used to preliminary survey the cold tolerance of cold sensitive line 9311 and cold resistance variety Fujisaka 5 under cold stress. Two dimensional electrophoresis maps of 9311 and Fujisaka 5 were established under cold treatment. With analysis of bioinformation, the proteins were found involve in many aspects of rice development. The largest category of proteins is functioning on metabolism. By comparing the proteins from the two varieties, it can be found that most proteins from 9311 were down-regulated and were up-regulated in Fujisaka 5. The results showed that the membrane composition and structure were damaged, metabolism changed dramatically and rice defense system was activated under the cold stimulation. Fifty-nine proteins related to the resistance of cold stress were identified in our study, and we have investigated and classified all of their biological functions. The importance of our study are providing some conduct for the research of rice resistant to cold stress, supporting auxiliary technique for rice varieties and widening the search field of cold tolerance in plants.
Collapse
|
25
|
Skupień J, Wójtowicz J, Kowalewska Ł, Mazur R, Garstka M, Gieczewska K, Mostowska A. Dark-chilling induces substantial structural changes and modifies galactolipid and carotenoid composition during chloroplast biogenesis in cucumber (Cucumis sativus L.) cotyledons. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:107-118. [PMID: 27915172 DOI: 10.1016/j.plaphy.2016.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 05/21/2023]
Abstract
Plants in a temperate climate are often subject to different environmental factors, chilling stress among them, which influence the growth especially during early stages of plant development. Chloroplasts are one of the first organelles affected by the chilling stress. Therefore the proper biogenesis of chloroplasts in early stages of plant growth is crucial for undertaking the photosynthetic activity. In this paper, the analysis of the cotyledon chloroplast biogenesis at different levels of plastid organization was performed in cucumber, one of the most popular chilling sensitive crops. Influence of low temperature on the ultrastructure was manifested by partial recrystallization of the prolamellar body, the formation of elongated grana thylakoids and a change of the prolamellar body structure from the compacted "closed" type to a more loose "open" type. Structural changes are strongly correlated with galactolipid and carotenoid content. Substantial changes in the galactolipid and the carotenoid composition in dark-chilled plants, especially a decrease of the monogalactosyldiacylglycerol to digalactosyldiacylglycerol ratio (MGDG/DGDG) and an increased level of lutein, responsible for a decrease in membrane fluidity, were registered together with a slower adaptation to higher light intensity and an increased level of non-photochemical reactions. Changes in the grana thylakoid fluidity, of their structure and photosynthetic efficiency in developing chloroplasts of dark-chilled plants, without significant changes in the PSI/PSII ratio, could distort the balance of photosystem rearrangements and be one of the reasons of cucumber sensitivity to chilling.
Collapse
Affiliation(s)
- Joanna Skupień
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
26
|
Nałęcz D, Szerszunowicz I, Dziuba M, Minkiewicz P. 2-DE Separation and Identification of Oat (Avena sativa L.) Proteins and Their Prolamin Fractions. Methods Mol Biol 2017; 1536:235-251. [PMID: 28132155 DOI: 10.1007/978-1-4939-6682-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
At present two-dimensional polyacrylamide gel electrophoresis (2-DE) is the most widely used proteomic tool, which enables simultaneous separation of even thousands of proteins with a high degree of resolution. The quality of 2-DE separation depends on the type of biological material used as a protein source. The presence of interfering compounds (e.g., phenols, as it is the fact in plant material including oat seeds) impedes 2-DE run. With the use of this technique it is possible to analyze the complex protein mixtures, characteristic protein fractions, as well as individual proteins.The purpose of this chapter is to describe the 2-DE technique (the separate stages of the first and the second dimension) for determining the oat protein composition (oat seed proteome), separation and preliminary identification of oat prolamin fractions. Electrophoretically separated proteins are identified on the basis of pI markers (identifying the location of both ends of an IPG strip) and on 2D SDS-PAGE standards. The gel images of oat proteins are analyzed with the help of ImageMaster 2D Platinum 6.0 program (Amersham Bioscience, part of GE Healthcare, Uppsala, Sweden). It allows finding unique spot identifiers for the occurrence of oat prolamin fractions in oat total proteins. The characteristic spots of similar shape and intensity (anchoring spots) and characteristic groups of spots can be searched for the purpose of identification.
