1
|
Schwab SK, Harris PS, Michel C, McGinnis CD, Nahomi RB, Assiri MA, Reisdorph R, Henriksen K, Orlicky DJ, Levi M, Rosenberg A, Nagaraj RH, Fritz KS. Quantifying Protein Acetylation in Diabetic Nephropathy from Formalin-Fixed Paraffin-Embedded Tissue. Proteomics Clin Appl 2024; 18:e202400018. [PMID: 38923810 DOI: 10.1002/prca.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism. EXPERIMENTAL DESIGN A novel extraction and LC-MS/MS approach was adapted to quantify sites of lysine acetylation from formalin-fixed paraffin-embedded (FFPE) kidney tissue and from patients with DKD and non-diabetic donors (n = 5 and n = 7, respectively). RESULTS Analysis of FFPE tissues identified 840 total proteins, with 225 of those significantly changing in patients with DKD. Acetylomic analysis quantified 289 acetylated peptides, with 69 of those significantly changing. Pathways impacted in DKD patients revealed numerous metabolic pathways, specifically mitochondrial function, oxidative phosphorylation, and sirtuin signaling. Differential protein acetylation in DKD patients impacted sirtuin signaling, valine, leucine, and isoleucine degradation, lactate metabolism, oxidative phosphorylation, and ketogenesis. CONCLUSIONS AND CLINICAL RELEVANCE A quantitative acetylomics platform was developed for protein biomarker discovery in formalin-fixed and paraffin-embedded biopsies of kidney transplant patients suffering from DKD.
Collapse
Affiliation(s)
- Stefanie K Schwab
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter S Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cole Michel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Courtney D McGinnis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rooban B Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Richard Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kammi Henriksen
- Department of Pathology, University of Chicago Medical Center, Chicago, Illinois, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Avi Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ram H Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Humphries EM, Loudon C, Craft GE, Hains PG, Robinson PJ. Quantitative Comparison of Deparaffinization, Rehydration, and Extraction Methods for FFPE Tissue Proteomics and Phosphoproteomics. Anal Chem 2024; 96:13358-13370. [PMID: 39102789 DOI: 10.1021/acs.analchem.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are suitable for proteomic and phosphoproteomic biomarker studies by data-independent acquisition mass spectrometry. The choice of the sample preparation method influences the number, intensity, and reproducibility of identifications. By comparing four deparaffinization and rehydration methods, including heptane, histolene, SubX, and xylene, we found that heptane and methanol produced the lowest coefficients of variation (CVs). Using this, five extraction methods from the literature were modified and evaluated for their performance using kidney, leg muscle, lung, and testicular rat organs. All methods performed well, except for SP3 due to insufficient tissue lysis. Heat n' Beat was the fastest and most reproducible method with the highest digestion efficiency and lowest CVs. S-Trap produced the highest peptide yield, while TFE produced the best phosphopeptide enrichment efficiency. The quantitation of FFPE-derived peptides remains an ongoing challenge with bias in UV and fluorescence assays across methods, most notably in SPEED. Functional enrichment analysis demonstrated that each method favored extracting some gene ontology cellular components over others including chromosome, cytoplasmic, cytoskeleton, endoplasmic reticulum, membrane, mitochondrion, and nucleoplasm protein groups. The outcome is a set of recommendations for choosing the most appropriate method for different settings.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Clare Loudon
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - George E Craft
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
3
|
Song Z, Bian W, Lin J, Guo Y, Shi W, Meng H, Chen Y, Zhang M, Liu Z, Lin Z, Ma K, Li L. Heart proteomic profiling discovers MYH6 and COX5B as biomarkers for sudden unexplained death. Forensic Sci Int 2024; 361:112121. [PMID: 38971138 DOI: 10.1016/j.forsciint.2024.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Sudden unexplained death (SUD) is not uncommon in forensic pathology. Yet, diagnosis of SUD remains challenging due to lack of specific biomarkers. This study aimed to screen differentially expressed proteins (DEPs) and validate their usefulness as diagnostic biomarkers for SUD cases. We designed a three-phase investigation, where in the discovery phase, formalin-fixed paraffin-embedded (FFPE) heart specimens were screened through label-free proteomic analysis of cases dying from SUD, mechanical injury and carbon monoxide (CO) intoxication. A total of 26 proteins were identified to be DEPs for the SUD cases after rigorous criterion. Bioinformatics and Adaboost-recursive feature elimination (RFE) analysis further revealed that three of the 26 proteins (MYH6, COX5B and TNNT2) were potential discriminative biomarkers. In the training phase, MYH6 and COX5B were verified to be true DEPs in cardiac tissues from 29 independent SUD cases as compared with a serial of control cases (n = 42). Receiver operating characteristic (ROC) analysis illustrated that combination of MYH6 and COX5B achieved optimal diagnostic sensitivity (89.7 %) and specificity (84.4 %), with area under the curve (AUC) being 0.91. A diagnostic software based on the logistic regression formula derived from the training phase was then constructed. In the validation phase, the diagnostic software was applied to eight authentic SUD cases, seven (87.5 %) of which were accurately recognized. Our study provides a valid strategy towards practical diagnosis of SUD by integrating cardiac MYH6 and COX5B as dual diagnostic biomarkers.
Collapse
Affiliation(s)
- Ziyan Song
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Wensi Bian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Yadong Guo
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei 050017, PR China.
| | - Hang Meng
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| | - Yuanyuan Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| | - Molin Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Kaijun Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei 050017, PR China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| |
Collapse
|
4
|
Gignac PM, Valdez D, Morhardt AC, Lynch LM. Buffered Lugol's Iodine Preserves DNA Fragment Lengths. Integr Org Biol 2024; 6:obae017. [PMID: 38887427 PMCID: PMC11182668 DOI: 10.1093/iob/obae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Museum collections play a pivotal role in the advancement of biological science by preserving phenotypic and genotypic history and variation. Recently, contrast-enhanced X-ray computed tomography (CT) has aided these advances by allowing improved visualization of internal soft tissues. However, vouchered specimens could be at risk if staining techniques are destructive. For instance, the pH of unbuffered Lugol's iodine (I2KI) may be low enough to damage deoxyribonucleic acid (DNA). The extent of this risk is unknown due to a lack of rigorous evaluation of DNA quality between control and experimental samples. Here, we used formalin-fixed mice to document DNA concentrations and fragment lengths in nonstained, ethanol-preserved controls and 3 iodine-based staining preparations: (1) 1.25% weight-by-volume (wt/vol.) alcoholic iodine (I2E); (2) 3.75% wt/vol. I2KI; and (3) 3.75% wt/vol. buffered I2KI. We tested a null hypothesis of no significant difference in DNA concentrations and fragment lengths between control and treatment samples. We found that DNA concentration decreases because of staining-potentially an effect of measuring intact double-stranded DNA only. Fragment lengths, however, were significantly higher for buffered I2KI and control samples, which were not, themselves, significantly different. Our results implicate buffered I2KI as the appropriate choice for contrast-enhanced CT imaging of museum wet collections to safely maximize their potential for understanding genetic and phenotypic diversity.
Collapse
Affiliation(s)
- P M Gignac
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - D Valdez
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - A C Morhardt
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - L M Lynch
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
5
|
Balbisi M, Sugár S, Turiák L. Protein glycosylation in lung cancer from a mass spectrometry perspective. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576136 DOI: 10.1002/mas.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/27/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Simon Sugár
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lilla Turiák
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Martín-García D, García-Aranda M, Redondo M. Biomarker Identification through Proteomics in Colorectal Cancer. Int J Mol Sci 2024; 25:2283. [PMID: 38396959 PMCID: PMC10888664 DOI: 10.3390/ijms25042283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Colorectal cancer (CRC) is a devastating disease that ranks third in diagnosis and as the second leading cause of cancer-related deaths. The early detection of CRC has been shown to be the most effective strategy to improve treatment outcomes and patient survival. Therefore, current lines of research focus on the development of reliable diagnostic tools. Targeted therapies, in combination with standard chemotherapy and immune checkpoint inhibitors, have emerged as promising treatment protocols in CRC. However, their effectiveness is linked to the molecular characteristics of each patient. The importance of discovering biomarkers that help predict response to therapies and assess prognosis is evident as they allow for a fundamental step towards personalized care and successful treatments. Among the ongoing efforts to identify them, mass spectrometry-based translational proteomics presents itself as a unique opportunity as it enables the discovery and application of protein biomarkers that may revolutionize the early detection and treatment of CRC. Our objective is to show the most recent studies focused on the identification of CRC-related protein markers, as well as to provide an updated view of advances in the field of proteomics and cancer.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
7
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
8
|
Da Silva André G, Paganella LG, Badolato A, Sander S, Giampietro C, Tibbitt MW, Dengjel J, Labouesse C. Protein Isolation from 3D Hydrogel Scaffolds. Curr Protoc 2024; 4:e966. [PMID: 38206582 DOI: 10.1002/cpz1.966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Protein isolation is an essential tool in cell biology to characterize protein abundance under various experimental conditions. Several protocols exist, tailored to cell culture or tissue sections, and have been adapted to particular downstream analyses (e.g., western blotting or mass spectrometry). An increasing trend in bioengineering and cell biology is to use three-dimensional (3D) hydrogel-based scaffolds for cell culture. In principle, the same protocols can be used to extract protein from hydrogel-based cell and tissue constructs. However, in practice the yield and quality of the recovered protein pellet is often substantially lower when using standard protocols and requires tuning of multiple steps, including the selected lysis buffer and the scaffold homogenization strategy, as well as the methods for protein purification and reconstitution. We present here specific protocols tailored to common 3D hydrogels to help researchers using hydrogel-based 3D cell culture improve the quantity and quality of their extracted protein. We focus on three materials: protease-degradable PEG-based hydrogels, collagen hydrogels, and alginate hydrogels. We discuss how the protein extraction procedure can be adapted to the scaffold of interest (degradable or non-degradable gels), proteins of interests (soluble, matrix-bound, or phosphoproteins), and downstream biochemical assays (western blotting or mass spectrometry). With the growing interest in 3D cell culture, the protocols presented should be useful to many researchers in cell biology, protein science, biomaterials, and bioengineering communities. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolating proteins from PEG-based hydrogels Basic Protocol 2: Isolating proteins from collagen hydrogels Basic Protocol 3: Isolating proteins from alginate hydrogels Alternate Protocol: Isolating protein from alginate gels using EDTA to dissolve the gel Support Protocol: Isolating protein and RNA simultaneously from the same samples.
