1
|
Niemeläinen M, Haapanen-Saaristo AM, Koskinen LM, Gullmets J, Peuhu E, Meinander A, Calhim S, Paatero I. Glutaraldehyde-enhanced autofluorescence as a general tool for 3D morphological imaging. Biol Open 2024; 13:bio060428. [PMID: 39428988 PMCID: PMC11583915 DOI: 10.1242/bio.060428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Routine histochemical techniques are capable of producing vast amount of information from diverse sample types, but these techniques are limited in their ability to generate 3D information. Autofluorescence imaging can be used to analyse samples in 3D but it suffers from weak/low signal intensities. Here, we describe a simple chemical treatment with glutaraldehyde to enhance autofluorescence for 3D fluorescence imaging and to generate detailed morphological images on whole-mount samples. This methodology is straightforward and cost-effective to implement, suitable for a wide range of organisms and sample types. Furthermore, it can be readily integrated with standard confocal and fluorescence microscopes for analysis. This approach has the potential to facilitate the analysis of biological 3D structures and research in developmental biology, including studies on model and non-model organisms.
Collapse
Affiliation(s)
- Miika Niemeläinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | | | - Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN west , University of Turku, Turku FI-20520, Finland
| | - Josef Gullmets
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku FI-20520, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN west , University of Turku, Turku FI-20520, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku FI-20520, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku FI-20520, Finland
| | - Sara Calhim
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| |
Collapse
|
2
|
Pérez-Polo S, Mena AR, Barros L, Borrajo P, Pazos M, Carrera M, Gestal C. Decoding Octopus Skin Mucus: Impact of Aquarium-Maintenance and Senescence on the Proteome Profile of the Common Octopus ( Octopus vulgaris). Int J Mol Sci 2024; 25:9953. [PMID: 39337441 PMCID: PMC11431876 DOI: 10.3390/ijms25189953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The common octopus (Octopus vulgaris) is an excellent candidate for aquaculture diversification, due to its biological traits and high market demand. To ensure a high-quality product while maintaining welfare in captive environments, it is crucial to develop non-invasive methods for testing health biomarkers. Proteins found in skin mucus offer a non-invasive approach to monitoring octopus welfare. This study compares the protein profiles in the skin mucus of wild, aquarium-maintained, and senescent specimens to identify welfare biomarkers. A tandem mass tag (TMT) coupled with an Orbitrap Eclipse Tribrid mass spectrometer was used to create a reference dataset from octopus skin mucus, identifying 1496 non-redundant protein groups. Although similar profiles were observed, differences in relative abundances led to the identification of potential biomarkers, including caspase-3-like, protocadherin 4, deleted in malignant brain tumors, thioredoxin, papilin, annexin, cofilin and mucin-4 proteins. Some of these proteins also revealed potential as bioactive peptides. This investigation provides the most extensive analysis of the skin mucus proteome in the common octopus and is the first to explore how aquarium maintenance and senescence alter the mucus proteome. This research highlights the potential of skin mucus protein/peptides as non-invasive monitoring biomarkers in cultured animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Mónica Carrera
- Instituto de Investigaciones Marinas (IIM-CSIC), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (S.P.-P.); (A.R.M.); (L.B.); (P.B.); (M.P.)
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM-CSIC), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (S.P.-P.); (A.R.M.); (L.B.); (P.B.); (M.P.)
| |
Collapse
|
3
|
Vicentini M, Simmons D, Silva de Assis HC. How does temperature rise affect a freshwater catfish Rhamdia quelen? A proteomic approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101219. [PMID: 38377663 DOI: 10.1016/j.cbd.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Outside of scientific circles, climate change is a hotly debated topic due to all its consequences. Changes in the temperature can affect aquatic organisms and it is important to understand and to detect earlier signals. This study aimed to analyze how a Neotropical fish species responds to temperature increases, using proteomic analysis as a tool. For this, fish of the species Rhamdia quelen, male and female, were exposed to two temperatures: 25 °C and 30 °C. After 96 h, the animals were anesthetized, euthanized and the liver was collected for proteomic analysis. Using freely available online software and databases (e.g. MetaboAnalyst, Gene Ontology and UniProt), we define the altered proteins in both sexes: 42 in females and 62 in males. Data are available via ProteomeXchange with identifier PXD046475. Differences between the two temperatures were observed mainly in the amino acid metabolic pathways. The cellular process and the immune response was altered, indicating that effects at lower levels of biological organization could serve as a predictor of higher-level effects when temperature rise affects wildlife populations. Thus, we conclude that the increase in temperature is capable of altering important cellular and physiological processes in R. quelen fish, with this response being different for males and females.
Collapse
Affiliation(s)
- Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Biological Sciences Sector, Federal University of Paraná, Box 19031, 81531-980 Curitiba, PR, Brazil; Pharmacology Department, Federal University of Paraná, Brazil, Box 19031, 81531-980 Curitiba, PR, Brazil. https://twitter.com/maiaravicentini
| | - Denina Simmons
- Faculty of Science, OntarioTech University, 2000 Simcoe St. North, Oshawa, Ontario L1G 0C5, Canada. https://twitter.com/DeninaSimmons
| | | |
Collapse
|
4
|
Muñoz-Baquero M, Lorenzo-Rebenaque L, García-Domínguez X, Valdés-Hernández J, García-Párraga D, Marin C, García-Vázquez FA, Marco-Jiménez F. Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums. Animals (Basel) 2024; 14:1281. [PMID: 38731285 PMCID: PMC11083954 DOI: 10.3390/ani14091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In the ex situ conservation of chondrichthyan species, successful reproduction in aquaria is essential. However, these species often exhibit reduced reproductive success under human care. A key aspect is that conventional sperm analyses do not provide insights into the functional competence of sperm. However, proteomics analysis enables a better understanding of male physiology, gaining relevance as a powerful tool for discovering protein biomarkers related to fertility. The present work aims to build the first proteome database for shark semen and to investigate the proteomic profiles of seminal plasma and spermatozoa from small-spotted catsharks (Scyliorhinus canicula) related to the underlying adaptations to both natural and aquarium environments, thereby identifying the reproductive impact in aquarium specimens. A total of 305 seminal plasma and 535 spermatozoa proteins were identified. Among these, 89 proteins (29.2% of the seminal plasma set) were common to both spermatozoa and seminal plasma. In the seminal plasma, only adenosylhomocysteinase protein showed differential abundance (DAP) between wild and aquarium animals. With respect to the spermatozoa proteins, a total of 107 DAPs were found between groups. Gene Ontology enrichment analysis highlighted the primary functional roles of these DAPs involved in oxidoreductase activity. Additionally, KEGG analysis indicated that these DAPs were primarily associated with metabolic pathways and carbon metabolism. In conclusion, we have successfully generated an initial proteome database for S. canicula seminal plasma and spermatozoa. Furthermore, we have identified protein variations, predominantly within spermatozoa, between aquarium and wild populations of S. canicula. These findings provide a foundation for future biomarker discovery in shark reproduction studies. However, additional research is required to determine whether these protein variations correlate with reproductive declines in captive sharks.
Collapse
Affiliation(s)
- Marta Muñoz-Baquero
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Spain; (M.M.-B.); (C.M.)
- Fundación Oceanogràfic de la Comunidad Valenciana, 46005 Valencia, Spain;
| | - Laura Lorenzo-Rebenaque
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Ximo García-Domínguez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Jesús Valdés-Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Daniel García-Párraga
- Fundación Oceanogràfic de la Comunidad Valenciana, 46005 Valencia, Spain;
- Veterinary Services, Avanqua-Oceanogràfic S.L., Ciudad de las Artes y las Ciencias, 46013 Valencia, Spain
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Spain; (M.M.-B.); (C.M.)