Collapse
Affiliation(s)
- Dorota Nałęcz
- Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland.
| | - Iwona Szerszunowicz
- Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| | - Marta Dziuba
- Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| | - Piotr Minkiewicz
- Chair of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726, Olsztyn, Poland
| |
Collapse
|
27
|
Jha UC, Bohra A, Jha R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. PLANT CELL REPORTS 2017; 36:1-35. [PMID: 27878342 DOI: 10.1007/s00299-016-2073-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 05/11/2023]
Abstract
Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Abhishek Bohra
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Rintu Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India
| |
Collapse
|
28
|
Li Q, Chang R, Sun Y, Li B. iTRAQ-Based Quantitative Proteomic Analysis of Spirulina platensis in Response to Low Temperature Stress. PLoS One 2016; 11:e0166876. [PMID: 27902743 PMCID: PMC5130222 DOI: 10.1371/journal.pone.0166876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
Low temperature (LT) is one of the most important abiotic stresses that can significantly reduce crop yield. To gain insight into how Spirulina responds to LT stress, comprehensive physiological and proteomic analyses were conducted in this study. Significant decreases in growth and pigment levels as well as excessive accumulation of compatible osmolytes were observed in response to LT stress. An isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics approach was used to identify changes in protein abundance in Spirulina under LT. A total of 3,782 proteins were identified, of which 1,062 showed differential expression. Bioinformatics analysis indicated that differentially expressed proteins that were enriched in photosynthesis, carbohydrate metabolism, amino acid biosynthesis, and translation are important for the maintenance of cellular homeostasis and metabolic balance in Spirulina when subjected to LT stress. The up-regulation of proteins involved in gluconeogenesis, starch and sucrose metabolism, and amino acid biosynthesis served as coping mechanisms of Spirulina in response to LT stress. Moreover, the down-regulated expression of proteins involved in glycolysis, TCA cycle, pentose phosphate pathway, photosynthesis, and translation were associated with reduced energy consumption. The findings of the present study allow a better understanding of the response of Spirulina to LT stress and may facilitate in the elucidation of mechanisms underlying LT tolerance.
Collapse
Affiliation(s)
- Qingye Li
- College of Biological Sciences and Technology, Beijing Forestry University, Haidian District, Beijing, China
| | - Rong Chang
- College of Biological Sciences and Technology, Beijing Forestry University, Haidian District, Beijing, China
| | - Yijun Sun
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Bosheng Li
- College of Biological Sciences and Technology, Beijing Forestry University, Haidian District, Beijing, China
- Institute of Spirulina Research, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Plohovska SG, Yemets AI, Blume YB. Influence of cold on organization of actin filaments of different types of root cells in Arabidopsis thaliana. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716050108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Lee HJ, Back K. 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J Pineal Res 2016; 61:303-16. [PMID: 27264781 DOI: 10.1111/jpi.12347] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
Abstract
We investigated the physiological roles of 2-hydroxymelatonin (2-OHMel) in rice seedlings. When they were challenged with simultaneous multiple abiotic stressors, such as a combination of cold and drought, those pretreated with 2-OHMel were resistant, whereas no tolerance was observed in seedlings treated with either melatonin or water (control). The tolerance phenotype was associated with the induction of several transporter proteins, including the proton transporter (UCP1), potassium transporter (HKT1), and water channel protein (PIP2;1). Treatment with 2-OHMel increased the content of the osmoprotectant proline and maintained mitochondrial structure when plants were subjected to a combination of cold and drought stress. We screened the corresponding transcription factors (TFs) for 2-OHMel-mediated resistance to the combined stressors through analysis of large numbers of cold- and drought-related TFs. Two TFs, Myb4 and AP37, were only induced by 2-OHMel treatment. Transgenic rice lines overexpressing rice Myb4 were not resistant to the combined stressors; however, the expression of UCP1, HKT1, and PIP2;1 transcripts was slightly enhanced. These data show that 2-OHMel alleviates the effects of simultaneous abiotic stressors via the actions of multiple TFs, including Myb4 and AP37.