Collapse
Affiliation(s)
- Gabriela Da Silva André
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Lorenza Garau Paganella
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Asia Badolato
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Sibilla Sander
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- EMPA, Swiss Federal Laboratories for Material Science and Technology, Dubendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jörn Dengjel
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Kim A, Martinez-Valbuena I, Li J, Lang AE, Kovacs GG. Disease-Specific α-Synuclein Seeding in Lewy Body Disease and Multiple System Atrophy Are Preserved in Formaldehyde-Fixed Paraffin-Embedded Human Brain. Biomolecules 2023; 13:936. [PMID: 37371515 DOI: 10.3390/biom13060936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have been able to detect α-synuclein (αSyn) seeding in formaldehyde-fixed paraffin-embedded (FFPE) tissues from patients with synucleinopathies using seed amplification assays (SAAs), but with relatively low sensitivity due to limited protein extraction efficiency. With the aim of introducing an alternative option to frozen tissues, we developed a streamlined protein extraction protocol for evaluating disease-specific seeding in FFPE human brain. We evaluated the protein extraction efficiency of different tissue preparations, deparaffinizations, and protein extraction buffers using formaldehyde-fixed and FFPE tissue of a single Lewy body disease (LBD) subject. Alternatively, we incorporated heat-induced antigen retrieval and dissociation using a commercially available kit. Our novel protein extraction protocol has been optimized to work with 10 sections of 4.5-µm-thickness or 2-mm-diameter micro-punch of FFPE tissue that can be used to seed SAAs. We demonstrated that extracted proteins from FFPE still preserve seeding potential and further show disease-specific seeding in LBD and multiple system atrophy. To the best of our knowledge, our study is the first to recapitulate disease-specific αSyn seeding behaviour in FFPE human brain. Our findings open new perspectives in re-evaluating archived human brain tissue, extending the disease-specific seeding assays to larger cohorts to facilitate molecular subtyping of synucleinopathies.
Collapse
Affiliation(s)
- Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S6, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S6, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
10
|
Obi EN, Tellock DA, Thomas GJ, Veenstra TD. Biomarker Analysis of Formalin-Fixed Paraffin-Embedded Clinical Tissues Using Proteomics. Biomolecules 2023; 13:biom13010096. [PMID: 36671481 PMCID: PMC9855471 DOI: 10.3390/biom13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The relatively recent developments in mass spectrometry (MS) have provided novel opportunities for this technology to impact modern medicine. One of those opportunities is in biomarker discovery and diagnostics. Key developments in sample preparation have enabled a greater range of clinical samples to be characterized at a deeper level using MS. While most of these developments have focused on blood, tissues have also been an important resource. Fresh tissues, however, are difficult to obtain for research purposes and require significant resources for long-term storage. There are millions of archived formalin-fixed paraffin-embedded (FFPE) tissues within pathology departments worldwide representing every possible tissue type including tumors that are rare or very small. Owing to the chemical technique used to preserve FFPE tissues, they were considered intractable to many newer proteomics techniques and primarily only useful for immunohistochemistry. In the past couple of decades, however, researchers have been able to develop methods to extract proteins from FFPE tissues in a form making them analyzable using state-of-the-art technologies such as MS and protein arrays. This review will discuss the history of these developments and provide examples of how they are currently being used to identify biomarkers and diagnose diseases such as cancer.
Collapse
|
11
|
Van Haver D, Dendooven A, Impens F. Proteomics-Based Analysis and Diagnosis of Formalin-Fixed Paraffin-Embedded Amyloidosis Samples. Methods Mol Biol 2023; 2718:213-233. [PMID: 37665462 DOI: 10.1007/978-1-0716-3457-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Amyloidosis is a group of rare pathologies characterized by abnormal folding and deposition of susceptible proteins in tissues and organs. Diagnosis of amyloidosis often relies on immunohistochemistry of formalin-fixed paraffin-embedded (FFPE) patient samples; however, dependency on antibodies for protein staining is one of the major pitfalls of this approach, especially for the detection of rare amyloidosis types. In recent years, mass spectrometry-based proteomics has emerged as a promising alternative for adequate detection and amyloid typing, despite the fact that preparing FFPE samples for proteomics remains a challenging task. Major hurdles are removal of formalin-induced protein cross-links and water-insoluble paraffin prior to mass spectrometry analysis. With the recent development of the suspension trapping protocol, enabling the use of high concentrations of SDS, these obstacles can be overcome. In this chapter, we describe the implementation of suspension trapping for FFPE sample processing and its application to analyze human amyloidosis samples, comparing a standard procedure with probe sonication with a more advanced workflow based on ultrasonication.
Collapse
Affiliation(s)
- Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
- Laboratory for Experimental Medicine and Pediatrics, Antwerp University, Edegem, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- VIB Proteomics Core, Ghent, Belgium.
| |
Collapse
|
12
|
Systematic evaluation and optimization of protein extraction parameters in diagnostic FFPE specimens. Clin Proteomics 2022; 19:10. [PMID: 35501693 PMCID: PMC9063121 DOI: 10.1186/s12014-022-09346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives Formalin-fixed paraffin-embedded (FFPE) tissue is the standard material for diagnostic pathology but poses relevant hurdles to accurate protein extraction due to cross-linking and chemical alterations. While numerous extraction protocols and chemicals have been described, systematic comparative analyses are limited. Various parameters were thus investigated in their qualitative and quantitative effects on protein extraction (PE) efficacy. Special emphasis was put on preservation of membrane proteins (MP) as key subgroup of functionally relevant proteins. Methods Using the example of urothelial carcinoma, FFPE tissue sections were subjected to various deparaffinization, protein extraction and antigen retrieval protocols and buffers as well as different extraction techniques. Performance was measured by protein concentration and western blot analysis of cellular compartment markers as well as liquid chromatography-coupled mass spectrometry (LC–MS). Results Commercially available extraction buffers showed reduced extraction of MPs and came at considerably increased costs. On-slide extraction did not improve PE whereas several other preanalytical steps could be simplified. Systematic variation of temperature and exposure duration demonstrated a quantitatively relevant corridor of optimal antigen retrieval. Conclusions Preanalytical protein extraction can be optimized at various levels to improve unbiased protein extraction and to reduce time and costs. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09346-0.
Collapse
|
13
|
Evaluation of Fast and Sensitive Proteome Profiling of FF and FFPE Kidney Patient Tissues. Molecules 2022; 27:molecules27031137. [PMID: 35164409 PMCID: PMC8838561 DOI: 10.3390/molecules27031137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) human tissues is an important development spurred on by requests from stakeholder groups in clinical fields. One objective is to complement current diagnostic methods with new specific molecular information. An important goal is to achieve adequate and consistent protein recovery across and within large-scale studies. Here, we describe development of several protocols incorporating mass spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were applied on 4 and 15 μm thick FF tissues, and 4 μm thick FFPE tissues. We evaluated sensitivity and repeatability of the methods and found that the protocol containing Rapigest enabled detection of 630 proteins from FF tissue of 1 mm2 and 15 μm thick, whereas 498 and 297 proteins were detected with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer showed good extraction of the proteins from 4 μm thick FFPE tissue with the average of 270 protein identifications (1 mm2), similar to the results on 4 μm thick FF. Moreover, we found that temperature increases during incubation with urea on 4 μm thick FF tissue revealed a decrease in the number of identified proteins and increase in the number of the carbamylated peptides.