| | - Francisco Alberto García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Campus de Excelencia Internacional Mare Nostrum, 30100 Murcia, Spain;
| | - Francisco Marco-Jiménez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| |
Collapse
|
5
|
Villarreal F, Burguener GF, Sosa EJ, Stocchi N, Somoza GM, Turjanski AG, Blanco A, Viñas J, Mechaly AS. Genome sequencing and analysis of black flounder (Paralichthys orbignyanus) reveals new insights into Pleuronectiformes genomic size and structure. BMC Genomics 2024; 25:297. [PMID: 38509481 PMCID: PMC10956332 DOI: 10.1186/s12864-024-10081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/02/2024] [Indexed: 03/22/2024] Open
Abstract
Black flounder (Paralichthys orbignyanus, Pleuronectiformes) is a commercially significant marine fish with promising aquaculture potential in Argentina. Despite extensive studies on Black flounder aquaculture, its limited genetic information available hampers the crucial role genetics plays in the development of this activity. In this study, we first employed Illumina sequencing technology to sequence the entire genome of Black flounder. Utilizing two independent libraries-one from a female and another from a male-with 150 bp paired-end reads, a mean insert length of 350 bp, and over 35 X-fold coverage, we achieved assemblies resulting in a genome size of ~ 538 Mbp. Analysis of the assemblies revealed that more than 98% of the core genes were present, with more than 78% of them having more than 50% coverage. This indicates a somehow complete and accurate genome at the coding sequence level. This genome contains 25,231 protein-coding genes, 445 tRNAs, 3 rRNAs, and more than 1,500 non-coding RNAs of other types. Black flounder, along with pufferfishes, seahorses, pipefishes, and anabantid fish, displays a smaller genome compared to most other teleost groups. In vertebrates, the number of transposable elements (TEs) is often correlated with genome size. However, it remains unclear whether the sizes of introns and exons also play a role in determining genome size. Hence, to elucidate the potential factors contributing to this reduced genome size, we conducted a comparative genomic analysis between Black flounder and other teleost orders to determine if the small genomic size could be explained by repetitive elements or gene features, including the whole genome genes and introns sizes. We show that the smaller genome size of flounders can be attributed to several factors, including changes in the number of repetitive elements, and decreased gene size, particularly due to lower amount of very large and small introns. Thus, these components appear to be involved in the genome reduction in Black flounder. Despite these insights, the full implications and potential benefits of genome reduction in Black flounder for reproduction and aquaculture remain incompletely understood, necessitating further research.
Collapse
Affiliation(s)
- Fernando Villarreal
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Germán F Burguener
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Nicolas Stocchi
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrés Blanco
- Facultade de Veterinaria, Universidade de Santiago de Compostela, Santiago de Compostela, Lugo, Spain
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jordi Viñas
- Laboratori d'Ictiologia Genètica, Departament de Biologia, Universitat de Girona, Maria Aurèlia Campmany, 40, Girona, Spain
| | - Alejandro S Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina.
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| |
Collapse
|
6
|
Lin WL, Huang H, Liu YQ, Liu HX, Wei Y, Zhao YQ, Wang YQ, Wu YY, Chen SJ, Li LH. Integrated 4D label-free proteomics and data mining to elucidate the effects of thermal processing on crisp grass carp protein profiles. Curr Res Food Sci 2024; 8:100681. [PMID: 38304000 PMCID: PMC10832373 DOI: 10.1016/j.crfs.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
The crisp grass carp (CGC; Ctenopharyngodon idellus C. et V.), known for its unique texture and flavour, is a culinary delicacy whose quality is significantly influenced by thermal processing. This study employed 4D label-free proteomics and data mining techniques to investigate the proteomic changes in CGC muscle tissue induced by various heating temperatures. CGC samples were subjected to a series of heat treatments at increasing temperatures from 20 °C to 90 °C. Proteins were extracted, digested, and analysed using high-resolution mass spectrometry. The proteomic data were then subjected to extensive bioinformatics analysis, including GO and KEGG pathway enrichment. We identified a total of 1085 proteins, 516 of which were shared across all the temperature treatments, indicating a core proteome responsible for CGC textural properties. Differential expression analysis revealed temperature-dependent changes, with significant alterations observed at 90 °C, suggesting denaturation or aggregation of proteins at higher temperatures. Functional enrichment analysis indicated that proteins involved in amino acid metabolism, glutathione metabolism, and nucleotide metabolism were particularly affected by heat. Textural analysis correlated these proteomic changes with alterations in CGC quality attributes, pinpointing 70 °C as the optimum temperature for maintaining the desired texture. A strong positive correlation between specific upregulated proteins was identified, such as the tubulin alpha chain and collagen alpha-1(IV) chain, and the improved textural properties of CGC during thermal processing, suggesting their potential as the potential biomarkers. This study offers a comprehensive proteomic view of the thermal stability and functionality of CGC proteins, delivering invaluable insights for both the culinary processing and scientific management of CGC. Our findings not only deepen the understanding of the molecular mechanisms underpinning the textural alterations in CGC during thermal processing but also furnish practical insights for the aquaculture industry. These insights could be leveraged to optimize cooking techniques, thereby enhancing the quality and consumer appeal of CGC products.
Collapse
Affiliation(s)
- Wan-ling Lin
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, 521041, China
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, 521041, China
| | - Hui Huang
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Ya-qun Liu
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, 521041, China
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Han-xu Liu
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, 521041, China
| | - Ya Wei
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yong-qiang Zhao
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yue-qi Wang
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yan-yan Wu
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Sheng-jun Chen
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lai-hao Li
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| |
Collapse
|
7
|
Keyvanshokooh S. A review of the quantitative real-time PCR and Omics approaches applied to study the effects of dietary selenium nanoparticles (nano-Se) on fish. COMPARATIVE IMMUNOLOGY REPORTS 2023; 6:200127. [PMCID: PMC10865848 DOI: 10.1016/j.cirep.2023.200127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 07/27/2024]
Abstract
•Selenium is an essential microelement required for the health of humans and animals. •Nano-Se have been applied in aquafeeds to enhance fish immunity and growth. •Omics are used to discover molecular mechanisms underlying biological processes. •This article reviews the omics platforms used to study the nano-Se effects in fish. Selenium (Se) is an essential trace microelement required for the overall health of humans and animals. The importance of Se is mainly related to its participation in the structure of selenoproteins with diverse biological functions, including antioxidant defense, immunity, and thyroid hormone metabolism. The functionality of Se depends on its chemical form (inorganic and organic Se). Due to low toxicity and higher efficacy, Se nanoparticles (nano-Se) have been recently applied in aquafeeds to enhance fish performance. New technological advances have offered different Omics approaches, such as transcriptomics, proteomics, and metabolomics, to realize molecular mechanisms underlying biological processes. In recent years, Omics approaches have been employed to study nano-Se effects on fish. The present article summarizes the impacts of nano-Se supplementation on fish performance, then reviews the qRT-PCR assay and Omics-based approaches used to study the dietary nano-Se supplementation effects in fish.
Collapse
Affiliation(s)
- Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran
| |
Collapse
|
8
|
Herrera M, Ravasi T, Laudet V. Anemonefishes: A model system for evolutionary genomics. F1000Res 2023; 12:204. [PMID: 37928172 PMCID: PMC10624958 DOI: 10.12688/f1000research.130752.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Anemonefishes are an iconic group of coral reef fish particularly known for their mutualistic relationship with sea anemones. This mutualism is especially intriguing as it likely prompted the rapid diversification of anemonefish. Understanding the genomic architecture underlying this process has indeed become one of the holy grails of evolutionary research in these fishes. Recently, anemonefishes have also been used as a model system to study the molecular basis of highly complex traits such as color patterning, social sex change, larval dispersal and life span. Extensive genomic resources including several high-quality reference genomes, a linkage map, and various genetic tools have indeed enabled the identification of genomic features controlling some of these fascinating attributes, but also provided insights into the molecular mechanisms underlying adaptive responses to changing environments. Here, we review the latest findings and new avenues of research that have led to this group of fish being regarded as a model for evolutionary genomics.