Collapse
Affiliation(s)
- Hye-Jung Lee
- Department of Biotechnology, Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
32
|
Ahmad P, Abdel Latef AAH, Rasool S, Akram NA, Ashraf M, Gucel S. Role of Proteomics in Crop Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1336. [PMID: 27660631 PMCID: PMC5014855 DOI: 10.3389/fpls.2016.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in physiological, molecular and biochemical processes operating in plants. It is now widely reported that several proteins respond to these stresses at pre- and post-transcriptional and translational levels. By knowing the role of these stress inducible proteins, it would be easy to comprehensively expound the processes of stress tolerance in plants. The proteomics study offers a new approach to discover proteins and pathways associated with crop physiological and stress responses. Thus, studying the plants at proteomic levels could help understand the pathways involved in stress tolerance. Furthermore, improving the understanding of the identified key metabolic proteins involved in tolerance can be implemented into biotechnological applications, regarding recombinant/transgenic formation. Additionally, the investigation of identified metabolic processes ultimately supports the development of antistress strategies. In this review, we discussed the role of proteomics in crop stress tolerance. We also discussed different abiotic stresses and their effects on plants, particularly with reference to stress-induced expression of proteins, and how proteomics could act as vital biotechnological tools for improving stress tolerance in plants.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| | - Arafat A. H. Abdel Latef
- Department of Botany, Faculty of Science, South Valley UniversityQena, Egypt
- Department of Biology, College of Applied Medical Sciences, Taif UniversityTurubah, Saudi Arabia
| | | | - Nudrat A. Akram
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
33
|
Zhang N, Huo W, Zhang L, Chen F, Cui D. Identification of Winter-Responsive Proteins in Bread Wheat Using Proteomics Analysis and Virus-Induced Gene Silencing (VIGS). Mol Cell Proteomics 2016; 15:2954-69. [PMID: 27402868 DOI: 10.1074/mcp.m115.057232] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Proteomic approaches were applied to identify protein spots involved in cold responses in wheat. By comparing the differentially accumulated proteins from two cultivars (UC1110 and PI 610750) and their derivatives, as well as the F10 recombinant inbred line population differing in cold-tolerance, a total of 20 common protein spots representing 16 unique proteins were successfully identified using 2-DE method. Of these, 14 spots had significantly enhanced abundance in the cold-sensitive parental cultivar UC1110 and its 20 descendant lines when compared with the cold-tolerant parental cultivar PI 610750 and its 20 descendant lines. Six protein spots with reduced abundance were also detected. The identified protein spots are involved in stress/defense, carbohydrate metabolism, protein metabolism, nitrogen metabolism, energy metabolism, and photosynthesis. The 20 differentially expressed protein spots were chosen for quantitative real-time polymerase chain reaction (qRT-PCR) to investigate expression changes at the RNA level. The results indicated that the transcriptional expression patterns of 11 genes were consistent with their protein expression models. Among the three unknown proteins, Spot 20 (PAP6-like) showed high sequence similarities with PAP6. qRT-PCR results implied that cold and salt stresses increased the expression of PAP6-like in wheat leaves. Furthermore, VIGS (virus-induced gene silencing)-treated plants generated for PAP6-like were subjected to freezing stress, these plants had more serious droop and wilt, an increased rate of relative electrolyte leakage, reduced relative water content (RWC) and decreased tocopherol levels when compared with viral control plants. However, the plants that were silenced for the other two unknown proteins had no significant differences in comparison to the BSMV0-inoculated plants under freezing conditions. These results indicate that PAP6-like possibly plays an important role in conferring cold tolerance in wheat.
Collapse
Affiliation(s)
- Ning Zhang
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Wang Huo
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingran Zhang
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Chen
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangqun Cui
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
34
|
Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 2016; 143:3-14. [DOI: 10.1016/j.jprot.2016.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
35
|
Meng X, Zhao Q, Jin Y, Yu J, Yin Z, Chen S, Dai S. Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis. J Proteomics 2016; 143:365-381. [PMID: 27130536 DOI: 10.1016/j.jprot.2016.04.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 11/28/2022]
Abstract
Alkali grass (Puccinellia tenuiflora), a monocotyledonous perennial halophyte species, is a good pasture with great nutritional value for livestocks. It can thrive under low temperature in the saline-alkali soil of Songnen plain in northeastern China. In the present study, the chilling-responsive mechanism in P. tenuiflora leaves was investigated using physiological and proteomic approaches. After treatment of 10°C for 10 and 20days, photosynthesis, biomass, contents of osmolytes and antioxidants, and activities of reactive oxygen species scavenging enzymes were analyzed in leaves of 20-day-old seedlings. Besides, 89 chilling-responsive proteins were revealed from proteomic analysis. All the results highlighted that the growth of seedlings was inhibited due to chilling-decreased enzymes in photosynthesis, carbohydrate metabolism, and energy supplying. The accumulation of osmolytes (i.e., proline, soluble sugar, and glycine betaine) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione S-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under the chilling conditions. In addition, protein synthesis and turnover in cytoplasm and chloroplast were altered to cope with the chilling stress. This study provides valuable information for understanding the chilling-responsive and cross-tolerant mechanisms in monocotyledonous halophyte plant species.