Collapse
|
14
|
Flück M, Kasper S, Benn MC, Clement Frey F, von Rechenberg B, Giraud MN, Meyer DC, Wieser K, Gerber C. Transplant of Autologous Mesenchymal Stem Cells Halts Fatty Atrophy of Detached Rotator Cuff Muscle After Tendon Repair: Molecular, Microscopic, and Macroscopic Results From an Ovine Model. Am J Sports Med 2021; 49:3970-3980. [PMID: 34714701 PMCID: PMC8649427 DOI: 10.1177/03635465211052566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/13/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND The injection of mesenchymal stem cells (MSCs) mitigates fat accumulation in released rotator cuff muscle after tendon repair in rodents. PURPOSE To investigate whether the injection of autologous MSCs halts muscle-to-fat conversion after tendon repair in a large animal model for rotator cuff tendon release via regional effects on extracellular fat tissue and muscle fiber regeneration. STUDY DESIGN Controlled laboratory study. METHODS Infraspinatus (ISP) muscles of the right shoulder of Swiss Alpine sheep (n = 14) were released by osteotomy and reattached 16 weeks later without (group T; n = 6) or with (group T-MSC; n = 8) electropulse-assisted injection of 0.9 Mio fluorescently labeled MSCs as microtissues with media in demarcated regions; animals were allowed 6 weeks of recovery. ISP volume and composition were documented with computed tomography and magnetic resonance imaging. Area percentages of muscle fiber types, fat, extracellular ground substance, and fluorescence-positive tissue; mean cross-sectional area (MCSA) of muscle fibers; and expression of myogenic (myogenin), regeneration (tenascin-C), and adipogenic markers (peroxisome proliferator-activated receptor gamma [PPARG2]) were quantified in injected and noninjected regions after recovery. RESULTS At 16 weeks after tendon release, the ISP volume was reduced and the fat fraction of ISP muscle was increased in group T (137 vs 185 mL; 49% vs 7%) and group T-MSC (130 vs 166 mL; 53% vs 10%). In group T-MSC versus group T, changes during recovery after tendon reattachment were abrogated for fat-free mass (-5% vs -29%, respectively; P = .018) and fat fraction (+1% vs +24%, respectively; P = .009%). The area percentage of fat was lower (9% vs 20%; P = .018) and the percentage of the extracellular ground substance was higher (26% vs 20%; P = .007) in the noninjected ISP region for group T-MSC versus group T, respectively. Regionally, MCS injection increased tenascin-C levels (+59%) and the water fraction, maintaining the reduced PPARG2 levels but not the 29% increased fiber MCSA, with media injection. CONCLUSION In a sheep model, injection of autologous MSCs in degenerated rotator cuff muscle halted muscle-to-fat conversion during recovery from tendon repair by preserving fat-free mass in association with extracellular reactions and stopping adjuvant-induced muscle fiber hypertrophy. CLINICAL RELEVANCE A relatively small dose of MSCs is therapeutically effective to halt fatty atrophy in a large animal model.
Collapse
Affiliation(s)
- Martin Flück
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
| | - Stephanie Kasper
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
| | - Mario C. Benn
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Flurina Clement Frey
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center
for Applied Biotechnology and Molecular Medicine, Department of Molecular
Mechanisms, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Marie-Noëlle Giraud
- Cardiology, Faculty of Sciences and
Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dominik C. Meyer
- Author deceased
- Laboratory of Muscle Plasticity,
Department of Orthopedics, University of Zurich, Balgrist Campus, Zürich,
Switzerland
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Karl Wieser
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| | - Christian Gerber
- University Hospital Balgrist,
Department of Orthopedics, University of Zurich, Zürich, Switzerland
| |
Collapse
|
15
|
Suzuki Y, Chiba S, Nishihara K, Nakajima K, Hagino A, Kim WS, Lee HG, Nochi T, Suzuki T, Roh SG. Chemerin Regulates Epithelial Barrier Function of Mammary Glands in Dairy Cows. Animals (Basel) 2021; 11:ani11113194. [PMID: 34827927 PMCID: PMC8614423 DOI: 10.3390/ani11113194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/24/2023] Open
Abstract
Epithelial barrier function in the mammary gland acts as a forefront of the defense mechanism against mastitis, which is widespread and a major disorder in dairy production. Chemerin is a chemoattractant protein with potent antimicrobial ability, but its role in the mammary gland remains unelucidated. The aim of this study was to determine the function of chemerin in mammary epithelial tissue of dairy cows in lactation or dry-off periods. Mammary epithelial cells produced chemerin protein, and secreted chemerin was detected in milk samples. Chemerin treatment promoted the proliferation of cultured bovine mammary epithelial cells and protected the integrity of the epithelial cell layer from hydrogen peroxide (H2O2)-induced damage. Meanwhile, chemerin levels were higher in mammary tissue with mastitis. Tumor necrosis factor alpha (TNF-α) strongly upregulated the expression of the chemerin-coding gene (RARRES2) in mammary epithelial cells. Therefore, chemerin was suggested to support mammary epithelial cell growth and epithelial barrier function and to be regulated by inflammatory stimuli. Our results may indicate chemerin as a novel therapeutic target for diseases in the bovine mammary gland.
Collapse
Affiliation(s)
- Yutaka Suzuki
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan;
| | - Sachi Chiba
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0842, Japan; (S.C.); (K.N.); (A.H.); (T.N.); (T.S.)
| | - Koki Nishihara
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0842, Japan; (S.C.); (K.N.); (A.H.); (T.N.); (T.S.)
| | - Keiichi Nakajima
- NARO Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan;
| | - Akihiko Hagino
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0842, Japan; (S.C.); (K.N.); (A.H.); (T.N.); (T.S.)
| | - Won-Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Tomonori Nochi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0842, Japan; (S.C.); (K.N.); (A.H.); (T.N.); (T.S.)
| | - Toru Suzuki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0842, Japan; (S.C.); (K.N.); (A.H.); (T.N.); (T.S.)
| | - Sang-Gun Roh
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0842, Japan; (S.C.); (K.N.); (A.H.); (T.N.); (T.S.)
- Correspondence:
| |
Collapse
|
16
|
Jang HN, Moon SJ, Jung KC, Kim SW, Kim H, Han D, Kim JH. Mass Spectrometry-Based Proteomic Discovery of Prognostic Biomarkers in Adrenal Cortical Carcinoma. Cancers (Basel) 2021; 13:3890. [PMID: 34359790 PMCID: PMC8345732 DOI: 10.3390/cancers13153890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Adrenal cortical carcinoma (ACC) is an extremely rare disease with a variable prognosis. Current prognostic markers have limitations in identifying patients with a poor prognosis. Herein, we aimed to investigate the prognostic protein biomarkers of ACC using mass-spectrometry-based proteomics. We performed the liquid chromatography-tandem mass spectrometry (LC-MS/MS) using formalin-fixed paraffin-embedded (FFPE) tissues of 45 adrenal tumors. Then, we selected 117 differentially expressed proteins (DEPs) among tumors with different stages using the machine learning algorithm. Next, we conducted a survival analysis to assess whether the levels of DEPs were related to survival. Among 117 DEPs, HNRNPA1, C8A, CHMP6, LTBP4, SPR, NCEH1, MRPS23, POLDIP2, and WBSCR16 were significantly correlated with the survival of ACC. In age- and stage-adjusted Cox proportional hazard regression models, only HNRNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16 expression remained significant. These five proteins were also validated in TCGA data as the prognostic biomarkers. In this study, we found that HNRNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16 were protein biomarkers for predicting the prognosis of ACC.
Collapse
Affiliation(s)
- Han Na Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (H.N.J.); (S.J.M.); (S.W.K.)
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Sun Joon Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (H.N.J.); (S.J.M.); (S.W.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03080, Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul 03080, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (H.N.J.); (S.J.M.); (S.W.K.)
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 03080, Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute Seoul National University Hospital, Seoul 03080, Korea;
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute Seoul National University Hospital, Seoul 03080, Korea;
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (H.N.J.); (S.J.M.); (S.W.K.)
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
17
|
Ho MW, Ryan MP, Gupta J, Triantafyllou A, Risk JM, Shaw RJ, Wilson JB. Loss of FANCD2 and related proteins may predict malignant transformation in oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 133:377-387. [PMID: 34493474 DOI: 10.1016/j.oooo.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Predicting malignant transformation (MT) in oral epithelial dysplasia (OED) is challenging. The higher rate of MT reported in nonsmokers suggests an endogenous etiology in oncogenesis. We hypothesize that loss of FANCD2 and associated proteins could influence genomic instability and MT in the absence of environmental carcinogens. STUDY DESIGN Longitudinal archival samples were obtained from 40 individuals with OED: from diagnosis to the most recent review in 23 patients with stable OED or until excision of the squamous cell carcinoma in 17 patients with unstable OED undergoing MT. Histopathological reassessment, immunohistochemistry for FANCD2, and Western blotting for phosphorylation/monoubiquitylation status of ATR, CHK1, FANCD2, and FANCG were undertaken on each tissue sample. RESULTS Decreased expression of FANCD2 was observed in the diagnostic biopsies of OED lesions that later underwent MT. Combining the FANCD2 expression scores with histologic grading more accurately predicted MT (P = .005) than histology alone, and it correctly predicted MT in 10 of 17 initial biopsies. Significantly reduced expression of total FANCD2, pFANCD2, pATR, pCHK-1, and pFANCG was observed in unstable OED. CONCLUSIONS There is preliminary evidence that defects in the DNA damage sensing/signaling/repair cascade are associated with MT in OED. Loss of expression of FANCD2 protein in association with a higher histologic grade of dysplasia offered better prediction of MT than clinicopathologic parameters alone.