Collapse
Affiliation(s)
- Marcela Herrera
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi I-Lan 262, Taiwan
| |
Collapse
|
9
|
Jan K, Ahmed I, Dar NA, Farah MA, Khan FR, Shah BA, Fazio F. LC-MS/MS based characterisation and differential expression of proteins in Himalayan snow trout, Schizothorax labiatus using LFQ technique. Sci Rep 2023; 13:10134. [PMID: 37349327 PMCID: PMC10287682 DOI: 10.1038/s41598-023-35646-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Molecular characterization of fish muscle proteins are nowadays considered as a key component to understand the role of specific proteins involved in various physiological and metabolic processes including their up and down regulation in the organisms. Coldwater fish specimens including snow trouts hold different types of proteins which help them to survive in highly diversified temperatures fluctuating from 0 to 20 °C. So, in current study, the liquid chromatography mass spectrometry using label free quantification technique has been used to investigate the muscle proteome profile of Schizothorax labiatus. For proteomic study, two weight groups of S. labiatus were taken from river Sindh. The proteomic analysis of group 1 revealed that a total of 235 proteins in male and 238 in female fish were recorded. However, when male and female S. labiatus were compared with each other on the basis of spectral count and abundance of peptides by ProteinLynx Global Server software, a total of 14 down-regulated and 22 up-regulated proteins were noted in this group. The highly down-regulated ones included homeodomain protein HoxA2b, retinol-binding protein 4, MHC class II beta chain and proopiomelanocortin while as the highly expressed up-regulated proteins comprised of gonadotropin I beta subunit, NADH dehydrogenase subunit 4, manganese superoxide dismutase, recombinase-activating protein 2, glycosyltransferase, chymotrypsin and cytochrome b. On the other hand, the proteomic characterisation of group 2 of S. labiatus revealed that a total of 227 proteins in male and 194 in female fish were recorded. When male and female S. labiatus were compared with each other by label free quantification, a total of 20 down-regulated and 18 up-regulated proteins were recorded. The down-regulated protein expression of group 2 comprised hepatic lipase, allograft inflammatory factor-1, NADH dehydrogenase subunit 4 and myostatin 1 while the highly expressed up-regulated proteins included glycogen synthase kinase-3 beta variant 2, glycogen synthase kinase-3 beta variant 5, cholecystokinin, glycogen synthase kinase-3 beta variant 3 and cytochrome b. Significant (P < 0.05) difference in the expression of down-regulated and up-regulated proteins was also noted between the two sexes of S. labiatus in each group. According to MS analysis, the proteins primarily concerned with the growth, skeletal muscle development and metabolism were down-regulated in river Sindh, which indicates that growth of fish during the season of collection i.e., winter was slow owing to less food availability, gonad development and low metabolic activity. While, the proteins related to immune response of fish were also noted to be down-regulated thereby signifying that the ecosystem has less pollution loads, microbial, pathogenic and anthropogenic activities. It was also found that the proteins involved in glycogen metabolism, reproductive and metabolic processes, particularly lipid metabolism were up-regulated in S. labiatus. The significant expression of these proteins may be connected to pre-spawning, gonad development and use of stored food as source of energy. The information generated in this study can be applied to future research aimed at enhancing food traceability, food safety, risk management and authenticity analysis.
Collapse
Affiliation(s)
- Kousar Jan
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190 006, India.
| | - Nazir Ahmad Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fatin Raza Khan
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Francesco Fazio
- Department of Veterinary Sciences, Polo Universitario Annunziata, University of Messina, 98168, Messina, Italy
| |
Collapse
|
10
|
Yim YY, Nestler EJ. Cell-Type-Specific Neuroproteomics of Synapses. Biomolecules 2023; 13:998. [PMID: 37371578 PMCID: PMC10296650 DOI: 10.3390/biom13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the last two decades, our knowledge of synaptic proteomes and their relationship to normal brain function and neuropsychiatric disorders has been expanding rapidly through the use of more powerful neuroproteomic approaches. However, mass spectrometry (MS)-based neuroproteomic studies of synapses still require cell-type, spatial, and temporal proteome information. With the advancement of sample preparation and MS techniques, we have just begun to identify and understand proteomes within a given cell type, subcellular compartment, and cell-type-specific synapse. Here, we review the progress and limitations of MS-based neuroproteomics of synapses in the mammalian CNS and highlight the recent applications of these approaches in studying neuropsychiatric disorders such as major depressive disorder and substance use disorders. Combining neuroproteomic findings with other omics studies can generate an in-depth, comprehensive map of synaptic proteomes and possibly identify new therapeutic targets and biomarkers for several central nervous system disorders.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | |
Collapse
|
11
|
Gajahin Gamage NT, Miyashita R, Takahashi K, Asakawa S, Senevirathna JDM. Proteomic Applications in Aquatic Environment Studies. Proteomes 2022; 10:proteomes10030032. [PMID: 36136310 PMCID: PMC9505238 DOI: 10.3390/proteomes10030032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Genome determines the unique individualities of organisms; however, proteins play significant roles in the generation of the colorful life forms below water. Aquatic systems are usually complex and multifaceted and can take on unique modifications and adaptations to environmental changes by altering proteins at the cellular level. Proteomics is an essential strategy for exploring aquatic ecosystems due to the diverse involvement of proteins, proteoforms, and their complexity in basic and advanced cellular functions. Proteomics can expedite the analysis of molecular mechanisms underlying biological processes in an aquatic environment. Previous proteomic studies on aquatic environments have mainly focused on pollution assessments, ecotoxicology, their role in the food industry, and extraction and identification of natural products. Aquatic protein biomarkers have been comprehensively reported and are currently extensively applied in the pharmaceutical and medical industries. Cellular- and molecular-level responses of organisms can be used as indicators of environmental changes and stresses. Conversely, environmental changes are expedient in predicting aquatic health and productivity, which are crucial for ecosystem management and conservation. Recent advances in proteomics have contributed to the development of sustainable aquaculture, seafood safety, and high aquatic food production. Proteomic approaches have expanded to other aspects of the aquatic environment, such as protein fingerprinting for species identification. In this review, we encapsulated current proteomic applications and evaluated the potential strengths, weaknesses, opportunities, and threats of proteomics for future aquatic environmental studies. The review identifies both pros and cons of aquatic proteomics and projects potential challenges and recommendations. We postulate that proteomics is an emerging, powerful, and integrated omics approach for aquatic environmental studies.
Collapse
Affiliation(s)
- Nadeeka Thushari Gajahin Gamage
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Rina Miyashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jayan Duminda Mahesh Senevirathna
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
- Correspondence:
| |
Collapse
|
12
|
Su M, Liu N, Zhang Z, Zhang J. Osmoregulatory strategies of estuarine fish Scatophagus argus in response to environmental salinity changes. BMC Genomics 2022; 23:545. [PMID: 35907798 PMCID: PMC9339187 DOI: 10.1186/s12864-022-08784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scatophagus argus, an estuarine inhabitant, can rapidly adapt to different salinity environments. However, the knowledge of the molecular mechanisms underlying its strong salinity tolerance remains unclear. The gill, as the main osmoregulatory organ, plays a vital role in the salinity adaptation of the fish, and thus relative studies are constructive to reveal unique osmoregulatory mechanisms in S. argus. RESULTS In the present study, iTRAQ coupled with nanoLC-MS/MS techniques were employed to explore branchial osmoregulatory mechanisms in S. argus acclimated to different salinities. Among 1,604 identified proteins, 796 differentially expressed proteins (DEPs) were detected. To further assess osmoregulatory strategies in the gills under different salinities, DEPs related to osmoregulatory (22), non-directional (18), hypo- (52), and hypersaline (40) stress responses were selected. Functional annotation analysis of these selected DEPs indicated that the cellular ion regulation (e.g. Na+-K+-ATPase [NKA] and Na+-K+-2Cl- cotransporter 1 [NKCC1]) and ATP synthesis were deeply involved in the osmoregulatory process. As an osmoregulatory protein, NKCC1 expression was inhibited under hyposaline stress but showed the opposite trend in hypersaline conditions. The expression levels of NKA α1 and β1 were only increased under hypersaline challenge. However, hyposaline treatments could enhance branchial NKA activity, which was inhibited under hypersaline environments, and correspondingly, reduced ATP content was observed in gill tissues exposed to hyposaline conditions, while its contents were increased in hypersaline groups. In vitro experiments indicated that Na+, K+, and Cl- ions were pumped out of branchial cells under hypoosmotic stress, whereas they were absorbed into cells under hyperosmotic conditions. Based on our results, we speculated that NKCC1-mediated Na+ influx was inhibited, and proper Na+ efflux was maintained by improving NKA activity under hyposaline stress, promoting the rapid adaptation of branchial cells to the hyposaline condition. Meanwhile, branchial cells prevented excessive loss of ions by increasing NKA internalization and reducing ATP synthesis. In contrast, excess ions in cells exposed to the hyperosmotic medium were excreted with sufficient energy supply, and reduced NKA activity and enhanced NKCC1-mediated Na+ influx were considered a compensatory regulation. CONCLUSIONS S. argus exhibited divergent osmoregulatory strategies in the gills when encountering hypoosmotic and hyperosmotic stresses, facilitating effective adaptabilities to a wide range of environmental salinity fluctuation.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhengqi Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Nissa MU, Reddy PJ, Pinto N, Sun Z, Ghosh B, Moritz RL, Goswami M, Srivastava S. The PeptideAtlas of a widely cultivated fish Labeo rohita: A resource for the Aquaculture Community. Sci Data 2022; 9:171. [PMID: 35418183 PMCID: PMC9008064 DOI: 10.1038/s41597-022-01259-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Labeo rohita (Rohu) is one of the most important fish species produced in world aquaculture. Integrative omics research provides a strong platform to understand the basic biology and translate this knowledge into sustainable solutions in tackling disease outbreak, increasing productivity and ensuring food security. Mass spectrometry-based proteomics has provided insights to understand the biology in a new direction. Very little proteomics work has been done on 'Rohu' limiting such resources for the aquaculture community. Here, we utilised an extensive mass spectrometry based proteomic profiling data of 17 histologically normal tissues, plasma and embryo of Rohu to develop an open source PeptideAtlas. The current build of "Rohu PeptideAtlas" has mass-spectrometric evidence for 6015 high confidence canonical proteins at 1% false discovery rate, 2.9 million PSMs and ~150 thousand peptides. This is the first open-source proteomics repository for an aquaculture species. The 'Rohu PeptideAtlas' would promote basic and applied aquaculture research to address the most critical challenge of ensuring nutritional security for a growing population.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra, 400061, India
| | - Zhi Sun
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad, 121001, India
| | | | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra, 400061, India.