Collapse
Affiliation(s)
- Xuejiao Meng
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Yudan Jin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Juanjuan Yu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Zepeng Yin
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
36
|
Zhang W, Zhang H, Ning L, Li B, Bao M. Quantitative Proteomic Analysis Provides Novel Insights into Cold Stress Responses in Petunia Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:136. [PMID: 26941746 PMCID: PMC4766708 DOI: 10.3389/fpls.2016.00136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/26/2016] [Indexed: 05/17/2023]
Abstract
Low temperature is a major adverse environmental factor that impairs petunia growth and development. To better understand the molecular mechanisms of cold stress adaptation of petunia plants, a quantitative proteomic analysis using iTRAQ technology was performed to detect the effects of cold stress on protein expression profiles in petunia seedlings which had been subjected to 2°C for 5 days. Of the 2430 proteins whose levels were quantitated, a total of 117 proteins were discovered to be differentially expressed under low temperature stress in comparison to unstressed controls. As an initial study, 44 proteins including well known and novel cold-responsive proteins were successfully annotated. By integrating the results of two independent Gene Ontology (GO) enrichment analyses, seven common GO terms were found of which "oxidation-reduction process" was the most notable for the cold-responsive proteins. By using the subcellular localization tool Plant-mPLoc predictor, as much as 40.2% of the cold-responsive protein group was found to be located within chloroplasts, suggesting that the chloroplast proteome is particularly affected by cold stress. Gene expression analyses of 11 cold-responsive proteins by real time PCR demonstrated that the mRNA levels were not strongly correlated with the respective protein levels. Further activity assay of anti-oxidative enzymes showed different alterations in cold treated petunia seedlings. Our investigation has highlighted the role of antioxidation mechanisms and also epigenetic factors in the regulation of cold stress responses. Our work has provided novel insights into the plant response to cold stress and should facilitate further studies regarding the molecular mechanisms which determine how plant cells cope with environmental perturbation. The data have been deposited to the ProteomeXchange with identifier PXD002189.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Huilin Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Luyun Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Bei Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
37
|
Huo C, Zhang B, Wang H, Wang F, Liu M, Gao Y, Zhang W, Deng Z, Sun D, Tang W. Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Reveals a Key Role for Phospholipase Dα1 in Mediating Cold Acclimation Signaling Pathway in Rice. Mol Cell Proteomics 2016; 15:1397-411. [PMID: 26747563 DOI: 10.1074/mcp.m115.049759] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Indexed: 11/06/2022] Open
Abstract
To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins.
Collapse
Affiliation(s)
- Chenmin Huo
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; ‖College of Biology Science & Engineering, Hebei University of Economics & Business, Shijiazhuang, Hebei 050061, China
| | - Baowen Zhang
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Hui Wang
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fawei Wang
- §State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Liu
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yingjie Gao
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenhua Zhang
- §State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiping Deng
- ¶State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Daye Sun
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenqiang Tang
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China;
| |
Collapse
|
38
|
Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ. Transcriptome Response Mediated by Cold Stress in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2016; 7:374. [PMID: 27066029 PMCID: PMC4811897 DOI: 10.3389/fpls.2016.00374] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 05/18/2023]
Abstract
Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures.
Collapse
|
39
|
An F, Li G, Li QX, Li K, Carvalho LJCB, Ou W, Chen S. The Comparatively Proteomic Analysis in Response to Cold Stress in Cassava Plantlets. PLANT MOLECULAR BIOLOGY REPORTER 2016; 34:1095-1110. [PMID: 27881899 PMCID: PMC5099363 DOI: 10.1007/s11105-016-0987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a tropical root crop and sensitive to low temperature. However, it is poorly to know how cassava can modify its metabolism and growth to adapt to cold stress. An investigation aimed at a better understanding of cold-tolerant mechanism of cassava plantlets was carried out with the approaches of physiology and proteomics in the present study. The principal component analysis of seven physiological characteristics showed that electrolyte leakage (EL), chlorophyll content, and malondialdehyde (MDA) may be the most important physiological indexes for determining cold-resistant abilities of cassava. The genome-wide proteomic analysis showed that 20 differential proteins had the same patterns in the apical expanded leaves of cassava SC8 and Col1046. They were mainly related to photosynthesis, carbon metabolism and energy metabolism, defense, protein synthesis, amino acid metabolism, signal transduction, structure, detoxifying and antioxidant, chaperones, and DNA-binding proteins, in which 40 % were related with photosynthesis. The remarkable variation in photosynthetic activity and expression level of peroxiredoxin is closely linked with expression levels of proteomic profiles. Moreover, analysis of differentially expressed proteins under cold stress is an important step toward further elucidation of mechanisms of cold stress resistance.