Collapse
Affiliation(s)
- Michael W Ho
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Oral and Maxillofacial Surgery, Leeds Teaching Hospitals NHS Trust, Leeds Dental Institute, Leeds, United Kingdom.
| | - Mark P Ryan
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Juhi Gupta
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Asterios Triantafyllou
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Janet M Risk
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard J Shaw
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Regional Maxillofacial Unit, Aintree University Hospital, Liverpool, United Kingdom
| | - James B Wilson
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Davalieva K, Kiprijanovska S, Dimovski A, Rosoklija G, Dwork AJ. Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues. J Proteomics 2021; 235:104117. [PMID: 33453434 DOI: 10.1016/j.jprot.2021.104117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The proteomics of formalin-fixed, paraffin-embedded (FFPE) samples has advanced significantly during the last two decades, but there are many protocols and few studies comparing them directly. There is no consensus on the most effective protocol for shotgun proteomic analysis. We compared the in-solution digestion with RapiGest and Filter Aided Sample Preparation (FASP) of FFPE prostate tissues stored 7 years and mirroring fresh frozen samples, using two label-free data-independent LC-MS/MS acquisitions. RapiGest identified more proteins than FASP, with almost identical numbers of proteins from fresh and FFPE tissues and 69% overlap, good preservation of high-MW proteins, no bias regarding isoelectric point, and greater technical reproducibility. On the other hand, FASP yielded 20% fewer protein identifications in FFPE than in fresh tissue, with 64-69% overlap, depletion of proteins >70 kDa, lower efficiency in acidic and neutral range, and lower technical reproducibility. Both protocols showed highly similar subcellular compartments distribution, highly similar percentages of extracted unique peptides from FFPE and fresh tissues and high positive correlation between the absolute quantitation values of fresh and FFPE proteins. In conclusion, RapiGest extraction of FFPE tissues delivers a proteome that closely resembles the fresh frozen proteome and should be preferred over FASP in biomarker and quantification studies. SIGNIFICANCE: Here we analyzed the performance of two sample preparation methods for shotgun proteomic analysis of FFPE tissues to give a comprehensive overview of the obtained proteomes and the resemblance to its matching fresh frozen counterparts. These findings give us better understanding towards competent proteomics analysis of FFPE tissues. It is hoped that it will encourage further assessments of available protocols before establishing the most effective protocol for shotgun proteomic FFPE tissue analysis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia.
| | - Sanja Kiprijanovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia; Faculty of Pharmacy, University "St. Cyril and Methodius", 50ta Divizija 6, 1000 Skopje, North Macedonia
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA
| |
Collapse
|
19
|
Bayer M, Angenendt L, Schliemann C, Hartmann W, König S. Are formalin-fixed and paraffin-embedded tissues fit for proteomic analysis? JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4347. [PMID: 30828905 DOI: 10.1002/jms.4347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Formalin-fixed and paraffin-embedded (FFPE)-tissue archives are potential treasure troves in the search for clinically interesting specimens. However, while the FFPE-treatment provides excellent conservation of the three-dimensional structure of the tissue and prevents degradation over decades, it also introduces numerous nonspecific and irreversible protein modifications. In this study, we have evaluated several published workflows for FFPE-tissue by fit-for-purpose proteomics technologies. We demonstrate that many protein modifications and cross-links remain after treatment and conclude that the proteomics of FFPE-tissue is of value, but clear-cut limitations must be kept in mind. The analysis of abundant proteins in FFPE is straightforward, but confident identification of low-level proteins and/or biologically relevant modifications is seriously hampered by the FFPE-treatment. Peptide assignment should only be performed on high-quality spectra, even if this is at the cost of lower numbers of protein IDs. As Yergey and Coorssen stated in 2015: "Data quality is considered the primary criterion, and we thus emphasize that the standards of Analytical Chemistry must apply throughout any proteomic analysis."
Collapse
Affiliation(s)
- Malte Bayer
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Münster, Germany
| | - Linus Angenendt
- Department of Medicine A, Haematology and Oncology, University Hospital Münster, Münster, Germany
| | - Christoph Schliemann
- Department of Medicine A, Haematology and Oncology, University Hospital Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Münster, Germany
| |
Collapse
|
20
|
Mantsiou A, Makridakis M, Fasoulakis K, Katafigiotis I, Constantinides CA, Zoidakis J, Roubelakis MG, Vlahou A, Lygirou V. Proteomics Analysis of Formalin Fixed Paraffin Embedded Tissues in the Investigation of Prostate Cancer. J Proteome Res 2019; 19:2631-2642. [PMID: 31682457 DOI: 10.1021/acs.jproteome.9b00587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of death in men worldwide. The molecular features, associated with the onset and progression of the disease, are under vigorous investigation. Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources for large-scale studies; however, their application in proteomics is limited due to protein cross-linking. In this study, the adjustment of a protocol for the proteomic analysis of FFPE tissues was performed which was followed by a pilot application on FFPE PCa clinical samples to investigate whether the optimized protocol can provide biologically relevant data for the investigation of PCa. For the optimization, FFPE mouse tissues were processed using seven protein extraction protocols including combinations of homogenization methods (beads, sonication, boiling) and buffers (SDS based and urea-thiourea based). The proteome extraction efficacy was then evaluated based on protein identifications and reproducibility using SDS electrophoresis and high resolution LC-MS/MS analysis. Comparison between the FFPE and matched fresh frozen (FF) tissues, using an optimized protocol involving protein extraction with an SDS-based buffer following beads homogenization and boiling, showed a substantial overlap in protein identifications with a strong correlation in relative abundances (rs = 0.819, p < 0.001). Next, FFPE tissues (3 sections, 15 μm each per sample) from 10 patients with PCa corresponding to tumor (GS = 6 or GS ≥ 8) and adjacent benign regions were processed with the optimized protocol. Extracted proteins were analyzed by GeLC-MS/MS followed by statistical and bioinformatics analysis. Proteins significantly deregulated between PCa GS ≥ 8 and PCa GS = 6 represented extracellular matrix organization, gluconeogenesis, and phosphorylation pathways. Proteins deregulated between cancerous and adjacent benign tissues, reflected increased translation, peptide synthesis, and protein metabolism in the former, which is consistent with the literature. In conclusion, the results support the relevance of the proteomic findings in the context of PCa and the reliability of the optimized protocol for proteomics analysis of FFPE material.
Collapse
Affiliation(s)
- Anna Mantsiou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Manousos Makridakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Konstantinos Fasoulakis
- Ippokrateio General Hospital of Athens, Department of Urology, 114 Vasilissis Sofias Avenue, Athens 11527, Greece
| | - Ioannis Katafigiotis
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Constantinos A Constantinides
- National and Kapodistrian University of Athens, Medical School, 1st Urology Department, Laikon Hospital, 17 Agiou Thoma Street, Athens 11527, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Maria G Roubelakis
- National and Kapodistrian University of Athens, Medical School, Laboratory of Biology, 75 Mikras Assias Street, Athens 11527, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation of the Academy of Athens, Biotechnology Division, 4 Soranou Ephessiou Street, Athens 11527, Greece
| |
Collapse
|
21
|
Esteva-Socias M, Artiga MJ, Bahamonde O, Belar O, Bermudo R, Castro E, Escámez T, Fraga M, Jauregui-Mosquera L, Novoa I, Peiró-Chova L, Rejón JD, Ruiz-Miró M, Vieiro-Balo P, Villar-Campo V, Zazo S, Rábano A, Villena C. In search of an evidence-based strategy for quality assessment of human tissue samples: report of the tissue Biospecimen Research Working Group of the Spanish Biobank Network. J Transl Med 2019; 17:370. [PMID: 31718661 PMCID: PMC6852937 DOI: 10.1186/s12967-019-2124-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/01/2019] [Indexed: 01/10/2023] Open
Abstract
The purpose of the present work is to underline the importance of obtaining a standardized procedure to ensure and evaluate both clinical and research usability of human tissue samples. The study, which was carried out by the Biospecimen Science Working Group of the Spanish Biobank Network, is based on a general overview of the current situation about quality assurance in human tissue biospecimens. It was conducted an exhaustive review of the analytical techniques used to evaluate the quality of human tissue samples over the past 30 years, as well as their reference values if they were published, and classified them according to the biomolecules evaluated: (i) DNA, (ii) RNA, and (iii) soluble or/and fixed proteins for immunochemistry. More than 130 publications released between 1989 and 2019 were analysed, most of them reporting results focused on the analysis of tumour and biopsy samples. A quality assessment proposal with an algorithm has been developed for both frozen tissue samples and formalin-fixed paraffin-embedded (FFPE) samples, according to the expected quality of sample based on the available pre-analytical information and the experience of the participants in the Working Group. The high heterogeneity of human tissue samples and the wide number of pre-analytic factors associated to quality of samples makes it very difficult to harmonize the quality criteria. However, the proposed method to assess human tissue sample integrity and antigenicity will not only help to evaluate whether stored human tissue samples fit for the purpose of biomarker development, but will also allow to perform further studies, such as assessing the impact of different pre-analytical factors on very well characterized samples or evaluating the readjustment of tissue sample collection, processing and storing procedures. By ensuring the quality of the samples used on research, the reproducibility of scientific results will be guaranteed.
Collapse
Affiliation(s)
- Margalida Esteva-Socias
- Centro de Investigación Biomédica en Red Respiratory Diseases (CIBERES), Plataforma Biobanco Pulmonar CIBERES, Hospital Universitari Son Espases, Palma, Spain.,Grupo de Inflamación, reparación y cáncer en enfermedades respiratorias, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain
| | | | | | - Oihana Belar
- Basque Foundation for Health Innovation and Research, Basque Biobank, Barakaldo, Spain
| | - Raquel Bermudo
- Hospital Clínic-IDIBAPS Biobank, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Erika Castro
- Basque Foundation for Health Innovation and Research, Basque Biobank, Barakaldo, Spain
| | - Teresa Escámez
- IMIB Biobank, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Máximo Fraga
- Depto. de Ciencias Forenses, Anatomía Patolóxica, Xinecología e Obstetricia, e Pediatría, Facultade de Medicina, Universidade de Santiago de Compostela (USC), Santiago, Spain.,Biobanco Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | | | - Isabel Novoa
- Vall d'Hebron University Hospital Biobank, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | | | - Juan-David Rejón
- Biobanco del Sistema Sanitario Público de Andalucía, Granada, Spain
| | - María Ruiz-Miró
- IRBLleida Biobank, Instituto de Investigaciones Biomédica de Lleida-Fundación Dr. Pifarre, Lérida, Spain
| | - Paula Vieiro-Balo
- Biobanco Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | | | - Sandra Zazo
- Department of Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Rábano
- Banco de Tejidos, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Villena
- Centro de Investigación Biomédica en Red Respiratory Diseases (CIBERES), Plataforma Biobanco Pulmonar CIBERES, Hospital Universitari Son Espases, Palma, Spain. .,Grupo de Inflamación, reparación y cáncer en enfermedades respiratorias, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain.