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
14
|
Li X, Deng X, Guo X, Wei Y, Zhao Y, Guo X, Zhu X, Zhang J, Hu L. Two-dimensional gel analysis to investigate the effect of hydroxyl radical oxidation on freshness indicator protein of Coregonus peled during 4 °C storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Nissa MU, Pinto N, Mukherjee A, Reddy PJ, Ghosh B, Sun Z, Ghantasala S, Chetanya C, Shenoy SV, Moritz RL, Goswami M, Srivastava S. Organ-Based Proteome and Post-Translational Modification Profiling of a Widely Cultivated Tropical Water Fish, Labeo rohita. J Proteome Res 2021; 21:420-437. [PMID: 34962809 DOI: 10.1021/acs.jproteome.1c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteomics has enormous applications in human and animal research. However, proteomic studies in fisheries science are quite scanty particularly for economically important species. Few proteomic studies have been carried out in model fish species, but comprehensive proteomics of aquaculture species are still scarce. This study aimed to perform a comprehensive organ-based protein profiling of important tissue samples for one of the most important aquaculture species,Labeo rohita.Deep proteomic profiling of 17 histologically normal tissues, blood plasma, and embryo provided mass-spectrometric evidence for 8498 proteins at 1% false discovery rate that make up about 26% of the total annotated protein-coding sequences in Rohu. Tissue-wise expression analysis was performed, and the presence of several biologically important proteins was also verified using a targeted proteomic approach. We identified the global post-translational modifications (PTMs) in terms of acetylation (N-terminus and lysine), methylation (N-terminus, lysine, and arginine), and phosphorylation (serine, threonine, and tyrosine) to present a comprehensive proteome resource. An interactive web-based portal has been developed for an overall landscape of protein expression across the studied tissues of Labeo rohita (www.fishprot.org). This draft proteome map of Labeo rohita would advance basic and applied research in aquaculture to meet the most critical challenge of providing food and nutritional security to an increasing world population.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Arijit Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Biplab Ghosh
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chetanya Chetanya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Versova, Mumbai, Maharashtra 400061, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Moreira M, Schrama D, Farinha AP, Cerqueira M, Raposo de Magalhães C, Carrilho R, Rodrigues P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish; a Proteomics Perspective. Animals (Basel) 2021; 11:E125. [PMID: 33430015 PMCID: PMC7827161 DOI: 10.3390/ani11010125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
One of the main constraints in aquaculture production is farmed fish vulnerability to diseases due to husbandry practices or external factors like pollution, climate changes, or even the alterations in the dynamic of product transactions in this industry. It is though important to better understand and characterize the intervenients in the process of a disease outbreak as these lead to huge economical losses in aquaculture industries. High-throughput technologies like proteomics can be an important characterization tool especially in pathogen identification and the virulence mechanisms related to host-pathogen interactions on disease research and diagnostics that will help to control, prevent, and treat diseases in farmed fish. Proteomics important role is also maximized by its holistic approach to understanding pathogenesis processes and fish responses to external factors like stress or temperature making it one of the most promising tools for fish pathology research.
Collapse
Affiliation(s)
- Márcio Moreira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- IPMA—Portuguese Institute for the Sea and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Denise Schrama
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Paula Farinha
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
| | - Cláudia Raposo de Magalhães
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rodrigues
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
17
|
Kumar V, Sinha AK, Uka A, Antonacci A, Scognamiglio V, Mazzaracchio V, Cinti S, Arduini F. Multi-potential biomarkers for seafood quality assessment: Global wide implication for human health monitoring. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Peled Y, Drake JL, Malik A, Almuly R, Lalzar M, Morgenstern D, Mass T. Optimization of skeletal protein preparation for LC-MS/MS sequencing yields additional coral skeletal proteins in Stylophora pistillata. ACTA ACUST UNITED AC 2020; 2:8. [PMID: 32724895 PMCID: PMC7115838 DOI: 10.1186/s42833-020-00014-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stony corals generate their calcium carbonate exoskeleton in a highly controlled biomineralization process mediated by a variety of macromolecules including proteins. Fully identifying and classifying these proteins is crucial to understanding their role in exoskeleton formation, yet no optimal method to purify and characterize the full suite of extracted coral skeletal proteins has been established and hence their complete composition remains obscure. Here, we tested four skeletal protein purification protocols using acetone precipitation and ultrafiltration dialysis filters to present a comprehensive scleractinian coral skeletal proteome. We identified a total of 60 proteins in the coral skeleton, 44 of which were not present in previously published stony coral skeletal proteomes. Extracted protein purification protocols carried out in this study revealed that no one method captures all proteins and each protocol revealed a unique set of method-exclusive proteins. To better understand the general mechanism of skeletal protein transportation, we further examined the proteins’ gene ontology, transmembrane domains, and signal peptides. We found that transmembrane domain proteins and signal peptide secretion pathways, by themselves, could not explain the transportation of proteins to the skeleton. We therefore propose that some proteins are transported to the skeleton via non-traditional secretion pathways.
Collapse
Affiliation(s)
- Yanai Peled
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Jeana L Drake
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Ricardo Almuly
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel
| | - David Morgenstern
- De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Mass
- Marine Biology Department, University of Haifa, Haifa, Israel
| |
Collapse
|
19
|
Brown MS, Evans BS, Afonso LOB. Discordance for genotypic sex in phenotypic female Atlantic salmon (Salmo salar) is related to a reduced sdY copy number. Sci Rep 2020; 10:9651. [PMID: 32541863 PMCID: PMC7296011 DOI: 10.1038/s41598-020-66406-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/18/2020] [Indexed: 11/10/2022] Open
Abstract
The master sex determinant in rainbow trout (Oncorhynchus mykiss), sexually dimorphic on the Y chromosome (sdY), is strongly but not perfectly associated with male phenotype in several other species from the family Salmonidae. Currently, the cause and implications of discordance for sdY-predicted genotypic sex and phenotypic sex in these species is unclear. Using an established multiplex PCR test for exons 2 and 3 of sdY, we demonstrated that sdY-predicted genotypic sex was discordant with histologically evidenced phenotypic sex in 4% of 176 Tasmanian Atlantic salmon. All discordant individuals were phenotypic females presenting a male genotype. Using real-time qPCR assays that we developed and validated for exons 2, 3 and 4 of sdY, all genotype-phenotype discordant females were confirmed to possess sdY, albeit at a reduced number of copies when compared to phenotypic males. The real-time qPCR assays also demonstrated reduced levels of sdY in 30% of phenotypic females that the established multiplex PCR-based test indicated to be devoid of sdY. These findings suggest sdY may be reduced in copy number or mosaicked in the genomic DNA of sdY-positive phenotypic female Atlantic salmon and highlight the importance of understanding the effects of reduced sdY copies on the development of phenotypic sex.
Collapse
Affiliation(s)
- Morgan S Brown
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Warrnambool Campus, Warrnambool, Victoria, 3280, Australia
| | - Brad S Evans
- Breeding & Research, Tassal Operations, Hobart, Tasmania, 7000, Australia
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University Warrnambool Campus, Warrnambool, Victoria, 3280, Australia.