Collapse
Affiliation(s)
- Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Genghu Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Manoa, HI USA
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | | | - Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Danzhou, 571737 China
| |
Collapse
|
40
|
Zhu W, Xu X, Tian J, Zhang L, Komatsu S. Proteomic Analysis of Lonicera japonica Thunb. Immature Flower Buds Using Combinatorial Peptide Ligand Libraries and Polyethylene Glycol Fractionation. J Proteome Res 2015; 15:166-81. [PMID: 26573373 DOI: 10.1021/acs.jproteome.5b00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lonicera japonica Thunb. flower is a well-known medicinal plant that has been widely used for the treatment of human disease. To explore the molecular mechanisms underlying the biological activities of L. japonica immature flower buds, a gel-free/label-free proteomic technique was used in combination with combinatorial peptide ligand libraries (CPLL) and polyethylene glycol (PEG) fractionation for the enrichment of low-abundance proteins and removal of high-abundance proteins, respectively. A total of 177, 614, and 529 proteins were identified in crude protein extraction, CPLL fractions, and PEG fractions, respectively. Among the identified proteins, 283 and 239 proteins were specifically identified by the CPLL and PEG methods, respectively. In particular, proteins related to the oxidative pentose phosphate pathway, signaling, hormone metabolism, and transport were highly enriched by CPLL and PEG fractionation compared to crude protein extraction. A total of 28 secondary metabolism-related proteins and 25 metabolites were identified in L. japonica immature flower buds. To determine the specificity of the identified proteins and metabolites for L. japonica immature flower buds, Cerasus flower buds were used, which resulted in the abundance of hydroxymethylbutenyl 4-diphosphate synthase in L. japonica immature flower buds being 10-fold higher than that in Cerasus flower buds. These results suggest that proteins related to secondary metabolism might be responsible for the biological activities of L. japonica immature flower buds.
Collapse
Affiliation(s)
- Wei Zhu
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan.,College of Biomedical Engineering and Instrument Science, Zhejiang University , Hangzhou 310027, China
| | - Xiaobao Xu
- College of Biomedical Engineering and Instrument Science, Zhejiang University , Hangzhou 310027, China
| | - Jingkui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University , Hangzhou 310027, China
| | - Lin Zhang
- College of Biomedical Engineering and Instrument Science, Zhejiang University , Hangzhou 310027, China
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
41
|
A quantitative shotgun proteomics analysis of germinated rice embryos and coleoptiles under low-temperature conditions. Proteome Sci 2015; 13:27. [PMID: 26587012 PMCID: PMC4652350 DOI: 10.1186/s12953-015-0082-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/01/2015] [Indexed: 11/13/2022] Open
Abstract
Background At low temperatures, rice grains have a reduced germination rate and grow more slowly, which delays the emergence of rice seedlings from the paddy water surface and significantly increases seedling mortality. In this study, we conducted a shotgun proteomics analysis of geminated embryos and coleoptiles to compare the proteome expression pattern between the low-temperature resistant variety, Tong 88-7, and the low-temperature susceptible variety, Milyang 23. Results In a shotgun proteomics analysis of low-temperature resistant and susceptible embryos and coleoptiles in both cold and control temperatures, we discovered a total of 2626 non-redundant proteins, with a 0.01 false discovery rate. A comparison of protein expression patterns between resistant and susceptible embryos and coleoptiles under low-temperature and normal conditions revealed that 85 proteins and 196 proteins were expressed by the resistant and susceptible strains, respectively, in response to low temperature. Among them, 12 proteins overlapped. Proteins involved in stress responses, metabolism, and gene expression were expressed in both strains. Conclusions Similar molecular functions of the response were detected, suggesting that the resistant and susceptible strain have a similar proteome response to cold temperatures. The resistance of Tong 88-7 to cold-water germination may result from the efficiency of these proteins, rather than activation of additional or different molecular processes. A comparison of protein expression between the resistant and susceptible strains’ responses revealed that the more successful low-temperature germination of Tong 88-7 was associated with gibberellin signaling, protein trafficking, and the ABA-mediated stress response. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0082-5) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Peng X, Teng L, Yan X, Zhao M, Shen S. The cold responsive mechanism of the paper mulberry: decreased photosynthesis capacity and increased starch accumulation. BMC Genomics 2015; 16:898. [PMID: 26537770 PMCID: PMC4634900 DOI: 10.1186/s12864-015-2047-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Most studies on the paper mulberry are mainly focused on the medicated and pharmacology, fiber quality, leaves feed development, little is known about its mechanism of adaptability to abiotic stress. Physiological measurement, transcriptomics and proteomic analysis were employed to understand its response to cold stress in this study. Methods The second to fourth fully expanded leaves from up to down were harvested at different stress time points forthe transmission electron microscope (TEM) observation. Physiological characteristics measurement included the relative electrolyte leakage (REL), SOD activity assay, soluble sugar content, and Chlorophyll fluorescence parameter measurement. For screening of differentially expressed genes, the expression level of every transcript in each sample was calculated by quantifying the number of Illumina reads. To identify the differentially expressed protein, leaves of plants under 0, 6, 12, 24, 48 and 72 h cold stress wereharvested for proteomic analysis. Finally, real time PCR was used to verify the DEG results of the RNA-seq