| |
Collapse
|
22
|
Pisanu S, Cacciotto C, Pagnozzi D, Puggioni GMG, Uzzau S, Ciaramella P, Guccione J, Penati M, Pollera C, Moroni P, Bronzo V, Addis MF. Proteomic changes in the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis due to intramammary infection by Staphylococcus aureus and by non-aureus staphylococci. Sci Rep 2019; 9:15850. [PMID: 31676851 PMCID: PMC6825138 DOI: 10.1038/s41598-019-52063-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Subclinical mastitis by Staphylococcus aureus (SAU) and by non-aureus staphylococci (NAS) is a major issue in the water buffalo. To understand its impact on milk, 6 quarter samples with >3,000,000 cells/mL (3 SAU-positive and 3 NAS-positive) and 6 culture-negative quarter samples with <50,000 cells/mL were investigated by shotgun proteomics and label-free quantitation. A total of 1530 proteins were identified, of which 152 were significantly changed. SAU was more impacting, with 162 vs 127 differential proteins and higher abundance changes (P < 0.0005). The 119 increased proteins had mostly structural (n = 43, 28.29%) or innate immune defence functions (n = 39, 25.66%) and included vimentin, cathelicidins, histones, S100 and neutrophil granule proteins, haptoglobin, and lysozyme. The 33 decreased proteins were mainly involved in lipid metabolism (n = 13, 59.10%) and included butyrophilin, xanthine dehydrogenase/oxidase, and lipid biosynthetic enzymes. The same biological processes were significantly affected also upon STRING analysis. Cathelicidins were the most increased family, as confirmed by western immunoblotting, with a stronger reactivity in SAU mastitis. S100A8 and haptoglobin were also validated by western immunoblotting. In conclusion, we generated a detailed buffalo milk protein dataset and defined the changes occurring in SAU and NAS mastitis, with potential for improving detection (ProteomeXchange identifier PXD012355).
Collapse
Affiliation(s)
| | - Carla Cacciotto
- Porto Conte Ricerche, Alghero, Italy.,Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | | | | | - Sergio Uzzau
- Porto Conte Ricerche, Alghero, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Paolo Ciaramella
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Jacopo Guccione
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Martina Penati
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Claudia Pollera
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy.,Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Alghero, Italy. .,Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
23
|
Inhibition of Paenibacillus larvae by an extracellular protein fraction from a honeybee-borne Brevibacillus laterosporus strain. Microbiol Res 2019; 227:126303. [DOI: 10.1016/j.micres.2019.126303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/11/2019] [Accepted: 07/18/2019] [Indexed: 01/29/2023]
|
24
|
Chapman J, Dogan A. Fibrinogen alpha amyloidosis: insights from proteomics. Expert Rev Proteomics 2019; 16:783-793. [PMID: 31443619 PMCID: PMC6788741 DOI: 10.1080/14789450.2019.1659137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Systemic amyloidosis is a diverse group of diseases that, although rare, pose a serious health issue and can lead to organ failure and death. Amyloid typing is essential in determining the causative protein and initiating proper treatment. Mass spectrometry-based proteomics is currently the most sensitive and accurate means of typing amyloid. Areas covered: Amyloidosis can be systemic or localized, acquired or hereditary, and can affect any organ or tissue. Diagnosis requires biopsy, histological analysis, and typing of the causative protein to determine treatment. The kidneys are the most commonly affected organ in systemic disease. Fibrinogen alpha chain amyloidosis (AFib) is the most prevalent form of hereditary renal amyloidosis. Select mutations in the fibrinogen Aα (FGA) gene lead to AFib. Expert commentary: Mass spectrometry is currently the most specific and sensitive method for amyloid typing. Identification of the mutated fibrinogen alpha chain can be difficult in the case of 'private' frameshift mutations, which dramatically change the sequences of the expressed fibrinogen alpha chain. A combination of expert pathologist review, mass spectrometry, and gene sequencing can allow for confident diagnosis and determination of the fibrinogen alpha chain mutated sequence.
Collapse
Affiliation(s)
- Jessica Chapman
- Hematopathology Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Ahmet Dogan
- Hematopathology Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
25
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Giusti L, Angeloni C, Lucacchini A. Update on proteomic studies of formalin-fixed paraffin-embedded tissues. Expert Rev Proteomics 2019; 16:513-520. [DOI: 10.1080/14789450.2019.1615452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Albi E, Cataldi S, Codini M, Mariucci G, Lazzarini A, Ceccarini MR, Ferri I, Laurenti ME, Arcuri C, Patria F, Beccari T, Conte C. Neutral sphingomyelinase increases and delocalizes in the absence of Toll-Like Receptor 4: A new insight for MPTP neurotoxicity. Prostaglandins Other Lipid Mediat 2019; 142:46-52. [PMID: 30928412 DOI: 10.1016/j.prostaglandins.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/15/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Both sphingomyelinase and Toll-Like Receptor 4 (TLR4) are implicated in neurodegenerative diseases. However, the relationship between the two molecules remains unclear. In this study, using WT and TLR4-deficient mice, treated or not with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we aimed to investigate the relation between TLR4 and neutral sphingomyelinase (nSMase) in the midbrain. We found that the lack of TLR4 caused increase in nSMase protein expression and enzyme activity in the midbrain, as well as a marked delocalization from the cell membranes. This provoked a decrease in sphingomyelin (SM) species and an increase in ceramide levels. We found that exposure of TLR4-deficient mice to MPTP reduces unsaturated SM species by increasing saturated/unsaturated SM ratio. Saturated fatty acid make SM more rigid and could contribute to reducing neural plasticity. In this study we showed that the absence of TLR4 also induced reduction of both heavy neurofilaments and glial fibrillary acidic protein (GFAP) and mice exhibited higher sensitivity to MPTP administration. We speculated about the possible association between nSMase-TLR4 complex and MPTP midbrain damage. Taken together, our findings provide for the first time indications about the role of TLR4 in change of SM metabolism in MPTP neurotoxicity.
Collapse
Affiliation(s)
- Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, Italy
| | | | - Andrea Lazzarini
- Research Centre of Biochemical Specialist Analyses, CRABiON, 06122 Perugia, Italy
| | | | - Ivana Ferri
- Institute of Pathologic Anatomy and Histology, University of Perugia, Italy
| | | | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Federica Patria
- Department of Pharmaceutical Science, University of Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Science, University of Perugia, Italy.
| |
Collapse
|
28
|
Jia X, Chen C, Chen L, Yu C, Kondo T. Decorin as a prognostic biomarker in patients with malignant peripheral nerve sheath tumors. Oncol Lett 2019; 17:3517-3522. [PMID: 30867792 DOI: 10.3892/ol.2019.9959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/04/2018] [Indexed: 01/30/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue sarcomas. The prognosis of MPNSTs has been reported to differ among previous studies. However, there have been a number of reported prognostic biomarkers associated with MPNSTs. In the present study, a proteomics study was performed to discover the differential protein expression in patients with MPSNTs with different prognoses. The clinical data of 30 primary extremities of patients with MPNSTs, who underwent surgery at the Department of Hand Surgery, Huashan Hospital, Fudan University between January 2002 and December 2011, were acquired. A total of 16 patients succumbed to their diseases within 5 years, whereas 14 patients were disease-free for >5 years. Samples from the 9 patients who succumbed within 2 years were assigned to Group D, while samples from the 8 patients who were continuously disease-free for >5 years following diagnosis were assigned to Group L for the proteomics study. Label-free quantitative proteomics and mass spectrometry were performed to filtrate differential protein in patients with MPSNTs with different prognoses. Decorin was filtrated as a differential protein of note. The expression level of decorin was significantly lower in Group D compared with that in Group L (D/L=0.0948; P=0.0004). The result was verified by immunohistochemical staining in the 30 primary extremities of patients with MPNSTs. The 5-year survival rate of patients with positive expression of decorin was 78.57%, while the 5-year survival rate of patients negative for decorin expression was 18.75% (P=0.0014). Overall, a high level of decorin indicted a better prognosis in patients with MPNSTs. With further investigation, decorin may be a reliable prognostic biomarker for MPNSTs.
Collapse
Affiliation(s)
- Xiaotian Jia
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai 200040, P.R. China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200040, P.R. China
| | - Chao Chen
- Department of Gynecology and Obstetrics, Putuo District Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Lin Chen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai 200040, P.R. China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200040, P.R. China
| | - Cong Yu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai 200040, P.R. China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200040, P.R. China
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
29
|
Biomedical analysis of formalin-fixed, paraffin-embedded tissue samples: The Holy Grail for molecular diagnostics. J Pharm Biomed Anal 2018; 155:125-134. [PMID: 29627729 DOI: 10.1016/j.jpba.2018.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
More than a century ago in 1893, a revolutionary idea about fixing biological tissue specimens was introduced by Ferdinand Blum, a German physician. Since then, a plethora of fixation methods have been investigated and used. Formalin fixation with paraffin embedment became the most widely used types of fixation and preservation method, due to its proper architectural conservation of tissue structures and cellular shape. The huge collection of formalin-fixed, paraffin-embedded (FFPE) sample archives worldwide holds a large amount of unearthed information about diseases that could be the Holy Grail in contemporary biomarker research utilizing analytical omics based molecular diagnostics. The aim of this review is to critically evaluate the omics options for FFPE tissue sample analysis in the molecular diagnostics field.