| |
Collapse
|
20
|
Estruch G, Martínez-Llorens S, Tomás-Vidal A, Monge-Ortiz R, Jover-Cerdá M, Brown PB, Peñaranda DS. Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). J Proteomics 2020; 216:103672. [PMID: 32004726 DOI: 10.1016/j.jprot.2020.103672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/23/2019] [Accepted: 01/26/2020] [Indexed: 02/08/2023]
Abstract
The digestive tract, particularly the intestine, represents one of the main sites of interactions with the environment, playing the gut mucosa a crucial role in the digestion and absorption of nutrients, and in the immune defence. Previous researches have proven that the fishmeal replacement by plant sources could have an impact on the intestinal status at both digestive and immune level, compromising relevant productive parameters, such as feed efficiency, growth or survival. In order to evaluate the long-term impact of total fishmeal replacement on intestinal mucosa, the gut mucosa proteome was analysed in fish fed with a fishmeal-based diet, against plant protein-based diets with or without alternative marine sources inclusion. Total fishmeal replacement without marine ingredients inclusion, reported a negative impact in growth and biometric parameters, further an altered gut mucosa proteome. However, the inclusion of a low percentage of marine ingredients in plant protein-based diets was able to maintain the growth, biometrics parameters and gut mucosa proteome with similar values to FM group. A total fishmeal replacement induced a big set of underrepresented proteins in relation to several biological processes such as intracellular transport, assembly of cellular macrocomplex, protein localization and protein catabolism, as well as several molecular functions, mainly related with binding to different molecules and the maintenance of the cytoskeleton structure. The set of downregulated proteins also included molecules which have a crucial role in the maintenance of the normal function of the enterocytes, and therefore, of the epithelium, including permeability, immune and inflammatory response regulation and nutritional absorption. Possibly, the amino acid imbalance presented in VM diet, in a long-term feeding, may be the main reason of these alterations, which can be prevented by the inclusion of 15% of alternative marine sources. SIGNIFICANCE: Long-term feeding with plant protein based diets may be considered as a stress factor and lead to a negative impact on digestive and immune system mechanisms at the gut, that can become apparent in a reduced fish performance. The need for fishmeal replacement by alternative ingredients such as plant sources to ensure the sustainability of the aquaculture sector has led the research assessing the intestinal status of fish to be of increasing importance. This scientific work provides further knowledge about the proteins and biologic processes altered in the gut in response to plant protein based diets, suggesting the loss of part of gut mucosa functionality. Nevertheless, the inclusion of alternative marine ingredients was able to reverse these negative effects, showing as a feasible option to develop sustainable aquafeeds.
Collapse
Affiliation(s)
- Guillem Estruch
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Martínez-Llorens
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Tomás-Vidal
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Raquel Monge-Ortiz
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Miguel Jover-Cerdá
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Paul B Brown
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, 47907 West Lafayette, IN, USA
| | - David S Peñaranda
- Aquaculture and Biodiversity Research Group, Institute of Science and Animal Technology, (ICTA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
21
|
Moreton ML, Lo BP, Simmons DBD, Marlatt VL. Toxicity of the aquatic herbicide, reward®, on the fathead minnow with pulsed-exposure proteomic profile. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100635. [PMID: 31759287 DOI: 10.1016/j.cbd.2019.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022]
Abstract
The objectives of this study were to assess the lethal and sub-lethal effects of the aquatic herbicide commercial formulation, Reward® (373 g/L DB), using application scenarios prescribed by the manufacturer. Specifically, a 14 d period between applications of Reward® in a water body undergoing treatment is required, yet the effects of these 'pulse' exposure scenarios on aquatic wildlife such as fish are unknown. In the first experiment early life stage FHM were exposed to a continuous DB concentrations from 0.105-12.6 mg/L which yielded a larval 7 d LC50 of 2.04 mg/L as well as a significant decrease in body mass (25.0 ± 11.6%) at the 1.18 mg/L Reward® concentration. In a second experiment, FHM larvae were exposed for 24 h and then reared in clean water for 14 d followed by a second 24 h exposure to Reward®. The 16 d LC50 value was 4.19 mg/L. In a third experiment, adult FHM were exposed in a pulse/discontinuous manner to Reward® with a calculated 21 d LC50 value of 6.71 mg/L. No significant changes in gonadosomatic index or fecundity of the F1 generation's hatch success were found when eggs from exposed adults were then reared in clean water. Proteome analyses of whole FHM larvae from the discontinuous/pulse exposure showed the primary gene ontology molecular functions of the proteins in fish exposed to 3.78 mg/L DB that resulted in ~30% mortality with positive or negative differential abundance (p-value < .2) were: structural molecule activity; identical protein binding; structural constituent of cytoskeleton; ion binding; calcium ion binding; cytoskeletal protein binding; actin binding; and, ATP binding. These findings suggest that concentrations causing adverse effects occur above the maximum concentration predicted by the manufacturer when applied according to the label (i.e. >0.37 mg/L).
Collapse
Affiliation(s)
- Michael L Moreton
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
22
|
Ahmed F, Kumar G, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 32:100625. [PMID: 31639560 DOI: 10.1016/j.cbd.2019.100625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Proteomic analyses techniques are considered strong tools for identifying and quantifying the protein contents in different organisms, organs and secretions. In fish biotechnology, the proteomic analyses have been used for wide range of applications such as identification of immune related proteins during infections and stresses. The proteomic approach has a significant role in understanding pathogen surviving strategies, host defence responses and subsequently, the fish pathogen interactions. Proteomic analyses were employed to highlight the virulence related proteins secreted by the pathogens to invade the fish host's defence barriers and to monitor the kinetics of protein contents of different fish organs in response to infections. The immune related proteins of fish and the virulence related proteins of pathogens are up or down regulated according to their functions in defence or pathogenesis. Therefore, the proteomic analyses are useful in understanding the virulence mechanisms of microorganisms and the fish pathogen interactions thereby supporting the development of new effective therapies. In this review, we focus and summarise the recent proteomic profiling studies exploring pathogen virulence activities and fish immune responses to stressors and infections.
Collapse
Affiliation(s)
- Fatma Ahmed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Faiza M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
23
|
Facchin F, Alviano F, Canaider S, Bianconi E, Rossi M, Bonsi L, Casadei R, Biava PM, Ventura C. Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20112646. [PMID: 31146388 PMCID: PMC6600478 DOI: 10.3390/ijms20112646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton’s Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated β-galactosidase (SA β-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Eva Bianconi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy.
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, Via Milanese 300, 20099 Sesto San Giovanni (Milano), Italy.
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)-Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
24
|
Artifon V, Zanardi-Lamardo E, Fillmann G. Aquatic organic matter: Classification and interaction with organic microcontaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1620-1635. [PMID: 30308930 DOI: 10.1016/j.scitotenv.2018.08.385] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Organic matter (OM) in aquatic system is originated from autochthonous and allochthonous natural sources as well as anthropogenic inputs, and can be found in dissolved, particulate or colloidal form. According to the type/composition, OM can be divided in non-humic substances (NHS) or humic substances (HS). The present review focuses on the main groups that constitute the NHS (carbohydrates, proteins, lipids, and lignin) and their role as chemical biomarkers, as well as the main characteristics of HS are presented. HS functions, properties and mechanisms are discussed, in addition to their association to the fate, bioavailability, and toxicity of organic microcontaminants in the aquatic systems. Despite the growing diversity and potential impacts of organic microcontaminants to the aquatic environment, limited information is available about their association with OM. A protective effect is, however, normally seen since the presence of OM (HS mainly) may reduce bioavailability and, consequently, the concentration of organic microcontaminants within the organism. It may also affect the toxicity by either absorbing ultraviolet radiation incidence and, then, reducing the formation of phototoxic compounds, or by increasing the oxygen reactive species and, thus, affecting the decomposition of natural and anthropogenic organic compounds. In addition, the outcome data is hard to compare since each study follows unique experimental protocols. The often use of commercial humic acid (Aldrich) as a generic source of OM in studies can also hinder comparisons since differences in composition makes this type of OM not representative of any aquatic environment. Thus, the current challenge is find out how this clear fragmentation can be overcome.
Collapse
Affiliation(s)
- Vanda Artifon
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife 50740-550, PE, Brazil
| | - Gilberto Fillmann
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande 96203-900, RS, Brazil.