and the proteomics data. Results Results showed that at the beginning of cold stress, respiratory metabolism was decreased and the transportation and hydrolysis of photosynthetic products was inhibited, leading to an accumulation of starch in the chloroplasts. Total of 5800 unigenes and 38 proteins were affected, including the repressed expression of photosynthesis and the enhanced expression in signal transduction, stress defense pathway as well as secondary metabolism. Although the transcriptional level of a large number of genes has been restored after 12 h, sustained cold stress brought more serious injury to the leaf cells, including the sharp rise of the relative electrolyte leakage, the declined Fv/Fm value, swelled chloroplast and the disintegrated membrane system. Conclusion The starch accumulation and the photoinhibition might be the main adaptive mechanism of the paper mulberry responded to cold stress. Most of important, enhancing the transport and hydrolysis of photosynthetic products could be the potential targets for improving the cold tolerance of the paper mulberry. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2047-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Linhong Teng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Xueqing Yan
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Meiling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
43
|
Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V, Kishor PBK, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK. Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 2015; 5:15296. [PMID: 26478518 PMCID: PMC4609953 DOI: 10.1038/srep15296] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/22/2015] [Indexed: 01/20/2023] Open
Abstract
A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the “QTL-hotspot” region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1–5 seasons and 1–5 locations split the “QTL-hotspot” region into two subregions namely “QTL-hotspot_a” (15 genes) and “QTL-hotspot_b” (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined “QTL-hotspot” region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of “QTL-hotspot” for drought tolerance in chickpea.
Collapse
Affiliation(s)
- Sandip M Kale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Deepa Jaganathan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India.,Osmania University, Department of Genetics, Hyderabad, 500007, India
| | - Pradeep Ruperao
- The University of Western Australia, School of Plant Biology and the Institute of Agriculture, Crawley, 6009, Australia.,University of Queensland, School of Agriculture and Food Science, Queensland, 4072, Australia
| | - Charles Chen
- Oklahoma State University, Department of Biochemistry and Molecular Biology, Stillwater, 74074, USA
| | - Ramu Punna
- Cornell University, Biotechnology Building, Ithaca, 14853, USA
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Mohan Avsk Katta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Dadakhalandar Doddamani
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Vanika Garg
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - P B Kavi Kishor
- Osmania University, Department of Genetics, Hyderabad, 500007, India
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Henry T Nguyen
- University of Missouri, National Center for Soybean Biotechnology and Division of Plant Sciences, Columbia, 65211, USA
| | - Jacqueline Batley
- The University of Western Australia, School of Plant Biology and the Institute of Agriculture, Crawley, 6009, Australia
| | - David Edwards
- The University of Western Australia, School of Plant Biology and the Institute of Agriculture, Crawley, 6009, Australia
| | - Tim Sutton
- South Australian Research and Development Institute, Adelaide, 5001, Australia.,University of Adelaide, Australia and School of Agriculture, Adelaide, 5064, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India.,The University of Western Australia, School of Plant Biology and the Institute of Agriculture, Crawley, 6009, Australia
| |
Collapse
|
44
|
Janmohammadi M, Zolla L, Rinalducci S. Low temperature tolerance in plants: Changes at the protein level. PHYTOCHEMISTRY 2015; 117:76-89. [PMID: 26068669 DOI: 10.1016/j.phytochem.2015.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 05/19/2023]
Abstract
Low temperature (LT) is one of several important environmental stresses influencing plant performance and distribution. Adaptation to LT is a highly dynamic stress-response phenomenon and involves complex cross-talk between different regulatory levels. Although plants differ in their sensitivity to LT, in temperate species low nonfreezing temperatures cause noticeable alterations in various biochemical and physiological processes that can potentially improve freezing tolerance. This adaptation is associated with changes in the expression pattern of genes and their protein products. Proteins are the major players in most cellular events and are directly involved in plant LT responses, thereby proteome analysis could help uncover additional novel proteins associated with LT tolerance. Proteomics is recommended as an appropriate strategy for complementing transcriptome level changes and characterizing translational and post-translational regulations. In this review, we considered alterations in the expression and accumulation of proteins in response to LT stress in the three major cereal crops produced worldwide (wheat, barley, and rice). LT stress down-regulates many photosynthesis-related proteins. On the contrary, pathways/protein sets that are up-regulated by LT include carbohydrate metabolism (ATP formation), ROS scavenging, redox adjustment, cell wall remodelling, cytoskeletal rearrangements, cryoprotection, defence/detoxification. These modifications are common adaptation reactions also observed in the plant model Arabidopsis, thus representing key potential biomarkers and critical intervention points for improving LT tolerance of crop plants in cold regions with short summers. We believe that an assessment of the proteome within a broad time frame and during the different phenological stages may disclose the molecular mechanisms related to the developmental regulation of LT tolerance and facilitate the progress of genetically engineered stress-resistant plant varieties.