Collapse
|
30
|
Mariucci G, Pagiotti R, Galli F, Romani L, Conte C. The Potential Role of Toll-Like Receptor 4 in Mediating Dopaminergic Cell Loss and Alpha-Synuclein Expression in the Acute MPTP Mouse Model of Parkinson's Disease. J Mol Neurosci 2018; 64:611-618. [PMID: 29589201 DOI: 10.1007/s12031-018-1057-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/06/2018] [Indexed: 01/05/2023]
Abstract
Toll-like receptors (TLRs) may have a role in Parkinson's disease (PD). In this study, we aimed at investigating the dopaminergic cell loss and alpha-synuclein (α-SYN) expression in TLR4-deficient mice (TLR4-/-) acutely exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a pharmacological PD model. TLR4 ablation restrained the number of dopaminergic neurons in the substantia nigra (SN), as assessed by tyrosine hydroxylase (TH) protein expression. Intriguingly, TLR4-/- mice showed massive α-SYN protein accumulation in the midbrain along with high α-SYN mRNA levels in cerebral cortex, striatum, hippocampus, and cerebellum. Contrary to expectations, the high levels of α-SYN do not correlate with greater dopaminergic neuronal loss. The levels of nigral α-SYN protein in TLR4-/- mice further, but not significantly, increased during MPTP treatment. Contrariwise, MPTP treatment significantly induced the mRNA expression of α-SYN in examined brain regions of WT and TLR4-/- mice. Protein levels of GATA2, a transcription factor proposed to control α-SYN gene expression, did not change in TLR4-/- mice at baseline and after MPTP treatment. These findings suggest a role for TLR4 in mediating dopaminergic cell loss and in the constitutive expression of brain α-SYN. However, further exploration is needed in order to establish the actual role of α-SYN in the relative absence of TLR4.
Collapse
Affiliation(s)
- Giuseppina Mariucci
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy
| | - Rita Pagiotti
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126, Perugia, Italy.
| |
Collapse
|
31
|
Föll MC, Fahrner M, Oria VO, Kühs M, Biniossek ML, Werner M, Bronsert P, Schilling O. Reproducible proteomics sample preparation for single FFPE tissue slices using acid-labile surfactant and direct trypsinization. Clin Proteomics 2018. [PMID: 29527141 PMCID: PMC5838928 DOI: 10.1186/s12014-018-9188-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Proteomic analyses of clinical specimens often rely on human tissues preserved through formalin-fixation and paraffin embedding (FFPE). Minimal sample consumption is the key to preserve the integrity of pathological archives but also to deal with minimal invasive core biopsies. This has been achieved by using the acid-labile surfactant RapiGest in combination with a direct trypsinization (DTR) strategy. A critical comparison of the DTR protocol with the most commonly used filter aided sample preparation (FASP) protocol is lacking. Furthermore, it is unknown how common histological stainings influence the outcome of the DTR protocol. Methods Four single consecutive murine kidney tissue specimens were prepared with the DTR approach or with the FASP protocol using both 10 and 30 k filter devices and analyzed by label-free, quantitative liquid chromatography–tandem mass spectrometry (LC–MS/MS). We compared the different protocols in terms of proteome coverage, relative label-free quantitation, missed cleavages, physicochemical properties and gene ontology term annotations of the proteins. Additionally, we probed compatibility of the DTR protocol for the analysis of common used histological stainings, namely hematoxylin & eosin (H&E), hematoxylin and hemalaun. These were proteomically compared to an unstained control by analyzing four human tonsil FFPE tissue specimens per condition. Results On average, the DTR protocol identified 1841 ± 22 proteins in a single, non-fractionated LC–MS/MS analysis, whereas these numbers were 1857 ± 120 and 1970 ± 28 proteins for the FASP 10 and 30 k protocol. The DTR protocol showed 15% more missed cleavages, which did not adversely affect quantitation and intersample comparability. Hematoxylin or hemalaun staining did not adversely impact the performance of the DTR protocol. A minor perturbation was observed for H&E staining, decreasing overall protein identification by 13%. Conclusions In essence, the DTR protocol can keep up with the FASP protocol in terms of qualitative and quantitative reproducibility and performed almost as well in terms of proteome coverage and missed cleavages. We highlight the suitability of the DTR protocol as a viable and straightforward alternative to the FASP protocol for proteomics-based clinical research. Electronic supplementary material The online version of this article (10.1186/s12014-018-9188-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Christine Föll
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matthias Fahrner
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,3Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Victor Oginga Oria
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,3Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Markus Kühs
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Lothar Biniossek
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Martin Werner
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bronsert
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,8BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
32
|
Sadick JS, Darling EM. Processing fixed and stored adipose-derived stem cells for quantitative protein array assays. Biotechniques 2017; 63:275-280. [PMID: 29235974 DOI: 10.2144/000114620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/06/2017] [Indexed: 01/05/2023] Open
Abstract
Accurately characterizing cellular subpopulations is essential for elucidating the mechanisms underlying normal and pathological biology. Isolation of specific cell types can be accomplished by labeling unique cell-associated proteins with fluorescent antibodies. Cell fixation is commonly used to prepare these samples and allow for long-term storage, but this poses challenges for subsequent protein analysis. We previously established the FITSAR (formaldehyde-fixed intracellular target-sorted antigen retrieval) method, in which protein can be isolated and characterized from fixed, enriched cell subpopulations. Here, we improve on this method by allowing compatibility with highly sensitive multiplex protein arrays and demonstrating applicability to long-term stored samples. Feasibility experiments demonstrated parallel detection of cell adhesion molecules (CAMs) using an enzyme-linked immunosorbent assay (ELISA) panel with human adipose-derived stem cells (ASCs) stored for up to 1 month.
Collapse
Affiliation(s)
- Jessica S Sadick
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI
| | - Eric M Darling
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI.,Center for Biomedical Engineering, Brown University, Providence, RI.,School of Engineering, Brown University, Providence, RI.,Department of Orthopaedics, Brown University, Providence, RI
| |
Collapse
|
33
|
Roos A, Thompson R, Horvath R, Lochmüller H, Sickmann A. Intersection of Proteomics and Genomics to "Solve the Unsolved" in Rare Disorders such as Neurodegenerative and Neuromuscular Diseases. Proteomics Clin Appl 2017; 12. [PMID: 29059504 DOI: 10.1002/prca.201700073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/30/2017] [Indexed: 01/10/2023]
Abstract
Despite recent rapid advances in sequencing technologies, a significant proportion of patients with rare genetic disorders do not receive a genetic diagnosis after exhaustive testing, and even fewer have a potential therapeutic target identified. Taking rare neuromuscular and neurodegenerative disorders as a paradigm that can be extended to other rare Mendelian disorders, this viewpoint explores the opportunities that are brought about by the integration of genomics and proteomics, as well as the limitations and remaining challenges of this newly emerging field of proteogenomics. The relevance of combining proteomic findings with genetic results for diagnosis and gene discovery is illustrated, highlighting the insights the combined analysis provides into the underlying biology and aetiology as well as the limitations of the experimental techniques. A final discussion focuses on the importance of mechanisms to enable the sharing, reuse, and analysis of source experimental data and describes some of the international initiatives that are making progress in this area.
Collapse
Affiliation(s)
- Andreas Roos
- John Walton Muscular Dystrophy Research Centre, International Centre for Life, Institute of Genetic Medicine, Newcastle upon Tyne, England, UK.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rachel Thompson
- John Walton Muscular Dystrophy Research Centre, International Centre for Life, Institute of Genetic Medicine, Newcastle upon Tyne, England, UK
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, International Centre for Life, Institute of Genetic Medicine, Newcastle upon Tyne, England, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, International Centre for Life, Institute of Genetic Medicine, Newcastle upon Tyne, England, UK
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,Medizinisches Proteom-Center (MPC), Ruhr-Universitat Bochum, Bochum, Germany
| |
Collapse
|
34
|
Gasa L, Sanchez-Botet A, Quandt E, Hernández-Ortega S, Jiménez J, Carrasco-García MA, Simonetti S, Kron SJ, Ribeiro MP, Nadal E, Villanueva A, Clotet J. A systematic analysis of orphan cyclins reveals CNTD2 as a new oncogenic driver in lung cancer. Sci Rep 2017; 7:10228. [PMID: 28860486 PMCID: PMC5579190 DOI: 10.1038/s41598-017-10770-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/14/2017] [Indexed: 02/02/2023] Open
Abstract
As lung cancer has increased to the most common cause of cancer death worldwide, prognostic biomarkers and effective targeted treatments remain lacking despite advances based on patients’ stratification. Multiple core cyclins, best known as drivers of cell proliferation, are commonly deregulated in lung cancer where they may serve as oncogenes. The recent expansion of the cyclin family raises the question whether new members might play oncogenic roles as well. Here, we investigated the protein levels of eight atypical cyclins in lung cancer cell lines and formalin-fixed and paraffin-embedded (FFPE) human tumors, as well as their functional role in lung cancer cells. Of the new cyclins evaluated, CNTD2 was significantly overexpressed in lung cancer compared to adjacent normal tissue, and exhibited a predominant nuclear location. CNTD2 overexpression increased lung cancer cell viability, Ki-67 intensity and clonogenicity and promoted lung cancer cell migration. Accordingly, CNTD2 enhanced tumor growth in vivo on A549 xenograft models. Finally, the analysis of gene expression data revealed a high correlation between elevated levels of CNTD2 and decreased overall survival in lung cancer patients. Our results reveal CNTD2 as a new oncogenic driver in lung cancer, suggesting value as a prognostic biomarker and therapeutic target in this disease.