| |
Collapse
|
25
|
Naderi M, Keyvanshokooh S, Ghaedi A, Salati AP. Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): A proteomics study. AQUACULTURE 2018; 495:106-114. [DOI: 10.1016/j.aquaculture.2018.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Hong X, Zhao X, Tian X, Li J, Zha J. Changes of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:862-871. [PMID: 29253827 DOI: 10.1016/j.envpol.2017.12.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Adverse impacts of immunity in terrestrial non-target organisms exposed to neonicotinoid insecticides have been reported, but the causal link between insecticide exposure and possible immune alterations in fish remains limited. In the present study, the potential genotoxicity and immunotoxicity of three neonicotinoids (imidacloprid, nitenpyram, and dinotefuran) were assessed in Chinese rare minnows by using a 60-day chronic toxicity test. The hematological and biochemical parameters of juvenile Chinese rare minnows and changes in the transcription of six inflammation-related genes were determined after exposure to neonicotinoids at 0.1, 0.5, or 2.0 mg/L. A clear difference in the frequency of erythrocytes with micronuclei (MN) was observed after treatment with 2.0 mg/L imidacloprid (p < .05). Additionally, exposure to 0.5 or 2.0 mg/L imidacloprid significantly increased the binucleated (BN) erythrocytes and those with notched nuclei (NT) (p < .05). A serum protein electrophoresis (SPE) assay showed significant alterations in the serum protein in all treatments (p < .05), and further analysis indicated decreases in immunoglobulin (Ig) in treatments with 0.5 or 2.0 mg/L imidacloprid or dinotefuran or with 0.1 mg/L nitenpyram (p < .05). Moreover, a biochemical assay confirmed that immunoglobulin M (IgM) levels were indeed significantly decreased upon treatment with imidacloprid or dinotefuran at 0.5 or 2.0 mg/L (p < .05). In addition, the transcriptional levels of the inflammatory cytokines IL-6, INF-α, TNF-α, and IL-1β were markedly down-regulated after all imidacloprid treatments (p < .05), whereas the expression levels of only TNF-α and IL-1β were significantly down-regulated following the 0.5 and 2.0 mg/L dinotefuran treatments (p < .05). Taken together, our results clearly demonstrate that imidacloprid, rather than nitenpyram and dinotefuran, can induce genotoxicity. The responsiveness of these immune indicators provides new insight into and evidence of the adverse effects of neonicotinoids on aquatic non-target organisms.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | - Xue Tian
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing City Environment Pollution Control and Resource Reuse Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiasu Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
27
|
Jacobson G, Muncaster S, Mensink K, Forlenza M, Elliot N, Broomfield G, Signal B, Bird S. Omics and cytokine discovery in fish: Presenting the Yellowtail kingfish (Seriola lalandi) as a case study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:63-76. [PMID: 28416435 DOI: 10.1016/j.dci.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
A continued programme of research is essential to overcome production bottlenecks in any aquacultured fish species. Since the introduction of genetic and molecular techniques, the quality of immune research undertaken in fish has greatly improved. Thousands of species specific cytokine genes have been discovered, which can be used to conduct more sensitive studies to understand how fish physiology is affected by aquaculture environments or disease. Newly available transcriptomic technologies, make it increasingly easier to study the immunogenetics of farmed species for which little data exists. This paper reviews how the application of transcriptomic procedures such as RNA Sequencing (RNA-Seq) can advance fish research. As a case study, we present some preliminary findings using RNA-Seq to identify cytokine related genes in Seriola lalandi. These will allow in-depth investigations to understand the immune responses of these fish in response to environmental change or disease and help in the development of therapeutic approaches.
Collapse
Affiliation(s)
- Gregory Jacobson
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Simon Muncaster
- School Applied Science, Bay of Plenty Polytechnic, 70 Windermere Dr, Poike, Tauranga 3112, New Zealand
| | - Koen Mensink
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Nick Elliot
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Grant Broomfield
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Beth Signal
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Steve Bird
- Molecular Genetics, Department of Biological Sciences, School of Science and Engineering, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|
28
|
Chiozzi RZ, Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Label-Free Shotgun Proteomics Approach to Characterize Muscle Tissue from Farmed and Wild European Sea Bass (Dicentrarchus labrax). FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0999-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Nano-LC-ESI MS/MS analysis of proteins in dried sea dragon Solenognathus hardwickii and bioinformatic analysis of its protein expression profiling. Chin J Nat Med 2017; 14:709-713. [PMID: 27667517 DOI: 10.1016/s1875-5364(16)30084-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 11/23/2022]
Abstract
The sea dragon Solenognathus hardwickii has long been used as a traditional Chinese medicine for the treatment of various diseases, such as male impotency. To gain a comprehensive insight into the protein components of the sea dragon, shotgun proteomic analysis of its protein expression profiling was conducted in the present study. Proteins were extracted from dried sea dragon using a trichloroacetic acid/acetone precipitation method and then separated by SDS-PAGE. The protein bands were cut from the gel and digested by trypsin to generate peptide mixture. The peptide fragments were then analyzed using nano liquid chromatography tandem mass spectrometry (nano-LC-ESI MS/MS). 810 proteins and 1 577 peptides were identified in the dried sea dragon. The identified proteins exhibited molecular weight values ranging from 1 900 to 3 516 900 Da and pI values from 3.8 to 12.18. Bioinformatic analysis was conducted using the DAVID Bioinformatics Resources 6.7 Gene Ontology (GO) analysis tool to explore possible functions of the identified proteins. Ascribed functions of the proteins mainly included intracellular non-membrane-bound organelle, non-membrane-bounded organelle, cytoskeleton, structural molecule activity, calcium ion binding and etc. Furthermore, possible signal networks of the identified proteins were predicted using STRING (Search Tool for the Retrieval of Interacting Genes) database. Ribosomal protein synthesis was found to play an important role in the signal network. The results of this study, to best of our knowledge, were the first to provide a reference proteome profile for the sea dragon, and would aid in the understanding of the expression and functions of the identified proteins.
Collapse
|
30
|
Nuez-Ortín WG, Carter CG, Wilson R, Cooke IR, Amoroso G, Cobcroft JM, Nichols PD. Triploid Atlantic salmon shows similar performance, fatty acid composition and proteome response to diploids during early freshwater rearing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:67-77. [PMID: 28214702 DOI: 10.1016/j.cbd.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 11/18/2022]
Abstract
There is currently renewed interest in farming triploid Atlantic salmon. Improving farming requires identifying triploid specific phenotypic and physiological traits that are uniquely derived from ploidy per se and developed under optimal growing conditions. This study investigated firstly, the impact of ploidy on growth performance and whole body composition of Atlantic salmon at different early freshwater stages [34dph (days post-hatching) alevin, 109dph fry, and 162dph parr] and secondly, whether phenotypic differences at these stages were reflected in protein samples collected from whole fish, white muscle or liver tissue. Female diploid and triploid Atlantic salmon (n=3) were first fed at 35dph and then maintained by feeding to satiation on commercial feeds. Triploids were significantly lower in weight at the late alevin and fry stages but matched diploid weight at the parr stage. The whole-body lipid content was significantly higher for triploids at the parr stage, while the whole-body lipid class profile was broadly similar and was largely not affected by ploidy. Comparative label-free shotgun proteomic analysis did not detect significant alterations in protein expression between diploids and triploids at any growth stage. The present results indicate that ploidy under optimal growing conditions and during early freshwater stages only result in small phenotypic differences in weight and whole body lipid content that were not reflected at the proteome level. These findings suggest that optimal husbandry conditions for freshwater Atlantic salmon are similar between ploidies, at least for all-female populations.
Collapse
Affiliation(s)
- Waldo G Nuez-Ortín
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia; CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia.
| | - Chris G Carter
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Bag 74, Hobart, TAS 7001, Australia
| | - Ira R Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Gianluca Amoroso
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Jennifer M Cobcroft
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Peter D Nichols
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia; CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
| |
Collapse
|
31
|
Toxicogenomic applications of Chinese rare minnow (Gobiocypris rarus) in aquatic toxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:174-180. [DOI: 10.1016/j.cbd.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022]
|
32
|
Brinkmann M, Koglin S, Eisner B, Wiseman S, Hecker M, Eichbaum K, Thalmann B, Buchinger S, Reifferscheid G, Hollert H. Characterisation of transcriptional responses to dioxins and dioxin-like contaminants in roach (Rutilus rutilus) using whole transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:412-423. [PMID: 26410716 DOI: 10.1016/j.scitotenv.2015.09.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 05/10/2023]
Abstract
There is significant concern regarding the contamination of riverine sediments with dioxins and dioxin-like compounds (DLCs), including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs) and some polycyclic aromatic hydrocarbons (PAHs). The majority of studies investigating the ecotoxicology of DLCs in fish have focused on a few standard model species. However, there is significant uncertainty as to whether these model species are representative of native river fish, particularly in Europe. In this study, the transcriptional responses following exposure to equipotent concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB 156 or the dioxin-like PAH, benzo[k]fluoranthene (BkF), were investigated in juvenile roach (Rutilus rutilus), a fish species that constitutes a large proportion of the fish biomass in freshwater bodies throughout Europe. To this end, RNA sequencing analysis was used to comprehensively characterise the molecular mechanisms and pathways of toxicity of these DLCs. Whole transcriptome analyses using ClueGO software revealed that DLCs have the potential to disrupt a number of important processes, including energy metabolism, oogenesis, the immune system, apoptosis and the response to oxidative stress. However, despite using equipotent concentrations, there was very little conservation of the transcriptional responses observed in fish exposed to different DLCs. TCDD provoked significant specific changes in the levels of transcripts related to immunotoxicity and carbohydrate metabolism, while PCB 156 caused virtually no specific effects. Exposure to BkF affected the most diverse suite of molecular functions and biological processes, including blood coagulation, oxidative stress responses, unspecific responses to organic or inorganic substances/stimuli, cellular redox homeostasis and specific receptor pathways. To our knowledge, this is the first study of the transcriptome-wide effects of different classes of DLCs in fish. These findings represent an important step towards describing complete toxicity pathways of DLCs, which will be important in the context of informing risk assessments of DLC toxicity in native fish species.