Collapse
Affiliation(s)
- Mohsen Janmohammadi
- Department of Agronomy and Plant Breeding, Agriculture College, University of Maragheh, Iran
| | - Lello Zolla
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
45
|
López-Cristoffanini C, Zapata J, Gaillard F, Potin P, Correa JA, Contreras-Porcia L. Identification of proteins involved in desiccation tolerance in the red seaweed
Pyropia orbicularis
(
Rhodophyta, Bangiales). Proteomics 2015; 15:3954-68. [DOI: 10.1002/pmic.201400625] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Camilo López-Cristoffanini
- Departamento de Ecología y Biodiversidad; Facultad de Ecología y Recursos Naturales, Universidad Andres Bello; Santiago Chile
- Departament de Biologia Vegetal; Universitat de Barcelona; Barcelona España
| | - Javier Zapata
- Departamento de Ecología y Biodiversidad; Facultad de Ecología y Recursos Naturales, Universidad Andres Bello; Santiago Chile
| | - Fanny Gaillard
- Centre de Ressources de Biologie Marine; MetaboMer Mass Spectrometry Core Facility; CNRS; Université Pierre et Marie Curie; Roscoff cedex France
| | - Philippe Potin
- Sorbonne Universités; CNRS; Université Pierre et Marie Curie UMR 8227; Station Biologique Roscoff France
| | - Juan A. Correa
- Departamento de Ecología, and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile, Santiago, Chile and UMI 3614, Evolutionary Biology and Ecology of Algae; Station Biologique de Roscoff France
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad; Facultad de Ecología y Recursos Naturales, Universidad Andres Bello; Santiago Chile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
46
|
Zhang S, Zhang L, Chai Y, Wang F, Li Y, Su L, Zhao Z. Physiology and proteomics research on the leaves of ancient Platycladus orientalis (L.) during winter. J Proteomics 2015; 126:263-78. [DOI: 10.1016/j.jprot.2015.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 12/23/2022]
|
47
|
Lin LL, Hsu CL, Hu CW, Ko SY, Hsieh HL, Huang HC, Juan HF. Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis. BMC Genomics 2015; 16:533. [PMID: 26187819 PMCID: PMC4506601 DOI: 10.1186/s12864-015-1753-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 07/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphorylation regulated by plant hormone is involved in the coordination of fundamental plant development. Brassinosteroids (BRs), a group of phytohormones, regulated phosphorylation dynamics remains to be delineated in plants. In this study, we performed a mass spectrometry (MS)-based phosphoproteomics to conduct a global and dynamic phosphoproteome profiling across five time points of BR treatment in the period between 5 min and 12 h. MS coupling with phosphopeptide enrichment techniques has become the powerful tool for profiling protein phosphorylation. However, MS-based methods tend to have data consistency and coverage issues. To address these issues, bioinformatics approaches were used to complement the non-detected proteins and recover the dynamics of phosphorylation events. RESULTS A total of 1104 unique phosphorylated peptides from 739 unique phosphoproteins were identified. The time-dependent gene ontology (GO) analysis shows the transition of biological processes from signaling transduction to morphogenesis and stress response. The protein-protein interaction analysis found that most of identified phosphoproteins have strongly connections with known BR signaling components. The analysis by using Motif-X was performed to identify 15 enriched motifs, 11 of which correspond to 6 known kinase families. To uncover the dynamic activities of kinases, the enriched motifs were combined with phosphorylation profiles and revealed that the substrates of casein kinase 2 and mitogen-activated protein kinase were significantly phosphorylated and dephosphorylated at initial time of BR treatment, respectively. The time-dependent kinase-substrate interaction networks were constructed and showed many substrates are the downstream of other signals, such as auxin and ABA signaling. While comparing BR responsive phosphoproteome and gene expression data, we found most of phosphorylation changes were not led by gene expression changes. Our results suggested many downstream proteins of BR signaling are induced by phosphorylation via various kinases, not through transcriptional regulation. CONCLUSIONS Through a large-scale dynamic profile of phosphoproteome coupled with bioinformatics, a complicated kinase-centered network related to BR-regulated growth was deciphered. The phosphoproteins and phosphosites identified in our study provide a useful dataset for revealing signaling networks of BR regulation, and also expanded our knowledge of protein phosphorylation modification in plants as well as further deal to solve the plant growth problems.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Chia-Wei Hu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Shiao-Yun Ko