Collapse
Affiliation(s)
- L Gasa
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - A Sanchez-Botet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - S Hernández-Ortega
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - J Jiménez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - M A Carrasco-García
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.,Pathology Department, Hospital Universitari General de Catalunya, Sant Cugat del Vallès, Barcelona, Spain
| | - S Simonetti
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.,Pathology Department, Hospital Universitari General de Catalunya, Sant Cugat del Vallès, Barcelona, Spain
| | - S J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, USA
| | - M P Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| | - E Nadal
- Department of Medical Oncology and Program in Molecular Mechanisms and Experimental Therapeutics in Oncology, Catalan Institute of Oncology (ICO) Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - A Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO) Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - J Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
35
|
Ceciliani F, Roccabianca P, Giudice C, Lecchi C. Application of post-genomic techniques in dog cancer research. MOLECULAR BIOSYSTEMS 2017; 12:2665-79. [PMID: 27345606 DOI: 10.1039/c6mb00227g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omics techniques have been widely applied to veterinary science, although mostly on farm animal productions and infectious diseases. In canine oncology, on the contrary, the use of omics methodologies is still far behind. This review presents the most recent achievement in the application of postgenomic techniques, such as transcriptomics, proteomics, and metabolomics, to canine cancer research. The protocols to recover material suitable for omics analyses from formalin-fixed, paraffin-embedded tissues are presented, and omics applications for biomarker discovery and their potential for cancer diagnostics in veterinary medicine are highlighted.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - P Roccabianca
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Giudice
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Lecchi
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| |
Collapse
|
36
|
Marche MG, Mura ME, Falchi G, Ruiu L. Spore surface proteins of Brevibacillus laterosporus are involved in insect pathogenesis. Sci Rep 2017; 7:43805. [PMID: 28256631 PMCID: PMC5335551 DOI: 10.1038/srep43805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
Outer spore envelope proteins of pathogenic bacteria often present specific virulence factors and tools to evade the defence system of their hosts. Brevibacillus laterosporus, a pathogen of invertebrates and an antimicrobial-producing species, is characterised by a unique spore coat and canoe-shaped parasporal body (SC-CSPB) complex surrounding the core spore. In the present study, we identified and characterised major proteins of the SC-CSPB complex of B. laterosporus, and we investigated their entomopathogenic role. Employing a proteomic approach and a B. laterosporus-house fly study model, we found four highly conserved proteins (ExsC, CHRD, CpbA and CpbB) that function as insect virulence factors. CpbA was associated with a significantly higher mortality of flies and greater relative gene expression levels during sporulation, compared to the other SC-CSPB proteins. Taken together, we suggest that spore surface proteins are a part of a complex set of toxins and virulence factors that B. laterosporus employs in its pathogenicity against flies.
Collapse
Affiliation(s)
| | - Maria Elena Mura
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| | - Giovanni Falchi
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| | - Luca Ruiu
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| |
Collapse
|
37
|
Zilberstein G, Maor U, Baskin E, D'Amato A, Righetti PG. Unearthing Bulgakov's trace proteome from the Master i Margarita manuscript. J Proteomics 2017; 152:102-108. [DOI: 10.1016/j.jprot.2016.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
|
38
|
Yu TY, Morton JD, Clerens S, Dyer JM. Cooking-Induced Protein Modifications in Meat. Compr Rev Food Sci Food Saf 2016; 16:141-159. [DOI: 10.1111/1541-4337.12243] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Tzer-Yang Yu
- Food & Bio-Based Products; AgResearch Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
- Wine, Food & Molecular Biosciences, Faculty of Agriculture and Life Sciences; Lincoln Univ; PO Box 84 Canterbury 7647 New Zealand
| | - James D. Morton
- Wine, Food & Molecular Biosciences; Faculty of Agriculture and Life Sciences, Lincoln Univ; PO Box 84 Canterbury 7647 New Zealand
- Biomolecular Interaction Centre; Univ. of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Stefan Clerens
- Food & Bio-Based Products; AgResearch Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
- Biomolecular Interaction Centre; Univ. of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Jolon M. Dyer
- Food & Bio-Based Products; AgResearch Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
- Riddet Inst; Massey Univ; Palmerston North 4442 New Zealand
- Wine, Food & Molecular Biosciences, Faculty of Agriculture and Life Sciences; Lincoln Univ; PO Box 84 Canterbury 7647 New Zealand
- Biomolecular Interaction Centre; Univ. of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
39
|
Broeckx V, Boonen K, Pringels L, Sagaert X, Prenen H, Landuyt B, Schoofs L, Maes E. Comparison of multiple protein extraction buffers for GeLC-MS/MS proteomic analysis of liver and colon formalin-fixed, paraffin-embedded tissues. MOLECULAR BIOSYSTEMS 2016; 12:553-65. [PMID: 26676081 DOI: 10.1039/c5mb00670h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue specimens represent a potential valuable source of samples for clinical research. Since these specimens are banked in hospital archives, large cohorts of samples can be collected in short periods of time which can all be linked with a patients' clinical history. Therefore, the use of FFPE tissue in protein biomarker discovery studies gains interest. However, despite the growing number of FFPE proteome studies in the literature, there is a lack of a FFPE proteomics standard operating procedure (SOP). One of the challenging steps in the development of such a SOP is the ability to obtain an efficient and repeatable extraction of full length FFPE proteins. In this study, the protein extraction efficiency of eight protein extraction buffers is critically compared with GeLC-MS/MS (1D gel electrophoresis followed by in-gel digestion and LC-MS/MS). The data variation caused by using these extraction buffers was investigated since the variation is a very important aspect when using FFPE tissue as a source for biomarker detection. In addition, a qualitative comparison was made between the protein extraction efficiency and repeatability for FFPE tissue and fresh frozen tissue.
Collapse
Affiliation(s)
- Valérie Broeckx
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Kurt Boonen
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lentel Pringels
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Xavier Sagaert
- Centre for Translational Cell and Tissue Research, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hans Prenen
- Department of Gastro-Enterology, Digestive Oncology Unit, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Bart Landuyt
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Department of Biology, University of Leuven, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Evelyne Maes
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium and Centre for Proteomics, University of Antwerp/Flemish Institute for Technological Research (VITO), Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
40
|
Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep 2016; 6:33999. [PMID: 27666089 PMCID: PMC5036045 DOI: 10.1038/srep33999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular heterogeneity is inherent in most human tissues, making the investigation of specific cell types challenging. Here, we describe a novel, fixation/intracellular target-based sorting and protein extraction method to provide accurate protein characterization for cell subpopulations. Validation and feasibility tests were conducted using homogeneous, neural cell lines and heterogeneous, rat brain cells, respectively. Intracellular proteins of interest were labeled with fluorescent antibodies for fluorescence-activated cell sorting. Reproducible protein extraction from fresh and fixed samples required lysis buffer with high concentrations of Tris-HCl and sodium dodecyl sulfate as well as exposure to high heat. No deterioration in protein amount or quality was observed for fixed, sorted samples. For the feasibility experiment, a primary rat subpopulation of neuronal cells was selected for based on high, intracellular β-III tubulin signal. These cells showed distinct protein expression differences from the unsorted population for specific (phosphorylated tau) and non-specific (total tau) protein targets. Our approach allows for determining more accurate protein profiles directly from cell types of interest and provides a platform technology in which any cell subpopulation can be biochemically investigated.
Collapse
|
41
|
Luebker SA, Wojtkiewicz M, Koepsell SA. Two methods for proteomic analysis of formalin-fixed, paraffin embedded tissue result in differential protein identification, data quality, and cost. Proteomics 2016; 15:3744-53. [PMID: 26306679 DOI: 10.1002/pmic.201500147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/06/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC-MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in-solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre-analytical variations and analyzed with three technical replicates by LC-MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre-analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained.
Collapse
Affiliation(s)
- Stephen A Luebker
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Melinda Wojtkiewicz
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Scott A Koepsell
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
42
|
Proteomic changes occurring along gonad maturation in the edible sea urchin Paracentrotus lividus. J Proteomics 2016; 144:63-72. [DOI: 10.1016/j.jprot.2016.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
|
43
|
Analysis of formalin-fixed, paraffin-embedded (FFPE) tissue via proteomic techniques and misconceptions of antigen retrieval. Biotechniques 2016; 60:229-38. [DOI: 10.2144/000114414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/20/2016] [Indexed: 11/23/2022] Open
Abstract
Since emerging in the late 19th century, formaldehyde fixation has become a standard method for preservation of tissues from clinical samples. The advantage of formaldehyde fixation is that fixed tissues can be stored at room temperature for decades without concern for degradation. This has led to the generation of huge tissue banks containing thousands of clinically significant samples. Here we review techniques for proteomic analysis of formalin-fixed, paraffin-embedded (FFPE) tissue samples with a specific focus on the methods used to extract and break formaldehyde crosslinks. We also discuss an error-of-interpretation associated with the technique known as “antigen retrieval.” We have discovered that this term has been mistakenly applied to two disparate molecular techniques; therefore, we argue that a terminology change is needed to ensure accurate reporting of experimental results. Finally, we suggest that more investigation is required to fully understand the process of formaldehyde fixation and its subsequent reversal.
Collapse
|
44
|
Tanca A, Addis MF, Pisanu S, Abbondio M, Pagnozzi D, Eccher A, Rindi G, Cossu-Rocca P, Uzzau S, Fanciulli G. Atypical carcinoid and large cell neuroendocrine carcinoma of the lung: a proteomic dataset from formalin-fixed archival samples. Data Brief 2016; 7:529-31. [PMID: 27054153 PMCID: PMC4796709 DOI: 10.1016/j.dib.2016.02.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 11/22/2022] Open
Abstract
Here we present a dataset generated using formalin-fixed paraffin-embedded archival samples from two rare lung neuroendocrine tumor subtypes (namely, two atypical carcinoids, ACs, and two large-cell neuroendocrine carcinomas, LCNECs). Samples were subjected to a shotgun proteomics pipeline, comprising full-length protein extraction, SDS removal through spin columns, in solution trypsin digestion, long gradient liquid chromatography peptide separation and LTQ-Orbitrap mass spectrometry analysis. A total of 1260 and 2436 proteins were identified in the AC and LCNEC samples, respectively, with FDR <1%. MS data are available in the PeptideAtlas repository at http://www.peptideatlas.org/PASS/PASS00375.