Collapse
Affiliation(s)
- Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sven Koglin
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Bryanna Eisner
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; School of the Environment & Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Beat Thalmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sebastian Buchinger
- Federal Institute of Hydrology (BfG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology (BfG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing 400715, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|
33
|
Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A 2016; 1428:193-201. [DOI: 10.1016/j.chroma.2015.07.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 11/19/2022]
|
34
|
Kohn YY, Symonds JE, Kleffmann T, Nakagawa S, Lagisz M, Lokman PM. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1403-1417. [PMID: 26183261 DOI: 10.1007/s10695-015-0095-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.
Collapse
Affiliation(s)
- Yair Y Kohn
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
- Arava Research and Development Station, Hatzeva, Israel
| | - Jane E Symonds
- Bream Bay Aquaculture Park, NIWA, PO Box 147, Ruakaka, 0151, New Zealand
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - P Mark Lokman
- Department of Zoology, University of Otago, PO Box 56, 340 Great King St., Dunedin, 9016, New Zealand.
| |
Collapse
|
35
|
Artigaud S, Richard J, Thorne MAS, Lavaud R, Flye-Sainte-Marie J, Jean F, Peck LS, Clark MS, Pichereau V. Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genomics 2015; 16:988. [PMID: 26596422 PMCID: PMC4657243 DOI: 10.1186/s12864-015-2132-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The capacity of marine species to survive chronic heat stress underpins their ability to survive warming oceans as a result of climate change. In this study RNA-Seq and 2-DE proteomics were employed to decipher the molecular response of the sub-tidal bivalve Pecten maximus, to elevated temperatures. RESULTS Individuals were maintained at three different temperatures (15, 21 and 25 °C) for 56 days, representing control conditions, maximum environmental temperature and extreme warming, with individuals sampled at seven time points. The scallops thrived at 21 °C, but suffered a reduction in condition at 25 °C. RNA-Seq analyses produced 26,064 assembled contigs, of which 531 were differentially expressed, with putative annotation assigned to 177 transcripts. The proteomic approach identified 24 differentially expressed proteins, with nine identified by mass spectrometry. Network analysis of these results indicated a pivotal role for GAPDH and AP-1 signalling pathways. Data also suggested a remodelling of the cell structure, as revealed by the differential expression of genes involved in the cytoskeleton and cell membrane and a reduction in DNA repair. They also indicated the diversion of energetic metabolism towards the mobilization of lipid energy reserves to fuel the increased metabolic rate at the higher temperature. CONCLUSIONS This work provides preliminary insights into the response of P. maximus to chronic heat stress and provides a basis for future studies examining the tipping points and energetic trade-offs of scallop culture in warming oceans.
Collapse
Affiliation(s)
- Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Joëlle Richard
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Romain Lavaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Jonathan Flye-Sainte-Marie
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Fred Jean
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| |
Collapse
|
36
|
Cordero H, Brinchmann MF, Cuesta A, Meseguer J, Esteban MA. Skin mucus proteome map of European sea bass (Dicentrarchus labrax). Proteomics 2015; 15:4007-20. [PMID: 26376207 DOI: 10.1002/pmic.201500120] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/23/2022]
Abstract
Skin mucus is the first barrier of fish defence. Proteins from skin mucus of European sea bass (Dicentrarchus labrax) were identified by 2DE followed by LC-MS/MS. From all the identified proteins in the proteome map, we focus on the proteins associated with several immune pathways in fish. Furthermore, the real-time PCR transcript levels in skin are shown. Proteins found include apolipoprotein A1, calmodulin, complement C3, fucose-binding lectin, lysozyme and several caspases. To our knowledge, this is the first skin mucus proteome study and further transcriptional profiling of the identified proteins done on this bony fish species. This not only contributes knowledge on the routes involved in mucosal innate immunity, but also establishes a non-invasive technique based on locating immune markers with a potential use for prevention and/or diagnosis of fish diseases.
Collapse
Affiliation(s)
- Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Monica F Brinchmann
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
37
|
Shu L, Suter MJF, Räsänen K. Evolution of egg coats: linking molecular biology and ecology. Mol Ecol 2015; 24:4052-73. [DOI: 10.1111/mec.13283] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Department of Environmental Systems Science; Swiss Federal Institute of Technology; ETH Zurich; 8092 Zurich Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
38
|
Samenkova NF, Kisrieva YS, Petushkova NA, Kuznetsova GP, Larina OV, Trifonova OP, Karuzina II, Ipatova OM, Lisitsa AV. [Analysis of proteomic profile changes of zebrafish embryos during exposure to doxorubicin, built-in the phospholipid transport nanosystem]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015. [PMID: 26215412 DOI: 10.18097/pbmc20156103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The proteome profile of Danio rerio embryos grown in the medium containing doxorubicin, included in the phospholipid transport nanosystem (doxolip) has been investigated using combination of 1D-electrophoresis with subsequent MALDI-TOF-PMF mass spectrometry. Cultivation of growing of D. rerio embryos in the medium with doxolip caused a substantial increase in expression of the cytoskeletal proteins, a decrease in the number of nuclear proteins involved in DNA and RNA synthesis and disappearance of vitellogenin 2 in comparison with control (the cultivation medium containing the phospholipid transport nanosystem). Analysis of the proteomic profiles of doxolip-treated embryos suggests lower toxicity of doxorubicin incorporated in the phospholipid nanosystem.
Collapse
Affiliation(s)
| | - Y S Kisrieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - O V Larina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - I I Karuzina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
39
|
Galland C, Dupuy C, Loizeau V, Danion M, Auffret M, Quiniou L, Laroche J, Pichereau V. Proteomic analysis of the European flounder Platichthys flesus response to experimental PAH-PCB contamination. MARINE POLLUTION BULLETIN 2015; 95:646-657. [PMID: 25912264 DOI: 10.1016/j.marpolbul.2015.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
Platichthys flesus is often used as a sentinel species to monitor the estuarine water quality. In this study, we carried out an experimental contamination of fish using a PAHs/PCBs mixture, which was designed to mimic the concentrations found in the Seine estuary (C1) and 10 times these concentrations (C2). We used a proteomic approach to understand the molecular mechanisms implied in the response of P. flesus to these xenobiotics. We showed that 54 proteins were differentially accumulated in one or several conditions, which 34 displayed accumulation factors higher than two. 18 of these proteins were identified by MALDI TOF-TOF mass spectrometry. The results indicated the deregulation of oxidative stress- and glutathione metabolism-(GST, GPx) proteins as well as of several proteins belonging to the betaine demethylation pathway and the methionine cycle (BHMT, SHMT, SAHH), suggesting a role for these different pathways in the P. flesus response to chemical contamination.
Collapse
Affiliation(s)
- Claire Galland
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Célie Dupuy
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Véronique Loizeau
- Unité de Biogéochimie et Ecotoxicologie, IFREMER, Centre de Brest, BP70, 29280 Plouzané, France
| | - Morgane Danion
- ANSES, Agence nationale de sécurité sanitaire de l'alimentation et de l'environnement et du travail, site de Ploufragan-Plouzané-Technopole Brest Iroise, 29280 Plouzané, France
| | - Michel Auffret
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Louis Quiniou
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Jean Laroche
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France
| | - Vianney Pichereau
- Université de Brest, Laboratoire des Sciences de l'Environnement Marin, LEMAR, UMR 6539 UBO/CNRS/IRD/Ifremer, Institut Universitaire Européen de la Mer (IUEM), 29280 Plouzané, France.
| |
Collapse
|
40
|
Petushkova NA, Kuznetsova GP, Larina OV, Kisrieva YS, Samenkova NF, Trifonova OP, Miroshnichenko YV, Zolotarev KV, Karuzina II, Ipatova OM, Lisitsa AV. One-dimensional proteomic profiling of Danio rerio embryo vitellogenin to estimate quantum dot toxicity. Proteome Sci 2015; 13:17. [PMID: 25964724 PMCID: PMC4426544 DOI: 10.1186/s12953-015-0072-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vitellogenin (Vtg) is the major egg yolk protein (YP) in most oviparous species and may be useful as an indicator in ecotoxicological testing at the biochemical level. In this study, we obtained detailed information about the Vtgs of Danio rerio embryos by cutting SDS-PAGE gel lanes into thin slices, and analyzing them slice-by-slice with (MALDI-TOF) mass spectrometry. RESULTS We conducted three proteomic analyses, comparing embryonic Danio rerio Vtg cleavage products after exposure for 48 h to CdSecore/ZnSshell quantum dots (QDs), after exposure to a mixture of the components used for quantum dot synthesis (MCS-QDs), and in untreated embryos. The Vtg mass spectrometric profiles of the QDs-treated embryos differed from those of the unexposed or MCS-QDs-treated embryos. CONCLUSION This study demonstrates the possible utility of Vtg profiling in D. rerio embryos as a sensitive diagnostic tool to estimate nanoparticle toxicity.