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
48
|
Zhu W, Hu J, Wang X, Tian J, Komatsu S. Organ-Specific Analysis of Mahonia Using Gel-Free/Label-Free Proteomic Technique. J Proteome Res 2015; 14:2669-85. [DOI: 10.1021/acs.jproteome.5b00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Jin Hu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xin Wang
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Setsuko Komatsu
- National
Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| |
Collapse
|
49
|
Perotti VE, Moreno AS, Trípodi KEJ, Meier G, Bello F, Cocco M, Vázquez D, Anderson C, Podestá FE. Proteomic and metabolomic profiling of Valencia orange fruit after natural frost exposure. PHYSIOLOGIA PLANTARUM 2015; 153:337-54. [PMID: 25132553 DOI: 10.1111/ppl.12259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/14/2014] [Accepted: 06/25/2014] [Indexed: 05/04/2023]
Abstract
The aim of this study was to evaluate the response of orange fruit (Citrus sinensis var. Valencia Late) to freezing stress in planta, both immediately after the natural event and after a week, in order to understand the biochemical and molecular basis of the changes that later derive in internal and external damage symptoms. Using two-dimensional differential gel electrophoresis to analyze exposed and non-exposed fruit, 27 differential protein spots were detected in juice sacs and flavedo, among all comparisons made. Also, primary and secondary metabolites relative contents were analyzed in both tissues by gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, respectively. Proteins and compounds involved in regulatory functions, iron metabolism, oxidative damage and carbohydrate metabolism were the most affected. Interestingly, three glycolytic enzymes were induced by cold, and there was an increase in fermentation products (volatiles); all of that suggests that more energy generation might be required from glycolysis to counter the cold stress. Moreover, a notable increase in sugar levels was observed after frost, but it was not at the expense of organic acids utilization. Consequently, these results suggest a probable redistribution of photoassimilates in the frost-exposed plants, tending to restore the homeostasis altered by that severe type of stress. Isosinensetin was the most cold-sensitive secondary metabolite because it could not be detected at all after the frost, constituting a possible tool to early diagnose freezing damage.
Collapse
Affiliation(s)
- Valeria E Perotti
- Centro de Estudios Fotosintéticos y Bioquímicos, CONICET, and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen J, Han G, Shang C, Li J, Zhang H, Liu F, Wang J, Liu H, Zhang Y. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. FRONTIERS IN PLANT SCIENCE 2015; 6:105. [PMID: 25774161 PMCID: PMC4343008 DOI: 10.3389/fpls.2015.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 05/11/2023]
Abstract
Cold acclimation in alfalfa (Medicago sativa L.) plays a crucial role in cold tolerance to harsh winters. To examine the cold acclimation mechanisms in freezing-tolerant alfalfa (ZD) and freezing-sensitive alfalfa (W5), holoproteins, and low-abundance proteins (after the removal of RuBisCO) from leaves were extracted to analyze differences at the protein level. A total of 84 spots were selected, and 67 spots were identified. Of these, the abundance of 49 spots and 24 spots in ZD and W5, respectively, were altered during adaptation to chilling stress. Proteomic results revealed that proteins involved in photosynthesis, protein metabolism, energy metabolism, stress and redox and other proteins were mobilized in adaptation to chilling stress. In ZD, a greater number of changes were observed in proteins, and autologous metabolism and biosynthesis were slowed in response to chilling stress, thereby reducing consumption, allowing for homeostasis. The capability for protein folding and protein biosynthesis in W5 was enhanced, which allows protection against chilling stress. The ability to perceive low temperatures was more sensitive in freezing-tolerant alfalfa compared to freezing-sensitive alfalfa. This proteomics study provides new insights into the cold acclimation mechanism in alfalfa.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Sciences and Technology, Harbin Normal UniversityHarbin, China
| | - Guiqing Han
- College of Life Sciences and Technology, Harbin Normal UniversityHarbin, China
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Chen Shang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jikai Li
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Hailing Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Fengqi Liu
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jianli Wang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Huiying Liu
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Yuexue Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| |
Collapse
|