Collapse
Affiliation(s)
| | | | | | | | | | - Albino Eccher
- U.O. di Anatomia Patologica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Guido Rindi
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore-Policlinico A. Gemelli, Rome, Italy
| | - Paolo Cossu-Rocca
- U.O. di Anatomia Patologica, Azienda Sanitaria Locale di Olbia, Olbia, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Tramariglio, Alghero, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Giuseppe Fanciulli
- NET Unit, Dipartimento di Medicina Clinica e Sperimentale, Università di Sassari, AOU Sassari, Sassari, Italy
| |
Collapse
|
45
|
Negm OH, Muftah AA, Aleskandarany MA, Hamed MR, Ahmad DAJ, Nolan CC, Diez-Rodriguez M, Tighe PJ, Ellis IO, Rakha EA, Green AR. Clinical utility of reverse phase protein array for molecular classification of breast cancer. Breast Cancer Res Treat 2015; 155:25-35. [PMID: 26661092 DOI: 10.1007/s10549-015-3654-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/28/2015] [Indexed: 01/12/2023]
Abstract
Reverse Phase Protein Array (RPPA) represents a sensitive and high-throughput technique allowing simultaneous quantitation of protein expression levels in biological samples. This study aimed to confirm the ability of RPPA to classify archival formalin-fixed paraffin-embedded (FFPE) breast cancer tissues into molecular classes used in the Nottingham prognostic index plus (NPI+) determined by immunohistochemistry (IHC). Proteins were extracted from FFPE breast cancer tissues using three extraction protocols: the Q-proteome FFPE Tissue Kit (Qiagen, Hilden, Germany) and two in-house methods using Laemmli buffer with either incubation for 20 min or 2 h at 105 °C. Two preparation methods, full-face sections and macrodissection, were used to assess the yield and quality of protein extracts. Ten biomarkers used for the NPI+ (ER, PgR, HER2, Cytokeratins 5/6 and 7/8, EGFR, HER3, HER4, p53 and Mucin 1) were quantified using RPPA and compared to results determined by IHC. The Q-proteome FFPE Tissue Kit produced significantly higher protein concentration and signal intensities. The intra- and inter-array reproducibility assessment indicated that RPPA using FFPE lysates was a highly reproducible and robust technique. Expression of the biomarkers individually and in combination using RPPA was highly consistent with IHC results. Macrodissection of the invasive tumour component gave more reliable results with the majority of biomarkers determined by IHC, (80 % concordance) compared with full-face sections (60 % concordance). Our results provide evidence for the technical feasibility of RPPA for high-throughput protein expression profiling of FFPE breast cancer tissues. The sensitivity of the technique is related to the quality of extracted protein and purity of tumour tissue. RPPA could provide a quantitative technique alternative to IHC for the biomarkers used in the NPI+.
Collapse
Affiliation(s)
- Ola H Negm
- School of Life Sciences, Immunology, University of Nottingham, Nottingham, NG7 2UH, UK. .,Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Abir A Muftah
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK. .,Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK. .,Department of Pathology, Faculty of Medicine, Benghazi University, Benghazi, Libya.
| | - Mohammed A Aleskandarany
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Mohamed R Hamed
- School of Life Sciences, Immunology, University of Nottingham, Nottingham, NG7 2UH, UK.,Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dena A J Ahmad
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Christopher C Nolan
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Maria Diez-Rodriguez
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Patrick J Tighe
- School of Life Sciences, Immunology, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Ian O Ellis
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A Rakha
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|
46
|
Shen K, Sun J, Cao X, Zhou D, Li J. Comparison of Different Buffers for Protein Extraction from Formalin-Fixed and Paraffin-Embedded Tissue Specimens. PLoS One 2015; 10:e0142650. [PMID: 26580073 PMCID: PMC4651363 DOI: 10.1371/journal.pone.0142650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/26/2015] [Indexed: 01/26/2023] Open
Abstract
We determined the best extraction buffer for proteomic investigation using formalin-fixation and paraffin-embedded (FFPE) specimens. A Zwittergent 3–16 based buffer, sodium dodecyl sulfate (SDS)-containing buffer with/without polyethylene glycol 20000 (PEG20000), urea-containing buffer, and FFPE-FASP protein preparation kit were compared for protein extraction from different types of rat FFPE tissues, including the heart, brain, liver, lung, and kidney. All of the samples were divided into two groups of laser microdissected (LMD) and non-LMD specimens. For both kinds of specimens, Zwittergent was the most efficient buffer for identifying peptides and proteins, was broadly applicable to different tissues without impairing the enzymatic digestion, and was well compatible with mass spectrometry analysis. As a high molecular weight carrier substance, PEG20000 improved the identification of peptides and proteins; however, such an advantage is limited to tissues containing submicrograms to micrograms of protein. Considering its low lytic strength, urea-containing buffer would not be the first alternative for protein recovery. In conclusion, Zwittergent 3–16 is an effective buffer for extracting proteins from FFPE specimens for downstream proteomics analysis.
Collapse
Affiliation(s)
- Kaini Shen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xinxin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
47
|
Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer's disease brain tissue. Sci Rep 2015; 5:15456. [PMID: 26487484 PMCID: PMC4614382 DOI: 10.1038/srep15456] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
The vast majority of human tissue specimens are formalin-fixed, paraffin embedded (FFPE) archival samples, making this type of tissue a potential gold mine for medical research. It is now accepted that proteomics can be done using FFPE tissue and can generate similar results as snap-frozen tissue. However, the current methodology requires a large amount of starting protein, limiting the questions that can be answered in these types of proteomics studies and making cell-type specific proteomics studies difficult. Cell-type specific proteomics has the potential to greatly enhance understanding of cell functioning in both normal and disease states. Therefore, here we describe a new method that allows localized proteomics on individual cell populations isolated from FFPE tissue sections using laser capture microdissection. To demonstrate this technique we microdissected neurons from archived tissue blocks of the temporal cortex from patients with Alzheimer’s disease. Using this method we identified over 400 proteins in microdissected neurons; on average 78% that were neuronal and 50% that were associated with Alzheimer’s disease. Therefore, this technique is able to provide accurate and meaningful data and has great potential for any future study that wishes to perform localized proteomics using very small amounts of archived FFPE tissue.
Collapse
|
48
|
Proteins from formalin-fixed paraffin-embedded prostate cancer sections that predict the risk of metastatic disease. Clin Proteomics 2015; 12:24. [PMID: 26388710 PMCID: PMC4574128 DOI: 10.1186/s12014-015-9096-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 02/02/2023] Open
Abstract
Background Prostate cancer is the most frequently diagnosed cancer in men and the third leading cause of cancer related deaths among men living in developed countries. Biomarkers that predict disease outcome at the time of initial diagnosis would substantially aid disease management. Results Proteins extracted from formalin-fixed paraffin-embedded tissue were identified using nanoflow liquid chromatography-MALDI MS/MS or after separation by one- or two-dimensional electrophoresis. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000963. A list of potential biomarker candidates, based on proposed associations with prostate cancer, was derived from the 320 identified proteins. Candidate biomarkers were then examined by multiplexed Western blotting of archival specimens from men with premetastatic disease and subsequent disease outcome data. Annexin A2 provided the best prediction of risk of metastatic disease (log-rank Chi squared p = 0. 025). A tumor/control tissue >2-fold relative abundance increase predicted early biochemical failure, while <2-fold change predicted late or no biochemical failure. Conclusions This study confirms the potential for use of archival FFPE specimens in the search for prognostic biomarkers for prostate cancer and suggests that annexin A2 abundance in diagnostic biopsies is predictive for metastatic potential. Protein profiling each cancer may lead to an overall reduction in mortality from metastatic prostate cancer as well as reduced treatment associated morbidity. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9096-3) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Bernardini G, Laschi M, Geminiani M, Braconi D, Vannuccini E, Lupetti P, Manetti F, Millucci L, Santucci A. Homogentisate 1,2 dioxygenase is expressed in brain: implications in alkaptonuria. J Inherit Metab Dis 2015; 38:807-14. [PMID: 25762405 DOI: 10.1007/s10545-015-9829-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Alkaptonuria is an ultra-rare autosomal recessive disease developed from the lack of homogentisate 1,2-dioxygenase (HGD) activity, causing an accumulation in connective tissues of homogentisic acid (HGA) and its oxidized derivatives in polymerized form. The deposition of ochronotic pigment has been so far attributed to homogentisic acid produced by the liver, circulating in the blood, and accumulating locally. In the present paper, we report the expression of HGD in the brain. Mouse and human brain tissues were positively tested for HGD gene expression by western blotting. Furthermore, HGD expression was confirmed in human neuronal cells that also revealed the presence of six HGD molecular species. Moreover, once cultured in HGA excess, human neuronal cells produced ochronotic pigment and amyloid. Our findings indicate that alkaptonuric brain cells produce the ochronotic pigment in loco and this may contribute to induction of neurological complications.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, and Dipartimento di Scienze della Vita, Università degli Studi di Siena, via Aldo Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Boellner S, Becker KF. Recent progress in protein profiling of clinical tissues for next-generation molecular diagnostics. Expert Rev Mol Diagn 2015. [DOI: 10.1586/14737159.2015.1070098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|