Collapse
Affiliation(s)
- Natalia A Petushkova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
- />Postgen Tech LLC, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Galina P Kuznetsova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Olesya V Larina
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Yulia S Kisrieva
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Natalia F Samenkova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Oxana P Trifonova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | | | - Konstantin V Zolotarev
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Irina I Karuzina
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Olga M Ipatova
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| | - Andrey V Lisitsa
- />Orekhovich Institute of Biomedical Chemistry, 119121, Pogodinskaya St. 10, Moscow, Russia
| |
Collapse
|
41
|
Jorrín-Novo JV, Pascual J, Sánchez-Lucas R, Romero-Rodríguez MC, Rodríguez-Ortega MJ, Lenz C, Valledor L. Fourteen years of plant proteomics reflected in Proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 2015; 15:1089-112. [PMID: 25487722 DOI: 10.1002/pmic.201400349] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/23/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
In this article, the topic of plant proteomics is reviewed based on related papers published in the journal Proteomics since publication of the first issue in 2001. In total, around 300 original papers and 41 reviews published in Proteomics between 2000 and 2014 have been surveyed. Our main objective for this review is to help bridge the gap between plant biologists and proteomics technologists, two often very separate groups. Over the past years a number of reviews on plant proteomics have been published . To avoid repetition we have focused on more recent literature published after 2010, and have chosen to rather make continuous reference to older publications. The use of the latest proteomics techniques and their integration with other approaches in the "systems biology" direction are discussed more in detail. Finally we comment on the recent history, state of the art, and future directions of plant proteomics, using publications in Proteomics to illustrate the progress in the field. The review is organized into two major blocks, the first devoted to provide an overview of experimental systems (plants, plant organs, biological processes) and the second one to the methodology.
Collapse
Affiliation(s)
- Jesus V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba-CeiA3, Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Zheng L, Yu J, Shi H, Xia L, Xin Q, Zhang Q, Zhao H, Luo J, Jin W, Li D, Zhou J. Quantitative toxicoproteomic analysis of zebrafish embryos exposed to a retinoid X receptor antagonist UVI3003. J Appl Toxicol 2015; 35:1049-57. [DOI: 10.1002/jat.3099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/03/2014] [Accepted: 11/13/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Liang Zheng
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
- Department of Cancer Biology and Pharmacology; University of Illinois College of Medicine; One Illini Drive Peoria IL 61605 USA
| | - Jianlan Yu
- Asia Pacific Application Support Center; AB SCIEX; 888 Tianlin Road Shanghai 200233 China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Liang Xia
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Qi Xin
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Qiang Zhang
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Heng Zhao
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Ji Luo
- Asia Pacific Application Support Center; AB SCIEX; 888 Tianlin Road Shanghai 200233 China
| | - Wenhai Jin
- Asia Pacific Application Support Center; AB SCIEX; 888 Tianlin Road Shanghai 200233 China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| | - Junliang Zhou
- State Key Laboratory of Estuarine and Coastal Research; East China Normal University; 3663 Zhongshan (N) Road Shanghai 200062 China
| |
Collapse
|
43
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Rhee JS, Lee JS. Whole genome data for omics-based research on the self-fertilizing fish Kryptolebias marmoratus. MARINE POLLUTION BULLETIN 2014; 85:532-541. [PMID: 24759509 DOI: 10.1016/j.marpolbul.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Genome resources have advantages for understanding diverse areas such as biological patterns and functioning of organisms. Omics platforms are useful approaches for the study of organs and organisms. These approaches can be powerful screening tools for whole genome, proteome, and metabolome profiling, and can be used to understand molecular changes in response to internal and external stimuli. This methodology has been applied successfully in freshwater model fish such as the zebrafish Danio rerio and the Japanese medaka Oryzias latipes in research areas such as basic physiology, developmental biology, genetics, and environmental biology. However, information is still scarce about model fish that inhabit brackish water or seawater. To develop the self-fertilizing killifish Kryptolebias marmoratus as a potential model species with unique characteristics and research merits, we obtained genomic information about K. marmoratus. We address ways to use these data for genome-based molecular mechanistic studies. We review the current state of genome information on K. marmoratus to initiate omics approaches. We evaluate the potential applications of integrated omics platforms for future studies in environmental science, developmental biology, and biomedical research. We conclude that information about the K. marmoratus genome will provide a better understanding of the molecular functions of genes, proteins, and metabolites that are involved in the biological functions of this species. Omics platforms, particularly combined technologies that make effective use of bioinformatics, will provide powerful tools for hypothesis-driven investigations and discovery-driven discussions on diverse aspects of this species and on fish and vertebrates in general.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Marine Science, College of Natural Science, Incheon National University, Incheon 406-772, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
45
|
Proteomic-based comparison between populations of the Great Scallop, Pecten maximus. J Proteomics 2014; 105:164-73. [PMID: 24704858 DOI: 10.1016/j.jprot.2014.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/13/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Comparing populations residing in contrasting environments is an efficient way to decipher how organisms modulate their physiology. Here we present the proteomic signatures of two populations in a non-model marine species, the great scallop Pecten maximus, living in the northern (Hordaland, Norway) and in the center (Brest, France) of this species' latitudinal distribution range. The results showed 38 protein spots significantly differentially accumulated in mantle tissues between the two populations. We could unambiguously identify 11 of the protein spots by Maldi TOF-TOF mass spectrometry. Eight proteins corresponded to different isoforms of actin, two were identified as filamin, another protein related to the cytoskeleton structure, and one was the protease elastase. Our results suggest that scallops from the two populations assayed may modulate their cytoskeleton structures through regulation of intracellular pools of actin and filamin isoforms to better adapt to their environment. BIOLOGICAL SIGNIFICANCE Marine mollusks are non-model organisms that have been poorly studied at the proteomic level, and this article is the first studying the great scallop (P. maximus) at this level. Furthermore, it addresses population proteomics, a new promising field, especially in environmental sciences. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
|
46
|
Terova G, Pisanu S, Roggio T, Preziosa E, Saroglia M, Addis MF. Proteomic profiling of sea bass muscle by two-dimensional gel electrophoresis and tandem mass spectrometry. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:311-322. [PMID: 24057758 DOI: 10.1007/s10695-013-9855-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
In this study, the proteome profile of European sea bass (Dicentrarchus labrax) muscle was analyzed using two-dimensional electrophoresis (2-DE) and tandem mass spectrometry with the aim of providing a more detailed characterization of its specific protein expression profile. A highly populated and well-resolved 2-DE map of the sea bass muscle tissue was generated, and the corresponding protein identity was provided for a total of 49 abundant protein spots. Upon Ingenuity Pathway Analysis, the proteins mapped in the sea bass muscle profile were mostly related to glycolysis and to the muscle myofibril structure, together with other biological activities crucial to fish muscle metabolism and contraction, and therefore to fish locomotor performance. The data presented in this work provide important and novel information on the sea bass muscle tissue-specific protein expression, which can be useful for future studies aimed to improve seafood traceability, food safety/risk management and authentication analysis. This work is also important for understanding the proteome map of the sea bass toward establishing the animal as a potential model for muscular studies.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J. H. Dunant, 3, 21100, Varese, Italy,
| | | | | | | | | | | |
Collapse
|
47
|
Zhao J, Lv W, Wang J, Li J, Liu X, Zhu J. Effects of tea polyphenols on the post-mortem integrity of large yellow croaker (Pseudosciaena crocea) fillet proteins. Food Chem 2013; 141:2666-74. [DOI: 10.1016/j.foodchem.2013.04.126] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/28/2022]
|
48
|
Abstract
In this review, we present an overview of the recent advances of genomic technologies applied to studies of fish species belonging to the superclass of Osteichthyes (bony fish) with a major emphasis on the infraclass of Teleostei, also called teleosts. This superclass that represents more than 50% of all known vertebrate species has gained considerable attention from genome researchers in the last decade. We discuss many examples that demonstrate that this highly deserved attention is currently leading to new opportunities for answering important biological questions on gene function and evolutionary processes. In addition to giving an overview of the technologies that have been applied for studying various fish species we put the recent advances in genome research on the model species zebrafish and medaka in the context of its impact for studies of all fish of the superclass of Osteichthyes. We thereby want to illustrate how the combined value of research on model species together with a broad angle perspective on all bony fish species will have a huge impact on research in all fields of fundamental science and will speed up applications in many societally important areas such as the development of new medicines, toxicology test systems, environmental sensing systems and sustainable aquaculture strategies.
Collapse
|
49
|
|
50
|
Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.08.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|